
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
FlexDDM: A flexible decision-diffusion Python package for the behavioral sciences

Permalink
https://escholarship.org/uc/item/4q57r2x0

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
LaFollette, Kyle
Fan, Joy
Puccio, Alessandra
et al.

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q57r2x0
https://escholarship.org/uc/item/4q57r2x0#author
https://escholarship.org
http://www.cdlib.org/

FlexDDM: A flexible decision-diffusion Python package for the behavioral sciences

Kyle J. LaFollette (kjl113@case.edu)
Department of Psychological Sciences

Case Western Reserve University, Cleveland, OH, USA

Joy Fan (jyf6@case.edu)
Department of Computer and Data Sciences

Case Western Reserve University, Cleveland, OH, USA

Alessandra Puccio (agp63@case.edu)
Department of Computer and Data Sciences

Case Western Reserve University, Cleveland, OH, USA

Heath A. Demaree (had4@case.edu)
Department of Psychological Sciences

Case Western Reserve University, Cleveland, OH, USA

Abstract

Decision diffusion models are commonly used to explain the
processes underlying decision-making. Many software options
exist for cognitive scientists to fit diffusion models to data;
however, they tend to lack customizability beyond existing
model formulations that are already built into them, stymying
new theoretical contributions. We introduce FlexDDM, a new
Python package that requires minimal coding to develop new
diffusion models. The package is equipped with four standard
models of cognitive conflict tasks and a suite of fitting
techniques. Our development of FlexDDM aims to broaden the
accessibility and applicability of computational methods in
cognitive science, thereby accelerating theoretical innovation
and contributing to advancements in the field of behavioral
sciences.

Keywords: computational modeling; decision diffusion;
decision-making; Python; software

Introduction

In the dynamic realm of behavioral science, decision

diffusion models (DDMs) have emerged as a pivotal tool for

explaining the cognitive processes underlying decision-

making (Ratcliff, 1978; Ratcliff et al., 2016). These models

are based on the concept that decision-making is a process of

accumulating evidence over time until a threshold is reached,

which then triggers a decision. The DDM represents this

process as a particle undergoing a random walk in a two-

dimensional space, where the movement of the particle is

influenced by the incoming evidence for or against a

particular choice. This approach has been particularly useful

in explaining the speed-accuracy trade-off in decision-

making tasks and in modeling reaction time distributions in

simple choice tasks, such as those presenting two forced-

choice alternatives. By varying the parameters of the model,

such as the rate of evidence accumulation and the decision

threshold, researchers can predict how changes in task

conditions or neural processing might affect decision-making

behavior. Yet, despite their theoretical appeal and empirical

successes, DDMs present notable challenges for cognitive

scientists striving to forge new theoretical frontiers.

The ability to formalize and validate new theoretical

models is a force for innovation in cognitive science. It

ensures that models of behavior evolve in tandem with

insights from the latest empirical work and theoretical

directions. To implement DDMs in their research, most

cognitive scientists rely on off-the-shelf fitting software (e.g.

Ahn et al., 2017; Wagenmakers et al., 2007; Wiecki et al.,

2013). Unfortunately, most standard software packages tend

to lack the flexibility necessary to construct original models.

Cognitive scientists are left with the choice to either limit

themselves to testing older, albeit well-established models, or

code their own modeling software from scratch. This of

course, imposes a substantial barrier of entry to anyone

interested in making new theoretical contributions with

DDMs. Software should be both flexible and accessible,

accommodating unique formulations while requiring

minimal programming experience. To address these

limitations in currently available software, we developed

FlexDDM, a simulation-based model fitting package written

in Python. FlexDDM comes with pre-written scripts for

multiple leading DDM variants, and user-friendly tools for

either modifying those scripts or creating new scripts from

scratch with ease.

In this paper, we introduce obstacles for cognitive

scientists interested in extending the DDM and FlexDDM’s

solutions. We discuss FlexDDM’s features including

optimizers, loss functions, and parallelization, and the user

experience for writing diffusion models from scratch.

Finally, to demonstrate a use-case for FlexDDM and a

common practice in computational cognitive modeling, we

re-analyze open experimental data from the Erikson Flanker

task, identifying a best-fitting model of cognitive control and

conflict processing.

Obstacles for extending the DDM

The DDM in its simplest form is typically limited to four

parameters: drift rate, boundary separation, initial starting

position, and non-decision time. These four parameters

represent a person’s average rate of evidence accumulation,

response caution, choice biases, and decision-unrelated

delays (such as pre-motor planning), respectively. This

classical DDM is a powerful tool for cognitive scientists who

seek an explanatory account for decision-making, however it

does have empirical faults. Among these faults is an inability

to account for fast and slow errors relative to correct response

times. A number of extensions to the model have been made

to account for such faults, such as between-trial variability

parameters for Gaussian-distributed drift rate, and uniformly-

distributed starting position and non-decision time. Together,

4772
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

Figure 1: Schematic of the decision diffusion model. In this

model, a particle diffuses through 2D-space, reflect evidence

for one of two alternatives. Evidence accumulates noisily

until a threshold is met, culminating in a decision and

response time.

they form what is commonly referred to as the “full DDM”.

Despite the improvement to fit yielded by the full DDM,

some authors claim that between-trial variability parameters

lack theoretical motivation (Tillman et al., 2020), and the

behaviors they capture can be better modeled with different

formulations. Furthermore, the fit may be “too” good,

disallowing falsifiability in favor of infinitely flexible models

(Jones & Dzhafarov, 2014). Whether or not these extensions

are worth reconsidering, I t is clear that model development

benefits from theoretical constraints.

Despite the necessity to recognize theoretically motivated

constraints, modelers need to be free to explore new models

beyond those well-established in support of more

contemporary theory. There are essentially an unlimited

number of ways to conceptualize a decision diffusion

process, from incorporating an urgency signal into the drift

rate that builds as time passes (Ditterich, 2006) to collapsing

boundaries that throw caution aside as a deadline approaches

(Hawkins et al., 2015). Modifications to the standard decision

diffusion model are at the forefront of new theoretical

developments. Notable among these are the Dual-Stage Two-

Phase (DSTP; Hübner et al., 2010) model, the Shrinking

Spotlight (SSP; White et al., 2011) model, and the Diffusion

Model for Conflict (DMC; Ulrich et al., 2015). These models

are unified by a key characteristic: the dynamic nature of

evidence accumulation over time, albeit through different

mechanisms. The DSTP model posits two separate diffusion

processes: one for attention selection and another for

decision-making. Initially, the decision-making process

gathers information from all stimuli; however, if the attention

selection process terminates first, the focus shifts to solely

gathering evidence from the chosen target. Conversely, the

SSP model envisages a continuously shrinking "spotlight"

over stimuli, zeroing in on the target until a decision is

reached upon meeting an evidence threshold. The DMC

model instead suggests two competing accumulation

processes: a controlled process that concentrates on the target

and an automatic process that inadvertently includes

evidence from distractors, fluctuating over time. These three

models offer diverse theoretical frameworks for

understanding how information is processed in conflict tasks,

such as the Erikson Flanker task (Eriksen & Eriksen, 1974).

Cognitive scientists interested in fitting these models to

their own data or developing models to explore new

theoretical directions will be disappointed to find that most

conventional software for decision diffusion modeling tends

to be rigid, constraining researchers to pre-existing

formulations of diffusion models. A significant reason for

this impediment arises from the reliance of most model fitting

routines on finding analytical solutions with known

likelihood functions. These functions measure the probability

of a set of parameters given specific observed data, and are a

critical ingredient for popular optimization or search methods

like Maximum Likelihood Estimation or Markov Chain

Monte Carlo. Unfortunately, when new formulations or

seemingly benign modifications are introduced to DDMs, the

resulting likelihood functions can lack closed-form analytical

solutions or become so complex that they are

computationally intractable (Ratcliff, 1980). These

intractabilities limit theoretical advancement, as researchers

are unable to explore new model dynamics due to

computational constraints.

Due to the complexity of their likelihood functions, these

models are omitted from the standard diffusion modeling

software relying on likelihood-based fitting routines.

Researchers are instead limited to more niche software

specifically designed for fitting these models with simulation

methods (Grange, 2016; Mackenzie & Dudschig, 2021). The

process involves generating simulated data from a model and

then comparing those simulated data to one’s actual empirical

data. A key tool in this comparison is a loss function, such as

the likelihood ratio Chi-square statistic or Kullback-Leibler

divergence, which serves as a measure of the discrepancy

between the simulated and observed data distributions

(Ratcliff & Smith, 2004). This loss function quantifies how

well the model explains the observed data; a lower value

indicating better fit. Optimization routines then iteratively

simulate and compare, aiming to minimize loss. With each

iteration, the model parameters are adjusted to reduce the

discrepancy between the simulated and empirical data, until

the best fitting parameter values are discovered.

To our knowledge only two packages exist for fitting

customizable DDMs with likelihood-free methods, CHaRTr

(Chandrasekaran & Hawkins, 2019) and PyDDM (Shinn et

al., 2020). These packages offer previously unprecedented

flexibility in model formulation; however, they also have a

number of practical limitations. Like FlexDDM, CHaRTr

relies on trial-wise simulation to approximate the probability

distribution of response times. Simulation is slow, and so to

improve efficiency CHaRTr defines models in the compiled

C language which directly translates to machine code.

Although having models written in C substantially speeds up

simulation, it presents a notable barrier to users less familiar

with the language. Conversely, PyDDM uses an alternative

approach to reduce simulation time: Solving the Fokker-

Planck equation (Voss & Voss, 2008). This method sidesteps

4773

Figure 2: Workflow for the FlexDDM fitting routine. The user specifies a model from the model library, either provided by

FlexDDM or a custom script. The user also provides a number of inputs as arguments to the fitting function, including settings

for model parameters (initial values and boundaries), optimization (number of CPUs to parallelize across, loss function, and

optimizer-specific hyperparameters), and simulation (number of simulated trials and Numba-specific togglable features). After

fitting, a csv is written with fitted parameter values, loss value, and approximate BIC.

trial-wise simulation in favor of an algorithmic, numerical

solution, which proves much faster than simulation.

Unfortunately, these numerical solutions do not allow for

certain model formulations, such as those including a

between-trial variability parameter for drift rate, as is in the

full DDM. Users can manipulate PyDDM’s set of user-

defined functions for DDM ingredients like drift rate,

boundary separation, etc., but some formulations like DSTP

are not possible to specify.

FlexDDM improves on existing software by operating

entirely on straightforward Python. Users only need requisite

knowledge of elementary Python features, like looping, and

gold-standard libraries like NumPy (Harris et al., 2020). For

efficiency, models are wrapped with the Numba JIT compiler

(Lam et al., 2015), which translates Python models to fast

machine code. Virtually any diffusion model can be

formalized and simulated with FlexDDM. In the following

section, we will discuss the features unique to FlexDDM that

afford it greater flexibility and accessibility in comparison to

alternative software.

Features of FlexDDM

At its core, FlexDDM allows users to understand how

accurately a drift diffusion model represents their

participants’ latent decision-making processes through

completing an iterative process that compares user-provided

reaction-time data to data simulated from the chosen

diffusion model. FlexDDM relies on optimization routines

along with multiprocessing to produce accurate and efficient

results. The code for this package is deployed on GitHub:

https://github.com/joyfan00/FlexDDM. An illustration of the

package workflow can be found in Figure 2.

Writing Models with Python

FlexDDM currently provides code for four diffusion models:

a standard DDM, SSP, DMC, and DSTP models. Using the

Figure 3: Example Python code for simulating a DDM.

scripts for these models as templates, users are encouraged to

write code for their own models. In place of abstract

functions which may not be immediately transparent to the

user, FlexDDM requires that users write out the diffusion

process explicitly. We provide an example of this in Figure

3. Using two simple loops and the basic NumPy functions,

the code in Figure 3 successfully simulates response time data

according to the standard DDM. The outer for loop cycles

through trials, during each of which the accumulation process

propagates. Time t starts at non-decision time tau, and

starting evidence at a percentage beta of boundary separation

alpha. A seed is set with the numpy.random.seed() function

to initialize a pseudorandom number generator, ensuring that

random behaviors over the course of the trial (e.g., diffusion

noise) are reproducible. The inner while loop increments time

by dt and accumulates evidence proportional to the drift rate

randomly sampled noise. When a threshold is met, the

decision is made and both the decision and the time it took to

4774

https://github.com/joyfan00/FlexDDM

reach the threshold is saved. This process repeats for each

trial. These few lines of code can be easily replicated and

modified to represent a range of models.

Compiling Models with Numba

FlexDDM uses Numba, a powerful just-in-time (JIT)

compiler that translates Python code into fast machine code,

significantly accelerating computational tasks, especially

those involving numerical computations and array

operations. By using decorators, Numba allows developers to

mark functions for optimization; when these functions are

called, Numba compiles them to machine code "just in time"

for execution. A key feature of Numba is its "nopython"

mode, which ensures that the compiled code does not rely on

the Python C API. This mode guarantees maximum

performance gains because it bypasses the Python interpreter

entirely. Additionally, Numba supports caching, meaning

that once a function is compiled, the machine code version is

stored, so subsequent calls to the function do not require

recompilation. This feature is particularly useful for

applications that execute the same functions multiple times

during their lifecycle. Numba also offers an option for

"fastmath", which relaxes certain mathematical precision and

ordering rules, enabling further optimizations that can lead to

speedups in numerical computations. Together, these features

make Numba a powerful tool for optimizing Python code,

making it an attractive option for developers looking to boost

the performance of computationally intensive tasks.

FlexDDM includes toggles for each of these Numba features

to improve simulation efficiency.

Optimization Routine

FlexDDM seeks to optimize a solution to an objective

function 𝐺2, otherwise known as the likelihood ratio chi-

squared. 𝐺2 provides a measure of the similarity of response

time (RT) distributions between an empirical and simulated

data set. RTs are grouped by trial type (congruent vs

incongruent) and accuracy (correct vs incorrect) and, next,

proportions of RTs falling within bins bounded by empirical

percentiles are compared.

𝐺2 = 2∑𝑁𝑝𝑖 ln (
𝑝𝑖
𝜋𝑖
)

𝑖

(1)

Where 𝑝𝑖 is the proportion of empirical RTs in bin 𝑖, 𝜋𝑖 is the

proportion of simulated RTs in bin 𝑖, and 𝑁 is the number of

trials. See Figure 4 for a visual representation of binned

proportions being compared for 𝐺2 calculation.

To identify the best fitting parameter values for simulating

RTs which minimize the 𝐺2 objective function, FlexDDM

uses an iterative fitting process that starts with the use of a

global optimizer known as Differential Evolution (DE;

Ahmad et al., 2022). DE starts with randomly generated

solutions and then creates new ones by mixing the differences

of randomly selected pairs. These new solutions undergo a

crossover and selection process, where they are mixed with

existing solutions and the better-performing ones are kept.

This cycle repeats until an optimal solution is found or a

predefined condition is met. DE allows FlexDDM to explore

the entire parameter space while avoiding local minima.

After DE, FlexDDM continues to refine best fitting

parameters with the Nelder-Mead simplex algorithm (Wang

& Shoup, 2011). This pairing combines DE's global search

capability with the simplex's local optimization precision. DE

effectively identifies promising areas in the search space, but

may lack precision in pinpointing the exact optimum.

Simplex algorithms, known for their ability to perform

detailed local searches, can then refine the solution to a higher

accuracy. This approach leverages DE's strength in exploring

diverse solutions and the simplex's efficiency in fine-tuning,

making it ideal for complex optimization problems requiring

both exploration and exploitation to achieve the best result.

Figure 4: Illustration of empirical and simulated RT

proportions being compared for 𝐺2 calculation. A binned

region is shaded, and the likelihood ratio is calculated with

the proportion of RTs that fall under each curve.

Once the fitting process concludes, FlexDDM calculates

the approximate Bayesian information criterion (aBIC).

Similar to 𝐺2, aBIC measures how well the selected model

fits the empirical data. aBIC also considers the complexity of

the model, making it a fairer metric for model comparison.

Models with a larger number of parameters (𝑀) will be

penalized with slightly higher aBIC values, so that models

can be evaluated in terms of both accuracy and parsimony.

𝑎𝐵𝐼𝐶 = −2∑𝑁𝑝𝑖 ln(𝜋𝑖)

𝑖

+𝑀ln(𝑁) (2)

FlexDDM outputs a CSV file containing the

discovered parameter values along with the 𝐺2 and aBIC

values. With this information, the user understands the fit and

complexity of their model along with the relative influence of

each parameter.

Empirical Demonstration

To demonstrate the typical use of the FlexDDM package,

we present the following case study. Here, we model choice

and response time data from an open public dataset

containing the Erikson Flanker task (Hedge et al., 2022). In

the Flanker task component of this experiment, participants

(N=50; 38 F; Mean age = 20.06, SD = 2.24) were instructed

4775

to respond to the direction of a centrally presented arrow,

flanked above and below by other symbols, using specific

keyboard keys. A total 1,008 trials were completed, divided

equally among congruent, neutral, and incongruent trial types

(336 trials/type). On congruent trials, the flanking symbols

were arrows pointed in same direction as the centermost

arrow, whereas on incongruent trials the flanking symbols

were arrows facing the opposite direction. Neutral trials used

straight lines as flanking stimuli, and were excluded from our

analyses. Trials remained on screen until a response was

made and were interleaved with 750ms inter-trial-intervals.

In their original report, the authors of this dataset were

interested in fitting the Diffusion Model for Conflict Tasks

(DMC) to dissociate conflict from nonconflict-related

processes (e.g., the distinction between one’s processing

efficiency and susceptibility to prepotent response activity).

Conversely, we were interested in fitting the DMC model to

these data, in addition to fitting the DSTP, SSP, and standard

DDM. Each of these models purport qualitatively different

predictions about response time distributions and processes

for cognitive control. DSTP, SSP, and DMC assume that

targets and distractors are processed sequentially,

continuously, and simultaneously, respectively, whereas the

standard DDM fails to provide any explanatory account for

conflict (Servant et al., 2014).

Considering their divided support for opposing theories of

cognitive control, it is important to compare these models’

goodness-of-fit to empirical data and identify a leading

hypothesis. Previous research, however, has yielded mixed

results, with support found for DSTP (Servant et al., 2015),

SSP (White et al., 2011), and DMC (Servant & Evans, 2020)

over their competitors. To contribute to the growing body of

knowledge on these models and their appropriateness for

modeling conflict tasks, we used FlexDDM to fit the four

models separately to each of the N=50 participants’ Flanker

data.

Model Fitting

The DSTP model had nine free parameters: two boundary

separations 𝛼𝑆𝑆 and 𝛼𝑅𝑆 for the first and second diffusion

phases in which a stimulus (target or flanker) and response is

selected, respectively; two starting points 𝛽𝑆𝑆 and 𝛽𝑅𝑆 for

each phase; four drift rates for the stimulus selection phase

(𝛿𝑆𝑆), the evidence for a response provided by the target and

flankers if no stimulus is selected (𝛿𝑡𝑎𝑟 and 𝛿𝑓𝑙), and evidence

for the stimulus if selected before a response is made (𝛿𝑅𝑆);
and one non-decision time 𝜏.

The SSP model had six free parameters: one boundary

separation 𝛼; one perceptual strength for all stimuli 𝑝; two

parameters to describe the initial width of the attentional

spotlight (𝑠𝑑0) and its shrinking rate (𝑠𝑑𝑟); and one non-

decision time 𝜏.

The DMC model had seven free parameters: one boundary

separation 𝛼; one starting point 𝛽; one drift rate for controlled

processing 𝜇𝑐; three parameters describing the drift rate for

automatic processing, including its shape 𝑎, peak amplitude

𝜁, and characteristic time 𝑇; and one non-decision time 𝜏.

Figure 5. Best fitting parameter estimates from DDM, DSTP,

SSP, and DMC models. Error bars are SE.

Figure 6: Average BIC across participants from DDM,

DSTP, SSP, and DMC models. Error bars are 95% CI.

Finally, the DDM model had six free parameters: two

boundary separations 𝛼𝐶 and 𝛼𝐼 for congruent and

incongruent trials, respectively; one starting point 𝛽; two drift

rates 𝛿𝐶 and 𝛿𝐼; and one non-decision time 𝜏.

For optimization, we opted for DE to cycle through a

maximum 1,000 generations with a population multiplier of

100. 10,000 trials were simulated per calculation of 𝐺2.

Model selection was conducted with BIC, such that the best

fitting model was determined by having the relatively

smallest BIC value.

Results

Best fitting parameter estimates are summarized in Figure

5. BICs averaged across subjects are illustrated in Figure 6

for model comparison. The Diffusion Model for Conflict

returned the smallest BIC, and therefore best accounted for

4776

the empirical data. The Shrinking Spotlight Model provided

an only slightly inferior average fit, with the Dual-Stage Two

Phase Model close behind. The worst fitting and most

divisive model was the standard DDM.

General Discussion

In the presented paper, we address a significant challenge

in cognitive science: The lack of flexible and accessible

software for fitting decision diffusion models (DDMs) to

data, thereby hampering theoretical innovation. By

introducing FlexDDM, a Python-based package, we provide

a solution that not only simplifies the development of new

diffusion models but also includes standard models for

cognitive conflict tasks alongside a suite of fitting techniques.

This development is particularly notable for its aim to

democratize computational methods in cognitive science,

making them accessible to researchers without extensive

programming experience in languages such as C. By

facilitating the exploration of novel model formulations

beyond those pre-built into existing software, FlexDDM

stands to accelerate theoretical advancements in the

behavioral sciences.

FlexDDM is not without its limitations. Users should be

aware that, at present, FlexDDM is limited to non-

hierarchical models, restricting the ability to capture

variations across individuals or groups within a single model

framework. This limitation means that the software provides

only point estimates for parameters without accounting for

any posterior distribution or uncertainty associated with these

estimates. Such an approach contrasts with Bayesian

hierarchical modeling, which can offer deeper insights into

the data by considering the distribution of parameters and

allowing for the estimation of individual-level effects.

Furthermore, the simulation-based nature of FlexDDM, while

offering flexibility in model construction, inherently suffers

from the standard weaknesses associated with simulation

methods. These include slower computational speeds

compared to analytical solutions, especially as model

complexity increases. The process of simulating thousands of

trials to approximate the probability distribution of response

times can be computationally demanding, making FlexDDM

less efficient for large datasets or complex models without

access to resources for parallelization.

Looking to the future, continued development of FlexDDM

presents several promising avenues that could significantly

enhance its utility and applicability in cognitive science

research. Key among these is the integration of advanced

model validation tools, which could offer users robust

methodologies for assessing the fit and predictive accuracy

of their custom models. In future versions of the software, we

will add functions for testing model and parameter recovery.

Expanding the library of template models within FlexDDM

would also enable researchers to quickly adapt and test a

wider range of theoretical frameworks without the need for

extensive coding, thereby further lowering the barrier to

entry. Additionally, the introduction of sophisticated plotting

functions could facilitate more intuitive visualization of

model behaviors, parameter effects, and fit diagnostics,

making the iterative process of model refinement more

accessible to users. Furthermore, incorporating options for

grouping data by experimental factors beyond simple trial

types would allow for a more nuanced analysis of decision-

making processes, accommodating the investigation of how

various cognitive and environmental factors interact to

influence decision outcomes. Such enhancements would not

only solidify FlexDDM's position as a versatile tool for

cognitive modeling but also broaden its impact by enabling

more detailed and comprehensive explorations of decision-

making dynamics.

References

Ahmad, M. F., Isa, N. A. M., Lim, W. H., & Ang, K. M.

(2022). Differential evolution: A recent review based on

state-of-the-art works. Alexandria Engineering Journal,

61(5), 3831–3872.

https://doi.org/10.1016/j.aej.2021.09.013

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing

Neurocomputational Mechanisms of Reinforcement

Learning and Decision-Making With the hBayesDM

Package. Computational Psychiatry, 1(0), 24.

https://doi.org/10.1162/CPSY_a_00002

Chandrasekaran, C., & Hawkins, G. E. (2019). ChaRTr: An

R toolbox for modeling choices and response times in

decision-making tasks. Journal of Neuroscience Methods,

328, 108432.

https://doi.org/10.1016/j.jneumeth.2019.108432

Ditterich, J. (2006). Evidence for time‐variant decision

making. European Journal of Neuroscience, 24(12), 3628–

3641. https://doi.org/10.1111/j.1460-9568.2006.05221.x

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise

letters upon the identification of a target letter in a

nonsearch task. Perception & Psychophysics, 16(1), 143–

149. https://doi.org/10.3758/BF03203267

Grange, J. A. (2016). flankr: An R package implementing

computational models of attentional selectivity. Behavior

Research Methods, 48(2), 528–541.

https://doi.org/10.3758/s13428-015-0615-y

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,

R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,

Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van

Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F.,

Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array

programming with NumPy. Nature, 585(7825), 357–362.

https://doi.org/10.1038/s41586-020-2649-2

Hawkins, G. E., Wagenmakers, E.-J., Ratcliff, R., & Brown,

S. D. (2015). Discriminating evidence accumulation from

urgency signals in speeded decision making. Journal of

Neurophysiology, 114(1), 40–47.

https://doi.org/10.1152/jn.00088.2015

Hedge, C., Powell, G., Bompas, A., & Sumner, P. (2022).

Strategy and processing speed eclipse individual

differences in control ability in conflict tasks. Journal of

Experimental Psychology: Learning, Memory, and

4777

Cognition, 48(10), 1448–1469.

https://doi.org/10.1037/xlm0001028

Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-

stage two-phase model of selective attention.

Psychological Review, 117(3), 759–784.

https://doi.org/10.1037/a0019471

Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability and

mutual translatability of major modeling schemes for

choice reaction time. Psychological Review, 121(1), 1–32.

https://doi.org/10.1037/a0034190

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A

LLVM-based Python JIT compiler. Proceedings of the

Second Workshop on the LLVM Compiler Infrastructure in

HPC, 1–6. https://doi.org/10.1145/2833157.2833162

Mackenzie, I. G., & Dudschig, C. (2021). DMCfun: An R

package for fitting Diffusion Model of Conflict (DMC) to

reaction time and error rate data. Methods in Psychology,

5, 100074. https://doi.org/10.1016/j.metip.2021.100074

Ratcliff, R. (1978). A theory of memory retrieval.

Psychological Review, 85(2), 59–108.

https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R. (1980). A note on modeling accumulation of

information when the rate of accumulation changes over

time. Journal of Mathematical Psychology, 21(2), 178–

184. https://doi.org/10.1016/0022-2496(80)90006-1

Ratcliff, R., & Smith, P. L. (2004). A Comparison of

Sequential Sampling Models for Two-Choice Reaction

Time. Psychological Review, 111(2), 333–367.

https://doi.org/10.1037/0033-295X.111.2.333

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G.

(2016). Diffusion Decision Model: Current Issues and

History. Trends in Cognitive Sciences, 20(4), 260–281.

https://doi.org/10.1016/j.tics.2016.01.007

Servant, M., & Evans, N. J. (2020). A diffusion model

analysis of the effects of aging in the Flanker Task.

Psychology and Aging, 35(6), 831–849.

https://doi.org/10.1037/pag0000546

Servant, M., Montagnini, A., & Burle, B. (2014). Conflict

tasks and the diffusion framework: Insight in model

constraints based on psychological laws. Cognitive

Psychology, 72, 162–195.

https://doi.org/10.1016/j.cogpsych.2014.03.002

Servant, M., White, C., Montagnini, A., & Burle, B. (2015).

Using Covert Response Activation to Test Latent

Assumptions of Formal Decision-Making Models in

Humans. Journal of Neuroscience, 35(28), 10371–10385.

https://doi.org/10.1523/JNEUROSCI.0078-15.2015

Shinn, M., Lam, N. H., & Murray, J. D. (2020). A flexible

framework for simulating and fitting generalized drift-

diffusion models. eLife, 9, e56938.

https://doi.org/10.7554/eLife.56938

Tillman, G., Van Zandt, T., & Logan, G. D. (2020).

Sequential sampling models without random between-trial

variability: The racing diffusion model of speeded decision

making. Psychonomic Bulletin & Review, 27(5), 911–936.

https://doi.org/10.3758/s13423-020-01719-6

Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T.

(2015). Automatic and controlled stimulus processing in

conflict tasks: Superimposed diffusion processes and delta

functions. Cognitive Psychology, 78, 148–174.

https://doi.org/10.1016/j.cogpsych.2015.02.005

Voss, A., & Voss, J. (2008). A fast numerical algorithm for

the estimation of diffusion model parameters. Journal of

Mathematical Psychology, 52(1), 1–9.

https://doi.org/10.1016/j.jmp.2007.09.005

Wagenmakers, E.-J., Van Der Maas, H. L. J., & Grasman, R.

P. P. P. (2007). An EZ-diffusion model for response time

and accuracy. Psychonomic Bulletin & Review, 14(1), 3–

22. https://doi.org/10.3758/BF03194023

Wang, P. C., & Shoup, T. E. (2011). Parameter sensitivity

study of the Nelder–Mead Simplex Method. Advances in

Engineering Software, 42(7), 529–533.

https://doi.org/10.1016/j.advengsoft.2011.04.004

White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion

models of the flanker task: Discrete versus gradual

attentional selection. Cognitive Psychology, 63(4), 210–

238. https://doi.org/10.1016/j.cogpsych.2011.08.001

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM:

Hierarchical Bayesian estimation of the Drift-Diffusion

Model in Python. Frontiers in Neuroinformatics, 7.

https://doi.org/10.3389/fninf.2013.00014

4778

