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ABSTRACT 

A characterization is given for the most general equilibrium configuration 

of a symmetric pendent liquid drop. It is shown that for any vertex height u
0 

the vertical section can be continued globally as an analytic curve, without 

limit sets or double points. For small . it is proved the section projects 
,• 

simply on the axis u = 0; for large lu
0

l the section is shown to have near 

the vertex the general form of a succession of circular arcs joined near the 

axis by small arcs of large curvature. The section contracts at first toward 

a certain hyperbola, the circular arcs gradually changing shape but remaining, 

until a certain fixed peight {asymptotic~lly as u
0 
~- 00 ), within 1a narrow 

band surrounding the hyperbola. The continuation of the section eventually 

projects simply on u = 0, separates from the hyperbola, and continues in an 

oscillatory manner to infinity. 

It is conjectured that .as lu
0

l ~ oo the section converges uniformly 

(as a point set) to a solution U(r) with simple projection (for all r > 0) 

on u = 0 and an isolated singularity at r = 0. A preliminary (weak) form 

of the conjecture is proved. 

" The (liquid drop) solutions are also studied from the point of view of 

their global embedding in the manifold of all formal solutions of the 

equations. From this point of view, the vertex of the drop appears as a 

transition point marking a change in qualitative appearance. It is con-

jectured that the only global·,solution without double points, in this extended 

sense, is the singular solution referred to above. 
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NOTE 

This paper combines, with changes and improvements, our 

earlier reports: 

The shape of a pendent water drop, LBL-4649, 1976. 

More on the pendent water drop, LBL-4649 Supp., 1976. 

The pendent liquid drop: asymptotic properties, 
LBL-7292, 1978. 
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Tne form of tne outer surface of a symmetric liquid drop suspended 

from a circular aperture is determined by the condition that the mean 

curvature ,of the surface is proportional to tne distance below a hori

zontal reference plane. For points near which tne surface can be des-
(1) 

cribed by a function u(x) we obtain an equation 

(1) = -)tU+).. 

for the height u(x) above tne plane. 

Here 't is a physical constant, )(. > 0 when the liquid lies above the 

surface, and A is a Lagrange parameter, to be determined by tne cor\-

straints. 

In a specific problem the determination of A may lead to technical 

difficulties. Formally, however, A can be transformed out of (1) by 

adding a constant to u. In the present paper we intend to characterize 

all symmetric solutions for the case X =0. A solution corresponding to 

given 1.., can then be found in this family by transforming back. 

We shall also introduce the (inessential and convenient) normalization 

't = 1. We then obtain, in terms of polar radius r, the equation 

for a symmEtric two dimensional surface u(r). 

Not all surfaces tnat appear physically nave a simple projection on 

a base plane, hence for a complete description the form (2) is overly 

restrictive. We obtain a more suitable (parametric) form of the problem 

if we introduce the arc length s along a vertical section of the surface 

interface, measured from the vertex (0, u 
0

). We are led to the system 
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d'f 1 
sin 'f = - u .-ds r 

(3) 
du 

sin 'f = ds 

dr = cos 'f 
ds 

where 'f is the angle between a tangent to the section and the r-axis, 

measured counterclockwise from the positively directed axis to the 

tangent line. 

From the P?int of view of gener~l theory, one would expect a solution 

of (3) to be determined, at least locally~ by the initial data 

( . ' , I r(O) = 0.; .'f(O) = 0; u(O) = Uo; 

however, the system (3) is singular at s = 0, and because of this the 

second condition in. (4) is superfluous (cf the discussion in [ 4] ) .. 

The question of local existence has been studied by Lohnstein [ 5], 

who established the convergence of a ,formal power series expansion'. 

Alternatively, one could adapt the Picard method, as used by Johnson 

and Perko [ 6] for the capillary problem, to the case studied here. 

One obtains locally, by these methods, a non-parametric solution u(r) 

of the equation (2), which we may write in the form 

(5) (r Ein'f) = -ru, r . 

corresponding to the (Eingle) initial condition 

(uJ u(O) = u 0 • 

The Circumstance that ~>nly one initial datum is required yields an 

irnpo1· Lant simplification for tne problem of cnaracterizing all solutions. 

It suffices to describe the one-parameter family determined by u o, and 

• ~, 

;. 
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it is tnis approacn we adopt in the present work. 

. . 
In general, tne solution u(r;u 0 ) determined in tnis way cannot be 

continued indefinitely as solution of (5). We snall snow nowever tnat 

for any u 0 , tne function u(r ;u 0 ) can be continued as a parametric 

solution of (3} forall s , yielding a surface witnout limit sets or 
double points. 

We shall characterize quantitatively the asymptotic form of the surface 

in the case \ u 
0

\ » 0, and we shall characterize qualitatively tne global 

structure of all such surfaces. 

The global behavior cnanges qualitatively when I u 0 I increases 

beyond a critical value. If I u 0 I >> 0, tnere is an initial range for 6 in 

which the surface looks like a succession of spneres centered on tne 

u-axis witn radius ~(2/l ul). In all cases, the section can be expressed 

for large s in the form u(r} and has an oscillatory behavior as r ~ co. 

If u 0 = 0 the unique solution of (2) is given by u = 0. We assume 

throughout this paper that u 0 < 0; the remaining case is obtained by a 

simple change of sign (
2

). We are interested particularly in what happens 

when u 0 << 0. Tne resulting surfaces are then physically unstable under 

most conditions of everyday experience; howevt:r, tne problem has an 

independent mathematical interest (one specific feature of which we in

dicate below) and probably also a physical interest for situations in wnicn 

gravity forces are sn1all compared with those of surface tension. r . 

We hav~ proved in [ 7] tne existence of a particular singular solution 

of (2) that can be expressed in tne form U(r) iri 0< r< 6, and sucn 

that U(r)"'"' - .!. as r ~ · 0. In [ 8] we nave presented numerical evidence 
r 

suggesting that tne symmetric solutions discussed above tend uniformly 

(as point sets) to U(r) as lu
0

1 -+ oo. A particular consequence of tne 

analysis in the present paper will bl: a proof of a preliminary form of 

tnat conjecture, namely we sn:-~11 snow in sections VI and vn that the solutions 

converge asymptotically into a neighborhood of U(r), the size of which can 

be estimated a priori and is small relative to other (local) distances. 
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In section VDI we point out a compactness property, again suggestive for our 

conjecture. In section IX the structure of solutions is examined from another point of 

view and some numerical results are presented, suggesting the types of possible 

global behavior. These results lead in turn to another conjecture, namely that 

the singular solution U(r) is the only global solution (in an extended sense) 

that is free of double points. 

We remark that we know of few other studies of the problem from 

a general theoretical point of view (g). To our knowledge the first 

attempt to characterize the shape of a liquid drop appears in Bashforth 

and Adams [ 10] in which a numerical procedure is developed and applied 

to configurations in which a vertical point may appear. Thomson [11] 

used a geomet~ical method and was able to obtain a figure correspon-

ding. in our notation, to u 0 o;::: .. 7. Computational studies were greatly 

facilitated by developl!lent of high speed computers and related tecnniques, and 

many more particular cases have now·been calculated, see, e. g., Hida and Miura [12], 

Concus and Finn [8], Padday [13], Hartland and Hartley [14], where also further references . 
~an be found. Such calculations are suggestive and instructive, but they cannot provide 

the unifying insight of a general ·formal description. The present work is 

intended as an initial step toward that objective .. 

In this work we study the formal solutions of the static equilibrium 

equations. We do not here treat 'the related question of stability; with 

regard to this matter, the reader may wish to consult the recent papers of 

Pitts [15, 16], Hida and Miura [12], and also a new contribution by Wente 

[17]. 

The central difficulty in the generai study of the solutions of (.2) lies 

in the failure of the maximum principle. In the particular situation 

studied. here, a residue of this principle remains, permitting us to com

pare the solutions with those of a simpler equation. This circumstance. 

in conjunction with elementary formal manipulati.on of the equation. pro

vides the central tool in our investigation .. We proceed in a succession 

of steps, most of which are elementary anu immediate; when taken to

gether, however. they yield the requisite characterization. 

We remark that the comparison technique has proved effective also 

in oth~r (related) contexts. and has led in particular to new inform.ation 
' \ . . ·'. 

on the behavior of solutions of (2) near isolated singular points. see, 

.. 
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e.g., [18] .. 

We wish to thank J. Serrin and J. Spruck for a number of stimulating 

conversations. 

I The case of small I u 0 I . 

We shall prove : 

Theorem 1 : If, in the initial value problem (5, 6) there holds (
4

) 

u 
0 
~ -2, then the solution can be continued as a (nonparametric). solution 

of the equation 

(2) ( R t =- ru 

for all r > 0. It has an infini1,:· of zeros. For any two successive extrema 

r a' r b ~ u(r) there holds I u(rb) I < I u(r a'rl. Asymptotically as 

u 0 ~ 0 the first zero r is the first zero of the Bessel function J (r), 
0 0 

r ,... 2. 405. 
0 

We study first the portion of the trajectory preceding the first zero, 

and we note that (2) is equivalent to (5) on any interval on which I u I <oo. 
r 

li : Let u(r) satisfy (5) in 0 < r < R aild (6) at r = 0. Then (
5

) 

sin 1f (0) = 0. 

Proof: Integrating (5) from e > 0 to r, we find 
r 

r sin 1f- c sin 1f(£) = -/ pudp , 
( 

hence, usin(~ (6), 

(7) . sin 1f = 
u 

r 

11+u! = 
1 r 
r 6 p u dp 

from which we conclude- lim u (r) = 0. Hence there exists 
·r 

r~O 
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u(r) - u 
u (O) = lim 

0 

r r~O r 
= lim 
r~O 

1 r I u (T) dT = 0 • 
r 0 r 

Iii Let u(r) satisfy (5) in 0 < r < R and (6) at r = 0 . .!!:.... u(r) < 0 

in 0 < r < R, ~ sin 1f > 0 in this interval. 

The proof is contained in (7). 

It follows in particular that u(r) ~ uR ::;; 0 as r ~ R, that 

sin ':1' R = lim sin ':1' (r) exists, and that 
r--+R 

R 
0< sin 'fR.= -

1 
/_ p u(p) dp ::;; 1. 

R 0 

We conclude also that if the solution curve does not cross the hyper

bola ru =- 1, then sin 1f R < 1. The following assertion covers as well 

the case of solution curves crossing that hyperbola. 

I iii : Under the hypotheses of Iii, if in addition u
0 
~ -2, then 

0 < sin 1f < 1 in 0 < r::;; R. 

(8) 

Proof: Consider the relation 

)(. +)(. = 
~ m· 

sin ':1' 
r 

+ ( sin ':1' ) = - u , 
r 

·, 

the left sid~ of which splits the mean curvature of the rotation surface 

defined by u(r) into a sum of latitudinal ()(.£ and meridional ()(.m) 

sectional ct:rvatures. We note by Iii that u(r) is increasing in 

O<r<R;thus 

(9) sin 1f 
r 

l r u(r) 
~ ~ pu(p)dp>- 2 

in that interval. Integrating (8) with respect to u and noting that 

(sin lf')r = -(cos lf')u yields, using (9), 

1 2 2 
cos 'f R > 1 - 4 { uo - UR ) 

which contains the assertion. We infer now from the general existence 

l 

• 

_ .. 
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theorem, applied at r = R, that the solution curve either can be continued 

upward until it crosses the r-axis, or else it tends asymptotically to 

this axis with increasing r. We may however exclude the latter possi-

bility. 

Iiv: H u(r)< 0 in as r< R<"', then R< a exp {-
_, 

a .:: 'f l . 
-_ a~ 

Proof: From (5) we find r sin 'f > a sin 'f in a~ r < R. By Iii, 
a 

sin 'f > 0. Thus, 
a 

du 
dr = tan 'f > sin 'f > 

a sin 'f 
a 

r 

and the result follows on an integration. 

We have thus established that if u ~ - 2 the solution· curve is in its 
- 0 

initial trajectory monotonically increasing and can be continued until it 

crosses the r-axis at a point r = a
1

. To study the further trajectory, 

we observe that the curve can be continued at least locally across the 

axis as a solution of (5), and we compare its inclination at a given 

height h with the inclination of the initial branch a~ an equal negative 

height. 

I v : If the curve can lJe continued monotonically to a height h above 

~ r-axis, then its inclination at this height is smaller than the incli

nation of the initial branch at the height - h , that is, 

du J dr h < ~_] dr -h • 

Proof: We ·integrate (8) with respect to u between the height -h 

and h, obtaining 

cos~ - cos~-
h -h 

h 

= I 
-h 

sin 'f 
du > 0. 

r 
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I vi : Under tne conditions of I iv, the curve is strictly convex 

downward when u> 0, and u < - u. rr 

Proof: . From (8), 

( sin 'f ) = 
r 

u 
rr 

From I v and I vi we find 

= - u -
sin 'f 

r < - u. 

I vii : The curve can be continued to a maximum height h
1 

< I u
0

1 

at a point r = m 1 > a 1, at which point sin 'f (m
1

) = 0. 

We now proceed as above, comparing inclinations at corresponding 
? 

heignts until the curve crosses the r-axis a second time, then com-

paring inclinations as in Iv, and so on. We obtain the qualitative pic;;. 

ture indicated in Theorem 1, of a curve oscillating about the r-axis 

with successively decreasing extrema (see Fig 1 ). We note also the 

adqit.ional information,· yielded bY the method: 

I viii : All inflections of the curve occur on (monotone) curve seg

ments approaching the r-axis, in the sense of increasing s. At any two 

· successive points a., ~, at which I ua.l = I u ~I, there holds 

To prove the final statement of Theorem 1, we note by (7), Iii and 

I viii that I u (r ;u ) I tends uniformly to zero with u ; thus the function _
1

r o o 
v(r ;u

0
) = u

0 
u(r ;u

0
) tends uniformly to the Bessel function J

0 
(r) as u

0 
-+ 0. 

II , Large I u 0 I ; -:::!n::::i:::::ti=a=l =a=r=c 

If u << 0 the above reasoning on the behavior of the initial segment 
0 ' . 

fails, and so do the results. 

I 

• 
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' (4) .,r;;- ' . ' ' . ' 
Theorem 2: If . u 

0 
S - 2 12 , there ex1sts a value r1 , beyond whlch 

u(r) canrtot be continued as a solution of (5). As r_,.r
1

, sin 'f'J 1. 
' 

The proof could proceed by a direct stUdy of the equation, as in 

section I. We obtain more precise results and also develop techniques 

that will be needed later if we proceed instead via an obvious comparison 

principle. 

IIi: Let v( 1)(r), v(2)(r) be functions defined in a::; rs b and such 

that (r sin 'l' (1 )) ~. ( r sin 'l' (2)) • Suppose sin 'l' (1)(a) ~ sin 'l' (2)(a). 
- r r 

Then sin 'l'( 1)(b) ~sin 'l'(2 )(b), and equality holds i~ and only if 

) 1 ) = ) 2) + const. ~ as rs b. 

The interest in II i lies in the fact that !. ( r sin 'l' ) is E:xactly 
r r 

twice the mean curvature of the rotation surface defined by u(r), and 

this circumstance facilitates the choice of comparison surfaces. In tne 

present case we choose as initial comparison surface the sphere of 

constant mean curvature - u /2 0 , with center at the point 

(r, u) = ( 0, u - 2 /u ) . Thus, if v(r) describes a vertical section of 
0 0 

the sphere, there holds u(O) = v(O), u(r) < v(r) in the interval 0 < r :s 
( see Fig 2 ). Using I ii, we find: 

II ii : The solution u(r) of (5, 6) can be continued at least until 

r = - 2/u , and sin 'l' ( r) < -
0-

We nee':! also: 

u r 
0 

2 

II iii : A solution u(r) of (5) admits no inflections in the region 

r u< - 1. 

Proof: From (8) follows r u + sin 'l' = 0 at any inflection. 

Thus, 'l' must continue to increase until either a vertical point is 

reached or tne curve meets again the hyperbola ru = - 1. Integrating 

(8) with respect to u and using II ii yields 

2 
u 

0 
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From this we conclude that a vertical slope appears at a value 

(1 0) 
-1 . 2 

( 1 + p -8/u
0 

:Which completes the proof of Theorem 2. 

We may use a similar procedure to estimate the value r 
1

. We note 

that if w(r) describes a vertical section of the sphere of constant mean 

curvature 

(11) 
1 

13 
= 

uo . {---2 

4 . c 1 + 
1
1 - a 1 u

0 

with center at (0. u + 13 ). then there holds u(O) = w(O) , and by II i 
0. 

u' (r) > w' (r~) on any interval 0 < r s R along which 13 uS - 2. This 

condition is however satisfied at u = u
1 

by (10). hence on the entire 

arc u
0 

< us u
1

. We conclude u(r) > w(r) until the first vertical occurs 

at r = r 
1 

< 13 • 

We note that at r = 13. where w' (r) =co, the circle w(r) intersects 

the hyperbola ru = - 2. 

!<,rom II iii we conclude the initial solution curve is convex in the 

region r u <' - 1. This property holds in fact for the entire arc; on the 

segment of u(r) joining the initial point to the point (r c' uc) on the 

hyperbola r u = - 1 . we obtain from (7. 8, I ii), using the comparison 

circle v(r), 

( . ) sin v )(. =. sm 'i' = - u - - > - v + m r r 

The last relation holds whenever u
0 

S -iT. which is the condition 

that v(r) and the hyperbola r u = - 1, u < 0 intersect. We conclude 

) 

., . 
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also from I ii and the relation 

(12) 
r 

. ru 1 f 2 sm "f = - - + - p u dp 
2 2r 0 p 

that r u > - 2 on the arc considered. 

It turns out the sectional curvatures )(.1. and )(. m are both monotone 

decreasing on the initial arc. We have 

d d sin "f 2 
r 

1 sin "f 
( 13) I u 

- u) < 0 )(,..( = = ;:3 p udu- - = - (.., 2 
dr dr r 

0 
r ·r r 

by (8, 12). Also, we have from (7,8,Iii) 
.. 

(14) d _1 ( .2 sin 'f .. + u ) - K = ( sin 'f ) = - u + 
dr m · rr . r r r 

1 1 r 
< ..; u + - ( u - u )=- - I p u d P < o 

r r . o r 
0 

pp · ·. 

by the convexity of u. 

At the initial point (0, u. ) there holds x. = )(. = - u /2 • From . o .1 m · o 
(8, 12, I ii) follows for r > 0 on the initial arc 

From (7, 8.1 we hav.e also· 

(16) ... = - u -"""m 
sin 'f 

r 
>-U+ 

u 
0 

2 

The inec;.uality (15) implies )(. < - u /2 , which is the meridional m o . 
curvature c.f the comparison surface v(r). Compa~ing the surface u(r) 

with v(r) at corresponding values of u and applying II ii now yields 

(17) ( 2 . 
'11 > v - r- } = uo - u 

2 

0 0 

(see Fig. 2) . 

We summarize the above results: 
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Theorem 3: Under the condition of Theorem 2, the initial arc of 

the solution curve, from (r 
0

, u
0

) _ to _ (r 
1

• u
1

). is convex, with sectional 

curvatures K • '<-J.. decreasing and satisfying Km< - u/2 < xl. 
m . (4) 

in r < r S r
1

. There holds 
0 . 

2 
u 

fl < r <- ~ ( 1 -u 1 2 . 
0 0 

(18) 
u 

2 0 
( 1 - R)· u <U < U - -0 u J 0 2 

0 0 

For· 0< r:s - 2/u
0 

the arc lies below the comparison circle v(r) and 

has smaller curvature, and for u
0 

< u ~ u1 the arc lies above the 

comparison circle w(rf- and has larg~r curvatur~ (~Fig. 2). 

Further remark : The hypothesis u
0 

s - 2 f2 of Theorem 2 could 

.be sharpened by using the comparison surfaces v(r) and w(r) in (7) 

and iterating. A direct numerical integration of (7) yields [19) 

u ~ - 2. 5678 as the value for which a vertical first appears. We 
0 

find immediately : 

II iv : Let u . oc be the largest value of u for which a vertical point 
o. ---------------------~-----

appears. If u
0 

= u
0

c the vertical occurs at the second intersection of 

the solution curve with the hyperbola· ru = 
point for th'e solution curve <~-~Fig 3 ). 

- .1. and is an inflection 

' if uo s - 5, the upper bounds in (18) can be expressed more simply. 

yielding 

(19} 

u 
0 

- 2 
u 

0 

2 
u 

0 

2 
< r1 < - u 

0 

5 - ~ u 

2 
u 

0 

0 

5 
- -3 u 

0 

These bounds could also be improved by iteration, starting with the 

., 
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comparison surfaces v(r) and w(r). We note for reference that the 

asymptotic series obtained in [ 19 J by formal perturbation expansion 

yields, for the normalization used here, 

(20) 

u 
0 

u = u 
1 0 

as u ___, - oo. 
0 

2 
u 

0 

III Very large I u I 
.. - - - - -·- ----- 0 

4+81n2 
3 u 3 

0 

If u
0 

:5 - 2 f2 then u(r) cannot be continued beyond _ r 
1 

as a solution 

of (2). The curve can, however, be continued as a solution of the para

metric system (3) as long as r remains different from zero. We study 

now the behavior of this family of solutions in terms of the parameter u , . 0 

asymptotically as u ~ - co. We present here and in IV the first steps in our study 
0 

of the behavior of this family of solutions in terms of the parameter u , as u -+ -oo. 
0 ' 0 

The further continuation of the solution is discussed in VI, VU. 

We base the discussion principally on n i; to do so, we introduce as comparison 

functions the sections of rotation surfaces generated by the roulades of an ellipse. 
The following result is due to Delaunay [20]: 

Let an ellipse of major axis 2a and distance 2c between focal 

points, roll rigidly on an axis. without slipping. Let C be the curve 

swept out by one of the focal points. Then the surface generated by 

rotating ~ about the axis has constant mean curvature H = (2a) -
1

• 

We note that C is periodic with half-period ,.. satisfying 2a<,.. < TT a, 

and that eaeh half-period can be represented in the interval 

a - c ~ r $ a+ c by a single valued function v(r) for which the equation 

(21) .!_ { r sin 'i') = 1 /a 
r r 

. . 
holds, and for which sin'!' = 1 at the two end points (see Fig 4). 
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We proceed step by step : 

The procedure of U shows that an infinite slope first appears at 

(r
1
,u

1
), with bounds on (r1,u

1
) given by (18). The system (3) is non

singular at (r 
1

, u 1 ), hence the curve can be continued beyond this point 

as a solution of (3,4). From (16) we find at (r1,u
1

) 

u 
0 -2 

u 
> ...£ + 

2 
2 
u 

0 

>0 

so the curve turns back toward the u -axis, and can be described again 

(locally) as a solution of (5). We compare it with a roulade v(1)(r) 
u 

whose mean curvature is - T and for which a1 + c1 = r 1 _(see Fig.s). 
. . 

Since v (1)(r
1

) = -co, IIi yields u. < v (1), hence u(r) > v(l)(r) as 
r · r - r 

long as the continuation of both u and v( 1) as single valued functions 

is possible. 

The curve v(l )(r) can be continued toward the u-axis only until 

the point (a1 - c 1, ti 1 + T 1), with a 1 - c 1 = -! _ -r 1 > 0; at this point 
' 1 

the slope is again infinite. It" follows there is a value r 2 > - ~ - r 1 
1 

beyond which this branch of the solution curve cannot be continued as a 

single valued. function. 

From the geometrical interpretation of T 1 as the half~circumference 

of an ellipse with major axis 2a1 = - 2/u1 and focal length c1 = r 1 -- a 1, 

one finds that for large I u
0

1. 

(22) 
2 1n lull 

T 1 = - u1 + a 1 . I ulls • 16 0 1 
a1 = - 3 + ( ~ln--.-1 u-

1
-1 ) • 

Let us est~mate r 2 from above. To do so, we compare u(r) with 

a roulade v 
1 

(r), which ~.s determined by the conditions 

(23) "' 1. 
a1 - - " u

1 
+ T 

1
. 

• 
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(2 3) 

A formal estimate shows such a roulade exists if u
1 

< - 2 frT . 

The conditions (23) are chosen so that the roulade can be placed 

with its lower vertical point at {r 
1

, u
1 

), (see Fig 5), and so that in 

that configuration its mean curvature will be exactly t11e one determined 

from the right side of {5) by the upper vertical. Applying II j we. obtain 

ur > 0 r {1 
)(r). u{r) < ~( 1 

){r) for all r < r 
1 

for which u{r) < u
1 

+ ~ 
1

. 

ThiS condition clearly holds for r near r
1

; since ~{l){r)< u1 +4\. 
we conclude it holds on the entire interval ~1 - ~ 

1 
<: r < r 

1
• thus 

~ > v {1)(r) > u {r) > ~. (1 )(r) > -co 
r . r r 

on this interval, and hence the solution can be continued to the left of r 
1

, 

at least until the value 

(24) - r = ~ • 
1 2 

For large lu I we find 
0 

(25) /' 2 +'d. 
1n I u11 

T1 = 
u1 1 3 

I u11 

with 

(26) "' 40 
0< 1n 11u11 ) . Ct1 = -- + 

3 

Thus 

(27) 2 Ct2 
r2 < 3 - r1 

u1 
u1 

with 

(28) 
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We now proceed, essentially, as in the proof of Theorem 2. We 

note 

sin 'f > sin 'i' (1) = - ru1 
2 

thus from (24•28) we find for r< ~ 
2

• 

sin v .· 3 3 O -s I 
1 r > - · 50 u1 + ( u1 1n u1 ) · 

We integrate (8) in u from u(~ 2 ); using that cos 'i' < 0 until a vertical 

is reached, and that 

we are led to a contradiction unless the curve becomes vertical before 
-3 u has increased by a value -16 u

1 
• That is, a vertical must appear 

at a value 

(29) 

The solutiori. curve thei'l turns back from the axis at (r2, u 2) and initiates 

a further branch. 

We summarize these results 

· Theorem 4 : _ From. (r 
1

, u
1

) the solution curve continues backwards 

towards the u-axis until a second vertical is reached, at a point (r 
2

, u
2

) 

with-

2 -- - l'l < r2 < - u1 + .T 1 
2 

- r 1 = ~2 
(30) 

(1) 
In the interval r 

2 
< r < r 1 there holds ur < v r 

in the interval "
2 

< r < r
1 

there holds u > ~ (1) ~'~ r r • 

u>)l); 

u;~ (1). 
r 

We note in particulai· that the horizontal distance of the second vertical 

t 



.:.--

0 0 

from the axis exceeds that of the first vertical from the hyperbola 

ru = - 2. 

III i : There is exactly one inflection between (r 
1

, u
1

) ~ (r 
2

, u
2 

). 

Proof: Clearly, at least one inflection appears. Using (8), we find 

( ru + sin .l ) = ( r l - -r
1 

) sin l < 0 · r cos 

on the arc. Hence there is at most one inflection. 

We indicate briefly one further step in the procedure. We construct 

a roulade v(
2

) (r) passing through (r 
2

, u
2

), with major axis 2a
2 

= - ~ , 
. ( 2 

and a seco.11d roulade ~ 2
) (r) with a property analogous to that intro-

duced for v(l )(r). Then there holds ~ (2 ) < u < v (2 ) , ~( 2 ) < u < ) 2 ) 
r r r . 

in the/ intervals for which the comparison makes sense, and (as before) 

still another point (r
3

, u
3

) is found such that sin l(r
3

) = 1. The proce

'dure can be continued as long as the values of I u(r)l remain sufficiently 

large to justify the indicated steps. A detailed description is given in sections Vl, W:. 

We find easily: 

III ii : The successive horizontal distances of the vertical points, 1 

from the axi::. and from the hyperbola, increase monotonically. 

III iii : On each arc segment returning from the hyperbola to the 

axis there is exactly one inflection. The same statement holds on the 

remaining arc segwents for sufficiently lar~ I u I . 

Theorem 5: In tt1e initial region U< 0, the entire curve is bounded 

(strictly) bf:tween the u-axis and the hyperbola ru = - 2 (see Fig 6) • 

In this region, the curve can be represented by a single valued function 

r = r(u), with I r' (u)j <co.' 

Proof: We note from (8) that at any vertical point not preceded by· a 

horizontal point distinct from (O,u
0

) there holds 

ru+l 
(sin tP)r = - -r-



thus each such point continues to an outgoing arc or returning arc according 

as ru > -1 or ru < -1. We integrate (5) on an outgoing arc starting from 

(ra,ua), a even, a> 2, to obtain 

r 
r sin 111 = r - I .·· a 

pu dp 

and thus u'(r) > 0 on any such arc along which u < 0. We find 

r sin 111- r a 

from which 

uar~ - ur2 1 r 1 r 
- .-__:_.,2=---- + 2 I pu' (p)dp > - 2 ra ~ 2 (ur) 

r a 

·r 
ur > .J!: - 2 sin 111 > - 2 . 

r 

On an.arc returning from (r
13

,u
13

) we obtain from (5) 

2 2 ro ur -u
13
r

13 1 .., 
2 

. 
2 + 2 I p u'(p)dp 

r 

and since 

from which we conclude easily u'(p) < 0 in the region u < 0. There follows 

immediately r > r . > 0 along such an arc. a 

IV Global behavior 

The die!cussion thus far shows that the solution curve can be continued 

upward without self-intersections until it crosses the r-axis. For by I iii 

an outward branch must either achieve a vertical or cross that axis, 

and the comparison method of II yields readily that a returning branch 

has the same property. There are no horizontal points, by Theorem 5. 

We sho··.v here that a returning branch cannot cross the r-axis. Pre

cisely : 

IV i : _!..et r = a1 be the first point at which the solution curve meets 

the r-axis. Then 0 < u 1 (a
1

) < oo. 

Suppos~ u 1 (a
1

) < 0, or equivalently, cos 'f 
1 

< 0. The curve could 

then be continued backward into the negative u-plane till a first vertical 

{r , u ) {see Fig 7), at which, by Theorem 5, a a , · 

{31) ru > -2. 
a a 

-18-
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We integrate (8} with respect to u, from u to 0, obtaining 
(l 

(32) 
0 

sin 'f 
! - d u = cos 'f + ! u 2 
il r. 1 2 a. a. 

To evaluate the left side of (32) we integrate (5) in r between r 

andr 
a. 

r 
a. 

by (31). Thus 

(33) sin a 
r 

r sin 'f = 

< 

> -
u 

a. 
2 

r 

r 2 2 
a. r - r 

I p udp < a. 
u 

r 2 a. 

2 
u a. 

+ 
2 

r 
a. 

on the entire arc. Placing (33) into (32) yields cos 'f 
1 

> o. contra

dicting the assumption. 

Now obsl:r·ve from (8) that at the crossing point a
1

• the meridional 

curvature is negative; thus, if cos 'f 
1 

= 0 there wouid again be a back

ward branch from a 1 into the negative u-plane. and we obtain a contra

diction as above. 

From IV i one sees immediately that the proof of Theorem 1 applies 

without change to the region r ~ a1 , in the sense that the solution curve 

continues from the point (a1 ,o) as indicated in Fig. 1. We show now the 

curve does not intersect the initial branch in the region u < 0. 

IV ii: Let ua, u8 be two successive points on the solution curve such 

that rex = r 8, with an intervening vertical at (ry,uy)· If ry < rex' then 

sin ~S < sin ~a; if ry > rex, then sin ~S > sin ~a· 

Proof: Suppose r < r From (5) we find y (l 

'- rs 

rs sin ~ - r = f pu dp 8 y 
ry 

' 
rex 

r sin ~ - r = f pu dp, 
(l (l y r y 



- 20 -

thus since 

r 
(l - + = J p (u - u ) dp < 0 , 

ry 

u and + u denoting values of u on the lower and upper branches. 

The case ry > rex fpllows similarly. 

From IV ii follows a < b in Fig. 8, and thus h1 < b. But 

hj < h1 , any j > 1, by I viii, hence 

thus intersections are excluded. 

h. < b, all 
J 

j > 1, and 

Combining these results with Theorems 1 and 5 we obtain: 

Theorem 6: The solution of the parametric system (3, 4) defined by 

the data u can ·be continued indefinitely without limit sets or double 
0 . . 

points. It has the form indicated in Figs 1, 9, 10, 11. 

V- Maximum diameter 
~~:----- 7 •. ==-.::::: • .:-.. ..:...-_: .·. __ 

We define the diam~ of a (symmetric) liquid drop as the ~argest 

diameter of ... 11 circular sections u = u., at which the bounding surface J . . 
is vertical. 



0 0 

From Theorem 1,,5, fi we see that each drop has a well defined dia

meter. It is less obvious that there is a universal upper bound for the 

diameters of all possible drops, independent of u . 
0 

Theorem 7 Let 0 "' 2. 473 be the unique positive root of the 

equation 

(34) r 3 - 33/ 2 r - 3
3

/
4 ~ 0. 

Then 2 o exceeds the diameter of any solution of (3, 4). 

We base the proof on a lemma, which also has an independent interest. 

V i : Let u(r) represent a solution curve passing through (a, u a) 

with - 1 s au < 0, and such that 
a . 

(35) . a sin'!' ;?:: a/2 . 
a 

Suppose u(r) < 0 in aS r < R. Then sin'!' > 0 on this arc segment. 

If the curve meets the hyperbola ru = - 1 in a point (c, uc) with 

a< c< R, then c< 3
1

/
4

, and sin'!' > 1/2. 
- - c 

Proof: We integrate (5) between a and r, obtaining 

(36) r sin'!' -a sin'!' r a 
1 2 2 1 r 2 

= 
2 

(aua-ru(r)) + 2"/pu'(p)dp 
a 

from which, if a = a, 

(37) r sin '!' 
r 

1 2 1 r 2 
;?:: - 2 r u(r) + 2 / p u' (p ) dp 

a 

For r sufficiently near a, there holds sin'!' > 0. Thus, if sin 'f were 

to vanish at iny points L1terior to as r < R, there would be a minimum 

r = r > a at which this occurs. But (37) would then imply 
y r 

1 y 2 
0 = -r sin'f > 2 1 p u'(p)dp > 0, 

y Y a 

acontradiction. Thus, sin'f>O on asrsc, andhence u'(p)>O 

on this interval. Setting now r = c in (37) yields 
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(38) sin 'f c > -. ~ c u(c) = ! 
Finally, we note that at r = c the inclination of the solution curve can

not e>:ceed that of the hyperbola. Thus, sin Y c < ~4 , and 
. 1 + c 

c 
4 < 3 follows from (38). 

We proceed to prove Theorem 7. For any given u , . the maximum 
0 

width is attained_at a point (r2j+ 1 ~u2j+ 1 ) with - 1~ r 2j+1 u2j+1 >- 2, 

j ~ 0 (see section III ) • At the preceding point (r 
2
j' u

2
j) there holds 

either r 
2

. = 0 (if j = 0), or else sin 'f 
23

. = 1. In either event,_ (35) 
J . 

holds with a = r 
2
f Also - 1 < r 2ju2j < 0, and thus the curve crosses 

the hyperbola ru = - 1 . at a point (c, uc), r 2j < ~ < r 2j+l" S~tting 

a = c, r = r
2

j+
1 

in (36) and applying V i yields, using II iii, 

(39) 3 
r2j+1 

. 3/2 - 33/4 < o. 
- 3 , r 2j+1 

The (single) positive solution of (34) exceeds any solution of· (39). 

Since j is arbitrary, we conclude 2 o exceeds the diameter of any drop. 

VI Generic estimates for l!~.&~~~j~_L_ 

The _solutions discussed in this p~per are apparently related to a 

singular sol~tion U(r) of (2), whose existence we have proved in [ 7]. 
The function U(r) is defined in a deleted neighborhood of r = 0, and there 

. . 1 
holds asymptotically U(r),.., - - I as r ~ o. We have conjectured 

r 
that in any interval 0 < aS r S b <co , the solutions of (3, 4) admit 

a single vnlued representation u(r ;u
0

) and converge ~niformly to U(r}, 

as u ~co. Figures 9, 10,11 show the results of calculations supporting 
0 -

the conjecture. 
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In this section and in the following one we develop asymptotic 

properties of the solutions, which again support the conjecture, although 

they.do not yet settle it completely. The properties are described in 

general terms below and in detail in Theorems 8, 9, and seem of inde-

pendent interest. 
i 

The crucial new step in the present discussion consists in a more 

precise use of the Delaunay comparison surfaces as a device to control 

the behavior of the solutions of 

( 5) ( r sin ljJ )r = - ru . 

In §IIT we used bounds on these surfaces for estimation of integrals 

of the right side of (5); we now propose to introduce the Delaunay profiles 

themselves into these integrals. It turns out the results can be expressed 

succinctly in terms of elliptic integrals, leading to an improvement in an 

order of magnitude of the estimates of §ill. We are led after some manipulation 

to recurrence relations (107, 136, 137) for the displacement of successive 

"vertical points" from the hyperbola ru = -1, which show that, initially, 

the solution curve becomes closer to the hyperbola with each successive loop. 

Integration of these relations shows that the solution curve at first contracts 

toward the hyperbola, at least until a height of order lu
0

1
719 , after which it 

lu
0

l-1 , until a height remains confined within 

of order I 1
(2a+l)/9 

uo , 

a strip whose width has order 

23 for any a > 9 . Thus, the solution curve converges 

lui > luol
(2a+l)/9. asymptotically to the hyperbola, uniformly in 

For all sufficiently large lui, we show the solution curve is confined 

to a strip about ru = -1, whose width has order lul-917 , uniformly in 
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It will be convenient to use here a somewhat different notation than 

was employed in §TII; which seems better adapted to the description of 

generic "loops". We use also the .symbols A,B, to denote quantities inde-

pendent of the other terms within a relation, but whose values may however 

change within a context. Th S f m Y < A ,., + x2 u , ro t'.l. we may conclude y < Alxl 

for large lxl. The symbol - is used to indicate a relationship in which 

terms of (relatively) small magnitude are neglected. 

We start with general estimates on Delaunay arcs v(r), which are 

solutions of 

(40) 

( 41) 

(t sin ljJ)r = 2rH, 

1 
H =-~

ra + rb 

H > 0, 

and an inflection appears at 

( 42) 

( 43) 

We distinguish two cases: 

Case a) ljJ ~ n/2: Solving for r{ljJ), we find 

r = sin ljJ ± /P - cos21jJ 
2H k = 

r - r b a 
rb + ra 

where the upper (lower) sign is to be chosen, according as r > (<)r1 • 

Setting cos ljJ = k sin~' and using u'(r) = tan ljJ, we integrate (43) 

to obtain( 6 ) 
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(44) 

where E(k) is the eomplete elliptic integral of the second kind, of 

modulus k. 

(45) 

where 

If vi < v < yb, then 

v-v = .!.E(k) _l....[k sinq>+E(q>,k)] 
a H 2H 

q> 
E(q>,k) = J /1- k2 sin2T d-r 

0 

is the incomplete elliptic integral of the second kind. 

(46) 

(47) 

If v < v < v., then a 1 

·.v-va = fH[-ksinq>+E(q>,k)]. 

At the inflection (r.,v.) 
1 1 

1 v. = - ( - k + E( k)) + v • 
1 2H a 

Case b) w ~ n/2: The discussion is unchanged, except in this case 

- n/2 ~ q> ~ 0. We find now 

(48) 1 
v - v = - E(k) a b H . · 

( 49) v-vb =- iH [k sinq>+E(q>,k)]. 
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If vi < v < v , then 
- - a 

(50) 1 1 . v- vb =if E(k) - 2H [k ~un Q>- E(G>,k)]. 

We have, in this case, 

(51) 

(52) 

1 ' 
vi= 2H (k+ E(k)) + vb: 

We shall need to evaluate integrals of Delaunay arcs, of the form 

~ab - -

... - p2v",. rb + l ;b 2 dv d 
2 ra 2 r P dp P 

a 

. r 
b 1r/2 0 . 

= ~ llj + 1 ( f + J ) p2 .2! dq> 
2 ra 2 o 1r/2 dq> 

for the case ljJ ~ 1r/2; the last two integrals refer to the portions of the 

curve preceding and following the inflection. For ljJ ~ 1r/2, q> ~ 0 and 

the limits in the last two integrals become - 1r/2. 

Case a) ljJ < 1r/2: Taking r(q>), ,v{q>) from (43, 45, 46), and setting -. 
LX't>,k) = 11- k2sinZCp, we find, according as r ~ ri' 

After taking account of some cancellation, we obtain 

(54) 
1 2 . 2 1 1r 12 2 2 . 2 

= - 2 [ rb vb- r v ] + 'iP f [ ( 1-k }6 + 4k 6 cos 't>] dq> 
a a on"' 

0 
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with 

(55) S(k)- 8E(k)-(l-k2 )(E(k)+4K(k)) 

where 

rr/2 
K(k) = f l ~ 

o li-k2 sin24> 

is the complete elliptic integral of the first kind, of modulus k. 

Case b) ~ ·~ n/2: In this case, we find by an analogous discussion 

(56) J)ab 

We indicate in a particular configuration how the above expressions 

can be used to estimate the solution u{r) of {5). We consider an arc 

u(r) that is vertical at (ra.,ua.) and at (r8,u8 ), ua. < u8 (figure lJ). 

We compare this arc with a Delaunay arc · v{ r), with curvature ' 1 
H = --u , 2 a. 

and vertical at (ra,va) = {ra.,ua.). The second vertical then appears at 

( rb' vb), determined by 

{57) 

and by 

{58) . 

with 

(59) 

1 

2 = - - E(k) 
Ua, 
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The general comparison principle lli applies in the interval r < r < rb, 
a- -

and yields u'(r) < v'(r), u(r) < v(r) in this interval. A consequence is 

that 

( 60). 

We extend v( r) to the interval ( r a' r 8 ) by defining v( r) _ u
8 

, 

, r > rb. From the equation (5) we now find 

( 61) 

which we rewrite in the form 

' ( 62) 

with e::8 = u8 - vb ; 

We can 9btain a similar estimate in the reverse direction by introducing 

a Delaunay surface VCr), vertical at (ra,ua) and at (rb'~b), and with 

mean curvature H = - ~ u8. The comparison principle now yields 

( 6J) Vc r) < u(r ), 

(see figure lJ). Integrating ( 5) we obtain 

( 64) r - r 8 a 
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by(56, 6,3). We rewrite (64) in the form 

(65) 

In order to extract useful information from (62, 65), we need conditions 

under which a second vertical u will appear, and an estimate for £(3 and 

the consequent estimates on H, k; we proceed to obtain them. 

We consider, for the case 1jJ .::_ 7r/2, the generic configuration indicated 

in figurel3. Setting, as before, u* = u(rb), 1jJ* = 1jJ(rb), we find from (5) 

( 66) . . w* r s~n - r = -b . CL 

rb 
vb 2 2 

J pu dp > - - ( r ...., r ) • 
2 b CL 

r 
CL 

For the upper Delaunay surface . v( r) we have from ( 40, 41, 57) 

(67) 
UCL 2 2 

r - r = - - (r - r ) • b CL 2 b CL 

Combining these relations, we obtain 

( 68) 

so that, by (4J, 44, 57) 

( 69) * k 1 1 - sin 1jJ < 4E( k) I'+k U2 
CL 

from which 

( 70) cos w* < 2 12 IErkT lk . 
-u lrtk 

CL 

We now observe (siri 1jJ) = -(cos 1jJ) and write (5) in the form r u 

( 71) sin 1jJ ( ) _......_ - cos 1jJ = -u • r u 
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For all r > rb for which the solution can be continued in the form 

u = u(r), we conclude 

( 72) 
1 ua 

._(cosljJ) >-u--=-u+-
u rb l+k · 

Integrat,!ng in u between the values u* and u, observing cos tiJ.> 0 

and using (70), we find 

( 73) !( ~u· )2.+ ( u* - ua )~u - 2 12 /Em' lk 2 . u . . l+k u u 'Fie> 0 ' 
. Cl 

where we have set ou = u- u*, on the arc considered. We have also 

2E(k) 
ua 

by (58, 60), and thus 

( 74) 1:, ( au )2 + ( ....!_ u _ 2E( k) )au_ 2 12 /Em' ;' k > 0 2 . l+k Cl u u l+k 
Cl Cl 

on any continuation of the solution arc to values u > u*. We conclude 

a seaond vertiaaZ must appear~ in every situation for whiah 

( 75) ku2 » 1. 
Cl 

Under this condition we obtain from (74) the simple expression for 

o*u = max ( u-u*) = u
8 

- u*, ' 
ljJ s Tr/2 

( 76) * < 2 12 /Em' /k(l+k) A < e: 
a u · ku 2 ~ 2E( k >< 1+ k > < ~ 2 ru:r 

Cl YK U(l ~ 

which limits the height change between the successive verticals. Here 

e: > 0 is arbitrarily small, for large ku2 • 
Cl 
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We note the condition (76) ensures that the second vertical (r8 ,~) 
lies to the right of the hyperbola ru = -1, that is, r8ua < -1. We show 

that under this condition, the hyperboZa is arossedrexactZy once between 

(ra,ua) and (r
8

,u
8

). To see this, we first observe that the comparison 

function v(r) has exactly one inflection, which must appear in the initial 

interval determined by rv > -1. Also the vertical distance from ( rb, vb) 

to the hyperbola ru = -1 is 

1 

which is positive if ku~ »1. Thus, rbvb < -1, and it follows that v(r) 

meets the hyperbola exactly once. Since by II i, u 1 
( r) < v 1 

( r), u( r) meets 

the hyperbola exactly once in the interval [ra,rb]. We now observe 

( 77) 

by ( 76 ). 

( 78) 

~- o*u > 
k 

- -u + l+k ex 
2E(k) 

ua 

The condition ku2 > B implies 
a 

·* 1 ( B () A) d. - o u > T:":""' - - 2E k - -
L> I ua I 1 + k IB 

which is positive for large B. Thus, u(r) cannot cross the hyperbola 

in the interval [rb,rB], which completes the proof. 

The result (76) permits us to. estimate the error terms in (62, 65). 

We find, using (58, 60, 76), 

= _ E(k) + l o*u < _ E(k) + A 
ua 2 ua lk u~ 

for large ku2. Similarly, by (57, 58, 60, 76), 
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( 80) 

uniformly in k .. It follows that 

( 81) 

again uniformly in k. 

.. ( 82) 

"' We have k = 1 + raua' k = 1 +rauB' so that by (59, 76) 

0 < k- k = r ( u - u ). < r ( o*u- 2E( k)) 
a B a ·a ua 

< (l-k)(2E~f) + o*u ) 
a ~r 

< l_;zk ( 2E( k ) + e: ) 
(l 

for large ku2. A formal calculation,using the asymptotic estimates for 
(l 

E and K for k - 1 ( cf. [21], Chapter V), now yields 

( 83) 

E( k ) - E( k ) = 0( 4) 
ua 

S( k) - S( k ) =; O( ~) 
u 

(l 

uniformly in· k. The singularity of K near k = 1 is here canceled by 

the factor (1-k) in (82). 

We note next 

( 84) 



- 33 -

We estimate the left side of (84) using the explicit representation 

( 45) for the surface ;( r). This representation will apply' as vi < v( rb) 

for ku2 » 1. In the present case we find a 

( 85) 2E(k) + 2E(k) 
ua u - ( 2E( k) /ua ) 

a ~ ~ 
cp 

1 ~ ~ b 
+ __ __;;;. ___ ( k sin ~ + J 

ua- ( 2E( k)/uf3) o 

·From the definition of v, v ~e find 

( 86) 

( 87) 

Thus 

( 88) 

and from 1 - sin2 ~ = :k2 sin2 cP there follows, using (59, 67, 79) 

( 89) 
~2 2 A A k 
k sin cp < UT i+k . 

a 

We place this result in (85) and use (79) to obtain 

(90) 

uniformly in k. 
\ 

We are now in position to put (62, 65) into more effective forms. 

' ' 1 
. We write first, from (62), with. H = - 2 ua' 

( 91) 
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from which 

1 1 2 1. 2 '1 1 1 1 
( 92 ) -2 u {( rS + -) -( r + -) } > - (- - -) - -:;:-:T S( k) 

· a us a Ua 2 us Ua Jua · 

We have 

(9.3) 

2E( k) .r* * 
+ u u + u - vb 

ua 

which implies, by {76, 90) 

(95) 

( 96) 

with 

A 
~ 2 

t".K u' a 

The same calculation yields 

We have aiso, by (80, 76) 

bounded uniformly in k, u for large a lual' from which we derive 
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so that the above estimates yield 

(98) 

uniformly in k. 

Returning to (92), we may now write 

( 99) 1 1·. 1 11 
- u { ( r + -) +( r + -) }{ ( r - r ) + -- -} 
2 a a ua S us S a us ua 

( 1 + k 2 )E( k ) S( k ) A 
>. ---------u 3 3u 3 1:": 4 a a t'.K u a 

with 

(100) q(k) = E(k) 2 (l+k2 )E(k)- (l..;k 2 )K(k) 
- 3 k 

The expression 

( 101) 3q( k) 
rr/2 1 - sin2 'fl . rr/2 

= -2 f dll + J 1.10-~ sin2 'fl dq> 
o /i-k2 sin2 'fl o 

shows that q(k) decreases monotonically from q(O) = 0 to q(l) = - 1/3. 

( 102) 

We now write 

r -r >r -r = S . a b a 
2k 
u a 

,.. 
r _ r < ; _ r = _ 2k < _ 2k + 
B a b a u6 ua 

and, as in (96) 
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( 103) -- -=-1 1 

We put these estimates into (99) to obtain 

(104) (l+e:){(r +l)+(r
6
+l)} < - 2kq(k) + 

. ' a Ua ua u~ 
A 

lk u" a 

where I e: I is sniall and. lA I is bounded', depending only on ku2 » 1. . a 

Repeating the entire procedure starting with (65), we are led to the 
\ 

reverse inequality, with ·k replaced by k on the right. Applying (82) 

we obtain (104) with the inequality reversed, and thus 

( 105) 1 1 ( r + -) + ( rs + -) 
a Ua Uf3 

We place this estimate back into (99) (and the corresponding expression 

with k) to find, using ( 102) and ( 103), 

( 106) 

the e: being the one that appears in ( 104 ) . We are led to the basic 

relation for an outgoing arc (on which 0 ~ ~ ~ tt/2) 

( 107) 

with bounded IAI, 
The case of a 

' 2 
depending only on ku » 1. a 

returning arc (~ ~ n/2) does not yield immediately 

to the same discussion, and it is necessary to distinguish the case 'k - 1. 

We note (fig. 14) that the comparison Delaunay' surface v( r) of c_urvature 

H = - ~ u6 now lies below u(r), and now provides an upper bound rather 

than a lower bound for rB- ra. To obtain a lower bound, we observe that 
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since 1 ~ E(k) ~ n/2 and E'(k) < 0, there is (for large lusl) a 

unique positive solution t of 

(108) 

that is, there exists a unique 'Delaunay comparison surface ~(r) through 

( 109) 

with 

(110) 

1 " with mean curvature H = - 2 va, so that 

" . 
T "' v - u a S 

2E(k) 

The solution curve u(r) satisfies u'(r) > ~'{r), u(r) < ~(r), 

and hence u(r) can be continued from rs through decreasing r at least 

to the value ~a· Letting v(r) denote now the Delauhay surface through 

(rS,uS) with mean curvature H = - ~ u
8

, we find u'(r) < v'(r), u(r) > v(r); 

it follows u(r) cannot be continued to the minimum value ra of definition 

of v( r). 

The relations analogous to (62, 65) become 

(111) 
1 2 . . . 1 2 1 
-2 r

8
u8 + r 0 < ~ r v + r + J.7f S( k ) 

IJ ' a a a uS 

( 112) 

As before, we may r·ewri te these relations: 

(113) 
1 ' 1 2 1 2 u -us 1 ( 1 + r u . )2 

- u [ ( r + -) - ( r + -) 1 < a { + a a } 
2 B B us a Ua 2 UaUB u& 

1 1 2 ) + "'5':':T S( k ) + ~ r { v - u .)lis ' a a a 
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( 114) 
· 2 2 u -uf3 

1 
· . (1 + r u )2 

~ uf3[ ( rf3· + .2:....) - ( r + ..!.. ) 1 > a { . a a } ~ ue Ct Ua 2 UaUf3 + ua 

"2 " 
+ _l_ S( k) + 1 r ( v - u ) . 

. A~ . ~ a a a 
3va 

The further estimates must proceed differently, at least in the 

range k - 1~ 

" . From the defining relation ( 108) for T and the analogous one for 

( 115) 

thus follows 

(116) 

with bonnded A. 

Let u* = u(r a).. For given 

and height AAiuel-3 as 

A ·> 0, consider a rectangle R of width 

in figure 15. Since 

extended to r = r · there must be at least one point a' 

at which ltan ~~ >A, i.e.; at which 

( 117) I cos ~I < -:=1:::;:; 
li + ).2 

u(r) cannot be 
,!l!J 

(rp'')>) in R 

A 

From ( 71 ), which holds also on a returning arc, we find, for all r < r , a 

( 118) (cos ~) 
. u 

> u + sin ~ 
" r a 

and hence,at the given point, 

( 119) ( cos ~) > u + A = u - _!_ A ( - 2E( k) ) 
u .:r-a-,-;;1;:+::;X;2 1-k li + A 2 uf3 ; a • 
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" We note E( k) < 7T/2; for any ·given ko' 0 < ko < 1, . we choose A so that 

( 120) 1 ). 
> 1. 1-k 

0 li+X2 

For all sufficiently large lu81, the right side of (119) will then be 

" " positive for all u -~ u8, for any k in k
0 

< k < 1. Thus, cos ~ is 

increasing (from a negative value) at r = r , and we conclude that (120), 
p 

and hence also (119), continue to hold for all r < r to which u(r) 
p 

can 

be continued. Integrating (119), we find that a vertical must appear within 

a height change 

" 
(121) o*u < 1- k A-ru;r 

" 

o*u = u - u* a , 

uniformly in k
0 

< k < 1. 

For given k < 1 and large lui we may improve this result by estimating 

cos w* explicitly. We have 

( 122) 

( 123) 

from which 

( 124) 

so that 

(125) 

and hence 

(126) 

r ..;. r sin lji* 
8 a 

ro 
IJ us . 2 "2 

J · pu du < - - ( r - r ) 
,.._ 2 8 a 
ra 

" 
va 2 "2 

r - r = - - (r - r ) 8 a 2 8 a 

1 - sin w* < 4E( k) k 
v2 1-k a 

cos ~* < 
2 12 ?<TI ~ . 

-v ~~ a 
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We note (126) is similar to (70), however the term (i+k) · of (70) 

is replaced here by 1-k. . This is the reason the range k - 1 requires 

special consideration on a returning arc. 

Repeating now the reasoning that led to ( 121 ) , with ( 117) replaced 

by (126), leads to 

( 127) 

c "' 

for all k < k < 1. 
- 0 

o*u <_A~-
/k uS 

This estimate holds for all sufficiently large 

A returning arc has in all cases exactly one inflection between the 

vertical points ( m iii). It is obvious a returning arc meets the hyperbola 

ru = -1 in exactly one point. 

We proceed to obtain further estimates for k - 1, analogous to· 

( 79-90 ). 

We have 

( 128) k = 

thus 

(129) 

r - r B a 
r + r B a 

"' k = 

"' r - r B ' a 
r + . , B ra 

by (115). We' note the factor (1-k). of (82) no longer appears. 

The estimate for ~a- v( r a) is complicated by the strong dependence 

on k of the' position of the·inflection on v(r). We avoid this difficulty 

by noting that the hemispherical surface w(r) of constant mean curvature 

rj31, ~hat passes through ( r
8

, u8 ), has larger mean curvature than does 

v(r), hence v(r)-w(r) > 0. It follows that 
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~a - v( ra) < ( ~ - w( 0 ) ) + ( w( 0 ) - w( r ) ) a · a 

= ( v -u - r ) + ( r . - /r2 - r2) 
a B B B B a 

2E(k) 

Formal estimation gives 

(131) E(k)- 1- l-t
2 

(log 1if + 1) 

for k near 1. 'Further, 

( 132) 

thus 

(133) 

1 1 ---+ " u 
Va B 

2E( k) 
u3 

B 

2E(~) + r
6
u 0 " 2 

v a- v( ra) < - p + ! ( 1-k) r 
UB 2 r;:r B . 

< A( 1-k) I log( 1-k) I 
UB 

with bounded jAj, uniformly in k for large ju
6

j. 

A repetition of previous procedures, using (128-133) in place of 

(79-90), leads after some calculation to 

( 134) 

< 
2k q( k) 

u3 
B 

"' "' + B(l-k)log(l-k) 
us 

with !AI and IBI bounded uniformly in k for large lusl· A formal, 

if tedious, calculation, based on asymptotic estimates for E and K for 

k - 1, yields 
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(135) 

We place this estimate and (129) into (134) to obtain the basic estimate, 

for a returning arc with k - 1, 

(136) 

. If, for some fixed k , there holds 0 < k < k < 1, 1ru
2
8 

>> 1, then 
0 - 0 . 

the same procedure, using (127) in place of (121), yields for large !u81 

( 137) ( r + ];_) + (rB + ];_) • 2k q( k) + 
a . % u8 u~ 

We summarize the information obtained thus far. 

Theorem 8. 

i) A soZution verticaZ at ( r , u )_, .such that r u . > ...,1 and ( 75) a a a a 

ho Zds with k = 1 + r a ua"' wi U again become vertica Z at ( r 8, u8 ) _, with 

r
8
u
8 

< -1. Between the two verticaZs there hoZds 0 < ~ < n/2. The height 

change is estimated by 

( 138) + £ 

with 

( 139) 

The soZution arc meets the hyperboZa ru = -1 in exactZy one point. The 

change in horizontal- distance to the hyperbola at the two vertical points 

is contro Ued by ( 107 ). 

. -
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( 140) 

again become vertical at 

n 
1, .... n .;,'-'. '43 ') ..... 

"" .... Q. ~. 

r u > -1. a a 

( cf. ( 109)). 

Bett.Jeen the tt.Jo 

verticals there holds iT ' 2 < 1/J < ;r; There is exactly dne inflection and 

on~ intersection with ru = -1. The height change is estimated by 

( 141) + £ 

with 

( 142) 

and A < A ( k ) < 00 1-n any range 0 < k . < k < :1. The change in horizontal 
0 0 0-

distance to the hype'r'bola ru = -1 is controlled by (136). 

In any range 0 < k .:_ k
0 

< l, if ku~ »1, then the solution will again 

become vertical at (ra,ua)' raua > -1; the height change is again esti~ 

mated by (141), but with 

in place of ( 142 ). The ohange in horizontal distanae to the hyperbola 

ru = -1 is controlled by (137). 

VII Asymptotic estimates 

The results or VI show that for large lui, the solution curve contracts 

toward the hyperbola ru = -1 between any two successive verticals. The 

estimates (107, 136, 137) contain quantitative information, which we now 

proceed to integrate to obtain new global information on the behavior of 
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the solution, when lu
0

1 is large. We set r
0 

= 0, denote the successive 

vertical points by (rj,uj) and write 

c. = lr. + .l..l kj = -c .u. , oc. = cj+l-cj, , 
J J U· J J J . J 

( 144) 
2E(k.) ,.. ,.. 

ll+r.(u.+-!.)1 T. = - ' J k. = . 
J ,.. J J J J \.i. + T. 

' J J 

Using (144), (107, 136) now take the for.I.n, for 
,.. 

k,k - 1, 

(145) 

(146) 

with 

range 

oc. 
2kj q( kj) 1 

-- -u~ - +A._..;.._._ 
J J J lk." u~ 

J J 

( 1-k. )log( 1-k.) 
. J J 

u3 
j 

oc. 
J 

lA. I <A<~, uniformly for all sufficiently large 
J 

O<k <k<L . 0-

j even, 

j odd, 

We are interested in (145, 146) for large 1 I u I . We note - q( k) 2_ - q( 1 ) = 3 , 
1T E( k) 2_ 2 , and choose to be the (unique) solution of the equation 

(147) 41T 41T 1 
- uY log U" = bA • 

Let 

( 148) ( 1) 41T ( 41T )} k = ma.x{k: -2kq(k) < -2A(l-k + ::z)log 1-k + :-:z . 
- · um1 . um1 

Clearly, 0 < k(l) < 1, and 

(149) k(l) > max{k: - 2kq(k) 2_- 2A(l-k)log(l-k)}. 

For all kj > k( 1 ), there holds -A( 1-kj )log( 1-kj) < - kj q( kj) • 

..... f 

i 
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Now choose l1o. so that ( k( 1 ) )
3 
q2( k( 1 ) )u; > A2. For values 

2 2 

( 150) 2 { 2 2 } u. > max u ,u 
J ml m2 

we may write, since kj = -c .u., 
J. J 

( 151) 

with 

( 152) 

oc. . J 
3 p .c. 

J J 

IIll.
·n· lq(k)l 3lq(k)l 

( ) 
k2 < P . < max 2 

k ~ k 1 J k ~ k(l) k 

. -1 
Integration of (151), with c

0 
= -u

0 
, yields 

(153) 

for some P in the range indicated by (152). 

We consider also the relation, which follows from (141-143), 

( 154) -1 
= - A.u. , 

J J 

and which integrates to 

( 155) u~- u~ - 2AN, 

From (153) and (154) we calculate 

( 156) 

and setting 

{157) 

pu.2. 
k2 ,._ N .. 

N ( 1 +p )u~ - u~ 

~2=( )2 1-17 u ' 
0 

k2 - p{l-17) 
N p+77 ' 

2 <A. < n, 
J 

-1 p =AP , 
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Given k(o), k( 1 ) < k(O) < 1, there will be, for all sufficiently 

large lu
0

l, a unique smallest N = N(l) for which 

( 158) 

the value of the ~xpression in (158) tends to k(O). With increasing lu
0

l. 

We reformulate our ;esult slightly, and sununariz~ the information thus 

far obtained. We note that any set of points k. = const lies on the 
J . 

hyperbola 1 + ru = const, and that the singular solution .U( r) is asymp-

totic to the hyperbola ru = -1, as r -+ 0. The following result holds 

for all lu
0

l sufficiently large. 

Theorem 9. Given any k( 0 ), k( 1 ) < k( 0 ) < 1, there exists ·. '1( k( 0 )) > o. 

such that the solution CUI'Ve, starting at (O,u
0

), "separates" from the 

a;ris r "" 0 and from the hyperbola ru = -2, after an i~terval ~-u0 -l '71 u
0 
I , 

in the sense that near the height · ~ all points on the CUI'Ve lie between 

the hyperbolas ·. ru = -1 ± k( 0 ). Be ween u
0 

and . ~ a number N( 1 ) - ~ u~ 

of vertical points appear, and each vertical point is fol~ed by another 

. A~ (On the opposite side of ru = -1) at a height change OUj -- UJ • 

To proceed further, we return to the relations (107, 136, 137); since 

(1-k(O)) 1 0 (k(O) independent of u
0

), we may use (143) to write (145, 146), 

for j > N(l), in the common form 

( 159) oc. 
J 

2kJ.q( k.) Aj 
.J +--"--u! 

J lkJ uj 

We consider an interval in which the last two terms on the right in 

(122) will be small in relation to the first term. Since 
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lim 
k ..... 0 

kq( k) = 
k3 

· the condition takes the form 

( 161) 

for suitable A. Integration of (159) and of (154) yields, as above, 

( 162) k (..L)~ UN 
N - l+p u

0 

so that (161) now reads 

( 163) 

We can in fact achieve the situation 

( 164) 

for suitably large A (independent of u
0

), asymptotically for large lu
0

1, 
in a number N( 2 ) - iA u~ steps. In this c-onfiguration, the solution C!U1"Ve 

has "contracted" tOZJards the hyperbola ru = -l; we coirrpute in fact from 

(l5j, 155) 

( 165) 

as !u
0 

1 ..... co • 

At the level uN( 2 ) the relation (159) no longer ensures a contraction 

at each step. The conditions for appearance of successive vertical points 

are, however, still satisfied, and (159) still suffices to bound the change 

oc. 
J 

at each step. 

Let 23 a satisfy 9l < a ~ J. 

we find 

2a-8 

In any range Alul-2/ 7 ~ k ~ Blul 2a+l , 
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and we consider the inequality 

( 167) I oc ·I 
J 

a < Ac . 

We integrate and simplify, noting 

( 168) 

for large lu I, to obtain 
0 ... 

(169) 

c 
A<.Ji<B c 

0 

2a+l 

luNI > lu
9
1,--
2a-8 

~·> luol_9_ 

thus the solution remains in a strip of sensibly constant width about 

ru = -1, until a height 

We conclude in particular the existence of a constant A such that 

in an interval 

2a+l 2a+l 

(170) lu 1-9- < lui < 2lu I~ 
0 0 

2a-8 1 

there holds ~~ < Alul 2a+l. We assert that for aZZ suffiaiently large lui, 

the solution aurve lies interior to a strip determined by 

( 171) k = - cu = (A+l)lul-2/ 7 



•. 

0 u u 

uniformly in u
0 

as I u
0 
I -+ 00 , fo1' any A suffiaiently laPge to justify 

(164). This is clearly the case in the interval (170). If the curve u(r) 

were to extend outside the strip (171) for values of u exceeding lu
0

1( 2a+l)/9, 

there must be a first point p on the boundary of the strip. By comparison 

with Delaunay surfaces through the point p, one then sees (note either the 

condition (75) or the corresponding condition with u8 is satisfied at p) 

that a vertical would appear on or outside the strip k = Alul-2/ 7. Let 

be the first such point. The estimate (159), applied now in the direction 

of increasing lui, shows that a preceding vertical can be fotind at a point 

q
0

, with horizontal distance to ru = -1 exceeding that from q1 . The strip 

is however narrower at than at This contradiction 

establishes the assertion. 

We summarize: 

Theorem 10. lu I 0 

mined by (158)) so that k < k(O) for luNI < luN(l)l - 11-~ lu
0

l. The 

curve aan be aontinued through suaaessive vertiaals to a height luN( 2 )1 -Aiu
0

1719 , 

for suitably large· Aj at whiah level it has aontraated towaPds ru = -1 in 

a ratio given by (165). For any a, ~<a< 3, the curve aan be aontinued 

further through suaaessive vertiaals till a height lu I - lu 1(2a+l)/9 
N(J) o , 

and is aonfined to a strip of sensibly aonstant width, as indiaated by (169). 

For smaller values of lui (relative to lu IJ vertiaal points presumably 
0 

aease to appear, however the curve lies within a strip about ru = -l, of 

width determined by k = Alul-217, for suffiaiently laPge A (independent 

of u
0

). SpeaifiaaUy, there exists A suah that for any fixed (suffi

aiently large) ~, there holds, for (r,~) on t.he solution aurve, 

( 172) lA 11 IAI-9/7 r - ~ <A u 
u 
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The global asymptotic behavi6r is sketched in figurel6. 

VIIT A compactness property 

Let us consider the family of solution curves, represented in the 

form r = f( u; u
0

) '· with u
0 

as parameter, I u
0 
I -+ 00 • The result ( 172) 

shows that for large lui ' the curve is confined to a narrow strip about 

ru = -1, and the. method of proof of ( 172) yields as corollary the existence 

of a constant. A such that on any fixed interval a ~ u ~ b, 

I afl A au < < 
00 

' 

for·all sufficiently large lu
0

1. 
It follows there is a subsequence of values u

0 
-+ - oo such that the 

corresponding functions f(u;u
0

) converge, uniformly op compact intervals, 

for all lui suffiCiently large that (172) applies. The limit curve 

rc: r ::: 13( u); when described with arc length as parameter' yields a 

solution of the parametric system ( 3) . There holds 

(173) .11 + u Q(u)l < Alul-2
/

7 

for all large I ul .. 

Each of the curves f( u;u ) . . 0 can be extendedglobally without self-

intersection as indicated in Theorem 6. Applying the general continuous 

dependence theorem, we find that the limit curve Cj'7 has the same property 

(a reasoning similar to the proof of Theorem 6 excludes self-int~rsection). 

The curve re has the asymptotic property u n< u) - - 1 for large I u I ' 
and the oscillatory behavior indicated in figure 1 for large r. 

It seems iikely the curve ~· is the singular solution U( r), and we 

conjecture that is the case. 
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IX Isolated character of global solutions 

There is strong numerical evidence to suggest that global solutions 

of (3) lying in the region between the envelope of the solutions r = f(u;u
0

) 

and the u axiS, .and without limit sets or self-intersections, are rare 

in the·manifold 

those described 

of all solutions. We know of no such solutions, apart from 
this paper 

in 1\ and the singular solution U(r). In Fig. 17 are shown 

samples of the result of numerical integration of (3) through the initial point 

p determined by the first intersection of f(u;-8) with U(r) and for 

, varying initi 1 angles a, measured counterclockwise from the arc of the 
I 

curve f(u; -8) emanating from p in the direction of increasing u. The various 

curves are thus distinguished by their directions at the point p, measured relative 

to that of the curve f(u;-8) at that point. 

We note the curves f(u;u
0

) can appar,ently be extended below the 

level u = u
0

, if the isolated (singular) point of contact with the u-axis 

is admitted. The point appears t'o mark a transition in qualitative behavior; 

above it, the curve behaves like a Delaunay arc generated by an ellipse . 

(section Ill). Below that point, the curve has the general appearance of 
\ 

a Delaunay arc generated by a hyperbola, with the characteristic double 

points of those arcs. 

An analogous transition occurs on neighboring solutions without 

occurence of singular points on the axis. In any event, if such singular 

points are admitted, the corresponding (extended) 1 curves f(u;u
0

) are 

embedded naturally in a solution set, all of which develop double points 

for sufficiently negative u, with (we conjecture) the single exception 

of the solution U{r). 
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Footnotes 

p. 1 (l)For background information on the derivation of (1) see, e.g., [1,2,3]. 

p. 3 ( 2 )The remaining ca~e can be realized physically, e.g., as the lower 

surface of a column of water in a glass capillary tube. _ 

. p. 4 ( 3 )we call attention however to a remarkable existence theorem due 

to Wente [9]. 

pp. 5,9,12 ( 4 )This improves the result announced in [8]. 

p. 5 ( 5 )A stronger result of this type is given in [4]. 

p. 24 ( 6 )We note for reference the alternative representation. vb- v a = r aK( k )+ rb E( k), 

where K and E are complete elliptic integrals of first and second kind, 

and - 2 2 ! ' 
k = (rb- ra) /rb. Similarly, (45) takes the form v- v = r F(~,k) + 

a .a 

rb[E(k)-E(~,k)], where F 

and r( 1- :k2 sin2 ~ )! = r , 
a 

is the incomplete integral of the first kind, 

-2 2 ' rb( 1- k sin ~) = r. In this form of the re-

presentation there is no need to distinguish the inflection, however the 

formulae become technically more complicated in other respects. 
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Figure 1 
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Figure 2 
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Figure 3 

The case u0 = u
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Delaunay surface 
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Figure 6 

The initial region u < 0 
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Figure 7 

Proof of IV i 
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= -4; singular solution 
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Figure 10 
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u
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= -8; singular solution 
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Figure 11 

u
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= -16; singular solution 
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Figur~ 15 Estimate for ua when k - 1 
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