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ABSTRACT

Unitarity, analyticity, Regge asymptotic behavior, and’

a resonance approximatlon are comblned to derlve a new sum

rule. The sum rﬁle is very c&nvergent; the contribution of
high-mass resonances 1s suppressed by a decreasing wéight
fuhction. The spin-flip and non-spin-flip residues of‘thef)
meson in the I T — NN amplitude are evaluated at the mass
of thefj_, and in conjunction with the first-moment finite-
energy sum rule a caleulation of the F)-meson mass is
performed. The results are in good agrecement with experiment,

The sum rule is then applied to the calculation of thefj_ _

' and fo resonance parameters in the TI TT—>T 7T amplitude. A
‘discussion of the behavior of the sum rule near the elastic

threshold is also included. This discussion may give some

insight into the nature of the approximations involved in the

derivation of the sum rule.



INTRODUCTION

: Récéntly‘thé finilte-energy sum‘fules have been.applied
. to the calculation of strong interaction parameters and, |
‘to within the errors involved 1n.the approximations, the .
results have been 1n‘agreement with experiment.' It has been
conjectured that these relations may actually p%ovide a new
approach to the bootstrap problem, and a few attempts 1in
- formulating such an approach have met with soﬁe success;l’zf |
The finite-enefgy sum rules consist of an infinite set
of equations which relate all thé posltive and negative'
_moments of the discontinulty of the amplitude over a finite
~energy region to the Regge parameters. In practice, however,
only the first few positive moment sum rules have been .
uﬁilized, because the higher moments emphasize a highér -
interval of the energy spectrum and the negatlive-moment sum
rules contaln the value of the ampl;tude, or one of its
derivatives at some point, as an unknown consgstant. It woﬁld
be useful to have sum rules in which the weight function
decreases without introducing subtraction constants, since
.even thg low-positive-moment sum rules already put an
gncomfortable emphasis on the higher energy behavior of the
discontinulty of the(ampiitude. Furthermore, the finite-energy
sum rules used in a bootstrap scheme only provide linear

equations for the widths and as such can only determine ratios.



 .:Theréfofe; 1t would also be useful to introduce some non-
" linearity into these equations. |

In this paper, we will use the twévbod& unitarity’ | o
equation in the complex‘J—planeyin.addifion to analyticity  »§[ R
and Regge behavior to derive a sum rule with the decreas&ng  o
- welght functions QJ(z). "In order to apply thié sum rule toli»”‘
the‘calculation of high energy parameters, however, we w111 ;]fll 
'f have to introduce certaln approximations.: One 6f the _:‘. i o
poséible applications of finite-energy,sum ruieé to_th§ bobt{.;m.}ﬂ"
strap problem 1is to use the sum rules for values of energy . '
equal to the masses of thefresonances under consideration.
The first few sections of this paper are concerned with,such_  "';
a problen, in order to use the sum ruiéein this context, wé
will make a small-width approximation (but not the usual
zero-width approximation) which we will discuss in detaii. By |

| a sméll-width approximation we mean the width of the

resonances we consider are small enough that the Breit-Wigner
formula 1z reasonably accurate, but we do not assume Im(&.):(L
Finite-energy sum ruleé in genéral contain a parameter N,’
the upper limit of the integral of the imaginary part of the
amplitudg multiplied by some Weight function, In order for

these sum rules to be useful in bootstirap-type calculations,"

.- . . . .

N must correspond to the "intermediate energies," so that the

integrand may be parametrized by a sum of resonances. For the




T

sum rulé presented'here, the vaiué of.N depehds on the o
magnitude of Im(oL). If N is to correspond to 1htermed1ate"“'
energles, Im(CL) can not be very small. In the first few |
sections where we are concerned with bootstrap calcﬁlations. >«
ouf'results depend crucially on the fact that experimentally,
near the mass of many prominent resonances, Im (OL) = 0.1 .
and not much smaller. However, 0,1 15 small enough to allow

neglecting terms of order Im (OL) compared to one, without

causing a very large error. Of course, since in these calcu§ T;‘T7ﬂ”

lations we do not take the 1imit Im (oL) — O, we must be
caréfui that the cpeffiéient of Im.(OL) 1n.édch terms is not
much larger than one. For example; when Im (oL) is multi-lli.f_
ﬁlied by 2/n.(2N), as 1s the case of this sum rule, nonlinear f
terms in Im (o) should also be inecluded. Thé small-width
approximation uséd'here does introduce an intrinsic error of
about 15% into our calculations, |

In Section IY we will give_the dérivation of the sum
rulé and discuss the relevant approximations, .n Section IIX
we will apply the sum rule to a calculation of the non-SpinQ
£1ip and spin—fllip resldues of the PO traje.ctory at t} = mP 2
in the 7T7T~—>Nﬁ scattering amplitudes. The nucleon plus
all thé established TIN resonances below 2 GeV c.m. (center

of mass) energy constitute the input for the sum rule. The

dominant contribution comes from the nucleon. Since the



r

1dentical model can be applied to the finite-energy sum
" rules, 1tuis interesting to ask whether this sum rule has-

dynamical-content beyond that contained in the positive-

moment sum rules. The numerical calculations indicate thaﬁ f.v
* they have very different content, and therefore, our sum |

rule may be used in addition to the finite-energy sum rules - o

to restrict further the resonance parameters of the model.

In this case, we have four equations for three unknowns, so

we have a check on the internal consistency of the model,
The calculated mass of the O is about 900 MeV.

In Section IV a simple model of qrir—>7rqr Scattering
" in which the amplitude is dominated by the Q and f, reson-
ances 1s discussed. Agaln reasonable constraints on the
resonance parameters can be obtained., Together with the
finite-energy sum rules, these equations provide a nearly
complete bootstrap system. The slopes of the Regge ﬁrajec-,
~ tories {which~are arbitrarily set at 1 (Gev)‘z] and a scale
for the resonance widths cannot be determined from the
equations. (Our sum rule is not nonlinear enough 1n. Im (oL)
to obtain an absolute scale for the resonance widths.) For
such a simple model, the determined values of the masses
and ratio of the widths are quite reasonable.

In Section V we will discuss the behavior of the sum

rule near threshold. We will see how -a background term



o

ﬁﬁubecomes increasingly more 1mportant as we approach the)

‘_’”¥~§71{,ﬁ .threshold and how the approximations which hold for Im(oﬂ)ﬁdoﬂl

f3ﬂ{:fiﬁj7'%i,break down as Im(cL)-e»O We will discuss the possibility '

3 o H}of calculating the background term from an N/D model and thus
using the sum rule to calculate residue functions over a

'5w1der range of their argument




II. DERIVATION AND DISCUSSION OF THE SUM RULE |
- Let A(t,z) be the amplitude for the elastic scattering

of two spinless particles for which t is the square of the‘5 iv'

c.m. energy and z is the cosine of the scattering angle'ihlv

-the t-channel. We are considering the spinless , elastic

~ problem to simplify the discussion of this section. In ﬁh¢ -f B

next section we will geheralize our results to the case'of:;mﬁfi'

1nelastic.amp11tudes with spin ( for example'Trﬁr;—» Nﬁ)z.

%rThe variable t, however, is restricted to the region be-

tween the 1owest threshold and the next important one through- 7
out this paper. The asymptotic behavior of A(t,z) as z — oo
15 assumed dominated by the leading t-channel Regge pole which ER

we denote by R(t,z). Although the functional from of the
" Regge term 1s somewhat ambiguous, we will require that R(t,z)

reduce to the correct resonance formula when oL (t) 1s near

an even (or odd) integer. Other modifications of R(t,z) do

not affect this derivation, and we choose the explicit form

R(t,z)= - T(20+1) R (¢) ZLous) (-2) £ By (4)(2) (1_)
2 sinTroL(t) '

where  refer to signature.

Thg partial wave unitarity_eQuation?is written as,

aJ(t) - aJ*(t‘) = 21 p(f;) aJ,(t) 'aJ*(t). - (2a.)

This equation can be continued to the complex J-plane. For .t

E k -
ey o g ey

e




real and abové the'threshoid , aJ(t) and ﬁg(t) are contitued
into.the functions a-": (7,t) and a'i(J,t)E,aiX(Jit)‘ . Equation
(22) becomes | |

& (3,t) - a’¥(3,t) = 210 a™(J,t) a’i(J,t‘) (2v) -
- where + again refer to signature, énd t is 1n‘ité_physical,
v.regiqn. The fésonance pole discussed above also corresponds
~ to a pole of va'(J,t) at J:AQ, . If Im(OL_).' is small compared
“  to the distance to other singularities, then a;i(J,t) may J

7'7, also be represented by a single pole plus a background -of

~ order Im(OL). Equation (2) then'implies the relation

3
| - 2 3
PA=1In(oL)+O[Im( )] (3)

Since Im(cl) is real, the phase of [? is of order Im(CL),
, > | -
m(R) = Ofm(e)]” . | (4)

Let oL(t) be the position of the leading Regge pole,
., 4 ) : ,
a’~(J,t) has a pole at’ J::uf(t). With the Froissart-Gribov
definition of a¥(J,t), Eq. (2) implies

-1/21 p(t‘)-.-}s__x:u*.-}r— dz‘Ai(t,Z) Qyz), (5)
- z

[+]
where

. .
A_(t,2) ,-.-[A('c,z+1e ) - Alt,z - 1€ )] /2t |
+ [A(t,-z +1€ ) - A(t, -z - 1€ )] /21 (6)



| Sihbeitheintegral in Eq. (5) is divergent for Re(u))>Re(J); f_1'
‘1t should be evaluated for Re() < Re(J) and then cbntinuéd"
to J=oF . | |

If At(t;z) is approximated to any preassigned accuracyl
by its leading-Regge trajectory for zf}N, we may rewrite ;

Eq. (5) as
o N

-._1/21P = -17-7-_— /d? A:(t',z) 'Qu*(z)
o L

N S S o |

Came, L faz B(t,2) ag(z) + L [az R(t,2) @ M2)
L Tt T 8 Jgl T S va -
S N - N - STy
'whére R 1is the contribution of the other J-plane singula—“??
rities. | | | o

- We will show in the rest of this section that the real.
part of Eq. (7) may be applied as a finite-energy sum rule K
to the calculation of some high energy prarameters. The 1m-’
aginary part of this equation also constituies a constraint,
but with a limited knowledge of As(t,z) thls constraint turns
ouf to be not very useful. As mentioned in the introduction,
one possible application of Egq. (7) to bootstrap-like calcu-
latlons 1s to consider the sum rule at the mass of a resonance
(t::MQ ) . In this and the next two séct;ons we address our-
selves to such a broblem. In order to put Eq. (7) into a

useful form however, we will make certain approximations. The



'ffirst‘épproximétion involves the quantity N and is similar

to the approximations made in finite-energy sum rules.lIn
v'effect, Eq. (7) is expanded in powers of (1/N) ( often frac- -
tional powers) and the higher order terms in (1/N) are then
neglected compéred to terms of order one, Of qurse, such an -
approximation becomes more valid as the magnitude of N be-__
comes larger. However, an important criterion for the use-
. fulness of such'equations'is that N be in a region below
-which As(t,z) may be parametfized by s- and u-channel resq-
nances. Thus in practice N is not taken to infinity , but 1sf'
restricted toithe intermediate region. In general such values
of N are large enough to allow neglecting terms of order 1/N
compared to one. However, in the case of our sum rule there
exists another small quantity , namely Im{(qL) , and we'must
. be carefull to ensure that the quantities we finally keep in
our sum rule are of 6rder one in both 1/N and Im(QL). In the
~ rest of this section we discuss in detall thls double expan- |
sion and the valldity of certain approximations.’ The result
of these discussions-will be that in order to separate the
quantities involved into terms of different order with res-
pect to Im((L) and 1/N , and then neglect the higher order
terms, the quantity cot( QImCLanN ) should not be very 1arge.
:In other words, in certain terms of our expansion, Im(Q.) and
' N will occur in the combination 2ImqyL anN . We will require

that the cotangent of this quantity should not be much



. I
v 4

, greater thanfoﬁé.' For-N in the 1ntermed1ate‘region, it tﬁrné
" out that this 1s only possible 1f Im(o.) is not much smaller
 than .1 .v

We well now engage 1in the detalled discussion of our o

- approximations. We need to consider the integrals

oo

jima* dz. POL(Z) Qy(z) =

(-sin y + 1 cos y )
1
2(2Ret +1) Im( L) [

& 21c Im(QL )+ O(Imu)2}+ O (1) (é)- e

;_flim ' ;q.P ( ’ ‘ ( )“ sin y+1(l-cos y ) .1  i 
J-—;QL%/Z o Ste) = 2( 2RecL+1 ) Im(ou) [
+0(ma)] + otm
(9)

"and their sum oo
1

P = ,
}iu* az u.(z) % (=) 2 (2Re®L+ 1) Im(oL)
. 1
with ‘
y=2 Im(L) !n(2N_) and, - .
¢, =1/(2Req+1) + Y& +1/2) -  Y(a + 1)

where ¢J(CL) is the logarithmic derivative of the [-function.
' The integral in Eq. (8) is proportional to the Regge
integral of Eq. (7) . Since experimentally the Regge contri-

bution approximates the average magnitude of the imaginary

Y . -
e o L Tl




T e

‘ part of the‘amplitudevfor small.valﬁes of z (or s) 1, thev
integral in Eq. (9) can give a good estimate of the size of'
the first integral in Eq. (7). | v K
. From Eq. (1) the explicit expression for Rg(t,z) 1is

+ ' : ‘
Ry(t,2z) = m(20L+1) ;?(t) %x(z) for right signature,

= 0 for wrong signature.

(10)
" Substituting this in Eq.'(7) and with the aid of Eq.(8) we

 obtain ,

[“ m [ Qo)
Re ~_[’8(M2)]

+ 2c21m(cL):cof y+ O(1/N) 4 ()(ImCL)é] |

cot y

C

ke [_7-2; az A (t,2) Q&t(z)] + Re [:I?T—/az R, (t,2) Qd’(zﬁ

Z, NI

' - (11)
= ¢, + 1/(2ReCL+1) .

where c,
The first approximation concerns the left hand side of.
Eq.-"(ll). . Eq. (4) implies that the q{xantity Im(lg)/Re(B)
18 of order Im(C®L). Therefore if cot(y) is not much greater
than one, we can neglect the two terms Im(ﬁ?)/Re(A?) cot y,

and chlm(ci) cot y inside the bracket. The left-hand side

11



will then be equal to [Re(ﬁ?) / Im(ci)] sin y. -When cot y .
18 not very large ( sin y is not small ) this quantity is of
order 6ne, since from'Eq. (3) Re(l?) /Im(;?) 18 of order one,

The magnitude of the second integral on the right of Eq.

12

(11) can be estimated by the contribution of the next leading

singdlarity in the J-plane, If cLzand [32 are the position

and the residue of the singulafity, then this contribution 1is

(L— &
of order / N 2) . As in the case of finite-
2

energy sum rules, for large enough N this term is much smal-vw f

ler than the left hand side. Howeveyr , in drder to com-
pletely Justify neglecting this term , we must show that
the first integral on the right is also of order one., As

mentioned before, the magnitude of the latter quantity can‘ :

be estimated by considering the integral of Eq. (9) . As N' ﬂ‘

is increased from its minimum value, this integral starts

from zero and grows in magnitude., For sdme value of N its

magnitude actually becomes comparable to that of the integral

in Eq. (8). This condition is realized when cot y 5;’1.

We can thus see that cot y 1s a measure of the accurac&
of our approximations, and thé condition cot y =~ 1 gives
the desired relation between N and Im(L) . If Im(oL) 1s
very small , cot y =~ 1 demands an. extremely large N. How-
ever, for the experimental values of Im( L) — 0.1 , this

condition 18 satisfled when N =10 , which corrciponds to in-




“termédiéfe:ehergies.wﬁenvt'is in,the resbnéncé regioh. The
" next osci;latioh bf.cot y oecurs for a very large value of |
N and does not cbncérn us hére. "
Including the above approximations 1n'Eq. (11) we write -
our sum rule in the final form of Eq. (12), correct to o
leading order in 1/N and Im(@L) :
sin(zlx‘ﬁuﬂn'aﬁ ) = 2 p(MQ) Re L sz Ai(MQ,z) Q_*(z)
, . m S o L
| z, (1)
The successfu; calculations with'the:finife-energyﬁsum.
rules suggest that for z<N , Aﬁ(t,z) may_be-approximafed by;-g' -
s~ and u-channel resonances, even though_t 1s outside the |
' ellipse of convergence of the partial-wave expanSion in the .
8 and u channels. We will parametrize Ai(MQ,z) by a sum of
resonances and apply Eq. (12) to the calculation of some
parameters in the 7T T —> NN and 7T T —~» T T processes, We
will use 8-'-£_‘unct10ns for the s-and u-channel resonances
for the sake of simplicity. When compared to the Breit-
Wigner formula, this approximation-causes only a 1% error
for Im(eL)<:0.2 . However, it should be emphasized that by
using S-functions in the right hand si.de of Eq. (12) we
_will not contradict the previous statement that we do not
take the limit Im(QL)—> 0. As 18 clear from the discussion
of this section, the condition Im((L)z# O is crucial to jus-



13a

ftifying a finite'yalﬁe of N‘iﬁ'Eq._(la)'; The correct para-
metrization of As(t,z) for t above its threshold 1is oﬁg 6fv
the major unsolved problems in the application of finite-
energy ;hm rules to the bootstrap problem., ( Some discus-
sion of this question can be found in Ref. 1) . In this

paper, we will take the success of some calculations with

)

finite-energy sum rules in which As(t,z) is parametrized by

a sum of zero-width resonances as an 1ndication that such a
garametfization may be reasonable. This problem wh;ch is
probably the source of the greatést uncertainties in the‘_5;
numerical results cértainly deServgs a separate and tho- “ ;

rough investigation,



.~ III, CALCULATION OF P RESIDUES IN T T — NN

" The derivation of sum rules like Eq. (12) for inelastic

amplitudes with spin contains no essential complications.

r The proéedure, which is similar to that for the spinless'elasé

~tic case,~is ¢ (A) substitute the fixed-t dispersion relatioh
into the partial wave formula (1.e., derive the Froissart-

”;Gribév formula); (B) continue to J=(x* after introducing |

the léading Réggelpole; (c) use unitarity to evaluate the

amplitude at J = uf ;(D) analyze the resulting equation as in -

14

’&sebtion II. There 1s only one modification of the basic for- |

wo mulé, Eq.(7) . If an 1lnelastic amplitude is being considered, -

the left hand side of Eaq. (7) will be -l/?if) times avratio
of Regge residues. If 1 and 2 label two communicating chan-
nels and t lies between the thresholds of these channels (1
corresponds to the lowest threshold) , we can write the

unitarity equation as
%, ® * ok |
alz(J,t)-- a'z(J ,t)::l21f3 a\|(J »t) a‘l(J,t) (13)
Again, 1f there 18 a pole at J =L , Eq. (13) implies,
4 * * * . ‘
-1/21p F Q) / Q)] = a,(alt)  (A4)

Hozfver, in our approximation the imaginary part of the ratio,
*

/? (t)Y/ K}(t)zis proportional to the phase of the residues,
1 12



15

which is of .order Im(OL) . Consequently , 1t can be neglected
_compared to terms of order one. | |

Let us now apply this procedure to the spin;flip and non-
spin-flip amplitudes in the 7T TT—5NN channel and caleculate -
the O residues. The t channel 18 T —» NN, the usual inva- :
riant amplitudes are A and B, and someuseful kinematical faé-—-;» ,. .
tors are ' |
C op o (6l :

2q = (t- 4p?)% |

A = (t- 22 - avf ),

L. VAN
' 2pq
x. = |z},
and
y—on S+4

w-e s

The hucleon and plon masses are denoted by M and L , respec-

tively. The value t=m .2 1s below the .NN threshold, so
that p and z are bloth pure imaginary (z=1x ) .

The amplitudes A/=A+ i/B and B are proportional to the
helicity amplitude‘s in the ¢t channei:-._ |

T, (t,2) = A(t,z) + ¥ B(t,2)
T (t,2) =\t sing, B(t,z) - (16)

wheré 9{_ 1s the e¢.m., scattering angle, and + and — refer to



the++ and + — heliqitjr amplitudes. The isotoplc-spin pro-

,Jections are

A/(“‘) _ 1 li"!i

3 .
1 I = =
RN 2
3

A

and a similar relation for B. The (-) amplitudes are pure'
_I=1- in the t channel. The partial-wave unitarity relation

- for T‘+(t,z) ivith only the two-p}ion Intermediate states are .

T, (3,8) - T, (7 ,t) = - 21p T, (3,t) T*(th) | A(18)_.;,.fv_:,‘"."5'1';-' "

-’_,where '1‘ (J t) 1s the amplitude for T T—T T -

We assume the p tra,jectory gives the asymptotic beha-
(=) (-)

viour of A and B as z —» 00 . The Regge tems are4
P (-z) - B (2) 16TT‘M pq. o
o o ( ) )

Vi
A(t,z)= - (20L+1) r
R - 2 sin 7oL . 4M- ¢ \M*

(-z)+P ofz) 8 | -1 |
D R(® z) T u2 :in‘rroz,z ﬂ‘(?—") (&) (20)

where P(; 18 the derivative of the Légendre polynomial, The
normalization of the residues is identical to the normalil-
zation of the r (t) and r_(t) defined by Desai in Ref 4. We
~.can continue the F?oissart-Gribov formula to t:m; and

Jd = u* and use unitarity to evaluate the amplitude at this

point. We will find:

) ’ | (17)';

6

(19)
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u'* 2,‘ :

s —1_ r, (m%) _ _ T (me) _(2131')211’“&
- ap 'G'rr(mp) | 21Imgy,
[7] N
e _mg(MZN 1‘d A (m 2, -1x) x(-1x)
8mM \iPq (-1)ax &, "p TR St (21)
| X,
and . . -
1 ¥ m2) r (no) 21 Imo
- "* p —_ il S (21’1&)
L e1p /G'rr(sz) 21 Imey

it

M M2 o1 , ,
+ h—’;z(-iﬁ—q') ('1)‘1.",Bs(mp ’A_H) [Q OL*—i(-ix) - .Qu*_d-;x):}

]

where the bars denote absolute values of quantities that be—_ 

come complex for 'c<llM2 : N=-1N , -1p , and Z'—'-."i,x-; _ :

_ The contribution of the other J-plane singulérities ( the R
terms of Eq. (7) ) and other terms of order (1/N) and

| Im(q) have been dropped .from the right hand side of Eé;s.‘ |
(21) and (22) . To leading order in Im(®L) and (1/N) then,

the real part of these equations lead to the following sum

rules for r+(m’o2‘) and r_(m;) :
I?MMZ m 2) N |
2 . = /7, 2 A
r_\_(m,o )= - A 8‘7T2f5qp fix As(m/D ,-1x) Q‘(—ix)

X | (23)

o

and

(22)

17
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N | :
| - '-J-Mz B . | o o
.‘r_(mfp )=)\£7—T2 /dx Bs(mp ,-1x) ,[-1Q°(-1x)+ 1@4-1x)]4_“__i
: vX, : : i (24) :
‘where ' ' ' '
| 9T ImQL | '
A=e 8in (2 ImQL ln % Y/ (2 ImeyL)

s
-~

and for example,

-1qQ_(-1x) = arc.t'an(l/x) N

In order to test these sum rules;jwe saturate the~d135 ~

-eontinuity of the amplitu&e with the s- and u- channel TTN

resonances, We parametrlize these resonances as S-functions

~and include thé nucleon and all the establishediTN resonances

up to 2 GeV ( N corresponds to 2 GeV) . The masses, widths,
and inelasticities can be obtained from the most recently
available experimental Qata.s,

The resonances and their contribution to the sum rule
_ are 1isted 1in Table I: Also listed are the contributions of
several prominent resonances above 2 GeV to show the size of
these terms in the sum rule. (0f course they are not in--
cluded in the final sum, ) We set m =775 MeV , and

P

I’ .= 140 MeV, and obtain

P r(ny) = 12.6

r+(m 2)  :: 2.5

N
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 ‘Thesé'fesu1t§ ére not very sensiﬁive tovthe exaét value

‘6ffIm(CL) (or equivaiently]}o) ; they changevby only 10% if
we set[1 = 90 MeV. 'As in other calculations of the p residues
the ratio of r_ to r; 1is large, r./ r_ = 5.1 . Aé dis-
cussed in Section II, in order for most of our approximations
.'té be valid, cot y should not be much greater than one; W¢' 
are forced by the experimental data to choose N tb lie '
_befow_a GeV.. Thenvcotyy,;l.T , 80 that the intrinsic error L ;»
of the sum rule is at least Im(QL) cot y ~ .1 cot y c::vl;(%. '.
' The determination of T4 (m;)) frorﬁ this sum rule is about
three times larger than the form factor calculations quoted
by Desai (Dé_sai quotes the numbers r, (mP:l Y= 0.87 and
IL(ﬂlz) = 3.89 ). However, the uncertainties involved in
the models used 1n these calculations (for example,- the resé;n i
nance model in our calculation‘) are largé enough that the o
- exact numerical comparisons are not very meaningful,

| Comparison with the finite-energy sum rules 1eads to
much moré 1ﬁterest1ng conclusions. We ma& use the same reso;
nance model for A (t,s ) and Ba(t,s) in both sum rules. If
this model 18 a good’model, we would be able to use sum
rules of different phyéical content to derive restrictions dn
the free parameters of the model. The sum rule presented
here makes some use of direct-channel unitarity, and there5

‘fore,.it has a chance of differing wlth finite-energy sum

rules., It is almost obvious from Table I that our sum rule
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is nof equivalent:to the positive—mémentvsuh rules. Our
rule emphasizes the nucleon and low-mass resonances, but thev
rrincipal contribution to the lowest-moment finite-ehérgy
sum rule is the N(1688). The higher-moment sum rules
emphasize the higher-mass resonances evén more. |

There 18 yet a better check on the nonequivalence of-v
the two sum rules.i If the sum rules had the ggmg'content;‘f
- then a plot of gt(m 2) and m _ from our sum rule should be |
‘colncident.with the cufve from the fihite-energy sum rule;:
(If the resonance model is not perfect, then tﬁe curves
wbuld_only approximately duplicate each other.) If the h
sum rules have different content, the requirément of con; .
sistency within the model places bootstrap-like restrictioné."
on other model'parameteré. In this case, the only free
parameter is thef) mass, Our sum rule is not dependent
. enough on the exact value of Im(QL) to calculate it; the
finite-energy sum rule does not depend on Im(QL) at all.
Since there afe four sum rules and only three parameters

r,(m 2
[rtmo P

model,

) and m ], we also have one internal check on the

Thg F)residuesvare calculated from the finite-energy

sumrules‘using equations like

2 M N 2 | '
r_(mP) = -—2._77'—1—13_2" ]dx X Bs(mp s ~ix ), ’ (25)

X

o
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1 from Egqs. (24) and (25). From this plot m_,. 18 seen to be

about 900 MeV. Similar results are obtained for p+(m 2)

P

with m = 1040 MeV. This is consistent with the results of

the r;(mfjg) gum rules, because the r+(m 2) finite-energy

sum rule is a rapidly varylng function of m at m . ~900 MeV

P

. and 1s very sensitive to the exact parameters [or existence)

- of the more massive resonances. Thus, there 1s enough

internal consistency in the model so that we conclude that
.our sum rule has different content from the finite- energy
sum rule, and may even be used with the finite ~energy sum
ruleg to obtain restrictions on the model parameters.

Our sum rule together with thg finite-energ& sum ru1e '
and the resonance model of A;f‘énd By yvield r_(m 2) = 11,
r+(m'P2) ~ 2.5, and my= 900 MeV. It is difficult to attach
errors to these numbers, but in view of the intrinsic error
6f 15% in our sum rule and an 1ncoﬁplete model for A; and Bs,

an .error of at least 40% is reasonable. .

21

~and a similar. relation for r+(mf3 ). We plot :;(m' 2y 4n F1g.
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"~ IV. A MODEL OF THE D AND £, MESONS

‘ We consider a model of the T Tr—TTTramplitude in which ﬂ_ i

only the'f) and ‘fo resonances are included, The poles at

2 and at t = m 2 1ie on the leading Regge tra-

P f |

'Jectories for isoopin zero and one, respectively. We may  1'

t=m

then write the sum rule, Eq. {12), at each of these values

~of t. If we also saturate the discontinuity of the cross-

~ channel amplitudes with the-f) and f. , we obtain a set of L

two equations,

' 1 - a S
sin(0ty M43 In 2ny) -.:..\_“E oxtd 3 1y (2LJ+1)P14231)QL1(213) o

j M9 :
o (26)
where 1 and jJ both correépond to the p or £f . Other _

synbols are
2 2 2

uqi-;:_mi """l,L )
- 2 2 : » K .
N, = 1482 /(2042 ) | (27)
S AL T I

Also, m, , [ , and L, denote the mass, width, and spin ,

respectively of the fJ and f, x1J is a 2-by2 submatrix of

the 1sospin crossing matrix,

1/3 1
(28).

1/3 1/2

> » -
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and si 18 a ¢.m. energy between 1250 MeV and 1600 MeV. We .

set OL/P = Ol./f = 1 (GeV) 2 in the following c'alculations.h'_'l"'
Equation (26) is then two relations among the masses = - .
and.widths of the.f) and fo mesons. The sdlutions of these
equations can be sfudied numerically. The results are verY'
encouraging, considering that only the grossest features.of o
1T scattering have been included in this model. (For
"example, we have assumed that the imaginary part of the
I — O amplitude is zero up to t = fe.)
We search for solutions of Eq. (26) by écanhing over
values of the parameters 400 MeV.m <800 MeV, ‘
800 Mev < m, < 1400 MevV, and03<(I‘/1" ) << Due

to the factor sin y, the equation we are using 1s somewhat -

- nonlinear. Although this nonlinearity serves to exclude |

some of the solutions, it cannot give an absoluteAscale

o

increases from 500 to 700 MeV as ( f'//q:) inereases from

for the widths.  In one get of solutions we find that m

0.3 to 1.5 and as m, decreases from 1200 to 900 MeV. To -

b
completé the bootstrap, we usevthe finite-energy sum rules
which pick out the solution: mP = 540 MeV; Mp = 1150 MeV;
and (I"/l;)) = 3. |

Another disjoint set of solutions contain the physlcal
masses of the f) and the f meson but give a width of about
350 MeV for the fo. We find that we can bring the solutions

_ of Eq. (25) into agreement with experiment by either of two
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: mechanisms;:‘We can fitAthe experimental parameters:by"’.
inserting a scalar meson. The scalar meson is broad with
a mass of about 500 MeV. Also, simple models for the

threshold bring the results into good accord with:exberiment.‘3

- b Ay— At Aoy T ey S 4 e S ge—— = ¢
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V. THE BEHAVIOR OF THE SUM RULE NEAR THRESHOLD
In this section we consider the amplitude for the o
elastic scattering of splinless particles and study the be-

havior of the sum rule near the elastic threshold (t c:hm2).

. Since we will be concerned with the t — 4m2 limit of Reggé_‘

trajectories and residues, we will work with the reduced

quantities b(J,E) and 7 (E) defined by,

" J
a(J,E) = E ©b(J,E)

| A oy (29)
QE) = & Y (E)

where,
Esa = tM-nc o (30)
The discontinuity equation arbund the eslastic ﬁhreshold

can be written as,
B(Z,E) - b(3,E,) = 21p (E/5,)° b(3,E) b(3,E,)  (31)

In the following, we will not display the scale factor E
explieitly, but whenever we speak of the small magnitude of

E , 1t will be understood that the scale 1s set by the factor

E, . Eq. (31) can of course be continued to the entire
E-plane. If b{(J,E) has a pole at J=¢L(t) , then b(J,E5)
will have a pole at J==uﬁ(t) , and Eq. (31) will imply,

-1/( 21p %2 ) = b, ,E) | (32)
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For the sake of simplicity, we will again restrict ourselves

to positive E; our re'sultsvwill, also hold for small negative

* ¥,
values of E. Thus Ep= E , and ol_z(E) = & (E) . Fol-

lowing the same steps as in the deivation of section II, for

any given positive value of E we obtain the sum rule,

"

- sin ( ImchnE )=Re I

+ Re Io+ Re I3

Re OL+1/2 1 |
with,
, . | |
e = S o
L= fﬂs(t,s) Qux(1+8/2E ) ds/2E (38
e | | |
A 60 o | |
o= — jfl’u* fRs(’c,s) (1 +8/2E) ds/2E (35).
Re ¥(E) sin y' [ Im Y (E) ,
. Re 12 - - X 1+ 'X cot yl
~ 2 ImqL Re ¥(E) =

+ 2¢, Im( q,) cot yfi-o[lm( u,)zji] +O('£J"> (36)

| y =2 Im() ,[n 8,
and o

* oo
E—GL

Iy = ﬁz’s(t,s) Q (1 +8/2E ) ds/2E (37)

S,

.



When E 1sfnbt_very close to zéro{ so that im(ct) 18 not
very small, a moderately large.s' leads to a value of cot y'_
of order one. Since Im Y (E)/ Re Y(E) :15vof order Im(oL), -
we may neglect the terms inside the bracket compared to ohe  ‘"
and obtain the approximaté sum rule we héve used in the pre-f

vious sections., However, as E—0 ( as we approach the

threshold ) Im(oL) necessarily goes to zero and in order to - L

keep cot y’near one, we would have to 1ﬁcrease 5, to ex—'_V
trehely large values. On the other hand, if we wish éo res-
trict ourselves to the intermediate values of 8, and still
use Eq. (33) to calculate the real part of the residue

" function, we would have to estimate the magnitude of the
quantity Lm}{(E) / Re){(E) for E near zero .' For s, finite ;

and Im( L) ~ O , the sum rule becomes,

I+ '

Re(l +1/2 Im(eL_)‘[nE =Ry (5) jns|+c1)
2E

I T - e
_'_“_75_/@2_4.0'-_1",(@,)2]@(1/)«) ~ Rel; - Re I3 (38)

2 Im(qL)

In order to study the behavior of Eq.{38) as E—» 0 , we need
the behavior of (/ (E) and 7Y (E) near threshold. This be-
havior 1s derived from the discontinuity equation for

vl (5,8) ©,
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T J+1/2 R
v ia,E) - v eLE) = -2t (B) /e - (39)
The quantity Y(J,E) defined as,

- ) BN ER Y- -
Y(J,E) = /gﬂcos(ﬁTJ) b 1(J,E), - (-E) - (so)
can be easily shown to be free of the cut at the elastic.
threshold ( E=0 ) . A Regge pole occurs when,
; ' J+1/2 ' ~ o
Y(J,E) 4+ (-E) = 0 o , (41) -
The residue of the pole, ) (E) , 18 j;‘cosTnx times the
coefficient of (J- 0L ) 4n the expansion of the left hand
side of Eq. (hl) around the point J =q

(5) = Jt cosTTaL(E)
g _%z (a(E) , E ) +[n (-5) (-pyME)F1/2

(42) -

(41) can also be expanded around the point (cm(o), 0 )
to give the threshold behavior of OL(E) . Actually, only
an expansion in the variable J is needed. It will be much
simpler, although not absolutely necessary, for our purposes
(we are, only interested in the behavior of ImQL) to expand
around the point ( O, ,E ) defined in the following way:

From Eq. (41) 1t is clear that Y( ¢ (0) ;‘0 )=0 . If this
zero is simple [a simple pole of b(J,E)] , then for small

enough E , there exists a real point C% near to o (0) such



, thaﬁ_ Y( oL ,E )= 0 . We will expand around this point and
write, | '

Y( (E) , E) =¥;( a(B) - a,) + YJ(u(E) -, )2

4 oeeeese o ' (43) |

-"Note that o, and the coefficients of the expansion are all
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real functions of E which go to their threshold value smooth- ' .

ly as E—0 ., (We can make them as close to their E=0 value. .

 as we wish by making E small) . The function L (E) near

) E =0 18 thus the solution of the following equation:

oL(E)+1/2
a(E)=q, - YJl (-E) )+ +YJl Yy ( oc(E) -u)

I | (m )

~In the foilowing, we wlll use as our \expansion parameter the ‘_

~

quantity C defined as,
0L+1/2

= ¥;' cosTrey, (E) ° - ()
Therefore, ' o ”
o(E)= oL, + 1 ( e;iﬂ&°/ cOSTTGLjO([nE (;2)
_ 2
ma® = § + O(lEl) (46)

" Substituting the expansion for OL(E) and %—ginto Eq.

(42), we get the following expansion of Y (E) in terms ofc ,



L . L ’ _'_i’]TeLo
X(E) \/‘Y cos’fT'oL {14 °

cosTT L,
-21 YJ YJ + 1 [nEJ-&- O(/{nE C )] | (47)
'I‘hen, the quantity -Im’X(E)/2Im(oL) occuring in Eq. (38)

is given by ,

Im Y (E) - -1 /
——f}-(__: - /;YJ cosTTCL [’!Ttan’ITOL ~+ ’ITYJlYJ
2Im(QL) ,

Jox

Substituting this in Eq. (38) and using the fact that
\/;Y; cOsTT (L, = Re'X(E)+ O g), we obtain,

. Y. Re'Y(E) 7
0 = Re ¥ (E) [jns' +e¢, -TtanTq, - W‘/%., c:Zn('oi ]

- Rel, - Rel+ Q(C) + O(1m) (49)

Thus in the limit of very small Im{ QL) but finite s, an
unknown quantity s YJ/', has appeared in our sum rule which
no longer can be neglected. This quantity 1s actually
closely related to the background term in b(J,E). For J
near (A we can write b(J,E) as,

¥

J- Qo

b(J,E) [1 + h(J—Ol.)+---] (50)

C | -1mreanmry,

} + Olr) ey

. .
N e T e

e

o g A e




Substituting this in the definition of Y(J,E) s Eq. (40) ,
and differentiating twice, we find,

Re Y(E) ¥y = -Wﬁ"sinﬂuo - /:cOBTTGLO-lh‘PO(c)',‘(Sl)_.

~ Therefore, the sum rule has reduced to,

0 = Re ¥ (E) [/(nsl + cz-\-h} -Re I, - Rek I3+O(C )

+ O (1) (52) -
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It is now possible to see explieitly from Eq. (52) that _.

in this 1imit of Im((L) =~ O and s, finite, the sum rule

has become an empty statement, since Eq. (52) is merely the

" definition of the background term h in terms of the Froissart-

Gribov definition of the partial wave amplitude, and could
have been immediately written down without any use of two

‘ body unitarity. In short, the resﬁltsof this section indi-
cate that at least for this sum rule, when the limit ImQL—>O0
is taken, all the content of unitarity ( and thus any non- |
linearity in the equation ) is lost, and one 1s left with

a trivial definition of a background term.

We will close this section with some rather vague re-
marks about the background. If we still wish to use Eq. (52)
to calculate ){(E) , or if we wish to estimate the first
correction to the approximate sum rule of the previous sec-
tions, we should calculate the quantity h. One possible

model to use for this calculation i1s an N/D model. It is
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easy to see that if we write b(J,E) = N(J,E)/D(J,E), and -
expand'this as in Eq. (50) , the quantity h is given by,

n:lwku,mzuﬂu,m | o wm'~

/ - . . ' S
- where N ( O ,E) is the derivative of N(J,E) with respect to -

J evaluated at J = ® . It seems plausible that even -
though an N/D model may not lead to the correct value of

" the positioﬁ and the residue of the pole ( which would 1hf
volve the accurate calculation of both N and D )_, a few | :
iterations of the integral equation fof N may give a goodi}:: h
- estimate of the background term h . In the case of the.f) 
residue in the 77 TT— NN reacfion, the quantity Re Iy for
E~0 1s very large, because the nucleon pole glves a very
large contribution. Thus if we neglect h and use the sum |
rule to calculate ri(Ecso) we obtain a reéult about ten |
times larger than what we expect from Regge fits for tséo.uli
This is because the left hand cut of b(J;E) is very close to.r
E=0, a fact that 18 indicated bj the large contribution of
the nucleon pole. The crudest estimate of the function ' |
N(J,E), but certainly not a numerically reliable one, 15 ‘the

sum of the Born terms, namely the quantity I In fact

_ i -
(31,/ 33 ) / I, has the correct sign and the ‘correct order
of magnitude to bring the value of r,  closer to the expected

. value. These results are of course only qualitative , since

B T e
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. Table I. Contribution of each resonance to our sum rules,

1 -~ Eas. (23)and (24) , and to the finite-energy

©. sum rule, Eq. (25) . The numerical values of

".. the masses, widths, and inelasticities are found

“ . 4n Ref. 5 . A value of g*= 14 was used for the
TN coupling.

Eqs. (23)and (24) Finite-Energy

' Resonance ter,2y , S Rute T,
‘ - Identificatlion r, r_ r, r_
- Nucleon 2.70 ~ 8.53 . .05 -

- N(1470) . By, .09 | 30 .09 .43
o N(s8) - by . 72 28 v
N(1550) 83 . .01 - .,003  .0L .01 "
N(1680)v ft',;4 Dyg .10 j :'  -.19 .29 -.55 

N(1688) - . Fjy . WM 15h 131 459
N(1710) - . 8y, - .02 - .01 .08 .04
A(1236) © P33 S W -.25 .76
a(164%0) S3y -0  .-.003 -.02 -.0l
A(1920)  Fy -.12 .25  -.97 1,50
Total | 2.5 12.6 . .87  8.66
N(2190) Gy i11 .36 2,02 3.79

D(2420) - H3 13 -.05 A1 -1.66 1.79
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~__FI(}URE' CAPTION

’ fFig:i The’f)kresidue, r (m 2), 13 plotted as a function

1.

of'miili Curve (a) results from our sum rule, Eq. (24)

h* f1n1te—energy sum rule,}Eq. (25), produces curve (b) In,i

Table I1; the numerical values of the parameters are listed

::vin Ref. 5,

~both calculations we have used the resonances listed in ;f‘

he
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