
UCLA
UCLA Previously Published Works

Title
Implementation of informatics for integrating biology and the bedside (i2b2) platform as
Docker containers

Permalink
https://escholarship.org/uc/item/4q63450x

Journal
BMC Medical Informatics and Decision Making, 18(1)

ISSN
1472-6947

Authors
Wagholikar, Kavishwar B
Dessai, Pralav
Sanz, Javier
et al.

Publication Date
2018-12-01

DOI
10.1186/s12911-018-0646-2

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q63450x
https://escholarship.org/uc/item/4q63450x#author
https://escholarship.org
http://www.cdlib.org/

SOFTWARE Open Access

Implementation of informatics for
integrating biology and the bedside
(i2b2) platform as Docker containers
Kavishwar B. Wagholikar1,2* , Pralav Dessai3, Javier Sanz3, Michael E. Mendis4, Douglas S. Bell3

and Shawn N. Murphy1,2

Abstract

Background: Informatics for Integrating Biology and the Bedside (i2b2) is an open source clinical data analytics
platform used at over 200 healthcare institutions for querying patient data. The i2b2 platform has several
components with numerous dependencies and configuration parameters, which renders the task of installing or
upgrading i2b2 a challenging one. Even with the availability of extensive documentation and tutorials, new users
often require several weeks to correctly install a functional i2b2 platform. The goal of this work is to simplify the
installation and upgrade process for i2b2. Specifically, we have containerized the core components of the platform,
and evaluated the containers for ease of installation.

Results: We developed three Docker container images: WildFly, database, and web, to encapsulate the three major
deployment components of i2b2. These containers isolate the core functionalities of the i2b2 platform, and work in
unison to provide its functionalities. Our evaluations indicate that i2b2 containers function successfully on the Linux
platform. Our results demonstrate that the containerized components work out-of-the-box, with minimal configuration.

Conclusions: Containerization offers the potential to package the i2b2 platform components into standalone executable
packages that are agnostic to the underlying host operating system. By releasing i2b2 as a Docker container, we
anticipate that users will be able to create a working i2b2 hive installation without the need to download, compile, and
configure individual components that constitute the i2b2 cells, thus making this platform accessible to a greater number
of institutions.

Keywords: I2B2, Docker, Containerization, Docker, High performance computing, Biomedical research, Information
storage and retrieval, Medical records systems, Computerized, Software, Systems integration, User-computer Interface

Background
Informatics for Integrating Biology and the Bedside (i2b2),
an open-source clinical data analytics platform, transforms
patient data aggregated from the electronic health record
(EHR) into a format optimized for various types and
stages of research, including feasibility analysis, study
design, eligibility criteria, cohort identification and recruit-
ment, and population health studies [1, 2]. Conversely,
I2b2 has the added functionality of allowing federated
querying amongst participating i2b2 institutions, making

it a central component in the informatics infrastructure
for many national research institutions. Currently, over
200 institutions worldwide use i2b2 to query patient data.
I2b2, initially funded by the National Institutes of Health,

has developed into an international project coordinated by
the tranSMART Foundation, and has an active community
of developers and researchers using and contributing to its
development. I2b2 supports a sidecar approach wherein
the platform aggregates a copy of patient data from the
electronic health record (EHR) and provides query services
in parallel to the EHR for research purposes. I2b2 software
has been extended for importing C-CDAs and PCORnet
clinical data models [3, 4], translation from HQMF [5] to* Correspondence: kwagholikar@mgh.harvard.edu

1Massachusetts General Hospital, Boston, MA, USA
2Harvard Medical School, Boston, MA, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66
https://doi.org/10.1186/s12911-018-0646-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-018-0646-2&domain=pdf
http://orcid.org/0000-0002-6219-861X
mailto:kwagholikar@mgh.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

FHIR [6–8], image management [9], federated querying,
data analysis [10], and disease-specific analytics [11, 12].
The i2b2 platform has a modular architecture, which

allows for its different components to be independently im-
plemented and installed. In fact, an i2b2 installation, called
a hive, consists of several i2b2 cells/services that provide
different functionalities. Given the complexity of the i2b2
platform, creating a functional installation of the i2b2 plat-
form can be challenging. Moreover, existing users find it
difficult to apply patches for upgrading their installation.
These difficulties pose a significant obstacle to i2b2 becom-
ing available at a greater number of institutions. The goal of
this work is to provide a simple method for the installation
and upgrading of the i2b2 platform. Specifically, we hypoth-
esized that containerization, which encapsulates the neces-
sary components to run a program, can reduce the time
required for i2b2 installation.

Challenges for the installation and upgrade of I2b2
The i2b2 platform has a modular architecture, wherein the
components (referred to as cells) communicate with each
other using extensible markup language (XML)-based web
services. This allows cells to be implemented and installed
independently. The cells are categorized as “core” or op-
tional: core cells are necessary for a functional installation,
and optional cells add additional services, e.g. text process-
ing capabilities. The platform is implemented using
Enterprise Java, with a HTML-JavaScript User Interface.
The source code is released as Open Source through
GitHub. There is extensive web-based documentation for
compiling and installing the i2b2 cells, and an online
demonstration version of the software is available to show-
case its functionality. However, despite the availability of
online documentation, tutorials, and a community mailing
list, new users require several weeks to create a functional
i2b2 installation.
One challenge in installing i2b2 is the requirement of

a moderate level of expertise in Enterprise Java and Java
build tools for the compiling and deployment of the
code. Another challenge is that installation steps must
be adapted to newer versions of software dependencies
that are released after the release of the i2b2 code and
publication of i2b2 documentation. Finally, because i2b2
is designed to be flexible for installation on all popular
operating systems (Linux, Windows, and macOS) and
databases (PostgresSQL, Oracle, and Microsoft SQL Ser-
ver), a wide combination of configurations are possible;
therefore, following the exact steps to achieve a required
specific configuration is difficult. The cumulative effect
of these challenges poses a significant obstacle for the
utilization of i2b2 by a greater number of institutions.
Once the i2b2 platform has been installed and populated

with an institution’s data, it is essential to upgrade the
installation at regular intervals. This involves replacing the

i2b2 cells with newer code that adds new functionality or
addresses security issues. Similarly, the database and
operating system needs to be regularly patched. However,
informatics teams often delay their efforts to upgrade the
installation due to the risk of disrupting an operational i2b2
installation. One potential solution for these issues is
containerization, which has recently been reported to be
particularly useful for packaging scientific software [13–15].
Moreover, the use of Docker containers offers the potential
to upgrade an i2b2 installation by replacing deployed con-
tainer images with the latest images released into a central
repository, such as Docker Hub.

Containers facilitate packaging
Containerization is a type of operating system-level
virtualization, where the operating system kernel allows the
existence of multiple isolated processes that behave as sep-
arate individual computers, each with their own operating
system. The containerization of software refers to the cre-
ation of a container image, which is a lightweight executable
package that contains everything needed to run the soft-
ware, including the executable code, runtime environments,
and libraries. Containers run identically on any operating
system that supports the container format. Containers en-
capsulate and isolate the software, thereby avoiding conflicts
with other software running on the host machine.
Docker represents a containerization format that has

become the de facto open standard due to its wide adop-
tion in the industry. Containerization offers the potential
to package i2b2 platform components into standalone
executable packages that are agnostic to the underlying
host operating system. The Docker format also offers the
potential for users to install the entire i2b2 hive without
the need to download, compile, and configure individual
components that constitute the i2b2 cells. In this paper,
we report on our efforts to create containers for the i2b2
platform in Docker format.

Implementation
We created three Docker containers called ‘i2b2-web’,
‘i2b2-wildfly’, and ‘i2b2-pg’ to encapsulate the core function-
alities of the i2b2 platform, as summarized in Table 1 and
Fig. 1. The source code is published in GitHub (https://
github.com/waghsk/i2b2-quickstart/) and the containers
are available in Docker Hub.
Bash script to install i2b2 using the published

i2b2-Docker containers

export IP=localhost
docker network create i2b2-net
docker run -d -p 5432:5432 –net i2b2-net –name
i2b2-pg i2b2/i2b2-pg:p1
docker run -d -e DS_IP='i2b2-pg' -p 8080:8080 -p
9990:9990 –net i2b2-net –name i2b2-wildfly i2b2/

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66 Page 2 of 6

https://github.com/waghsk/i2b2-quickstart
https://github.com/waghsk/i2b2-quickstart

i2b2-wildfly:0.1
docker run -d -p 443:443 -p 80:80 –net i2b2-net –
name i2b2-web i2b2/i2b2-web:p1/run-httpd.sh $IP
sleep 5;
docker exec -it i2b2-pg bash -c "export
PUBLIC_IP=$IP; sh update_pm_cell_data.sh;"

The i2b2-web image provides an Apache web server. It
accepts a configuration parameter for the external internet
protocol (IP address) [16]. At container boot-time, the
external IP parameter is injected into the JavaScript for
the user and administrative web client interface, and into
the Apache webserver configuration.
The i2b2-wildfly image provides the JBoss WildFly server.

The Apache Axis2 WAR archive is installed in the WildFly
folder to enable web services. The source code for i2b2 cells
is compiled into a WAR archive and installed in the
WildFly server, along with XML configurationsto connect
the data source to the WildFly server.
The i2b2-pg image provides the PostgreSQL Server.

This includes a simulation dataset of 140 patients. This
image accepts the external IP address and injects it into
the database to reflect the URL for the i2b2 web services.
The three containers are secured in a user-defined

Docker virtual network to enable their communication

with each other. The server port of the i2b2-web image is
exposed to the external interface, which allows users to
connect to the i2b2 instance using a web browser. The
configuration parameters used by the three containers are
listed in Table 2.

Evaluation
For evaluating the functionality of the i2b2 Docker con-
tainers, we tested the deployment of the i2b2 containers
on a local machine and on Amazon Web Services (AWS)
Elastic Cloud Compute (EC2) servers, as described below:

(1) Local On-premise Virtual Machine

We deployed a virtual machine, using VMWare Work-
station Player, on a local computer with the following
configuration: 4GB RAM, 10 GB HDD. We then installed
Ubuntu 16.04 Operating System on it. We installed
Docker Engine and its command line interface, and ran
our scripts to download and start the i2b2 containers. We
then executed our tests using atomated Python scripts to
run queries against the i2b2 web services. The scripts
emulate queries for particular concepts, and a valid
response verifies the integrity of the i2b2 installation.

Table 1 Comparison of the three Docker containers for i2b2

Name Ports Base image Content Function

I2b2-web
(i2b2 code)

22, 443 Apache
web server

Query web interface, HTML and JavaScript User interface with the web pages and JavaScript AJAX calls
trigger calls to i2b2 cells. This is the only component that is
exposed to the external network.

I2b2-wildfly
(web services
or the cells)

8080, 9990 Jboss
Wildfly

Core i2b2 cells:
Data management (CRC), project
management (PM), ontology management
(metadata), Workspace

The cells listen for queries on port 8080 or 9990 and have a
connection pool to the database.

I2b2-pg
(Database)

5432 PostgreSQL Database tables for installed cells. The database only communicates with the i2b2 cells

Fig. 1 The architecture of an i2b2 Docker installation. The three major components of i2b2 — web server, application server, and database server
– are encapsulated in three corresponding Docker containers. The containers are connected through a virtual Docker network

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66 Page 3 of 6

(2) Amazon EC2

We deployed an EC2 Server of the type “t2.medium” on
Amazon AWS. We also enabled access to the web client
server through a public IP. To test for successful installa-
tion, we tested if a user could successfully login using the
i2b2 web client, then build and execute a query.

Results
We were able to successfully install the i2b2 Docker
containers on the local Ubuntu and Amazon Linux
machines to create a demonstration installation of the
i2b2 hive. On the Amazon machine, we found that the
i2b2-Docker are installed and ready for use in 15 s. On
local machines, we had to ensure that the operating sys-
tems supported Docker, and install the required Docker
binaries. Once this was completed, we found the i2b2
Docker system took the same amount of time to install
as on an AWS machine.

Discussion
Reproducible environments
Three containers were required to provide the func-
tionalities of the i2b2 hive, as three independent pro-
cesses are needed in order to run the platform: a web
service, application, and the database servers. Docker
runs each process in isolation within its container,
which prevents conflicts with other installed programs
in the hosting environment. As the containers themselves
are initialized from the immutable base container images
that we have created, the processes run in a system config-
uration that cannot change over time due to host system
updates [17].

Containers are faster and more explicit as compared to
virtual machines
The i2b2 team has previously released virtual machines to
provide a demonstration installation of i2b2. Although the
virtual machines addressed the issue of packaging by cap-
turing the entire software and development environment,
they act as black boxes because they do not provide a
recording of the steps needed to create the instance.

However, Docker containers are distributed along with a
Dockerfile, which provides a record of how the containers
were generated. Consequently, Docker is better suited to
ensuring transparency when compared to conventional vir-
tual machines. Moreover, Docker images share the kernel
with the underlying host machine, which enables signifi-
cantly reduced image sizes and higher performance [18].

Packaging and configuration and reproducibility of
results
The i2b2 Docker containers offer an effective solution for
packaging software components with the analytical soft-
ware, along with the configuration settings. Docker has
been recently reported to be useful for complex data re-
trieval and analysis workflows for Semantic web, workflow
orchestration, [13] visualizing and analyzing gene net-
works [14], and phylogenomics [15]. The use of containers
to distribute scientific software will help ensure the repro-
ducibility of scientific results, [19, 20] and will facilitate
the simultaneous publishing of data and code that can be
repurposed for further research [21, 22]. Containerization
in the i2b2 platform will facilitate reproducible perform-
ance of the i2b2 functionalities and plugin extensions.

Containerization of database
The database container that we have provided for i2b2 is
intended to be used with sample data, as containerized
databases are known to have data loss risks, and are not
currently recommended in production environments.
After initial evaluation of the system, we recommend
switching to a full-scale production database, and updat-
ing database configuration files in i2b2-wildfly Docker
container to link it to the production database. Specific-
ally, after the initial evaluation, the sample Postgres
database container (I2b2-pg) should be stopped and the
i2b2-wildFly container should be modified to point to a
non-containerized production database.

Limitations
We used PostgreSQL database in our study. However,
several i2b2 sites are known to prefer other relational
2databases such as Oracle and Microsoft SQL. Our

Table 2 Configuration parameters for the i2b2 Docker containers

Name Configuration parameters Parameter description

I2b2-web (i2b2 client) IP: external IP address This parameter allows configuration of the Apache server to listen on an external interface,
and the JavaScript, to connect the user interface to the webserver.

I2b2-wildfly (application
server for i2b2 cells)

DS_IP: internet IP address
for data-source
DS_PORT: port for data
source

These parameters allow configuration of the connection to the i2b2 database from the WildFly
server (default is the i2b2-pg container running PostgreSQL

I2b2-pg (database) IP: External IP address This parameter is used to generate the URLs of the i2b2 web services, which are then stored in
the database.

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66 Page 4 of 6

choice of PostgreSQL was due to the proprietary nature
of the other databases that prohibit the sharing of con-
tainers in open-source. Nevertheless, our approach can
be adapted to allow for connectivity to other databases,
which represents a goal for our future efforts. Finally,
the current study is limited to a demonstration dataset
of 140 patients, and evaluation on larger, real-life data-
sets is necessary to ensure generalization of our results.

Conclusion
Our study demonstrates that Docker containers can
potentially reduce time and effort required to install i2b2
as compared to the conventional manual approach
described in the i2b2 documentation. For institutions with
preexisting i2b2 installations, the i2b2 Docker containers
may simplify the technical hurdles of keeping their sys-
tems up-to-date, and allow for more efficient development
of extensions. Similarly, for those considering adopting
i2b2, the containers will serve to quickly create a proof of
concept installation, which can be populated with the
institutions data for use in a production environment.
Overall, the i2b2 containers serve as a simplified i2b2
deployment system to enhance research infrastructure
maintenance and development. We anticipate that by
releasing i2b2 as a Docker container will improve platform
accessibility to more institutions by enabling users to
create a working i2b2 hive installation without the need to
download, compile, and configure individual components
constituting i2b2 cells.

Availability and requirements
Project name: i2b2-quickstart.
Project home page: e.g. https://github.com/waghsk/i2b2-
quickstart/
Operating system(s): Platform independent.
Programming language: Bash.
Other requirements: Docker.
License: i2b2.
Any restrictions to use by non-academics: none.

Abbreviations
Amazon EC2: Amazon Elastic Cloud Compute; C-CDA: Clinical Continuity of
Care documents; FHIR: Fast Health Interoperability Resources; HQMF: Health
Quality Measures Format; i2b2: Informatics for Integrating Biology and the
Bedside; PCORNet: Patient-Centered Outcomes Research Institute’s Network

Funding
This work was supported by a National Library of Medicine grant R00-
LM011575, National Genomic Research Institute grant R01-HG009174 and
Weill grant at UCSF. Amazon provided free credits for the use of their
cloud service for this project. None of the funding bodies had any role
in the design of the study and collection, analysis, and interpretation of
data and in writing the manuscript.

Availability of data and materials
The data and source-code are freely released in open source in GitHub and
Docker Hub.

Authors’ contributions
SNM envisaged the project. KBW led the creation of the i2b2-Docker
containers, and was assisted by MM. PD and JS led the evaluation of
the containers, and were guided by DB. All authors contributed to the
writing of the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
This research is not human research and did not require IRB approval.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Massachusetts General Hospital, Boston, MA, USA. 2Harvard Medical School,
Boston, MA, USA. 3University of California Los Angeles, Los Angeles, CA, USA.
4Partners Healthcare, Boston, MA, USA.

Received: 1 October 2017 Accepted: 27 June 2018

References
1. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, Kohane I.

Serving the enterprise and beyond with informatics for integrating biology
and the bedside (i2b2). J Am Med Inform Assoc. 2010;17(2):124–30.

2. Murphy S, Wilcox A. Mission and sustainability of informatics for integrating
biology and the bedside (i2b2). EGEMS (Wash DC). 2014;2(2):1074.

3. Klann JG, Mendis M, Phillips LC, Goodson AP, Rocha BH, Goldberg HS,
Wattanasin N, Murphy SN. Taking advantage of continuity of care
documents to populate a research repository. J Am Med Inform Assoc.
2015;22(2):370–9.

4. Wagholikar KB, Jain R, Oliveira E, Mandel J, Klann J, Colas R, Patil P,
Yadav K, Mandl KD, Carton T, et al. Evolving research data sharing
networks to clinical app sharing networks. AMIA Jt Summits Transl Sci
Proc. 2017;2017:302–7.

5. Klann JG, Murphy SN. Computing health quality measures using informatics
for integrating biology and the bedside. J Med Internet Res. 2013;15(4):e75.

6. Wagholikar KB, Mandel JC, Klann JG, Wattanasin N, Mendis M, Chute CG,
Mandl KD, Murphy SN. SMART-on-FHIR implemented over i2b2. J Am Med
Inform Assoc. 2017;24(2):398-402. https://doi.org/10.1093/jamia/ocw079.

7. Boussadi A, Zapletal E, Fast Healthcare A. Interoperability resources (FHIR)
layer implemented over i2b2. BMC Med Inform Decis Mak. 2017;17(1):120.

8. Pfiffner PB, Pinyol I, Natter MD, Mandl KD. C3-PRO: connecting research kit
to the health system using i2b2 and FHIR. PLoS One. 2016;11(3):e0152722.

9. Murphy SN, Mendis ME, Grethe JS, Gollub RL, Kennedy D, Rosen BR. A web
portal that enables collaborative use of advanced medical image processing
and informatics tools through the biomedical informatics research network
(BIRN). AMIA Annu Symp Proc. 2006:579–83.

10. Segagni D, Ferrazzi F, Larizza C, Tibollo V, Napolitano C, Priori SG, Bellazzi R.
R engine cell: integrating R into the i2b2 software infrastructure. J Am Med
Inform Assoc. 2011;18(3):314–7.

11. London JW, Balestrucci L, Chatterjee D, Zhan T. Design-phase prediction of
potential cancer clinical trial accrual success using a research data mart. J
Am Med Inform Assoc. 2013;20(e2):e260–6.

12. Segagni D, Tibollo V, Dagliati A, Napolitano C, S GP, Bellazzi R. CARDIO-
i2b2: integrating arrhythmogenic disease data in i2b2. Stud Health
Technol Inform. 2012;180:1126–8.

13. Hosny A, Vera-Licona P, Laubenbacher R, Favre T. AlgoRun: a Docker-based
packaging system for platform-agnostic implemented algorithms.
Bioinformatics. 2016;32(15):2396–8.

14. Hung L-H, Kristiyanto D, Lee S, Yeung K. GUIdock: using Docker containers
with a common graphics user Interface to address the reproducibility of
research. PLoS One. 2016;11(4):e0152686.

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66 Page 5 of 6

https://github.com/waghsk/i2b2-quickstart/
https://github.com/waghsk/i2b2-quickstart/
https://doi.org/10.1093/jamia/ocw079

15. Szitenberg A, John M, Blaxter ML, Lunt DH. ReproPhylo: an environment for
reproducible Phylogenomics. PLoS Comput Biol. 2015;11(9):e1004447.

16. Amazon EC2 Instance IP Addressing. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/using-instance-addressing.html#using-instance-addressing-
common. Accessed 5 May 2018.

17. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, Gil Y. Quantifying
reproducibility in computational biology: the case of the tuberculosis
Drugome. PLoS One. 2013;8(11):e80278.

18. Felter W, Ferreira A, Rajamony R, Rubio J: An updated performance
comparison of virtual machines and linux containers. Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE international symposium on 2015.

19. Boettiger C. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review. 2015;49:71–9.

20. McNutt M. Journals unite for reproducibility. Science. 2014;346(6210):679.
21. Magee AF, May MR, Moore BR. The Dawn of open access to phylogenetic

data. PLoS One. 2014;9(10):e110268.
22. Griffin PC, Khadake J, LeMay KS, Lewis SE, Orchard S, Pask A, Pope B,

Roessner U, Russell K, Seemann T. Best practice data life cycle approaches
for the life sciences. F1000Research. 2017;6:1618.

Wagholikar et al. BMC Medical Informatics and Decision Making (2018) 18:66 Page 6 of 6

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#using-instance-addressing-common
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#using-instance-addressing-common
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#using-instance-addressing-common

	Abstract
	Background
	Results
	Conclusions

	Background
	Challenges for the installation and upgrade of I2b2
	Containers facilitate packaging

	Implementation
	Evaluation

	Results
	Discussion
	Reproducible environments
	Containers are faster and more explicit as compared to virtual machines
	Packaging and configuration and reproducibility of results
	Containerization of database
	Limitations

	Conclusion
	Availability and requirements
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

