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until a certain fixed height (asymptoticglly as u

ABSTRACT

A characterization‘is given'for_thé most general equiiib;ium coﬁfiguration
of a symmetric pendent'iiquid drop. It i#/éhown that for‘aﬁy vertex‘heighi Aué
the vertical section can be continued globally as-an'analytié curve, without'
iimit sets or double points. For}small |uo| it isvprovéd_the section_projects
simply on the éxis u =‘O; for large |uo| the section is shdwn to have‘near
the vertex the genera1 form of a succession of circularAafcs'joined near the
a#is by émall'arcs of large curvaturé. The-section contracts_at first toﬁard
a certain hyperbolé, the,circulér.arcs gradually changing shape but remaining,

o * - oo ), within a narrow

" band surrounding the hyperbola. The continuation of the section eventuaily
: projects simply on u:.= 0, separates from the hyperbola, and continues in an

‘oscillatory manner to infinity.

It is conjectured that as Iﬁol + % the section conVerges‘ﬁniformly
(as a point set) to a:solution U(r) with simple projectioﬁ (for all r >,O)
on u=0 and an isolated singularity at r = 0. A preliminary (weak)_form
of the conjecture is proved. | |

The (liquid drop) sdlutions_are also studied from the point of view of
their global embedding in the manifold of all formal solutioﬁs Ofbthe |
equations. From this pdint of view, the vertex of the drop'appears as a

transition point ﬁarking a change in qualitative appearance. It is con-

' Jjectured that the only'giobalxsolution without double poinfs; in this extended

sense, is the singular-sdlution referred to above.
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S . NOTE

This paperrcbmbines, with Changeé'and improvements, our
earlier reports: |
‘The shape of a pendent water drop, LBL-4649, 1976.
More on the’pendent water drop, LBL-4649 Supp., 1976.

The pendent liquid drop: asymptotic properties; 
LBL-7292, 1978. ' o
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Tne form of the outer surface of a symmetric liquid drop éuspende_d,
from a circu.lar' éperture is determinea by the condition that the mean
curvature ,of't_hé surface is proportional to the distance below a nori_;
zontal reference plane. For points near which the sﬁfface can be des-

(1)

cribed by a function u(x) we obtain an equation

‘u

0 %
(1) ———— =-xut)
2x, |Ji+lvu?® )

for the height u(x) above the plane.

' Here x is a physical constant, x > 0 when the liquid lies above the

surface, and A is a Lagrange parameter, to be determiried by the con-

strainis.

In a specific problem the determination of A may léad to técnnical

~difficulties. Formaﬁy, however, A can be transformed out of (1) by

adding a constant to u. In the preSent paper we intend to characterize
all symmetric solutions for the case A=0. A solution corresponding to

given A" can then be found in this family by transforming back.

We shall also introduce the (inessentizl and convenient) normalization

» = 1. We then obtain, in terms of polar radius r, the equation

u
(2) r_i-_-'_-‘-__z

r
1+u
r

r.
for a symmetric two dimensional surface u(r).

Not all surfaceé that appear physically have a simple pbojection on
a base plane, hence for a complete description the form (2) is overly
restrictive. We obtain a more suitable {parametric) formv of the problem
if we introduce the arc length s along a vertical section of the surface

interface, measured from the vertex (0, uo).' We are led to the system



. du . : .
dr
ds

"

cos vy

where. ¥ is the anglé' between a tarigent to the section and the r-axis,
measured counterclockwise from the positively directed axis to the

tangent line,

Froxh_the poin‘t’ of view of general theory, one would expect a solution

of (3) to be dete’frinined, at least locally, by the initial data
(4 r(0) = 0 ;- ¥(0)=0; u0)=ug;

however, the sys-tem' (3) is singular.at s = 0, and because of this the

" second condition m (’4') is superfluous (cf the discussion in [4] ).

The question of local existence has been studied by Lohnstein [5]
who established the convergence of a formal p'o‘wer/ series. eicpansio_n’. ’
Alternatively, one could adapt the Picard method, : as used by Johnson
and Perko [ 6] for the capillary problem, to the case studi’ed here.
One obtains‘ilocally; ‘'by these methods, a non-pafametfic solution u'(r)

of the equationv (2)?_,‘ wpicn we may write in the form
(5) (r giny )r = .ru,
chresponding to the (single) initial condition
(L) u(0) =ugy-
’fne circumstance that only one initial datum is required yields an

imporiant simplification for the problem of cnaracterizing all solutions.

It suffices to describe the one-parameter family determined by uo, and
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it is this approach we adopt in the present work.

In general, the solution u(r;u o) determined in 'tnis way cannot be

continued indefinitely as solution of (5). We shall show however that

for any u,, the function u(r;u,) can be continued as a parametric

solution of (3) for‘alll s , yielding a surface without limit sets or
double points.

We shall 'characterize 'quantitatively the asymptotic form of the surface

in the case \u > 0, and we shall characterlze quahtatlvely the global

ol
structure of all sucn surfaces.

The gleobal behavior changes qualitatively when lug | increases

beyond a critical value. If luol >>0, there is an initial range for §in

which the surface looks like a succession of spneres centered on tne

u-axis with radius  =(2/|ul), In all cases, the section can be expressed

for large s in the form u(r) and has an oscillatory behavxor as r — oo,

fu,=0 the unique solution of (2) is given by u = 0. We assume
throughout this paper that u o< 0; the remaining case 1s obtained by a
simple change of sign (2 ). We are interested _partlcularly in what n_appens
when ug<< 0. Tf_le resultmg surfaces afe then physically unstable under
most conditions of everyday experience; however, the problem has an
indcpendent mathematical interest (one specific feature of which we in-
dicate below) and probably also a physical interest for situations in which

gravity forces are small cedmpared with those of surface tension,

We have proved in [7] the existence of a particular singular solution
of (2) that can be expfessed in the form U(r) in 0< r<:6', and such
that U(r) ~ - -:-; as r — 0, In [8] we have presented numerical evidence
suggesting that the symmetric solutions discussed above tend uniformly

(as point sets) to U(r) as |u0| + . A particular consequence of the

analysis in the present paper will be a proof of a preliminary form of

that conjecture, namely we shall show in sections VI and VI that the solutions

converge asymptoti'callyvinto a neighborhood of U(r), the size of which can

be eStimated a priofi and is small relative to other (local) distances.
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In section VII we pomt out a compactness property, again suggestlve for our

' conJ ecture. In sectlon IX the structure of solutions is exammed from another point of
view and some numencal results are presented, suggestmg the types of possible

global behavior. These results lead in turn to anoth»er conjecture, namely that -
the singular solution U(r) is the only global solution (in an extended sense) -

that is free of double points.

We remark that we know of few other studies of the problem from
a general theoretical ’point of view (3). To our knlov'vledg.'e‘the first
attempt to characterize ‘tne shape of'a liquid drop appears in Basnforth
and Adams [10] in which a numeérical procedure is developed and applled

to configurations in which a vertical point may appear Thomson [11]
'used a geometrical method and was able to obtain a figure correspon-

ding, in our notation, to u_ = -7. Computational studies were greatly

o
facilitated by development of high speed computers and related techniques,and

many more particular cases have now been calculated see, e.g. ., Hida and Miura [12],

Concus and Finn [8], Padday [13] Hartland and Hartley [14] where al so further references

can be found. Such calculatlons are suggestive and instructive, but they cannot provide

the unifying insight of a general formal description. ‘The present_work is

intended as an initial step toward that objective.

In this work we study the formal solutions of the static equilibrium
equations. We do not here treat the related question of stability; with
regard to this matter, the reader may wish to consult the recent papere of
Pitts [15, 16], Hida and Miura [12], and also a new contribution by Wente
.y ot S ST v ‘ |

The central difficulty_'in the general study of the so’lutiohs of (2) lies
in the failure of the niaxlmum principle. In the_ particular sitﬁation '
studied here, a residue of this principle remains, permittlng us to com-
'pare the solutions ‘witn't'nose of a simpler equation, This circumstance,
in conjunction with elementary formal manipulation of the equation, pro-
vides the central tool in our investigation. ~We proceed in a succession
" of steps, most of which Aare elementary and immediate; when taken to-

gethcr, however, they yield the requisite characterization,

We remark that the comparison techmque has proved effecuve also
in otner (related) contexts, and has led in partlcular to new mformatlon

on the benav1or of solutions of_ (2) near isolated singular points, see,
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e.g., [18].
We wish to thahk J. Serrin and J. Spruck‘for a number of stimulating

conversations.

I The case of small | u, .

We shall prove : .
(4)

Theorem 1 : If, in the m1t1a1 value problem (5, 6) there holds

u,2 -2, then the solutlon can be continued as a (nonparametrlc) solutmn

-~ of the equation

for all r~ 0, It has an infiniiv of zeros., For any two successive extrema

r. Ty ci‘u(r) there holds | u(r;b)l < | u(raw)’l . Asymptotically as

u, —> 0 the first z'er‘o r, is the first zero of the Bessel function Jo(r),

r ~ 2.405.
(o}

We study first tne- portion of the trajectory preceding the first zero,

and we note that (2) is equivalent to (5) on any interval on which |ur| <o,

Ii @ Let ulr) s t1sfx (5) in 0<r< R and (6) at r = 0. Then (5)

sin ¥(0) =
Proof: Integrating (5) from € > 0 to r, we find
r siny - e, sin ¥ (€) = -{I;)udp ,
‘hence, using (G)Y.
u r

—cc)
—t
+
[
Ll
o B

from whieh we conclude lim qr(r) = 0. Hence there exiété
: r->0 T



. : u(r) - u .
ur(o) = lim ——————— = lim
' r-—»0 . r r—>0

e N

T r - ;_
gur('r)d'r =0

1ii Let u(r) at1sfz (5) in 0< r<R and (6) at r = 0. If u(r)< 0

in O<rc« R then sin¥ > 0 in this interval.
The proof is contained in _(7).

It follows in particular that u(r) —> u, < 0 as r— R, th‘at

| rH YR
sin YR = limm  sin ¥(r) exists, and that
" r-—R
| 0< sin¥. .= - R {) cu(p) dp < 1.

~ We conclude also that if the solution curve does not cross the nyper-

bola ru =- 1, then sinY¥_ < 1. The following asser’uon covers as well -

R
the case of solution curves crossing that hyperbola.

1iii : Under the hypotheses of 1ii, if in addition uoz‘-z, then

0<sin¥<1 in 0<r=R.
Proof: Consider the relation

_ siny
L m- r

+(SinY)r =".u ]

the left side of wmch splits the mean curvature of the rotation surface
defmed by u(r) mto a sum of latitudinal (nl) and mer1d1ona1 (n )
sectmnal curvatures We note by In that u(r) is mcreasmg in
0< r< R; thus - .

sin ¥ u(r)

r .
@ T os- D2 [oup)dp>- B

in that interval. Int_-egrating (8) with respect to u and noting that
(sin \P)r = -(cos _‘l’)u‘ yields, using (9), ' :
1 ,.2 2.
> - = -
cos ¥ .1- 7 (u -up )

which contains the assertion. We infer now from the general existence



theorem, applied at r = R, that the solution curve either can be continued
upward until it crosses the r-ai:is, or else it tends asymptotically to

this axis with increasing r. We may however exclude the latter possi-
bility.

u

—a_
a siny

3 a

liv: If u(r)< 0 in a< r< R<®, then R< a exp {é
Proof: Frém_(s) we find r sin ¥ > a sin Yo in a< r< R. By lii,

sin ‘Pa> 0. Thus,

du . _ asin‘i'a
=— = tan¥Y¥>sin¥> -

dr

and the result follows on an integration.

We have thus establishe,d that if u = - 2 the solution curve is in its
initial trajectory monotonically increasing and can be continued until it
crosses the r-axis_'ét a point r = a,. To study the further trajectory,
we observe that the curve can be continued at least locally across the
éxis as a sclution of (5), and we compare its inclination at a given
height h with the inclination of the initial branch at an eqﬁal negative

‘height,

1v : If the curve can be continued monotonically to a height h above

the r-axis, then its inclination at this height is smaller than the incli-

nation of the initial branch at the height - h, thatis,

1“.]<9_9_ | B
drh‘dx" - |

-h°

Proof: We integrate I'(8) with respect to u between the height -h

and h, obtaining

cos‘{] - cosﬂ = [ — du > 0.
h » . "h ‘h )



Ivi: Under tne condltlons of I1v tne curve is str1ct1y convex

downward when u> 0, and urr< - u.

" Proof: From (8),

. . AP r : “siny :
(siny ) = —T>—g =-u-~ <-u,.
’r (1+u2)/2 . r :

-From Iv ax;d Ivi we find

Ivii : The curve can be continued to a maximum he1ght h < |u |

at a point r = m1 > al, at wmcn point smv(m )

We now procecd as above comparing mclmatlons at correspondmg
heights until the curve crosses the r-axis a second t1me then com-
parmg inclinations as in Iv, and so on, ~We obtam the qualitative p1c-'
ture indicafed in Theerem 1, of a curve ovsci'llating abott the r-axis =
with successively decreasing extrema (see Fig 1 ). ‘We note also the .

additional information, yielded by the method:

Iviii : All inflections of the curve occur on (monotone) curve seg-

ments approaching the r-axis, in the sense of increasigg s. At any two

 successive points a, B, at which |_ua| = Iual there holds
du du
dr dr | .
g

To prove the final'statement of Theorem 1, we note by",(7), 1ii and

Iviii that | u_(r;u )| tends uniformly to zero with u_; thus the function

: ~1 . S : .
v(r;u ) = u u(r:uo) tends uniformly to theBessel function J_(r) as uj + 0.

II Large | u | ; initial arc

It u << 0 the above reasoning on the behavior of the initial segment

fails, and so do the results.



(4)

'Tneorem 2: if : uo< -2 'f_ there exlsts a value r,, beyond which

u(r) cannot be continued as a solution of (5). As r_ffrl, siny-~1,

‘The proof c'ou_id'proceed by a direct st'udy of the equation, as in
- section 1. We obtain more precise results and also develop techniques
that will be nee_ded ‘later if we proceed instead via an cbv'ious comparison

principle.

(1)

IIi: Let v ' '(r), v(z)(r) be functions defined in a< r.< b and such

@) @, @

that (rsiny (r sin ¥ Suppose sm‘f( )(a) 2 sinY

Then sin Y(l)(b) > sin Y(Z)(b) and equality nolds it and only if

V(l) = V(Z) -

+ const, on agsrs< b.

- The interest 1n II i lies in the fact that l (r siny )‘ is exactly
twice the mean curvature of the rotatmn surface defmed by u(r), and
this c1rcumstance facﬂltates the choice of comparison surfaces. In the
present case we cnpose as initial comparison surface the sphere of
constant mean curvature - u-o/Z, with center at the point
(r,u) = (0, u - Z/uo). Thus, if v(r) describes a vertical section of

2

the sphere, there holds u(0) = v(0), u(r)< v(r) m the interval O< r< -=
o

( see Fig 2 ). Using 1ii, we find:

II ii ;: The solution u(r) of (5, 6) can be continued at least until
- u r ' '
r=-2/uo,‘and sin¥(r)< - 3 .

We nee4 also:

II iii : A solution u(r) of (5) admits no inflections in the region

ru< -1,
Proof: From (8) foilows ru+ siny = 0 at any inflection.

Thus, ¥ must continue to increase until either a vértical point is
reached or the curve meets again the hyperbola .ru = - 1, Integrating

(8) with respect to u and using II ii yields



From this we conclude that a vertical slope appeats at a value

(10) u < > (1+ l1-8/ud ) :

which completes the proof of Theorem 2.

We may use a similar procedure to estimate the value r,. We note
that if w(r)- describes a vertical section of the sphere of constant mean

curvature

T PP )
(11) é_=_- T(1+ 11-8/110 )
- with center at (0, uo.‘"-‘i— B ), then there holds u(0) = w(0) , and by. IIi
u’(r)> w’/(r) on any interval 0< r< R . along which B “,5 - 2, This
condition is hoWeVe-r_'satisfied at u = u1 by (10), hence on the entire

arc uo< u<s u We conclude u(r) > w(_r) until the first vertical occurs

1°
at r = r,< g .
We note that at r = 8, where w’ (r) =, the circle w(r) intersects

the hyperbola ru =-2.

From II iii we chclude' the initial sdlution curve .i,s coh_vex in the
region ru< - 1, This préperty holds ‘in fact for the entire arc; on the
segment of u(r) joir‘xir.l‘g the initial point to ith,e point (ré, uc) on the
hyperbola ru = - 1 we obtain from (7, 8,1 ii), using the comparison
circle v(r), '

u u

e (sinv) = -u- SDY O oL 0 ir e 2 o
"o (sm\y)r u r_> v+ 3 > v(rc)+ 2->0.

The last relation holds whenever u < -12, which is the cbndition

that v(r) and the hyperbola ru = - 1, u< 0 intersect. Wévconclude



- 1 2.
(12) sin¥Y = -« =— + — u d
Y=-3 é p"u_dp

that ru> -2 on fhe arc considered.

It turns out the sectional curvatures "’l and . are both monotone

decreasing on the initial arc. We have

. ' . r " .
d ~_ d siny _ 2 u _ 1 "siny .
(13) ar "1 & T =3 ({ pudu - ﬂr'(,-'z -u)< 0
by (8,12). Also, we have from (7,8, 1ii)
oA S | siny "
| — . - S - — +
(14) : dr xm ( s(m‘.y )rrf Yr * r (2 or b ),

- 1 1 7
) - 4 - - - —-— .
c<mupt g (ueug) rg Plpp e <9
» by the convéxity of u.
At the m1t1a_1“ pgmt (0, u‘b) there holds "y = . = . u_d/z - Frqm
(8,12, Iii) follows for r> 0 on the initial arc
(15) ' Xm< -U/2<)(,1

From (7,8} we have also’ )

(16) -"Km‘_-ul- - >-ut 5 .
The mecuahty (15) implies < - U /2 , which is the meridional

curvature cf the compamson surface v(r) “Comparing the surface u(r)

with v(r) at corresponding values of u and applying II ii now yields |

gt

] -2
(17) > v-Zj=u -
S e )

. (see Fig. 2) .

We summarize the above results:
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Theorem 3: Under the condition of Theorem 2, the initial arc of

the solution curve, from (ro, u(‘))‘_ to ,(rl,u‘l_), is convex, with sectional

curvatures xm', nl' decreasing and satlsfymg_ xm»<v'- _u/2 < xl

(4)

in r < r< r. There holds

u ' :
2 o (o} 8
'1T<,f’1<‘z.“’i1‘u_2) -
o - v ) o
R R AT R R

For O<r< - 2/u;). the arc lies below the comparison circle v(r) and -

has smaller curvature, and for u <u<u the arc lies above the

comparison circle W(rf—- and has larger curvature (see Fig. 2)..

Further remark : The hypothesis u < - 272 of Theorem 2 could

be sharpened by using the comparison surfaces v(r) and w{r) in (7)
and iterating. A direct numerical integration of (7) yields [19]
ug % - 2,5678 as the value for which a vertical first appears, We

find immediately : -

Iliv: Let uoé be the largest value of u for which a vertical point

appears. I uo = uoc the vertical occurs at the second intersection of

the solution curve with the hyperbola ru = - 1, and is an inflection

point for the solution curve (;see Fig 3 ).

If u < -5, the upper bounds in (18) can be express_'écil_more simply,

yielding
-2 _ _ _ .2 _5 J
. <N “a - u’
: o o o
(19)
o u <Y <Y -g " ys
| o o o

These bounds could als_b be improved by iteration, starting with the



comparison surfaces v(r) and w(r). We note for refere_nee that the
asymptotic series obtained in [1-9] by formal perturbation expansion

yields, for the normalization used here,

2 4 -5
rie-g - 5st Owgh)
To o _

(20)

as u —> -

11 Mﬁsgs l'u \

1 u < - 2'\‘2 then u(r) cannot be continued beyond r1 as a solutlon
of (2). The curve can, however be continued as a solution of the para-
metric system (3) ‘as long as r remains different from zero. We study
now the behavior of this family of solutions in terms of the parameter u
asymptotically as‘ u —> -, We present here and in IV the first steps in our study
of the behavior of this family of solutions in terms of the parameter u,, as Yy »> -o0,

The further continuation of the solution is discussed in VI, VII
We base the discussion principallyon I i; to do so, we introduce as companson

functions the sections of rotation surfaces generated by the roulades of an ellipse.

The following result is due to Delaunay [20]:

Iet an ellipse 'of major axis 2a and distance 2c between focal

points, roll rigidly on an axis without slipping. Let § be the curve

swept out by one of the focal points. Then the surface generated gz

rotating € about the axis has constant mean curvature H = (Za)

We note that § is periodic with half-period T satisfying 2a< 1< a3,

and that each half-period can be represented in the interval

a~-c<r<a+t+ec by a 5ingle valued function v(r) for which the equation

(21) %(rsin?).r= 1/a

holds, and for which &in y =1 at the two end points (see Fig 4).
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We proceed step'by step :

The procedure of II shows that an infinite slope first appears at
(r u ), with bounds on (r u ) given by (18). The system (3) is non-
smgular at (r u ) hence the curve can be continued beyond this point
as a solution of (3 4). From (16) we find at (r u. )

- Yo Yo o 2
B A NS
so the curve turns',back toward the u -axis, and can be described again
(locaily) as a solution of (5).uWe compare it with a roulede' v(l)(r)
-2 11
(1)

whose mean curvature is - = and for which a,Z + ¢, = Ty (see Fig.5).

Since vr(l)(r ) = _'eo,b IIi yields u <v ", hence u(r)}v(l)(r) as

(1 )

long as the contmuatlon of both.u and v as single valued functions

is possible,

-

The curve v('l)(r')' can be continued toward the u-axis 'only until

the point (a -c,,u +'r) with a, - ¢ =.2 -r > 0 ; at this point
1t 171 Ty T 7 |

the slope is egain infinite It follows there is a value r,> - % -r,

1
beyond which this branch of the solutlon curve cannot be contmued as a
single valued function. ' ' '

From the geometricai interpretation of T, 88 the half-circumference
of an ellipse with major axis 2a, = - 2/u1 and focal length e, =r; ~a,
one finds that for large |u |,

2 1n |u1| ' i

(22) 1'1=-,uil+a_1v—~.lu—1|?.. al--—"' O(']—n—ITl—I-)

Let us estimate r, from above. To do so, we compare u(r) with

a roulade GI(r), ‘wh‘ich:.*.s determined by/the conditions

(23) A, = - ——



&

.we conclude it holds on the entire interval &

.15 -

1770
(23) .
A "2 2 2
T, = [ ‘_Va - ¢“cos® d6
14

A formal estimate shows such a roulade exists if u1 < - Z-J__ .

The conditions (23) are chosen so that the roulade can be placed

with its lower vertical point at (r),u,), (see Fig 5), and so that in

that configuration its mean curvature will be exactly the one determined

from the right side of (5) by the upper vertical. Applying II i we obtain

u > Cr(l)(r), u(r) < Q(l)(r) for all r<r, for which u(r) < u, + {r\l"
This condition cleafly holds for r near r-l; since Qf(l)(r) <u + 4\1,

N A : :
1 c1< r< rI, thus
' (1) A (1), '

0> v v(r) >ur(r) > v (r) > -e

on this interval, and hence the solution can be continued to the left of r

~at least until the value

(24) r, < - T - T -52.
For large |uo| we find
(25) 2 = -2 +4

with

| A . 40
-(26) @ -3 ¢ O(E'Tu—ll).@

Thus ,
' a
2 2
(27) | I‘2 < - E; - —"-3 - I‘l
1
with

(28) et 4+ QuFmlu]) .

1’

{
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We now broéeed, essentially, as in the proof of Theorem 2, We

note
L ra, r r,u
siny>siny = =L 4 '}l(l,* 12'1 )

2

thus from (24-28) we find for r< B,

giny =~ 3 8 5.,
= > %0 Y + O(ul_ ].n,ull ) -

We integfate (8) in u.from 'u(B. ); using that cos¥< 0 until a vertical
_ _ 2 _ .

is reached, and that
cos Y(.S: )$ cos ‘{'(1)(5 ) = - X121 + O(u-z .11'1’11 | )
2" 7 C2 5 1 1

we are led to a contradiction unless the curve Become's vertical before
u has increased by a value -16 ul-s. .That is, a vertical must appear

at a value

' A -3
(29) u2< u, +_'r1 - 16u1

The solution crurye then turns back from the axis at (rz, u,é)_ and initiates

a further branch,
We sufnmarize these results :

- Theorem 4 : F:rdm, (rl, ul) the solution curve continues backwards

towards the u-axis until a second vertical is reached, at a point (r2, uz)

with -
' -2-'41"<r. _'___*_2 ar =B'
Tu, Th 2 < u 7, 1 2
(30)

a,. . . A -
v (52)<u2<u1+71-16u1

3

1) )

there holds ur< vr , u>v

there holds u >0 (1) , u<-<'\ (1) .
—— r r r o

<r<r

2 1

in the interval Bz< r<r

In the interval r

1

We note in particulai that the horizontal distance of the second vertical
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~ from the axis exceeds that of the first vertical from the hyperbola

ru= -2,

II1i: There is ‘e'xactly one inflection between (rl,ul-) and (rz‘, tiz).

Proof: ,Clear,ly, at least one inflection appears. Using (8), we find

fr 1 o
(ru+ sm‘f_)r—(cosy - ;) sinY¥ <0

on the arc. Hence there is at most one inflection.

We indicate br’ievfly one further step in the procedure. We construct
2

Uy

~aroulade v(2)(r)' passing through (r ') with major axis Zaz = -

and a secoad roulade v( )(r) with a property analogous to that intro-

o (2) (2) »l(2) (2)

duced for v( )(r) Then there holds v < ur< vr . YW u<v

in the intervals for which the comparison makes sense, and (as before)
still another point (rs‘, u3) is found such that sin Y(r3) = 1, The proce-
dure can be cont_inued as long as the values of |u(r)| remain sufficiently

< large to justify the indicated steps. Adetailed dest:ription is given in sections VI, VI.
We find easily:

IIT ii : The successive horizontal distances of the vertical points, °

from the axis and from the hyperbola, increase monotonically.

III iii : On each arg segment returning from the hyperbola to the

axis there is exactly cne inflection. The same statement holds on the

remaining arc seguments for sufficiéntly large |u].

Theorem 5: lnb the initial region u< 0, the entire curve is bounded

(strictly) bétween the u-axis and the hyperbola ru = - 2 (see Fig 6).

In this reion the curve can be represented by a single valued function

r = r(u), with |r’ (u)|<eo ‘

Proof: We note from (8) that at any vertical point not preceded by-a

horizontal point distinct from (O,uo) there holds

. _ Tu+l
(sin9), = - —/—,




thus each such point continues to an outgoing arc or returning arc according 18

as ru >-1 or ru<-1. ~ We integrate (5) on an outgoing arc starting from

(ra,pa), a even, o« > 2, to obtain

o _ T
: r siny = T, - f pu dp
| - : T, -
and thus u'(r) > 0 on any such arc along which u < 0. We find
L pe2 2 :
u r’-ur _
. _ _aa 1 ' 1 _r
rsiny-r = ——p—* 5£ pu'(p)dp > - 71 - 5 (ur)
. a
from which
o Ta .
ur > T - 2 siny > - 2.

On an . arc rétvurr.ling ‘fr01.n‘ (rB,uB) we obtain from (5)

a2 2
r -

r -r.sinq;=—————u uBrB+_
B : -2

N
N
: &)

o%u' (p)dp

. - . > "42,"
and 51pce uSrB §
' ur 1 B,
sin y > - > - 50 [ eTu'(p)de
from which we conciudeféasily u‘(p) < 0 in the region u < 0. There follows

immediately r > r.a. >0 -along such an arc.

v Global behavmr '

The diécuésion thus far shows that the solution cui've can be continued
upward without self- mtersecuons unt11 it crosses the r- axis For by Iiii
an outward branch must either achieve a vert1cal or cross. that axis,
and the copnparxson metnod of II yields readily that a returning branch

has the same prdperty. There are no horizontal points, ‘ by Theorem 5.

We show here tnat a returnmg branch cannot cross the r-axis. Pre-

c1se1y

IVi: Let r = _a-ij be the first point at wnich the s’olutioh curve meets

the r-axis. Then 0<,u'(a1)<oo,

_Supposé u’ (a1)< 0, or equiiraleritly, cos Yl < 0. The curve could
then be continued backward into the negative u-plane till a first vertical

(ra', ua) (see Fig 7), at which, by Theorem 5,

(31) ru > -2,
aa :



o
s

{} a i § 4!7, i & [T & S - s
We integrate (8) with respect to u, from u, to O, 'ob‘taining

2
u’ .
(o

O giny
é o du = cos\jl1 +

D| e

(32)

To evaluate the left side of (32) we integrate (5) in r between r

~and r L s
a o ' . r ' 2 2
L a - ro-r
r -rsinyY = - [ pudp < S u
a E T . 2 (o
2
ru :
| < 5 +_ra_
by (31). Thus
sing Yo
(33) > - > .

on the entire _ar'c;' Placi_ng (33) into (32) yields cos ‘{'1-> 0, contra-
dicting the assumption, ' |

Now observe from (8) that at the crossing point a, the meridional
curvature is ne’gative; thus, if cbs ‘i’l = 0 there would again be a back-
ward branch fro"rn'a1 into the negative u-plane, and we obtain a contra-

diction as above. .

From IVi One_seés immediately that the proof of Theorem 1 applies
without change to the region r z.al, in the sense that the solution curve
continues from the point (al,O) as indicated in Fig. 1. We show now the

curve does not intersect the initial branch in the region u < 0.

IVii; Let Uys ug be two successive points on the solution curve such

= it ; i jca . < r_, then
thgt T rB, with an 1nterven1qgfyert1cal at (?Y,uY) If »rY o’

sin WB < sin Wa‘,lf rY ? ra, then sin WB > 51n_Wa.

Proof: Suppose rY < fa. From (5) we find

. ' T

~ - B
rB;sin ¥g-T, = - £ pu dp

Y
. _ To ,
r, siny - r, = —_£ pu dp,

Y



thus since r =r1_, "
_ a B

T
o o, :
] epu"-uNdp <0,

y

rd(sm ‘Ps - sin ‘Pa)
u” and u' deno,‘ti'ng- values of u on the lower and up'per branches.

The case Ty > r, follows similarly.

From IV ii follows a < b in Fig. 8, and thus h1 < b.»'But,
hj < h;, any j> 1, by I viii, hence hj < b, all j_>'1, and

thus intersections are excluded.

Combining these results with Theorems 1 and 5 webobtain:

Theorem 6: The solution of the parametric system (3, 4) defined by

the data u_ can be continued ihdéfihitely without limit sets or double

points. It has the form indicated in Figs 1,9, 10, 11.

V- Maximum diameter

. We define the diameter of a (symmetric) 1iquid drop as the largest
diameter of .11 éirjéular sections u = uJ., brat which the bounding surface

is vertical.



From Theorem 1{, 5,6 we see that each drop has a_wvellbdeﬁned dia-
meter, It is less obvious that there is a universal uppe'r bound for the

- diameters of all possible drops, independent of u_.

Theorem 7 : Let 8§~ 2.473 be the unique positive root of the
equation o
(34) P332, §3/% L

Then 26 exceeds the diameter of any solution of (3, 4),

We bas'e' the proof on a lemma, which also has an independent interest. |

Vi: Let u(r) represent a solution curve passing tnrou@ (a, ua) |

with - 1g aua< 0, and such that

————

(35) asiny_ 2 a/z.

" Suppose u(r)< 0 _11_1 a<r<R. Then sin¥ > 0 on this arc segment,

hé. I 1 = .1 ) " C
If the curve meets the hyperbola ru in a point (c uc) with

1/4

a< c< R, then ¢c< 3 /7, and sin‘i’c> 1/2,

Proof: We integrate (5) between a and r, obtaining

r

o 1 2 2 ! 2,
(36) rsm’wr-»a :-:m‘i'.cc > (a u - T u(r) ) + 3 ép u’(p)dp
from which, if a = a,
‘ 1 2 1 ,F o2 »
(37) - rsiny_ 2 - = rfulr) + = [p"u'(p)dp .
_ ‘ r 2 Z_a .

For r sufficiently near a, there holds sin¥ > 0. Thus, if siny were
_to vanish at ény points iaterior to a< r< R, there would be a minimum

r = rY > a at which this occurs. But (37) would then imply

0 - r é_inw > }-/szul(p)dp > 0,
: Y Y 2 3

 a contradiction. Thus_,' siny>0 on a< r< c, and hence u’(p)>0"

on this interval. Setting now r = ¢ in (37) yields
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T | L1
(38) sm‘l’cr.>._:_-.- 3 cu(c) = 3

Finally, we note that at r = ¢ the inclination of the solution curve can-

TR . 1
not exceed that of the hyperbola. Thus, sin Yc < __T , and
: - il +c :

< 3 follows from (38).

We proceed to pr‘ove Theorem 7. For any given u o’ -the maximum

width is attamed—at a point (r2j+1, 2 +1) with - 1> 2j+1 u2j+1 > - 2,

j=2 0 (see section III ). At the preceding point (r2j' u2j) there holds
either r_.=0 (if j=0), or else sin YZJ =1, In either event (35)

2;
holds with a = rzj; Also - 1< eru2J< 0, and thus the curve crosses
the hyperbola ru = -1 at a point (e, uc),. er< c< er+1 Seﬁmg
a=¢ Tr= Tyiel in (36) and applying Vi yields, using II iii,
e 3 - .3/2 3/4
(39) .r2j+1 - 3 \ r2j+1 3 < 0.,

The (single) positive sclution of (34) exceeds any solution of (39).

Since j is arbitrary, we conclude 26 exceeds the diameter, of any drop.

41 _ Generlc estlmates for large ]u]

| The‘solutiox‘ls. discussed in this paper are apparently related to a
singular solution U(f} of (2), whose existence we have pxjdved' in [7]
The func_tio_n Ulr) is definedvin a deleted neighborhood of r = 0, and there
'holds asymptotically U(r)‘~ - % , as r —> 0, We have conjectured
that in any interval 0< as< r< b<w, the solutions of (3, 4) admit
a single valued representation u(r;uo) and converge uniformly to U(r),

as u_ ~—> oo, Figures 9, 10,11 show the results of calculations supporting

the conjecture.



.In‘thié sectiohﬁand‘in the following oné we develop asyﬁptotic
properties of the solutions, which again support the conjecture, although
they.do not yet setfle it completely. The properties are described in
general terms beldy.énd in detail in Theorems 8, 9, and'éeém of inde-
pendent interest. | 7

The crucial neﬁ;étep in the %resent discussion ¢onsists in a more
~ precise ﬁse of the béiaunay comparison surfaces as a device to control

the behavior of the solutions of
(5) , i (r sin w)r = - ru.

In §DH we uséd’bounds on these surfaces for estimation of integrals
of the right side}of (5); we now propose to introduce the Delaunay'profiles
themsel&es into these integrals. It turns out the results can be expressed
succinetly in tefms“pf:eiliptic integrals, leading to an.improvement in an
order of magnitudeiof the estimates of §IO. We grevled'dfter some manipulation
to recurrence relatioﬁs (107,136,137) for thevdisplacement of successive
"vertical points" from the hyperbola ru - -1, which sh&w that, initialiy,
the solution curvévbeéomes closer to the hyperbola with each successive loop.
Integration of théée relations shows that the solution curve at first contracts
toward the hyperbola, at least until a height of order |u0|7/9, after which it
‘remains confined within é-strip whose width has order |u¢|‘1, until a height
of order |u0|(2q+l)/9; for any a > %;u Thus, the solution éurve converges
asymptotically to thé hyperbola, uniformly in |u| > Iuo|(2afl)/9.

For all suffiéiently large |u|, we show the solution curﬁe is confined
v 179/7 | \miformly in u

to a strip about ru = -1, whose width has order |u o

as |u | » .
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It will be con\;éhient to use here a somewhat dif‘fereht notation than
was employed in S$II; which seems better adapted to the description pf'
generic "loops". Wé _uée also the .symbols A,B, to denote qﬁantities inde—
pendent of the ot.her .t.erms within a relation, but whose values may however
chz;.nge within a cohtext. Thus, from y < A /i +x2 we bméy conclude y < Alx|
for large |x| . Thg symbol ~ is used to indicate a re.lé_t‘ionshi_p. in which
terms of (relafively) tsmall magr.libtude are neglected.

We start with'.génerallestimates on Delaunay a’fcs ‘ v‘(r‘),' which are

solutions of
(40) g (¢ sin w)i‘ =2rH,  H> 0,

vertical at (ra,va,),.(rb,vb), r_<r_ (see figure 12). We note

a b
(41) | H= —F
_ : S , a b
and an inflection appeérs at
(42) Ty = '/rarb .

We distinguish two cases:
Case a) Y < ﬁ/2: Solving for r(y), we find

sin Y _/?z - cos2y k _ Ty~ Tq
2H ’ Ty * Ty

’

(43) S r=

where the upper (lower) sign is to be chosen, according as r > (<)ri .

Setting cos 'w = % sin ¢, and using u'(r) = tan ¥, we integrate (43)
(6)

to obtain
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. . ) i 1 /2 1
: : = = /- K2sinl®@ ap = Y
(44) =V H£ 1-Xsin®@ a = 7 E(X),
where E(k) is “che ‘qomplete elliptic integral of the éécond kind, of
modulus k. ‘ |
If v, <v< ',vb,‘:. then
(45) o viv = 2R - A [k sin 9+ E(@,5)]
B a H 2H ’
" where

. , @ '
Ee,x) = [ J1- kZsin?t dt
(o] ) . .

is the incomplete e_j.l_iptic integral of the second kind.

If v, <v< 'vij,' ‘then
(46) | -V, = 3y [-ksin 9+ E(@,k)].
At the inf‘le_étion (ri.,vi)

(47) S vi=-él§‘(_k+E(k)-)+va.

Case b) Y 3.11/2: The discussion is unchanged, except in this case
- w/2 <@ < 0. We find now |
(48) oy -y =1 E(k)
. o a b H . :

If v

bivivi,' then

(49). v | ".".Vb = - Z—Ji—f[k sin @+ E(®,k)] .
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If vy <v ivé,vt'hen

(50) _"'v-,vb %E(k)-glﬁ(ksinc‘p-n(-cp,k)l;

~ We have, in this case,

(51) - vl '2—1}{—(k+E(k))4v

We shall need to evaluate integrals éf'Délauriéy arcs, of the form

-

| | o _
(52) &&b_‘? - J 7 pv(pldp
. : _ 'ra ;
oon, o,
Bl I Y-
2lry 24 dp 7
o2t b . w/2 o ' S
A VAR T
' a . o L7722

for the case ¢ < n/2; fhe last two integrals refer to thé'_pbrtiohs of the

curve preceding ahd ’foj_.lo,wing the inflection. For ¢y >mn/2, ® <O and

the limits in the last two integrals becbme - n/2.

Case a) ¥ < m/2: Taking (@), W(®) from (43, 45, 46), and setting )

Neo,k) = /I- kzsinz'cp—@" ’ we find,' according as r 2 s '

(53) r? % = 3-1341- {F(1-1°)07 LX2A cos®@-3kA° cos @- k> cos @).

After taking account of some céncellation, we obtain

(54) Qab - -% [rivb-riva] +§%-3- [ 1(1-K2)A+ 43PA cos @] ap
: . o .

= - el - ek s(n),
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with
(55) s = 8E(K) - (1-K2)(E(k) + 4K(X))
where
e
KK =S e
- Y

is the complete ellip_t,ic integral of the first kind, of modulus k.

Case b) w_>_ #/2: In this case, we find by'an analogous discussion
' ' 1.2 2 1
(,56) °Qab T2 [ryvy, = Taval - 73 S(k) .

We indicate in a particular configuration how the above expressions
can be used to éstix_néte the solution u(r) of (5). We consider an arc
u(r) that is vervt‘lgva.l at (ra,ua) andvat., ..(rB,uB), u, < ug (figure 13).
We compare this arc with a Delaunay arc ‘v(r), with curvature H = -%—ua ,

and vertical at (fa,va) = (ra,ua). The second vertical then appears at

- Ty vy ), det_ermined "‘_by'

' o T+
(57) R
o

and by

, o 2
(58) Vb-ua = - qE(k)
with

o - r, -r

(59) . -'_k=b 2 =1+ru,.
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The general 'compa_'rison principle IIi applies in the intervél Ty <r< Tys

and yields u'(r) < v'(r), u(r) < v(r) in this interval. A consequence is

that

(e0) | ,‘rb<ré,_ u¥ = u(r) < vy .

We extend v(r) to the interval (ra,rB) by defining v(r)

r >r,. From the equation (5) we now find

" S rB rb" ' rB
(61) rB-ra=.;f‘ pudp > - f = pvdp - [ pug dp
' To ' Ta T
it 2 1 Ug
> [xfwy - xiu ) + 7 S(K) - (xg 'rb)
which we rewrite in the form
o L
| 1. 2 1 2. 2 2.
(62) 3 VT * Ty >3 uqra+rq + 24H3 S(k) + (;ﬁb-rs)ss_

with EB=uB—vb. | | . |
We can obtain a similar estimate in the reverse direction by introducing

a Delaunay surface v(r), vertical at (ra,uav) and at (;b";;-b)’ and with-

mean curvature H=- %— ué. The comparison principle now yields
) A . ~ ) . A * ’
(63) . Ty < Tg < T ﬂr) <u(r), T, :r _<_rB, v(rb) <u <V

(vsee figure13). Integrating (5) we obtain

T8 Tg A T S
(64) rg-T, = -f Ppudp<-~-fFpvdp=-f "pvdp + S “pvdp
, S r S r
a a a B
<--[ riua] .+ S(k)+-Z-V(r -I‘z)

b b | 24
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by (56, 63). We rewrite (64) in the form

' 1 24 1.2 1. ooy
(65) (§.r8vb'.+r8) < (2 raua+.ra) * 2R3 S(k) .

In order to _exfi‘act useful information from (62, 65), we need Cbﬁditions
under which a sechd vertical u will appear, and an estimate for v.eB and
the cdnsequent esfimates on ﬁ, ]2; we proceed to obtain them.

We cqnsider,_ ‘f__‘ori the case ¢ < m/2, the generic configuration indicated

in figure 13. Setting, as before, u* = u( rb), ¥ = r-b), we find from (5)

I‘ .
. . ai *_ = e -—-b 2.. 2
(66) | »Ifb vsln ¥ r, i pudp > > (rb ‘,ra)"

a

For the upper Delaunay surface v(r) we have from (40, 41, 57)

S - _ o 2_ 2

(67) | -, Ty-T, = -3 (rb ra) .
Combining these relations, we obtain
, . . Ty + Ty .
so that, by (43, 44, 57)

' C * » k 1
(69) l-sin y <1.E(k)-l—;-k--l%
from which

R 2 /2 /Ex) /X
*

(70) o , cos y* < = T35 -

We now observe (sin W)r = - (cos w)u and write (5) in the form

(71) . S §—i-;—l—w--(cos w)u=-u .
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For all r > Ty 'fdr which the solution can beidontinued in thé_form
“u = u(r), we conclude.

u

S B : 1l _ o
(72) e .-.-'(COS W)u?.-u-}—--u+-l—_§-.

b

-

Integrating in u between the values u* and u, observing cos y > O

and using (70), we find

1,2 S 2/ AE X ..
(73) 5 (511) -+ (u —h—k)du - ua - ok >0,

where we have set 6u.= u-u¥, on the arc considered. We have also

éﬁ(k)'

" -
B T
) o
by (58, 60), and thus
. 1,042, k 2E(k) . 2 V2 /HE) /X
(74) 7 (§u),*'(l+k u, - = )Gu— — ¢/1+k >0

] a

on any cdntinuation?of the solution arc to values .u 3_&?. We conclude

a second vertical must appear, in every situation for which )
(75) | :f.  S ku§>>l.

Under this conditiénrwe obtain from (74) the simple expression for

6*u = max (u-u¥) ?'uB"u*”

ps/2 - ’

| % ~2 /é'vflki Vizl*'k) A €
(76) . - 6Tu < ku? - 2E(k)(1+k) <*/E'u; ) B

which limits the height change between the successive verticals. Here

€ >0 is arbitrarily small, for large kuiw_
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We note the condltlon (76) ensures that the second vertical (rB uB)
11es to the rlght of the hyperbola ru = -1, that is, r uB < - .. We show ‘
that under this condltlon, the hyperbola i8 crossed exavctl,y once between
(rB, B) To see this, we first observe that tine compér.is’on
function wv(r) has exactly one 1nf1ectlon, which must appear in the 1n1t1a1

.(r,u) and

. interval determlned by rv > -1. Also the vertical distance from (rb, b)

to the hyperbola ru =-1 is

! ok 2E( k)
T i T i

b o
which is positive if* vkui >>1. Thus, vy < -1, and it follows that . v(r)

meets the hyperbola exactly once. Since by Ii, u'(r) < v'(r), u(r) meets

the hyperbola exactly once in the interval [ra,rb] .. We now observe

- Ce¥y s ok, L 2EX)__A
(77) d'b §u> 1+k 0. u, &u;

by (76). The condition ku§»> B implies

(78) g, - 6*u > 1o (o - 26() -—./'E)
__ ) ‘

which is positive for large B. Thus, u(r)  cannot cross the hyperbola

in the interval [rb,rB] , which completes the proof

The result (76) permits us to. estimate the error terms in (62, 65).

We find, using (58, 60, 76),

.(79'-) 0<H- H 5 (u -u, ) = §(u -u )+—6*u<%(v8-_ua) +%’6*u

B(K) | 1w, < E(K), _A
W 2 Eu

" for large ku°. Similarly, by (57, 58, 60, 76),



‘ n ug -y
(80) 0<rB-rb<rb-rb=2 = .
B a .

_ 4B, 8*u, o 1

Ua Uy (lual )

uniformly in k. It follows that

2 2 &
(81) 0<ri-r, < v
T T

again uniformly in k.

el B

We have X = 1+',raua, k = 1"+'rau6’ so that 'by (59, 76)

(82)  0<k-x- z.‘&(us‘-—ﬁa), <-ra(6*u-2—E1:ffl)
(2E(k) +v6*\.1 )
Eé aRENE

< (1-Xk)

< 2E (2K(x) + €)
()
for large kui. A formal calculation, using the asymptotic estimates for

E and K for k~1 (ef. [21], Chapter.V),now yields

B(%) - B(x) = O(%)

(83) - o«
- s(k) - S(x) =,0(;1z)
) a

uniformly in k. The singularity of 'K near k =1 , is here canceledb by
the factor (1-k) in (82). |
We note next

A

uZ
a

(84) . (Vb;";(rb,)) < €g < §%u + u*-vb < 6%y <



!

e

" We estimate the left side of (84) using the éxplicit representation
(45) for the sﬁrface v(r). This representation will apply, as Gi < ¥ rb)

for ﬁui »> 1. In the present case we find

2Ex) , _ 2K(E)

(85) v, -v(r, ) =
b ) b u _ ~
| a u, (2E(k)/uB) X
+ 1 — (k sin &’b +[  A-E%sin?e dp).
u_ - (2E(k)/uy) o : ,
a B SN
From the definition of v, \’; .we find
‘ Ty
(86) | rb-ra=-ua£ pdp
' a
.. ) ~ . . r’b
(87) | Ty Sin'w(rb)'ra = -y { pdp.
. ' o
Thus
| ' r2-r?
(88) -l—sin\?:(r)=(u -u')—-ﬁ———'.D 2
o | b B o’ 2ry

and from 1- sin2 IIJ = 122 sin2$ there f‘dllows, using (59, 67,‘_79)

A X

(89) | k

We place this result in (85) and use (79) to obtain

A
- 2
7k ug

(90) 0 < vb-':r(rb) <

uniformly in k.
We are now in position to put (62, 65) into mo_fe effective forms.
- We write first, from (62), with H=- % U |
(91) L u(r +L)2_ = >Lu(r +-1_.)2- 1.1 S(x) + L ,..,2(;l -v)
2788 gt T2y T 2 ) 20, T 33 2B d

@ fo iy TEy T 3
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from which

*

1.2

b 1208 (v 102 e L 23 - v )
5 uB I‘BUB E‘ I‘b UB- Vb .
We have
(93) | . us_-ua'=u8-vb+vb-ua
= 6*u+u*-vb+"v -u
(¢ 9 R SO
u , b
o -
which implies, by (76, 90)
__A u_:2E(k)_< ug-u, < - 2E(k) , _A
vk ul Yo ¢ Ya AW
The same calculation yields
(95) o |uB,-vb| <A
: vk u?
a
We have a_lsro, by (80, '76)
(96) - 0<r3‘rb<;b'rb=_'4i(3k)+ A
: : . a ffu&’

with |A| bounded uniformly in k, u, for large |u

al" from which we derive



(97) | 1 +‘rBuB- ‘= l_.'+':1"'b\ri‘)'+‘(r8uB - rbvb)

[
I.

C R
]

rb+rB(uB-vb) + vb(rB--rb)
so that the above és_timates yield |

(98) l(l+r8u6) + kl < Eg

uniformly in k.

Returning to"(92), we may now write

> ~+ ‘ + ;1 (1+k2)E(k) S(k) A
(99)  Su {lr ;1';)‘:(1'8 .-—B)}{(:r'B-rm)_uB ‘{1;} T g 7 o
2 g(k
> 2K
Lé_ .&u
' a
 with
‘_(100) | i a(x) "= E(k) - % (1+k2)E(k)k-2(1.'k2)K(k) .

The expressi6n 'V
- - /2 _
(101) 3q(k) = -2 [ =SP4 AP ede
.0 /IS sin? @ | o o _
shows that a(k) decreases monotonically from q(0) = 0 to q(1) = - 1/3.

We now write

_ 2k
rB-r >'rb-ra_—H;
(102) ' ,
rg-T <»1':b-ra= 2k -'ﬁ—k-* A
' ug a vku

and, as in (96)
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- ] ’ u-u . ..
(103) e 1Blu<>t=2‘r:u(3k)+ A
| B o a’B o JKu

We put these estimates into (99) to obtain

a \la . B UB ua &u..

where |e| is small and |A| is bounded, depending only on ,kui >> 1.
Bepeating thé3eﬁfire procedure starting with (65), we are led to the
reverse inequality; with -k replaced by k on the right. Applying (82)

we obtain (104) with”the.inequality reversed, and thus -

7

N RV _ 2kq(k) (., . _A
(195) (r, _;1-;-), (rg uB) = —f%f— (1+€) o
~ : . : o S0

We place this estimate back into (99) (and the corresponding expression
with k) to find, using (102) and (103),

A
/k uj

(6 A

(106)  ,Js{(ra‘+ é:) + (rB + é;)}l <

the € being the one that appears in (104). We are led to the'ﬁasic

relation for an 6utg6ing arc (on which 0 5 ¢ <. m/2)

1. _2kq(k) , _A

(107) : (r -+-——) +(rm+ :
= o vt R g W Rl
with bounded ||, depending only on ku> >>1.

The case of a returning arec (v > m/2) does not yield immediately
to the same discussion, and it is neceésary to diétinguish fhe'cése 'k ~ 1.
We note (fig.14) thatfthé comparison Déiauﬁay\surféce v(r) of curvature
H =.— %-us now lies below u(r), and now provides an uppér $ound rather

@han a lqwér bound for 'rB—-ra. To obtain a lower bound, we observe that



since 1 < E(k)" < n/2 and E‘(k) < 0, there 1s (for large IuBI) a

unique posltlve solutlon T of
. : B A2 A ~ '- .
(108) 'F_‘*uBT+2E(-1—uBI‘B~—_TI‘B) =0,

that is, ’there’exist_s a unique Delaunay comparison surface \’;(r) through -

(rB,uB) with mean‘c‘:‘u:rvature .H = - %Ga’ so that
(109) ' Ry, = - 2EE)
v a B . N
_ v
a
with '
o rB—f'a . .
(llOv) : -k=r8+i\‘a=1+rava——l--r6va

The solution curve u(r) ‘sa.tis'fies u'(r) > G-'(r'), u(r) < ;(r),
and hence u(r) can be continued f‘roﬁl rB through decreaéing r at least
to the valuer ;a'. Lettlng v(r) denote now the Delaunay surface through
(rB,u ) w1th mean curvature H=- -1—u8, we find u (r) < v "(r), u(r) > v(r),

‘

it follows wu(r) cannot be continued to the minimum value ra of definition
of v(r).

The relations analogous to (62, 65) become

(111) .-21-r§u6+r8 < % r§Va+ra + -3-3-1-5 S(k)
1l .2 1l ~2~ 1 2y
(112) -2-rsu6+r8 >3 T v tr pes 'Z'ua(rva—ra)v'-
. a , y

As before, we may rewrite these relations:

@3 Bulged -k < Dy

+ j%é- S(k) f‘%-vrs(‘v'.a-ua)
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L1y, et ()
ua udllB | ua

(14) 3 ugl(z +'—-> - (g

. " . A2 ~ ’
-+ 2 s(k) +_%-ra(va Uy ) -
3va
The further estimates must proceed differently, at leést in the
range' k ~ 1.

' From the deflnlng relation (108) for T and the analogous one for

T =V, -ug, follow T, T < A|u8| ~ for large |uB]. From
(115) o T -1 = _:..ZL(k_)._
: ” 8. 8 u(u;+1)2
8' %

thus follows
(116) - 0<r -r = Alug]

with bounded A,

| ALet u¥ = u(.f‘:a‘).." For given X > 0O, consider a rectanglé R of width
'AluBI_.3 and height .AAIuBI_3 és in figu'rei5? Since u(r) :%a'zmot be
extended to r = ra; _théré mist be at least one point _(rp,u;)) in R

at which |tan y| > A, i.e.; at which

1 ’ sin ¢ > A

(117) , |cos.wr| < » , - .
o ) + A2 Y1+ A2

From (71), which holds also on a returning arc, we find, for all r < fa’

(118) | (cos w)u~> u + m
: r
: a

and hence,at the given, point,

(119) (cos y) >u+‘—-—-—}‘-——=u——1: A (uB-zI:E‘(k))'
- | e N o ¢ 1-k /T L



- We ﬁote E(i) < m/2; for any given k_, O <k, <1, we choose A s0 that

>1,

(120) - =

For all sufficiently large - |u8| , the fight side bof (119)‘ will ‘then .be

- positive for all'u_'_>_ ug; for any k 1n k, < k < 1. Thuﬁ, cos P is
incr.easing (from a negative value) at r = T and we conclude that (120),
and hence also ("119),: continue to hold for d11 r < T, to which u(r) can
be continued. 'Intég_rati.ng (119),_-we find that a vertical must appear within

a height change

: _. . 1; .
,(,121) . ‘511<AT—8T ’ =u, -ut,

w'>
O

*
[

I

*

uniformly in ko < ]2 < 1.
For given k < 1 and large |u] we may improve this result by estimating

-

cos Y* explicitly. . We have

~ * rB, uB "2 ~nD
(122) ’ rg =T, sin p* = - i pudu < - = (rB-ra_ ,_
T, :
; ~ Va2 A2\
(123) - rs—ra———2—(r8-ra
from which
T r ;;
Ay e XY LA B “a ~
(124) ra(_l-’-:sm yr) < (va—ue) 5 (rB-ra)
so that
(125) 1o sin y* < AEK) kK
: - 2 1-k
a -
and hence

(léé) | o cos P* <2 V2 YE(k) /-ﬁ_ . '
‘ o v, 1-k |
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We note (126) 1s similar to (70), however the term (1+k) of (70)
is replaced here By'vl—i._ Tﬁis is the reason the rahge k ;'1 requires
special consideration on a returning arc. . |

Repeating now_tﬁe reasohing’that led to (121), with (117) replaced

by (126), leads to

(127) B &%y <
B VE u?
for all k < k_ < 1. This estimate holds for all sufficiently large |u8|.
A returning arc has in all cases exactly one_inflection-between the
vertical points (II iii). It is obvious a returning arc meets the hyperbola
ru = -1 in exactly one point.

We proceed to obtéin further estimates for k ~1,-ana_lo_goi1s to’

(79-90).
We have
S r. -1 .~ To-T
(128) h i‘k=—B_a s k=—§4 ’
. . I‘B"’ra_ I‘B+ra
thus
. .. A_l ~ 'Av .
(129) . B O:<_k-k = §'r6u8va(raf'ra).

by (li5). We‘hoté the féctér (1-k) of (82) no longe£'éppears.

The estimate for Gé-v(fa) is gbmplicated by fhe Strohg dependence
on k of fheiﬁdsition'qf the inflection on v(r). We avpid ihis difficulty
by noting that thevhéﬁispheri;al surface w(r) of cdnstant mean curvature

r;1? that passes through (rB,uB), has larger mean éurvature_than does

v(ir), hence v(r)-w(r) > 0. It follows that
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(Vg - #(0)) + (w(0) - w(7,))

P
=
(VS )
o
g
<>
[
1
<
—
=]
-
A

A
(va-u

B

'
a .

-rB) + (}‘6'- »/rg —faz)

Formal estimation gives
. o - 1-k? 1-k?
. (131) . | E(k) l-—T-(longl)

for k near 1. Further,

. | o1 1, 2Kk) - o
(132). e 3— O B , , ,
a B B
~thus
2E(K)+r u A 2
,<133) | vva-v(ra? < - -————Taz———— + 5-(377§) rg

. A(1-k)[10g(1-k)|
:
with bounded |A|, uniformly in k for large |u |
- A repetition of previous procedures, using (128-133) in place of

(79-90), leads aftef some calculation to

‘ 2k g(k) . A(1-k)log(1-k) Y 1
(134) =3t ué <(r + “a) + (r8'+ UB)

2k (k) , B(1-K)log(1-k)
ul :

3
Ug '8

<

with |A| and |B| bounded unlformly in Xk for large |uB| A formal,
if tedious, calculatlon, based on asymptotlc estimates for E and K for

k ~ 1, yields
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- RS
(135) : ~Ja(x) - a(k)| < e
. ‘ B
We place this estimate and (129) into (134) to obtain the basic estimate,
for a returning arc with k ~ 1, ' 5 _ ~ -

'_}_)' 2 o) , (1-f()1c§(1"_12) . .
w0 % '

(136)  (r, + =) + (rp +

If, for some fixed k_, there holds 0 < k <k < 1, kug >>1, then
the same procedure;_using (127) in place of (121), yields for large |u8|

1) W 26qK), _A

uB ) ué & un.
. _ B

(37) ;(r‘-.*l-‘lg)'*(rs‘

with |A| <A (k )

v._'We summarize the information ocbtained thus far.
Theorem 8. , : :
1) A soZutzon vertical at (r U, ), such that raua > -1 and (75)
host wzth k 1}+raua, will again become vertzqal.at (?B,ue), with
u, < -1. Betweéhvthé tﬁo verticals thére.holds 0 <y <m/2 Thé'height

Tglg
change is estimatédiby

o . 2E(k)
| (138) S ugEuy -5 + €
with
(139) ' O e] <=2 - -
]
The solution arc meets the hyperbola ru = -1 in exactly one point. »The -

change in ho}izontalgdistance to the hyperbola at the two vertieal points

is controlled by (107)- .



- (140) k=-1-1r,v =-1-r.(u, - 2E(k)) | ~ (ef. (109)).
~ . . 8 a 8 B . A.
' ug * 1 , '
4 solution vertical at (re,uB), éuéh that roug < -1 ‘and kué >>1,-wiZZ.
again become'vertiéal at (ra,ua)‘ with ru, > -1. Between the two

verticals there holdé 2 <y <'m  There is exactly one inflection and

2
one intersectibn;with ru = -1. The height change is estimated by
| R o 2K(k)
(141) R v
Ug
with
1-%k

(142) o lel <& 77
o B

and A < Ao(ko)'<-“>’in any range O <'ko-§.k < 1. The change in horizontal

distance to the hyperbola ru -1 is controlled by (136).

In any'range' 0< k <k <1, if ku§_>>l,.then the solution will again
become vertical at (ra,ua), r,u, > -1 the height change is again éstir

mated by (141), but with

A
2

(143) . o le] <
, - . Yk ug

2

in place of (142). The change in horizontal distance to the hyperbola

ru = -1 4is controZZed by (137).

VII Asymptotic estimates

The results of VI show that for large |u|, the solution curve contracts
- toward the hyperbola ‘ru = -1 Dbetween any two successive verticals. The
estimates (107, 136, 137) contain quantitative information, which we now

proceed to integrate to obtain new global information on the behavior of
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the solution, when |u is large. We set r, = o, denoté' the successive - |

ol

vertical points by (rJ.,uj) and write 3 g
e = v, 4 =], k, = -c.u, e, = c...-c,
o e5 = 17y .ujl S B A Sey = ey
R 2E(k,) R . ) _ ;
Ty & =t ) k, = |2+r.(u,+71,)] .-
J U, + T, J g '
A 'J J »
Using (144), (107, 136) now take the form, for k,k ~1,
| 2k, a(k.). - | .
(145) Se; = - —'%3—-'1— + A, ’ J even,
J J J A ' : :
Y | Jd |
2k, qlk,) (1-k, )log(1-k,) S
. _ J : ’ : .
(146) Se; = - -—ujaL + A J o -, j odd,

with IAJI < A <%, uniformly for all sﬁf‘f'iciently large 'Iujl, in any
range 0 <k <k < 1. | |
We are interested in (145, 146) for large |u|. We note - q(k) <-q(1) =%,

E(k) 5%' , and choose uﬁ to be the (uniqué) solution of the equation

AT oL 4m 1

(147) | - lgdr =g

Let

(148) K1) = max{k: - 2kq(x) < - 2400k + A)log(1-k + A1)} .
- %1 _ %1 v

Clearly, O < k(l) < 1, and

1)

(149) k) > max{k: - 2kq(k) < - 2a(1-K)10g(1-R)} .

For all kj > k(l), there holds -A(l-fc‘j )log(l-ij) < ,-kJ- q(kj-) .
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Now choose' ‘u - so that (k(l)) q2(k(1))u2 >,A2. ‘For values

2 , m2 '
(150) S 1 u§'> max{u2 ut |}
we may write, sipce' kj = _CJPj’

(151) . ch = - P.e"

with

(152) o nﬁﬁ-’: lﬂiglL < Pj,< max giﬂiglL . i

k Zk(l) k kZ.k(l) k

| Integration of (151), with cy = —ugl, yields

(153) o f. ONP ~ c'lf . ug

for some P in the range indicated by (152).

We consider also the relation, which follows fromv(141—143),

- o _ ,
. = - AL, T A, ,
(154) | .<5AuJ U 22 5 < n.‘.

and which integrates to

(155) _ - u§~u§-2AN, 2TAZT.

From (153) andl(l54) we calculate

: 2
- Puy
2 - _ap-1l -
(156) k‘N' l*P uo_ _uN ’ v P 'A‘P ’

and setting uﬁ = (1—1ﬁu§,

- - 2 _p(1-n)
() B T 12
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Given k(o); k(l) < k(o) <'1, there will'be,'for all sufficiently
large |u |, & unique smallest N = N1) " for which

(158) | A  [2L1-24 < 10

p+n

the value of the‘expression in (158) tends to 19) gien inereasing vluol.
We reformulate our result sllghtly, and summarize the 1nformat10n thus
-faf obtalned. We note that any set of points kJ = const: l;es_on the
hyperbola 1+ru - const, and that the singular solutidn'}U(r) is asymp-
'-totic to the hypenbpla ru = -1, as r + 0. The foliowing result holds

for all |u_ | sufficiently large.

ol

Theorem 9. Given any kO, K1) < k(0) < 1, there ezists n(x(®)) > o.

such that the solution curve, starting at (O,uo), "separatee" from the

axis T =0 and from the hyperbola ru = -2, after an interval uN-ud~én|uol,

in the sense that nédn-the height uy all points on the curve lie between
B ru = 1519 Borveen 4 ' (1) .n 2

the hyperbolas ru = -1k "', Between u, and u a nymber N A Y%

of vertical pointsbappear, and each vertical point is followed by another

(on the opposite side of ru = ~1) at a height.changé quj f'-AuSl.

To proceed further; we return to the relations (107 136, 137); since

(1- k(o)) #0 (k(o) independent of ug ), we may use (143) to write (145, 146),

for j > N(l), in the common form
| 2x.q(k,) A
(159) - boy = - —Idos L
_ v J 'Jig'us

We‘coneider an interval in which the last two terms on the right in

(122) will be small in relation to the first term. Since
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. . kq(k) _ ¢
(160) y lim =45 = -
. k-0
' the condition takes'the form
(161) o k> Aful” -2/

for suitable A. 1Integration of (159) and of (154) yields, as above,

L 3 uy
1e2) - ) g,
so that (161) now reads
(163) ol > Alug 7.
'We can in fact achieve the situation
k ~ A[u] =2/
(164) | :
7/9
lu| ~ Afu]

- for suitably large A (1ndependent of u ), aSymptotlcally for large |uo|,

in a number N(2) 2A uo steps. In this conflguratlon, the solution curve
has "contracted" towards the hyperbola ru = -1; we compute in fact from
(153, 155)
°\(2) - 3
N (. A
(165) S (&%)

o
as |u | + oo,

At the level _u the relation (159) no longer ensures a contraction

N<2>
at each step. The conditions for appearance of successive vertical points

are, however, still satisfied, and (159) still suffices to bound the change

603 at each step. - o ' . 2a-8
23 “2/7 5 x> Blu| 2T,

Let o satisfy T <o < 3. In any range A|u|

we find
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(166) 1 cac®
: vk ue
. a .
and we consider the inequality
(167) S |8c,| < ac®,

We integrate and simplify, noting

1-a 2

(168} CN(Z) >>.u‘N(2')' .

for large '|u6|, pdlobtain

o . ‘ 20+1
(169) ‘ ' v luNl > |u9|
, . 20-8

: kN'> Iuo| 7 j

thus the solution'femains in a strip of sensibly constant width about

bru‘; -1, until a height
L 2a+1

[l ~ 13l 7

We conclude in particular the existence of a constant ‘A such that
in an interval

2a+1 ' 20+1

. o 9 :
(170) ol <l < 2fu ) ?
‘ 20-8 | ' .

|23+l

there holds JkN < Alu . We assert that for all sufficiently Zdrge lul,

the solution curve Zies interior to a strip determined by

(171) | k- ous ()]



umfomly in u ' Iu | + 0, for any A sufficiently large to justify

0.
(164). ThlS is clearly the case in the 1nterva1 (170). 1If the curve u(r) _
were to extend outs;de phe strip (171) for values of u exceedihg_ |u |(2a+l)/9
there must be a fifst point p on the boundary of the stfip.,vBy compar;sqn

with Delaunay suffadeé through the point p, one then éees (note either the
condition (75) of thé cOrrésponding'condition with .uB i satisfied‘at p)

" that a vertical would appear on or outside the strip k = A|u|'2/7.

| Let ‘ql
be the first such point. The éstimate (159), applied now in the diréction

of increasing -Iul; éhoﬁs thét a preceding vertical can be found at a point
Q> with horizohtal distance to ru = —i exceeding that from Q- The strip
k = A]ul—2/7 .is however narrower ét q, than at Q- This contradiction

. establishes the assertion.

We summarize:

Theorem 10. Given ‘k(o) > k(l) luol large, there is an n(k(o)) (deter-

mined by (158)) so that k < k(o) for lu | < |u (1)! /1-n Iu . The,

curve can be contznued through successive verticals to a height |u ( )|*'A|u | /9
for suztably large’ ‘A; at which level it has contracted towards rua = -1 1in '

a ratio given by (165). For any «, %; < a < 3, the curve can be continued

furthér through successive verticals till a height IuN(3)| ~ |u6|(2a+l)/9 s

and is confined to d Strip of sensibly constant width, as indicated by (169).

For smaller values of |u| (relative to Iuol) vertical points preswmably
cease to appear, however the curve lies within a strip about ru = -1, of
-2/7

width determined by k = Alul ™", for sufficiently large A (independent
of uo). Specifieally, there exists A such that for any fized (suffi-

ciently large) s there holds, for (7,0) on the solution curve,
(172) N R Y ki
o u :

uniformly in u_, as Iuol +> o
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The global asymptotic.behaviar islsketched in figure 16.

VII A compactness property

.Let us consider the family of solution curves, reprééénted in the
form r = f(u;uo)%'ﬁiih u, as péfémeter, |uo| + o , The result (172)
shows that for iarge .l'|' the curve is cOnfined to a narrow strip about
ru = -1, and the method of proof of (172) ylelds as corollary the existence

of a constant A such that on any flxed 1nterva1 a<ucx b

fofxall‘sufficientlyﬂlarge [ug [

It follows there. is a sﬁbsequénce éf values u, *+ - “fvsuch:£hat:the
corresponding functioﬁs f(u'u ) converge, uniformly on cémpaétvintervals,
for all |u| sufflclently 1arge that (172) applies. The 11m1t curve
€ B(u), when descrlbed w1th arc length as parameter, yields a

solution of the parametrlc system (3).' There holds

(173) _— :,|1+u‘3(u')|<A|u|-2/7
for all large Vlulﬁ; | _ |

Each of the curfeé Af(u;uo) can be extendedrglobaily without self-
intersection as indicated in Theorem 6. Applying the general continuous
dependence theorem, we find that the limit curve 3"has,the.same property
(a reasoning Similgr to the proof.of Theoren 6 éxcludes éelf-interéection).
The curve € has the ﬁsymptotic property u J(u) ~-1 for large |ul,
and the oscillatorj behavior indicated in figure 1 for large. r.
It seems likely the curve € is the singular solution U(r), and we

conJecture that is the case.



o
-
S,
o
&7
o
L
Sags
G

IX Isolated character of global solutions

There is strdng numericalvevidence.to’suggest that global solutions
of (3) lying in the region between the envelope of the sdlﬁtions T= f(u;uo)
and the u axis,zand without limit sets.or self-intersections, are rére
in theﬂmaﬁifold 6f all solutioné; We know of no such sélutions, apart from

“this paper ' ,
those described in.-A and the singular solution U(?). In Fig. 17 are shown
samples of the result of numerical integration of (3) fhrough the initial point
P determined byj'thé‘first intersection of f(u;fS) with U(r) and for
varying initi 1 angiés a, measured counterclockwise from the arc of the»
curve f(u;-8) emanafing from p in the direétion of increasing u. The various
curves are thus di Stingui shed by tﬁeir directions at the point p, measured relative
to that of the curve f(u;-8) at that poirit. ; |
| ‘We note the cﬁ?Qes f(u;uo) can appagently be extended below the

lgvel u=u, if“fhe'isolated (Singul#r) pgint of contéct with the u-axis

is admitted. The point appears to mark a transition in qualitative behavior;

above it, the curve behaves like a Delaunay arc generated‘by an ellipse

(section II). Below that point, the curve has the general appearance of

‘a Delaunay arc génerated by a hyperbola, with the characteristic double

points of those arcs.

'Ah ah#logous'transitioh occurs on neighboringvsoldtibns without
occurenée of singulér points on the axis. In any evént, if such singular
points are admitted, the co;resbonding (extended)‘curveé f(u;uo) are
embedded naturally in a solution set, all of which develop double points
for Sufficiently negéﬁive u, with (we conjecture) the single exception

of the solution U(r);
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Footnotes
1 (1)For background information on the derivation of (1) see, e.g., [1,2,3].
3 (2)The_remaining case can be realized physically, e.g., as the lower
surface of a column of .water in a glass capillary tube. -
4 (B)We_call attention however to a remarkable existence theorem due

to Wente [9].
5,9,12 (4)This improves the result announced in [8].

5 (5>A stronger result of this type is given in [4].

24 (6)We note for reference the alternative representation. V=V = réK(i)+ri)E(i),

whére K and E are complete elliptic integrals of first and second kind,
and k = (r%-—fi)é/fb. Similarly, (45) takes the form v-v, = paF(w,i)+
rb[E(i)-E(¢,£)],-ﬁhere F is the incomplete integral of the.first kind,
and r(1-i25in2qﬁ% =T, rb(l-izsin2¢)é= r. In this form of the Te-
presentation théfe is no need to distinguish the inflection; however the

formulae become téchnically more éomplicéted in other reépects.
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Figure 1

The case uo'> -2 ; inflections.
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Initial comparison surfaces, u < -2/2
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ru = -1

‘Figure 3

- =
The case u, uoc
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| Delaunay'surface
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Figure 5

Comparison with roulades



Figure 6

The initial region u < 0
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Figure 7

Proof of IV i
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--‘Pfoof of Theorem 6

Figure 8.
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Figure 9

u, = -4; singular solution
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Figure 11

-16; singular solution



\.
(r,,v,) o | : : - (ry,v)
1) outgoing are . _ . 1i) returning arc
Figlxi'e 12 Delaunay arcs
E
|



-68- - -

. Figure 13 Comparison with Délaunlay arcs; ~o_ut‘going case



- Figure 14' Comparison with Delaunay arcs; retu‘rnirig case
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Figure 15 Estimate for u,
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Figure 16 Asymptotic behavior for large |uol at four levels (scales differ)
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