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ABSTRACT OF THE THESIS

Real-time Software Execution Visualization: Design and Implementation

By

Zizhao Han

Master of Science in Software Engineering

University of California, Irvine, 2021

Professor James Jones, Chair

Software is invisible. In order to understand how the software works, Software Engineers

invent many ways for software representation, such as Software Architecture Diagrams and

Class Diagrams. These methods help us understand the software from a high-level perspec-

tive. However it is hard for the developers to relate the run-time behavior with the source

code. With Object-Orientated Programming, the software can be decomposed into several

modules. Every feature needs different modules to cooperate. It is even harder for develop-

ers to match the feature and the underlying source code. This work presents a visualization

that includes a Seesoft view of the overall source code and a dynamic live execution view of

the run-time software. In order to demonstrate the execution as live as possible, we used

different techniques and test them with two programs (JPacman and JEdit) to validate the

the design decisions we made to achieve the best performance. Furthermore, the results

demonstrate our visualization is capable of visualizing program execution in real time with

lower delay time than without my improvements.
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Chapter 1

Introduction

Since the emergence of Software, understanding how software works has been a difficult

challenge for all software developers and users. Software is invisible and unvisualizable

[11]. In order to help us understand software, software engineers created many different

representations that focus on different aspects of software. For example, we created the Use

Case Diagram to represent the features of software and the Control Flow Graph to help

us understand how software works. But we lack the ability of representing the run-time

execution of the software. With the increasing size and complexity of software, software

development always involves multiple teams and long-term maintenance. Nowadays we don’t

need to build software from scratch. We have open source software and tools to help us build

our own software. But this requires us to understand the existing software and then we can

modify it, especially the code itself. Understand the mapping between code and features can

help us not only in software maintenance but also in software debugging.

However, modern software always consists of multiple modules or components. Each fea-

ture of a software always involves different components working together. From the code’s

perspective, Object-Orientated-Programming is becoming more and more popular. Each
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feature requires function calls from one object to another. Besides, multi-threaded programs

are difficult for developers to debug and understand. This paper represents LiveCerebro,

a visualization that can represent all code in the project and highlight statements that are

being executed. This paper explains how did we build the system and verified some design

decisions we made to achieve the best performance.

1.1 Summary of Contributions

In this paper, we represent LiveCerebro — a software visualization that (1) reads all files

from the root directory of the given project, (2) creates the Seesoft view of all files with the

ability of addressing each statement, (3) gets the execution information of the given program

from all kinds of program instrumenters (in this paper we use Blinky), and (4) visualizes the

program execution by highlighting the statements that are being executed.

Our visualization provides these key advantages:

• The visualization contains all the information. The Seesoft view enables the user to

have an overall view of the entire code itself. We can see the entire code from a single

screen.

• The visualization is as live as possible. The Seesoft view is constantly changing as the

program running. After the user interacting with the program, we can see which code

are being executed immediately from the visualization.
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1.2 Thesis Structure

This thesis is structured as following. In Chapter 2, we introduce some related works and

technologies that we are using. In Chapter 3, we present the motivation of this project and

the challenges that we are facing. In Chapter 4, we present LiveCerebro — our visualization

to overcome the challenges, and Blinky — the back-end instrumenter we later use to help

evaluate our visualization. In Chapter 5, we evaluate our visualization design decisions by

choosing different implementation options. In Chapter 6, we conclude the work and discuss

the future directions.
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Chapter 2

Related Works

Multiple research efforts have been conducted that attempt to visualize run-time behaviors

of software. Researchers have been trying to visualize such information to help developers

better understand the software. Ball and Eick [5] categorized software visualization into four

kinds: line representation, pixel representation, file summary representation and hierarchical

representation. Bassil and Keller [6] researched on existing software visualization tools and

found a gap between what developers need and what they have.

2.1 Visualizing Run-time Behavior, Post hoc

Palepu and Jones [21] visualized the execution traces of software by a Force-directed Graph

Layout. Their work provides the basis upon which my research is built. In their work,

they organized the software by different levels, such as instruction level and method level.

The visualization used nodes to represent each instruction or method. The visualization can

show the connections between instructions or methods. After running multiple test cases,

the visualization will recognize a certain pattern of program execution. Their visualization

4



relies on running test suites to gather execution traces prior to visualization. In contrast,

my visualization gathers and visualizes the traces as the program running so that we can see

the relation between software features and instruction executions.

Cornelissen et al. [4] proposed Extravis. This visualization uses a circular view to represent

the software structure and the connections between different components and a massive

sequence view to show the consecutive calls in a chronological order. All visualizations

above show the inner connections between different components in a software. However the

visualization is not real-time and lacks the information about the mapping between software’s

behavior and its source code execution. Karran et al. proposed Synctrace [14], which focused

on multi-thread programming and how the order of user interaction will effect the program.

Deng et al. proposed Constellation visualization [8]. Much like our visualization, it is also

line-level based. However it focused on the context of program execution while ours focused

on the connection between software features and the code. Dietrich et al. [9] created a

visualization focused on clusters and dependencies in Java programs. Their visualization

helps developers to understand how different modules are related in the program. Kuhn et

al. [16] use cartography to visualize clusters with different “topics” in the software. Krinke

[15] developed a visualization that visualizes the program dependency graph by visualizing

the program slice. Alimadadi et al. [3] created a mapping between low level events in

JavaScript and high level behaviors. Ezzati-Jivan and Dagenais [10] also visualized trace

data but based on the timeline and a hierarchical model. Zhang and Gupta [31] developed

whole-execution traces visualization to visualize all kinds of traces in program execution

such as Control Flow and Address. Jerding et al. [13] presents a visualization that can only

visualize one execution at a time post hoc while ours visualize one execution real time.
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2.2 Visualizing Real-time Software Behavior

De Pauw et al. [29] created Jinsight. Jinsight used a Histogram View to show the inner

activity such as thread interactions, garbage collectors and deadlocks during the program

running. It focused on the Object level. Reiss [24] proposed Jive — a visualization that

consumes real-time Fava program traces. Jive focused on visualizing high-level information.

It focused on multi-threaded program and visualizes how different threads enter different

classes and packages. Since this visualization is programmed in Java, it used a monitor thread

to monitor the program execution and get the traces. Later Reiss and Renieris modified Jive

and created Jove [25]. Jove show more detailed information about how much time thread

spent in different classes or packages. The result of this visualization is accumulated through

time. On the contrary, my work focuses on which instructions are being executed at a certain

time. Lo and Maoz [18] visualized trace data by a live sequence chart in specification mining.

2.3 Visualizing Non-run-time Source Code

Telea and Auber [26] created Code Flow to visualize the evolution of source code along the

development and version changes. It focused on how code changes between different versions

of software. Servant and Jones [23] also created an interactive visualization that allows users

to search down to line level and show the historical change of the source code. Hanjalić [12],

Voinea et al. [28] and Liu et al. [17] also focused their work on the evolution of source code.

Chen et al. [7] and Marcus et al. [19] visualized traceability links between different artifact

of the software. These visualizations help users to understand how different parts of the

source code work together. Moreno et al. [20] created Jeliot to visualize data and control

flows to help students learn procedural and object oriented programming. Winter et al. [30]

created a Sextant, which visualizes software metrics for Java source code. These metrics can
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help developers in many ways. In our work we build our visualization based on Seesoft View

[22]. Seesoft View is a zoomed-away view of all source code in the project.
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Chapter 3

Motivation and Challenge

Brooks [11] mentioned that:

The software entity is constantly subject to pressures for change. ... In part, this

is so because the software of a system embodies its function, and the function is

the part that most feels the pressures of change. In part it is because software

can be changed more easily — it is pure thought-stuff, infinitely malleable.

For modern software, the cost of this changeability is becoming more and more expensive,

due to its large codebase and complex functions. In order to modify or maintain a software,

developers have to fully understand its code. However, nowadays software using different

third-party libraries or other open-source software as dependencies makes this process diffi-

cult and time-consuming. Palepu and Jones [21] created the Cerebro visualization to help

developers to understand software’s run-time behavior. The results show that software’s

execution contains certain execution patterns. In this paper, we want to show how these

patterns relate to the code, and we want to make the visualization update in real time. To

achieve this goal, we need to address three main challenges:
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3.1 Challenge 1: Showing all information

The information we need to represent in this visualization is all of the source code of a

given project. This visualization should be line-level based. Eick et al. [22] mentioned that

because of the volume of code each project contains, it is difficult to represent line-orientated

statistics in a single screen. Besides, the visualization itself is constantly changing due to

the program execution. We need to find a good layout to show such information, and the

layout itself should be easy to modified on the line-level.

3.2 Challenge 2: Get Live Execution Traces

Tikir et al. [27] provides code coverage that can dynamically insert or remove the instru-

mentation. JaCoCo [2] is a code-coverage library for Java. Both these code-coverage tools

provide program-execution data after the running of test suites completes. Much of the prior

work provides redundant information for the purpose of our visualization. In this work we

need to capture and represent the execution data as the program is running. The execution

traces are large and contain massive amounts of information. Our visualization only needs

to know which line of which file is currently being executed. Hence, we need a code-coverage

tool that can provide user-selected information in real time.

3.3 Challenge 3: Visualization Speed versus Program

Execution Speed

In the code-coverage tool, the instrumentation is usually inserted after the actual instruction,

which means we will always get the traces after the instruction being executed. Besides, the

9



communication between our visualization and the code coverage tool takes time. Moreover,

the visualization needs to render the layout, which usually cost more time. The main goal

for this visualization is to show the run-time behavior as live as possible without slowing the

program. We need to minimize the communication time and the rendering time.
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Chapter 4

Live Cerebro Visualization

In order to address three challenges we are facing, our visualization needs to

• Read all files from the given project and create a line orientated layout.

• Get real-time execution traces from the instrumenter.

• Update the layout as fast as possible to keep up with the program.

Figure 4.1 represents the basic logic of how our visualization works.

4.1 Data Collection

In this paper, we modified the dynamic instrumenter Blinky [21] to obtain execution traces in

real time. We configured Blinky to collect line-level traces — full sequences of all source-code

line-level execution events throughout the entire execution. The main information we need to

gather is line number and file name. Blinky allows users to create their own profiler to collect

specific data that they need. Program-execution traces are large. In order to minimize the

11



Figure 4.1: System Overview

traces we collect to save the communication time between Blinky and our visualization, we

used an option in Blinky that only records line-level events. In Blinky, after each instruction

gets executed, there will be a “Trace Event” that is generated. Since we are only collecting

line-level traces, we can construct a line object from each trace event. In each line object, it

contains its line number and file name.

Our visualization needs more data other than the traces. We need to show the entire source

code. Our readFiles function needs to read all Java files recursively from the root directory

of a project. Reading files using JavaScript is not fast. Besides, we have to draw each file’s

minimap, which is also expensive in time. To do this as efficiently as possible, we read

the files asynchronously and draw the minimap after reading each file. After we draw the

minimap, we also store each file’s data, line by line, for future usage.

4.2 Visualization

Live Cerebro is targeted to Java applications. Thus, an implementation of the visualiza-

tion written in Java was the first idea came into our minds. However, using Java libraries

12



for rendering is slower than other programming languages. Our visualization needs to be

constantly changing, so the rendering speed is important. Additionally, we want our visu-

alization to run not only on different platforms, but also on a website or in a web browser

to ease installation. We chose the Electron platform [1]. The Electron platform supports

developers to build cross-platform and web-based software using JavaScript.

The visual layout that we are using is the Seesoft View [22]. The Seesoft view can represent

line-orientated statistics to give us an overview of the source code. Besides, VSCode and

other editors provide Minimap on the side of the editor to provide an overview of the current

file. We choose to combine all the minimaps of all files in a project to form a Seesoft-like

layout. Moreover, our visualization needs to highlight each line of code. A two-layer layout

can help us do this efficiently. The bottom layer (code layer) shows the actual code and

the upper layer (decoration layer) draws white rectangles to perform the highlight function.

Figure 4.2 is an example layout for the JPacman program.

In order to give the user an overview of all source code and help developers to understand

the whole program by watching the highlighted part of the code, it is important to scale the

size of the minimap so that the whole layout can fit in one screen. However, modern software

is often large in terms of the size of the code base. A software project often contains more

than a hundred source code files, and each file could have hundreds of lines of code. For

some project, it is impossible to scale all files in a row because the width of each file could

be smaller than a pixel. So we decide to create four containers which split the whole screen

vertically into four parts. Each part will contain one quarter of the files. For each container,

there will be a scroll bar for users to scroll down to see the rest of the lines. The Seesoft

view’s performance is limited by the screen resolution, screen size, and internet speed, if we

demonstrate the tool via Zoom. Ideally, users should use one screen to show our visualization

and another one to show the actual program to achieve the best use experience.

The Seesoft View itself cannot provide enough information due to the size of it. However, in

13



Figure 4.2: Layout
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order to help users to see the connection between the source-code execution and the function

of the software, users need to know which line of which file is being highlighted. To address

this problem, we create a text area above the Seesoft view to show this information. The

text area will respond to mouse-over events, which shows which line number and file name

the mouse cursor is over. In this case the user can investigate areas of the program that were

highlighted during program execution.

In order to show the program execution in our Seesoft layout, we draw small white rectangles

on top of the actual code currently being executed to represent that this line of code is being

executed. This highlight function could be done in two ways:

Non-Fading Highlight the instruction and clear the highlighting after a few milliseconds.

Fading Highlight the instruction with low transparency and increasing the transparency

along the time until it’s not highlighted.

The second option with fading could give users a better perception of the recently executed

code by giving some time for the fade-out to occur to allow users to see these highlights. The

executed instructions will become darker and darker over the time period of the fade-out.

However, this fading effect needs us to draw the rectangle with different transparency levels

multiple times. The rendering time of our visualization is important because we want our

visualization to keep up with the program execution. Besides, normally some instructions

will get executed multiple times in a short time slot. In this case the fading version will lose

its purpose because some instructions will be highlighted all the time. The evaluation about

these two highlight method will be in Chapter 5. Figure 4.3 is an example of highlighting in

our visualization.
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Figure 4.3: Highlight
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4.3 Communication

After collecting the traces, we need to send that information to our visualization in real time.

Because our visualization and the instrumenter are two separate processes, we decided to use

sockets to communicate across the processes. The main challenge we are facing is that the

speed of trace generation is much faster than the speed of our visualization. We identified

three options to handle the much faster trace generation from the visualization:

• Option 1: Use a buffer in our visualization to store all the traces.

• Option 2: Slowing down the actual program to wait for the visualization.

• Option 3: Discard some traces and only visualize the latest ones.

The first option needs a buffer to store all the information and visualize them. However

the size of the traces could be larger than the memory space. The buffer will eventually

explode in size due to the size of traces that we are receiving. Besides, this would cause

a time gap between the visualization and program execution, which is contrary to the goal

of real-time visualization. It is very possible that we are visualizing instructions that were

executed seconds or minutes ago.

The second option is that we slow down the actual program to make sure the program and

visualization are executed in the same speed. One problem with this option is that it requires

extra information to coordinate the speed. Moreover, slowing down the actual program is not

user friendly: the user experience with a slowed-down program would be quite compromised.

The third option is discarding some traces and only visualize the latest one. In this way we

will lose some information but increasing the speed of the program. The third option is best-

effort provided, much like UDP servers. For UDP servers, there would not be any congestion

control or packet resends, and it is also best-effort. If the socket got full then some packets

17



will be dropped. We created a UDP server in our profiler. This server will be initialized

when the tracing starts. When each line gets executed, it will send JSON-format information

containing the line number and file name to our visualization. In our visualization there is

not any buffer to store the information. It will visualize the incoming information based on

the receiving order. Since the UDP protocol does not guarantee packets arriving in order,

our visualization cannot represent the order of program execution. But it can show which

part of the code are being executed and build a connection between software features. The

evaluation of these three options is in Chapter 5.

18



Chapter 5

Evaluation

5.1 Communication Method

5.1.1 Experiment Setup

We use JPacman for our experiment. JPacman is a Java game program that involves several

user interactions and loops in the code. In this experiment, we measure two things:

• Total running time after executing 10000 lines of code.

• Average time delay.

We measure total time by setting a timer between the first line to get executed and the

10,000th line to get executed. In the profiler when we send the socket, we include a timestamp

to represent the time of execution. In our visualization, we also record the timestamp after

this line got highlighted. The average time delay is the average time difference between the

execution time and the highlighting time.

19



Recall from Chapter 4 that Communication Option 1 requires us to create a buffer in the

visualization to store all the traces and visualize them in order. In the experiment we create

a TCP server in the profiler and send traces through the TCP socket to our visualization.

In our visualization, we create a buffer to store all the traces. To avoid buffer explosion, we

clear the buffer once the size of the buffer gets too large. The highlight method polls traces

from the buffer and visualizes them.

Recall from Chapter 4 that Communication Option 2 requires us to slow down the instru-

mented program. We pause the program with a very small delay every time it sends out a

trace. We attempted multiple different pause times. However for JPacman, setting a time

out caused some bugs, and sometimes the program would crash. Besides, even with smaller

timeouts, the program would run much slower because we are setting a timeout after every

instruction. The user experience was awful. For JPacman, it takes more than 10 minutes for

the GUI to show up with 10ms time delay. And based on the results of other two options,

10ms delay is not good enough for our visualization to keep up with the program. So this

option was not deemed viable.

Recall from Chapter 4 that Communication Option 3 requires to discard some traces and

only visualize the latest ones. We created a UDP server in the profiler that sends Datagram

packets to our visualization. Since the UDP protocol itself does not guarantee every packet

will arrive, we are discarding some packets. In our visualization we just visualize the incoming

packets in the order that they are received, as fast as the visualization can keep up.

5.1.2 Result

We ran JPacman ten times for each option with the same user input. Table 5.1 and Table

5.2 show the data. Figure 5.1 and Figure 5.2 show the results.
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1 2 3 4 5 6 7 8 9 10 Average
UDP time gap 3563315 4287266 5622379 4442605 4023799 3568391 3455789 3888816 3490100 4429564 4076978.5
TCP time gap 1682722 4691617 1518839 2817145 3461722 3728027 1766091 1980672 1807256 2435793 2588988.4

Table 5.1: Total Time Gap (10,000 lines)

1 2 3 4 5 6 7 8 9 10 Average
UDP total time 4732 5220 5807 5650 4868 4824 4592 4853 4706 5193 5065.4
TCP total time 2044 2858 1935 1985 2350 2438 1873 2110 1796 2237 2162.6

Table 5.2: Total Running Time (10,000 lines)

Figure 5.1: Time Gap Difference (10,000 lines)
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Figure 5.2: Total Running Time Difference (10,000 lines)

These results show that Option 1 has a lower delay and faster speed than Option 3. For

time delay, because TCP builds a connection between the visualization and the profiler, the

transmission rate will be faster than the UDP protocol, since each UDP packet needs to route

through the internet to find the visualization’s IP address. Besides, the time of constructing

the Datagram packet also spends more time than write stream in TCP. For the total time

of running 10000 lines of code, Option 1 spends less time than Option 3. This is reasonable

because in UDP we are discarding some traces, and we only count how many instructions

we are visualizing. It takes longer time for UDP version to reach 10000 lines.

5.2 Further Discussion

However, Option 1 makes JPacman run slower than Option 3. We first observed this by

watching the Pacman character moving. In Option 1 the Pacman blinks slower than Option

3. We conduct another experiment to verify our finding. We move the line counter to the
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1 2 3 4 5 6 7 8 9 10 Average
UDP total time 9045 9118 8434 8464 8666 11521 10472 10018 9873 9783 9539.4
TCP total time 50559 49279 55242 60586 60708 57984 57981 61257 53465 55137 56339.8

Table 5.3: Total Running Time Difference in Profiler (1,000,000 lines)

Lines 100 1000 10,000 100,000 1,000,000 5,000,000
UDP total time 35 47 1389 4558 10964 48657
TCP total time 68 86 1523 8775 50425 802648

Table 5.4: How much time for each option to run different lines

profiler. We record the total time for instrumenting 1,000,000 lines of code. Table 5.3 shows

the data. Figure 5.3 shows the result.

The results shows with the TCP socket, JPacman runs slower than using UDP socket. We

believe the reason is the TCP connection gets slower when more traces are sent to the socket.

TCP requires congestion control and packet retransmission. When there are too many traces

sent through the socket, the chance of packet loss and errors also increases. So the connection

gets slower. The profiler will wait until it can send more traces.

Table 5.4 and Figure 5.4 show how much time it takes for running different lines. The result

confirms our theory. Obviously Option 1 takes longer time than Option 3, which means

Option 1 will make JPacman run more slowly.

Since Option 1 has lower delay but will make the actual program run slower. We believe

Option 1 is not suitable for program like JPacman. The JPacman program is constantly

running without any idle time. The traces it generates are large and involves many loops

in the code. If we visualize every instruction that gets executed, some part in the Seesoft

view will always be highlighted. Option 3 handles this by discarding some traces, which not

only makes JPacman run faster but also shows a better view in the visualization. We can

actually see instructions become bright and then dark.

However for other projects that are idling most of the time waiting for user input, such as
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Figure 5.3: Total Running Time Difference in Profiler (1,000,000 lines)

Figure 5.4: How much time for each option to run different lines
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1 2 3 4 5 6 7 8 9 10 Average
Fade time gap 1417826176 1418699309 1420684627 1415693487 1413678546 1421986745 1436549072 1409760450 1410357069 1426980450 1419221593

Regular time gap 4077202.4 3968725.1 3846925.6 4529871.5 4469310.8 3583164.5 3397438.8 4976385.8 3878918.8 4680604.5 4140854.78

Table 5.5: Fade time gap vs Non-Fade time gap

1 2 3 4 5 6 7 8 9 10 Average
Fade total time 350821 335431 394685 305798 315294 369875 334962 346810 316482 365789 343594.7

Regular total time 5044.5 5233.8 5178.4 4912.9 5967.8 5576.2 4079.5 5897.7 4578.5 4439.2 5090.85

Table 5.6: Fade time gap vs Non-Fade total time

JEdit, we may consider Option 1. JEdit idles most of the time until a user clicks some but-

tons. This kind of program generates less trace data, which will not cause socket congestion,

and as such is suitable for Option 1. Since Option 1 has lower delay time than Option 3, it

is more live.

5.3 Highlight Method

5.3.1 Experiment Setup

The fading effect was implemented by recursively calling the highlighting function with dif-

ferent levels of transparency. In our experiment for each line of code, it calls the highlighting

function six times. In this study, we are still measuring total running time and average time

gap for 10,000 lines. Since the highlight method takes more time, it is more likely to cause

TCP socket congestion. So we are using the UDP version in our experiment.

5.3.2 Result

Table 5.5 shows the total time gap for 10 experiments we conduct. Table 5.6 shows the total

running time for 10 experiments we conduct.

Figure 5.5 shows the result of total time delay after running 10,000 lines of code, and Figure
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Figure 5.5: Total Time Delay

Figure 5.6: Total Running Time
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5.6 shows the total time after running 10,000 lines of code. In the experiment, we found out

that sometimes the highlight function would stop because there are too many recursive meth-

ods that have already been called. The visualization will continue visualizing the remaining

recursive functions before it visualizes newly incoming traces. This is the reason why the

total time delay and total time for the fading effect highlight method take much longer time

than the regular one. Part of the reason is that JPacman generates traces constantly so the

generation speed is far faster than our visualization’s consuming speed with the fade effect

highlight function. It would achieve better performance if we use other programs such as

JEdit, which would have fewer, smaller bursts of trace data rather than JPacman’s constant

stream of trace data.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this paper, we presented Live Cerebro, a visualization that visualizes the code execution

inside the running program and is intended to help developers to understand the software.

Our visualization works with program instrumenters. It reads all files from the root directory

of a project and draws the Seesoft View of all files to give the user an overview of all the

source code. Then it receives program-execution traces from the instrumenter in real time

and visualizes the execution by highlighting the instruction on the Seesoft view. The user

can move their mouse onto any instructions to see the line number and file name. Since this

happens in real time, users can see a clear mapping between the software’s features and its

code.

We also do some experiments to validate some design decisions that we made. In the profiler,

we use servers with different protocols to send out execution traces to our visualization. The

UDP server is faster than the TCP server, which can help our visualization to keep up with

the program execution. The information loss is barely noticeable due to the speed of program
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execution and the speed of our visualization. We compared how different highlighting func-

tions effect the visualization speed. The results show that without fading the visualization

can run faster, which allows our visualization to keep up with the program execution.

6.2 Future Work

6.3 User Study

In the future, we want to conduct user studies to evaluate how much time and effort we

save with Live Cerebro to understand a program. In our evaluation we only evaluated the

performance of our visualization but not how useful it is. We want to know if the developer

actually understands the software more easily using our visualization. This user study can

be conducted by dividing users into two groups, one using our visualization and one without.

Then we could ask the users to perform some task, such as identifying which code implements

some features of the software. We could measure the time that it takes to give an answer

from both groups, as well as their accuracy.

6.4 Visualization

Our visualization still has some limitations. The profiler sends out a Datagram packet when

an instruction get executed. This will slow the program down since sending a packet takes

too much time. Slowing the actual program will cause a bad user experience. It is reasonable

to try other inter-process communication methods to reduce the communication delay.

Besides, Live Cerebro doesn’t support multi-thread program. Our visualization treats all in-

coming traces equally regardless of which thread is executing the code. However multi-thread
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programs are difficult to understand and debug if we don’t know the thread information.

Users can better understand multi-thread programs if we use some mechanism to differ

different threads such as using different color to highlight the code.

There are also some limitations in our Seesoft View. The canvas we are using is set to a

fixed size. If the canvas can adjust its size based on the number of total files and the length

of each file, the loading time of our visualization would be reduced. Besides, if there are too

many files in a project, the minimap for each file could be shrunken to a smaller size. It

would lose more information since the Seesoft view can not represent what the actual source

code looks like. We can investigate other visualization approaches to address these issues of

scale.
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[14] B. Karran, J. Trümper, and J. Döllner. Synctrace: Visual thread-interplay analysis.
In 2013 First IEEE Working Conference on Software Visualization (VISSOFT), pages
1–10, 2013.

[15] J. Krinke. Visualization of program dependence and slices. In 20th IEEE International
Conference on Software Maintenance, 2004. Proceedings., pages 168–177, 2004.

[16] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz. Software cartography: thematic
software visualization with consistent layout. Journal of Software Maintenance and
Evolution: Research and Practice, 22(3):191–210, 2010.

[17] C. Liu, X. Ye, and E. Ye. Source code revision history visualization tools: Do they work
and what would it take to put them to work? IEEE Access, 2:404–426, 2014.

[18] D. Lo and S. Maoz. Mining hierarchical scenario-based specifications. In 2009
IEEE/ACM International Conference on Automated Software Engineering, pages 359–
370, 2009.

[19] A. Marcus, X. Xie, and D. Poshyvanyk. When and how to visualize traceability links?
In Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE ’05, page 56–61, New York, NY, USA, 2005. Association
for Computing Machinery.

[20] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs with jeliot
3. In Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04,
page 373–376, New York, NY, USA, 2004. Association for Computing Machinery.

[21] V. K. Palepu and J. A. Jones. Revealing Runtime Features and Constituent Behav-
iors within Software. 2015 IEEE 3rd Working Conference on Software Visualization
(VISSOFT), 2015.

[22] S.C. Eick, J.L. Steffen, E.E. Sumner. Seesoft-a tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering, vol. 18, no. 11, pp. 957-968, 1992.

[23] F. Servant and J. A. Jones. Chronos: Visualizing slices of source-code history. In
2013 First IEEE Working Conference on Software Visualization (VISSOFT), pages
1–4, 2013.

[24] Steven P. Reiss. Visualizing Java in Action. SoftVis ’03: Proceedings of the 2003 ACM
symposium on Software visualization, 2003.

32



[25] Steven P. Reiss and Manos Renieris. JOVE: Java as it Happens. SoftVis ’05: Proceedings
of the 2005 ACM symposium on Software visualization, 2005.

[26] A. Telea and D. Auber. Code flows: Visualizing structural evolution of source code.
Computer Graphics Forum, 27(3):831–838, 2008.

[27] Tikir, Mustafa M. and Hollingsworth, Jeffrey K. Efficient Instrumentation for Code
Coverage Testing. SIGSOFT Softw. Eng. Notes 27, 4 (July 2002), 86–96., 2002.

[28] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: Visualization of code evolution. In
Proceedings of the 2005 ACM Symposium on Software Visualization, SoftVis ’05, page
47–56, New York, NY, USA, 2005. Association for Computing Machinery.

[29] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides, and J. Yang. Visu-
alizing the execution of Java programs. In Revised Lectures on Software Visualization,
International Seminar, pages 151–162, 2002.

[30] V. Winter, C. Reinke, and J. Guerrero. Sextant: A tool to specify and visualize software
metrics for java source-code. In 2013 4th International Workshop on Emerging Trends
in Software Metrics (WETSoM), pages 49–55, 2013.

[31] X. Zhang and R. Gupta. Whole execution traces. In 37th International Symposium on
Microarchitecture (MICRO-37’04), pages 105–116, 2004.

33


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Summary of Contributions
	Thesis Structure

	Related Works
	Visualizing Run-time Behavior, Post hoc
	Visualizing Real-time Software Behavior
	Visualizing Non-run-time Source Code

	Motivation and Challenge
	Challenge 1: Showing all information
	Challenge 2: Get Live Execution Traces
	Challenge 3: Visualization Speed versus Program Execution Speed

	Live Cerebro Visualization
	Data Collection
	Visualization
	Communication

	Evaluation
	Communication Method
	Experiment Setup
	Result

	Further Discussion
	Highlight Method
	Experiment Setup
	Result


	Conclusions and Future Work
	Conclusions
	Future Work
	User Study
	Visualization

	Bibliography



