
Lawrence Berkeley National Laboratory
Recent Work

Title
UNITARITY AND FINITE ENERGY SUM RULES

Permalink
https://escholarship.org/uc/item/4q67k758

Author
Arbab, Farzam.

Publication Date
1968-04-21

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q67k758
https://escholarship.org
http://www.cdlib.org/


TWO-WEEK LOAN COpy 

This is.Q library- -Circulating Copy 
which m~y .be borrowed 'for two weeks.' 
for a per~onal r,etent,oncopy, call . 

_ ,Tech. Info. Division, Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed "to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents oUhe University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

AEC Contract No. W -7405 -eng-48 

UCRL-18232 

UNITARITY AND FINITE ENERGY SUM RULES 

Farzarn Arbab 
(Ph. D. Thesis) 

April 21, 1968 



" " 
" 

1 , 
, ;. 
'i 

) 
'j 
" 

" , 
" 

" 

i 
l~ ..• \ 
;1 . 
.I 

,~ 
j , 
1 
" 

~ .' 

~ 
~ 
<j 

. ~ 
!~ 
'" .~ 

~ 
·1 
~ 
1 
:1 
.~ .: 
{ 
'i ~ 

:.; I 

-iii-

UNITARITY A1~ FINITE ENERGY SID1 RULES 

Contents 

Abstract 

I. Introduction • '0 • • • • • • • • • • • • • • • 

II. Derivation and Discussion of the Sum Rule • • • 

1 

6 

III. Calculation of P Residues in 1T 1T ~ NN • • • • 14 

IV. A Model of the p and fO Mesons ..... . . . 22 

V. The Behavior of the Sum Rule near Threshold .. 25 

References . . . . • .. .• . . . . . . . . . . 34 



j. 
\ 

-v-

UNITARITY AND FINITE ENERGY Sm1 RULES 
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ABS'l'HACT 

Unitarity, analyticity, Re~ge asymptotic behavior, and 

a resonance approximation are combined to derive a new sum 

rule. The sum rule is very convergent; the contribution of 

high-mass resonances is suppressed by a decreasing weight 

function. The spin-flip and non-spin-flip residues ofthep 

meson in the 1T 1T ---> NN amplitude are evaluated at the mass 

of the p and in conjunction with the first-moment finite-

energy sum rule a calculation of the p -meson mass is 

performed. The results are in good agreement "ii"th experiment. 

The sum rule is then applied to the calculation of the p " 
and fO resonance parameters in the 7T Tr ->1T1T amplitude. A 

discussion of the behavior of the sum rule near the elastic 

threshold is also included. This discussion may give some 

insigh~ into the nature of the approximations involved in the 

derivation of the sum rule. 



INTRODUCTION 

Reoent1y the finite-energy sum rules have been applied 

to the calculation of strong interaction parameters and, 

to within· the errors involved in the approximations, the 

results have been in agreement with experiment. It has been 

conjectured that these relations may actually provide a new 

approach to the bootstrap problem, and a few attempts 1n 

formulating such an approach have met with some success. l ,2 

The finite-energy sum rules consist of an infinite set 

of equations which relate all the positive and negative 

moments of the discontinuity of the amplitude over a finite 

energy region to the Regge parameters. In pract1ce, however, 

only the f1rst few pos1t1ve moment sum rules have be.en 

utilized, because the h1gher moments emphasize a higher 

interval of the energy spectrum and the negative-moment sum 

rules contain the value of the amp11tude, or one of its 

der1vat1ves at some po1nt, as an unknown constant. It would 

be useful to have sum rules in which the weight funct10n 

decreases without introducing subtraction constants, since 

even the low-positive-moment sum rules already put an 

uncomfortable emphasis on the higher energy behavior of the 

discontinuity of the .amp11tude. Furthermore, the finite-energy 

sum rules used in a bootstrap scheme only provide linear 

equations for the widths and as such can only determine ratios. 

1 
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Therefore, it would also be useful to introduce some non

linearity into these equations. 

In this paper, we will use the two body unitarity 

equation in the complex J-p1ane in. addition to analyticity 

and· Regge behavior to derive a sum rule with the decreastng, 

weight functions QJ(z). In order to apply this sum. rule to . . 
the calculation of high energy parameters, however, we will 

hav~ to introduce certain approximations •. One of the 

possible applications of finite-energy. s~ rules to the. boot

strap problem is to use the sum rules for values of energy 

equal, to the masses of the resonances under consideration. 

The first few sections of this paper are concerned with such 

a problem. In order to use the sum ru1eein this context, we 

will make a small-width approximation (but not the usual 

zero-width approximation) which we will discuss in detail. By 

a small-width approximation we mean the width of the 

resonances we consider are small enough that the Breit-Wigner 

ronnu1a is reasonably accurate, but we do not assume Im( at ) = O. 

Finite-energy sum rules in general contain a parameter N, 

the upper limit of the integral of the imaginary part of the 

amp1itud7 multiplied by aome weight function. In order for 

these aum rules to be useful in bootst~ap-type calculations, 

N must correspond to the "intenned1ate energies,"so that the 

integrand may be parametrized by a sum of resonances. For the 
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sum rule Pl'esentedhere, the value of N depends on the 

magnitude of.lm(~) •. If N is to correspond to intermediate 

energies, 1m (CL) oan not be very small. In the' first few. 

seotions where we are oonoerned with bootstrap calculations 

our results depend oruoially on the fact that experimentally,· 

near the mass of many prominent resonances, Im Cot.).~ 0.1 

and not much smaller. However, 0.1 is small enough to allow 

neglecting terms of order 1m (~) compared to one, without 

causing a very large error. Of course, since in these calcu

lations we do not take the limit 1m (eL) ~ 0, we must be 

careful that the opeft.ioient of 1m (CL) in such terms is not 

much larger than one. For example, when Im (CL) is multi

plied by 2/n,,(2N), as is the case of this sum rule, nonlinear 

terms in 1m (CL) should also be included. The small-width 

approximation used here does introduce an intrinsic error of 

about 15% into our calculations. 

In Section II we will give the derivat10n of the sum 

rule and discuss the relevant approximations. _n Section III 

we will apply the sum rule to a calculation of the non-spin

flip and spin-flip residues of the p trajectory at t = mp 2 

in the 7T1T -... NN scattering amplitudes. The nucleon plus 

all the established ?TN resonanoes below 2 GeV c.m. (center 

of mass) energy constitute the input for the sum rule. The 

dominant contribution comes from the nucleon. Sinoe the 

3 



identical model can be applied to the finite-energy sum 

rules, it, is interesting to ask whether this. sum rule has' 

dynamical content beyond that contained in the positive

moment sum rules. The numerical calculations indicate that 

they have very different content, and therefore, our sum 

rule may be used in addition to the finite~energy sum rules 

to restrict further the resonance parameters of the model. 

In this case, we have four equations for three unknowns, so 

we have a check on the internal cons1stency of the model. 

The calculated mass of the p is about 900 MeV. 

In Section IV a simple model of 7r7r~1T7r scattering 

in which the amplitude is dominated by the p and fo reson

ances is discussed. Again reasonable constraints on the 

resonanoe parameters ,can be obtained. Together with the 

finite-energy sum rules, these equations provide a nearly 

complete bootstrap system. The slopes of the Regge trajec

tories {which are arbitrarily set at 1 (oeV)-2] and a scale 

for the resonance widths cannot be determined from the 

equat1ons. (Our sum rule 1s not nonlinear enough in 1m (ct) 

to obtain an absolute scale for the resonance w1dths.) For 

such a ~1mple model, the determined values of the masses 

and ratio of the widths are quite reasonable. 

In Section V we will discuss the behavior of the sum 

rule near threshold. We will see how 4 a background term 

, 4 
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,becomes inoreasingly more important' as we~pPr6~ch the, 

,,' ~. ~ "',,J 

'. '" .. ' 

threshold and how the approximations which hold f~r lm(~) ~O~l 

break down as lrn( Cl. )-+ o. We will discuss the possibility ." 

of calculating the background term from an N/D model and thus 

using the sum rule'to calculate residue functions over a 

wider range of their argument. 
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II. DERIVATION AND DISCUSSION OF THE SUM RULE 

Let A(t,z) be the amp11tude for the elast1c scatter1ng 

of two sp1nless part1cles for wh1ch t 1s the square of the 

c.m. energy and z 1s the cos1ne of the scatter1ng angle 1n 

, the t-channe1. We are cons1dering the sp1nless , elastic 
.-.-.",. 

problem to simp11fy the d1scussion'of this section. In the 

6 

next sect10n we w111 genera11ze our results to the case of :1.f, : 

1nelast1c, amp11tudes w1 th sp1n ( for example 1T1T- NN). 

The var1able t, however, 1s restr1cted to the ,reg1on be-

tween the lowest threshold and the next 1mportant one through- . 

out th1s paper. The asymptotic behavior of A(t,z) as z--oo 

1s assumed dom1nated by the lead1ng t-channel Regge polewh1ch 

we denote by R(t,z). Although the functional from of the 

Regge term 1s somewhat ambiguous, we w1ll require that R(t,z) 

reduce to the correct resonance formula when ~ (t) is near 

an even (or Odd) integer. Other mod1ficat1ons of R(t,z) do, 

not affect this der1vat1on, and we choose the exp11cit form 

where 
\ 

R(t,z):= 17""(20(. + 1) /J (t) 

refer to s1gnature. 

p~(t) (-z) ±Pet(t)(Z) 

2 s1n1TCL(t) 

The part1al wave un1tar1ty equat10n 1s wr1tten as, 

( 1) 

(2a) 

This equat10n can be continued to the complex J-plane. For:t 

, 
I' 
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; 
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real and above the threshold , Il

J
{t) and 8 J (t) are cont1tued 

... .... ± ±:k '* 1nto the functlons a-(J,t) and a (J,t)=a (~,t). Equat10n 

(2a) becomes 
-+ /+ +.1+ 
a- (J , t) - a - (J , t) :: 21p a - (J , t) a - (J, t) (2b) 

where ± aga1nrefer to slgnature, and t 1s In.ltsphys1cal 

reg10n. The resonance pole d1scussed above also corresponds 

to a pole of a (J, t) at J = 6L. If Im( ct) 1s small compared 

to the dista.nce to other s1ngularities, then i±(J,t) may' 

also be represented by a single pole plus a background-,of 

order Im(ct). Equation (2) then'1mpl1es the rela.t1on 3 

2 
P (J:: Im( CL) +O[Im( CL)] (3) 

Slnce Im ( cL) is real J the phase of f1 is of order Im ( C(. ) , 

2 
Im({J) = o [Im(ct )] (4) 

Let a. (t) be the posi tlon of the lead 1ng Reg§e pole • ... 
a/-{J,t) has a pole at J=OL*(t). With the Froissart-Gr1bov 

+ definition of a-(J,t), Eq. (2) implies 

(5) 

where 
+ 

A; ( t , z) ::;; [A ( t , z + 1 E ) - A ( t, z - 1 E ) J /21 

:t [A(t,-z +iE ) - A(t, -z - 1E )] /21 ( 6) 

7.-
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Sincetheir1tegra1 in Eq. (5) is divergent for Re(~) > Re(J),. " 

,it should be evaluated for Re(~) < Re(J) and then continued 

to . J::: CL* 
~ 

If A-(t, z) is approximated to any preassigned accuracy' 

by its leading Regge trajectory for zhN, we may rewrite 

Eq.; (5) as 

-1/2iP := 

a:> 

" lim? .1..fdZ 
J ~f::!i* 7f 

N 

where R is the contribution of the othe~ J-plane singula-

rities . 

. We will show in the rest of this section that the real·, 

part of Eg. (7) may be applied 8s a finite-energy sum rule 

to the calculation of some high energy parameters. The im

agina~ part of this equation also constitutes a constraint, 

but with a limited knowledge of As(t,z) this constraint turns 

out to be not ve~ useful. As mentioned in the introduction, 

one possible application of Eq. (7) to bootstrap-like calcu-

lations, is to consider the sum rule at the mass of a resonance 

(t:: M2 ). In this and the next two sections we address our

selves to such a problem. In order to put Eq. (7) into a 

useful ~orm however, we will make certain approximations. The 

. .' 
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·f1rstapprox1mat1on 1nvolves the quant1ty Nand 1s s1m1lar 

to the approximat1ons made in finite-energy sum rules. In 

effect, Eq. (7) is expanded in powers of (lIN) ( often frac

tional powers) and the higher order terms in (lIN) are then 

neglected compared to terms of order one. Of course, such an 

approx1mation becomes more valid as the magnitude of N be

comes larger. However, an important criterion for the use

fulness of such equations is that N be in a region below 

which As(t,z) may be parametrized by s- and u-channel reso

nances. Thus in practice N is not taken to infinity , but is 

restricted to the intermediate region. In general such values 

of N are large enough to allow neglecting terms of order l/N . 

compared to one. However, in the case of our sum rule there 

exists another small quantity, namely Im(CL) , and we must 

. be carefull to ensure that the quantities we finally keep in 

our sum rule are of order one in both l/N and Im(~). In the 

rest of this section we discuss in detail this double expan

sion and the validity of certain approximations. The result 

of these discussions will be that in order to separate the 

quantities involved into terms of different order with res

pect to ,Im(~) and lIN , and then neglect the higher order 

terms, the quantity cot( 2ImCtRn2N ) should not be very large. 

In other words, in certain terms of our expansion, Im( CL) and 

N will occur in the combination 2ImCL in2N • We will require 

that the cotangent of this quantity should not be much 

9 
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J ' , 

greater than one.' PorN 1n the 1ntermed1ate region, 1t turns 

out that th1s 1s onlY'poss1ble 1f Im{CL) is not much smaller 

than .1 • 

We well now engage 1n the detailed discussion of our 

. approximations. We need to consider the 1ntegrals 

co 

lim *' }dZ P (z) QJ'{z) = 
J~ CL OL 

N' 

N 

lim ~fdZ P (z) 
J~ CL CL 

1 

( - sin y + i cos y ) 

2 (2ReCL + 1) 1m ( CL) 

o (lIN) 

sin y+ i{l-cOB y ) 

, 2( 2Re CL + 1 ) Im(Ol,) 

+ 0 ( Im (). )] + 0 (lIN) 

and their sum 00 

11m rz P (z) QJ(z) 
J '*' CL. --:,. Cl. 

1 

1 

2 (2ReCl. + 1) Im( CL ) 

w1th 

y = 2 1m( QL) fn(2N) and, 

C
t 

:.1/{2Reet+l) + t/J ( CI. + 1/2) tj;(C£, + 1) 

(9) .. 

where ~(Ct) is the logar1thmic der1vative of the f-funct1on. 

The 1ntegral in Eq. (8) 1s proportional to the Regge 

integral of Eq. (7) • Since exper1mentally the Regge contri-

but10n approx1mates the average magnitude of the imaginary 

, 
~: 

t , 
,~ 

L 

. i, 
j 

I 
I 

, t . i 
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part or ,the amp11tude tor small values of z (or s) 1, the' 

1ntegral 1n Eq. (9) can g1ve a good est1mate of the s1ze of 

the f1rst 1ntegral 1n Eq. (7). 

From Eq. (1) the exp11c1t express10n tor Rs(t,z) 1s 

4-

R;(t,z) = 1T(20l.+ 1) {let) Pct(z) tor r1ght s1gnature, 

o for wrong s1gnature. ' 

(10) 

, Subst1tut1ng th1s 1n Eq. (7) and w1th the a1d of Eq.(8) we 

obta1n , 

,Re [,8 (M2)] 

1m( ct) 

, ,'.' 

s1n y , 

+ 2c
1 

Im( eLl cot y+ O(l/Nl + 0 (ImCl.lj 
Nco' 

Re [ ~}z A;(t,zl QJ(Zl] + Re [~fz Rs(t,zl Qd'(Z~ 
Z N 

o , (11) 
where c,. = c, -+ 1/(2ReCL+1) 

The f1rst approx1mation ,concerns the left hand side of 

Eq.'(ll) • Eq. (4) implies that the quantity 1m({l)/Re({1) 

1s of order Im(CL}. Therefore it cot(y} is not much greater 

than one, we can neglect the two terms 1m(j1)/Re{jS) co~ y, 

and 2c Im(ct} cot y inside the bracket. The left-hand side 
:l. 

11 
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\ 

will then be equal to [Re ( (l) / 1m (a:) ] sin y. . When cot y 

is not very large ( sin y is not small ) this quantity is of 

order one, s1nce from Eq. (3) Re«(J) /Im«(1) 1s of order one. 

The magnitude of the second integral on 'the r1ght of Eq. 

(11) can be estimated by the contr1but1on of the next lead1ng 

s1ngular1 ty 1n the J -plane. If C:L 2. and {] 2. are the pos1 t10n 

and the res1due of the s1ngular1ty, then th1s contr1but10n 1s 

(')2/ N(QL-. ~2) of order fJ. • As 1n the case of f1n1te-

energy ~um rules, for large enough N this term is much sma1-

1er than the left hand side. However- , in order to com-

pletely justify neglecting this term , we must ·s,how that 

the first integral on the right is also of order one. As 

mentioned before, the magnitude of the latter ,quantity can 

be estimated by considering the integral of Eq. (9) •. As N 

is increased from its minimum value, this 1ntegra1 starts 

from zero and grows in magnitude. For some value of N 1ts 

magnitude actually becomes comparable to that of the 1ntegra1 

in Eq. (8). This condition is realized when cot y ~ 1. 

We can thus see that cot y is a measure of the accuracy 

of our approXimations, and the condition cot y ~ 1 g1ves 

the desired relation between Nand Im( CL.) • If Im( CL.) is 

very small , cot y ~ 1 demands an,. extremely large N. How

ever, for the experimental values of Im( QL) ~ 0.1 , this 

condition is satisfied when N ~lO , which corr( 'Jponds to in-

12 
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termediate energies when t is in. the resonance region. The 
" 

,next oscillation of cot y occurs for a very large value of 

N and does not concern us here. 

Including the above approximations in Eq.(ll) we write 

our sum rule in the final form of Eq. (12), correct to 

'leading order in lIN and Im( ~) 

N: . 

sin(2I~c:ig";2N ) = 2 p(M2 ) Re, [ir fz A;(M2,Z) Qcl(Z~ .... 

, Zo" . J(12) 

The successful calculations with the. finite-energy sum 
~, ' - ' 

rules suggest that for z(N , A~(t,z) may be approximated by 

s~ and u-channel resonances, even though t is outside the 

ellipse of convergence of the partial-wave expansion in the 
4- -

sand u channels. We will parametrize A-(M2,z) by a sum of s 
resonances and apply Eq. (12) to the calculation of some 

parameters in the 7r 7r ---'" NN and 7r 7r -+7r 7r processes. We 

will use 8-functions for the s-and u-channe1 resonances 

for the sake of simplicity. When compared to the Breit

Wigner formula, this approximat1oncauses only a 1% error 

for Im{ CL)< 0.2 • However, it should be emphasized that by 

using 8-functions in the right hand side of Eq. (12) we 

will not contradict the previous statement that we do not 

take the limit Im( CJ..)~ O. As is clear from the discussion 

of this section, the condition 1m( CL) =f=. 0 is crucial to jus-

13 



't1fy1ng a f1n1te value of N 1n Eq. (12). The correct para

metr1zat1on of As{t,z) for t above 1ts threshold 1s one of 

the major unsolved problems 1n the app11cation of fin1te

energy sum rules to the bootstrap problem. ( Some d1scus

s10n of this question can be found 1n Ref. 1) • In this 

paper, we will take the success of some calculations with 
-, 

finite~energy sum rules 1n which As(t,z) is parametrized by 

a sum of zero-width resonances as an indication that such a 

parametr1zation may be reasonable. This problem which is 
" 
probably the source of the greatest uncertaint1es in the 

numer1cal results certa1nly deserves a separate and tho

rough invest1gation. 

$> •• ,', i! , -, '::' ,: .. ~. 

'. 
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III. CALCULATION OF P RESIDUES IN 1f 1f --.l> NN' 

The derivation of sum rules like Eq. (12) for inelastic 

amplitudes with spin contains no essential complications. 

rThe procedure, which is similar to that for the spinless elas

tic case, is : (A) substitute the fixed-t dispersion relation 

into the partial wave formula (i.e., derive the Froissart

Gribov formula); (B) continue to J -= CL* after introducing 

the leading Reggepole; (e) use unitarity to evaluate the' 

* . amplitude at J~ ~ jeD) analyze the resulting equation as in 

section II. There is only one modification of the basic for-

mul~, Eq.(7) If an inelastic amplitude is being considered, 

the left hand side of Eq. (7) will be -1!2iP times a ratio 

of Regge residues. If 1 and 2 label two communicating chan

nels and t lies between the thresholds of these channels (1 

corresponds to the lowest threshold) , we can write the 

unitarityequatlon as 

~ It ~ *,' 
a (J,t) - a (J ,t) = 21p a (J ,t) a\l(J,t) (13) 

12 12 . 1\ 

Aga1n, if there 1s a pole at J =~ J Eq. (13) implies, 

-1 / 21p[ ;(t) / !?~l(t) ] = a,l. (~~ t) (14) 

However, in ourapprox1mation the imaginary part of the rat10, 
:4c ~ /J. (t)! fI(t),11s proportional to the phase of the residues, 
II ~2. 

14 
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which is of .order Im( fY..) • Consequently , it. can be neglected 

compared to terms of order one. 
\) 

Let us now apply this procedure to. the spin-flip and non

spin-flip amp11tudes in the 7T7T ~NN channel and calculate. ' 

the p residues. The t channel is 1T1T --+ NN, the usual 1nva

riant amplitudes are A and B, and someuseful kinemat1cal fac- .. ' . 

tors are 

and 

I 
, i'l. 

2p =- (t-4M2 ) 
'2 ~ 

2q =. (t- 4 fL ) ~ 
6. =. (t - 2f.L2 

s+.6. z ::. 
2pq 

x. =. Iz I , 

1/ = 2M 
s + l:::. 

2. 
4M - t 

, 

2 - 2M ), 

. (15) . 

The nucleon and pion masses are denoted by M and f.L ' respec-

tively. The value t = m p 2, 1s below the .NNthreshold, so 

that p and z are both pure imag1nary (z= 1x ) • 
I 

The amp11tudes A = A + l/ Band Bare proport1onal to the 

he11city amp11tudes in the t channel:· 

T+(t',z) :::. A(t,z) + 'J/ B(t,z) 

(l6) 

where 9-t- 1s the C.M. scattering angle, and + and - .refer to 

15 
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the++ and 4- - heli~ity ampli,tudes. The isotopic-spin pro-__ 

jections are 

A-) - J..-( I I.::.J.. 
A:: A- '2 

3 

I 3-
I =---

A 2) , (17) 

and a stmilar relat~on for B. The (-) amplitudes are pure 

I -= 1 in the t channel. The partial-wave un1tar1ty relation 

16 

for T +(t,z) with only the two-p1on 1ntermed1ate states are _ - . 

(18). 

_where T
7T

(J,t) 1s the ampl1tude for1T1T-+7T7f . 
, -

We assume the p trajectorY g1ves the asymptotic beha

viour of A
J 
(-) and B ( - ) as z ---+ 00. The Regge terms are 4 

, 
AR{t, z)= -7T(2OL+ 1) 

I I 

Pct.(-z) - Pct.{z) 

2 sin 1TCI.. 

Pct.( -z) + POL{ z) 
B (t, z ) =-7T --:::;:~---==---

R 2 s1n 1TCI. 

./ 

167rM (pqjCL 
:1 -y r+ (t) 

4M - t M _ 
(19)' . 

(20) 

where POL is the derivative or the Legendre polynomial. The 

normal1zation of the residues is ident1cal to the normali

zation o~ the r+(t) and r_(t) defined by Desai 1n Ref 4. We 
-,2 

can continue the Froissart-Gr1bov formula to t = mp and 
~ 

J = CL and use un1tar1ty to evaluate the amplitude at th1s 

point. We w1ll find: 

I .-0-

\ 
I 

J~ 
- r 

-I. 
f.--
t
r 

! 
r, 
I 

_1-
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and. 

21Im~ 
(21N) 

Q *(-1x) 
~ 

, 21 Im& 
(21N) 

(21) . 

[ Q ~ (-1x) 
CL -1 

Q * (-1x)l 
CL-+l ' J 

(22) 

where the bars denote absolute values of quantities that be-
. 2 

come complex for t ':::::4M : N = -iN , p::. 1p , and z = -1x. 

The contribution of the other J-plane singularities ( the R 

terms of Eq. (7) ) and other terms of order (lIN) and 

Im(.C() have been dropped from the right hand side of Eqs. 

(21) and (22) To leading order in Im(CL) and (liN) then, 

the real part of these equations lead to the following sum 
2. 2 

/ rules for r+(m p ) and r_(mp ) 
. 2. 2 N ' 
2 -1 (4M- mp) f I 2. 

r (m )::. - A 2 dx As(m '-'ix) ;. p 8'Tf pq P 
Xo 

and 

Q, (-1x) , 
(23) 

17 
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G 

where 

, [ - 1Qo( -1x) + 1QJ -1X)]' 

(24) 

7r ImC1 
A. -= e s1n (2 ImCL In 2N ) / (2 ImCL) 

and for example" 

-iQo(-1x) : arctan(l/x) • 

In order to test these sum rules,,' we saturate the, d1s-

,cont1nu1ty of the amp11tude with the s- and u- channel 1TN 

resonances. We parametrize these resonances as o-functions' 

and 1nclude the nucleon and all the established1TN resonances 

up to 2 GeV ( N corresponds to 2 GeV) • The masses, widths, 

and inelast1c1t1es can be obta1ned from the most recently 

ava1lable exper1mental data. 5 

The resonances and the1r contr1but1on to the sum rule 

are l1sted 1n Table I'~ Also l1sted are the' contr1but1ons of 

several prominent resonances above 2 GeV to 'show the size of 

these terms 1n the sum rule. (Of course they are not 1n-·· 

eluded 1n the f1nal sum. ) 

rp'= 140 MeV, and o~ta1n 

r_(mr.) -

r+ (m 2) :::. r 

We set 

12.6 

2.45' 

, 

m p =- 775 MeV , and 

18 
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These 'results are not very sensitive to the exact value 

or~ Im( a) (or equivalently rp) ; they change by only 10% if 

we setrp = qOMeV. As in other calculations of the p residues 

the ratio of r_ to r+ is large, r_1 r+ _ 5.1 As dis-

cussed in Section II, in order for most of our approximations 

to be valid, cot y. should not be much greater than one. We 

are forced by the experimental data to choose N to lie 

below 2 GeV. Then cot,y:: 1.7 , so that the intrinsic error 
.. 

of the sum rule is at least Ime CL) cot y -:::: .1 cot y ~ 17%. 
l The determination of r± (m p) from this sum rule ts about 

three times larger than the form factor calculations quoted 
, l 

by Desai (Desai quotes the numbers r+ (mp ) = 0.87 and 

r_ (mp) = 3.89 ). However, the uncertainties involved in 

the models used in these calculations (for example,~, the reso

nance model in our calculation ) are large enough that the 

exact numerical comparisons are not very meaningful. 

Comparison with the finite-energy sum rules leads to 

much more interesting conclusi,ons. We may use the same reso

nance model for As(t,s ) and Bs(t,s) in both sum rules. If 

this model isa good model, we would be able to use sum 

rules of different physical content to derive restrictions on 

the free parameters of the model. The sum rule presented 

here makes some use of direct-channel unitarity, and there

fore, it has a chance of differing with finite-energy sum 

rules. It is almost obvious from Table I that our sum rule 



~; : .. 

-. 

is not equivalent to the positive-moment sum ruleso Our 

rule emphasizes the nucleon and low-mass resonances, but the 

principal contribution to the lowest-moment finite-energy 

sum rule is the N{l688). The higher-moment sum rules 

emphasize the higher-mass resonances even more. 

There is yet a better check on the nonequivalence of 

the two sum rules. If t.he sum rules had the ~ content;· 

. then a plot of r+ (m 2) and mp from our sum rule should be - p . 
cOincident with the curve from the finite-energy sum rule. 

(If the resonance model is not perfeot, then the curves 

would only approximately duplicate each other.) If the 

sum rules have different content, .the requirement of con

sistency ~ithin the model places bootstrap-like restrictions 

on other model parameters. In this case, the only free 

parameter is the p mass. Our sum rule is not dependent 

enough on the exact· value of Im( OL) to calculate it; the 

finite-energy sum rule does not depend on Im(OL) at all. 

Since there are four Bum rules and onlY,three parameters 

[r±<mp) and mp]' we also have one internal check on the 

model. 

The p residues are calculated from the finite-energy 
c' 

sumrules using equations like 

2 M2 fdNX 2 r_{mp) 2-2. X Bs(mp , -ix ), 
27f N 

(2S) 

Xo 

20 
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and a similar.rel'ation for l'+(m p 2). We plot l'_.(m p 2) in Fj.g. 

1 from Eqs. (24) and (25). From this plot m p is seen to be 

about 900 MeV. Similar results are obtained for r+(m p 2) 

with m == 1040 MeV. This is consistent with the results of 
p. 2 

the 1'_ (m p 2) sum rules, because the r+(m p ) finite-energy 

sum rule is a rapidly varying function of mp at m p ~900 MeV 

and is very sensitive to the exact parameters (or existence) 

of the more massive resonances. Thus, there is enough 

internal cons1stency in the model so that we conclude that 

our sum rule has different content from the finite-energy 

sum rule, and may even be used with the finite-energy sum 

rules to obtain restrictions on the model parameters. 

Our sum rule together with the finite-energy sum rule 
I . 

and the resonance model of As: and Bs yield r_ (m p 2) -= 11, 

r-t(m p 2) == 2.5, and mp= 900 MeV. It is d·irricult to attach 

errors to these numbers, but in view of the intrinsic error 
./ 

of 15% in our sum rule and an incomplete model for As and Bs' 

an.error of at least 40% is reasonable. 

" 

21 
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. . ·IV. A MODEL OF THE P AND t:, MESONS 

( 

We' consider a model of the 7T1T~1T1Tamp1itude in which 

only the p and. fo resonances are included. The' poles at 
1 1 t -= mp and att = m

f 
lie on the leading Regge tra": . 

jectories for isoopin zero and one, respectively. We may 

then write the sum rule, Eq. (12), at each of these values 

of t. If we also saturate the discontinuity of the cross-

channel amplitudes with the .p and 

two equations, 

l' 
o 

'. '2 . 

, we obtain a set of 

22 

.... , 

. "1 L 1jmj rj s1n(CL1 M i11 n 2N1) =\. 2X, . (2Lj+1)PI6 Z j1) QLi (zij)·' 
. j miqiqj 

(26) 

where i and j both correspond to the p or l' .. Other 
0 

synibols are 

4qi2 2 2 - mi - 4 fL , 

Zij 140m 2 
/( 2q1 

2 ) - , - j 

2 . 2 
(27) Ni - 1 .+ s 1 /(2q1 ) o· 

Also, mi.' r1 , and L1 denote the mass, wi~th, and spin , 

respect1vely· of the p and 1'0 ; Xij is 8. 2-by2 submatrix of 

the 1sosp1n cross1ng matrix, 

1/3 1 

x -
(28) 

1/3 1/2 

.. 
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and sl is a c.m. energy between 1250 MeV and 1600 MeV. We 

set /" {} 2 " CL P = OL f - 1 GeV in ,the fol1ow1ng calculat1ons,: 

Equat10n (26) 1s. then two relat10ns among the masses 

and w1dths of the p and fO mesons. The solut1ons of these 

equat10ns can be stud1ed numer1cally. The results are very 

encouraging, cons1der1ng that only the grossest features of 

1T-1T scattering have been 1ncluded 1n this model. (For 

"example, we have assumed that the imag1nary part of the 

I = 0 ampl1tude is zero up to t ~ mf2.) 

We search for solutions of Eq. (26) by scanning over 

values of the parameters 400 MeV -< m p ~ 800 MeV, 

800 MeV ~ mf < 1400 MeV, and 0.3 < ( ~/rp) < 3. Due 

to the factor s1ny, the equat10n we are using is somewhat 

nonl1near. Although th1s non1inear1ty serves to exclude 

some of the solut1ons, it cannot g1ve an absolute scale 

for the widths. In one set of solut1ons we f'1ndthat tnp 
increases from 500 to 700 MeV as ( r jr ) increases from . p f 
0.3 to 1.5 and as mt decreases from 1200 to 900 MeV. To" 

complete the bootstrap, we use the finite-energy sum rules 

which pick out the solution: m p = 540 MeV; mt = 1150 MeV; 

and ( r / r) = 3. 
f' P 

Another disj~int set of solutions contain the physical 

masses of the p and the r meson but give a width of about 

350 MeV for the foe We find that we can bring the solutions 

of Eq. (25) into agreement with experiment by e1ther of two 

" 23 



mechanisms. We can fit the experimental parameter5:by .. 

inserting a scalar meson. The scalar meson is broad with 

a mass of about 500 MeV. Also, simple models for the 

threshold bring the results into good aecord with experiment. 

: '.' .: ,. 

'. ," 
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" v. THB BEHAVIOR OF THE SUM RULE NEAR THRESHOLD 

In this section we consider the amplitude for the 

elastic scattering of spinless particles and study the be

havior of the sum rule near the elastic threshold (t ~4m2). 
Since we will be concerned with the t ~ 4m2 limit of Regge 

trajectories and residues, we will work with the reduced 

quantities b(J,E) and 1(E) defined by, 

a(J,E) = E
J 

b(J,E) 

(J(B) - E
J If (E) 

(29) 

where, 

(30) 

The discontinuity equation around the elastic threshold 

can be written as, 

In the following, we will not display the scale factor Eo 

explicitly, but whenever we speak of the small magnitude of 

B , it w'i1l be understood that the scale is set by the factor 

Eo • Eq., (31) can of course be continued to the entire 

E-plane. If b{J,E) has a pole at J=CL(t) , then b(J,E2 ) 

will have a pole at J=Cl.2.(t) , and Eq. (31) will imply, 

(32) 

25-



For the sake of simplieity, we will again restriet ourselves 

to positive E; our results will also hold for small negative 
. ~ * 

values of E. Thus E2::: E , and CL (E) = et. (E) Fol-
. 2 . 

lowing the same steps as in the deivation of section II, for 

any given positive value of E we obtain the sum rule, 

It ~---- sin ( Imet. RnE ) =.Re 11+ Re 12 + Re 13 
R~ CL+l/2 

. 2E (33)· 

. with, . 

and 

(34) 

(35) 

+ 202 Im( cl.) oot y+ 0 [Im( C/.)JJ + O(~ ~ (36) 

y" = 2 Im( CL) in s, 

(37) 

26 

i 
'[ 
i 
1 

. l 

\ , I 
i 

I 
.l 

t 

, 
I 

, ! 
" I 

. r 
I 



" 

When E is not very close to zero, so that Im( CL) is not 
I 

very small, a moderately large s, leads to a value of cot y 

of order one. Since 1m '2(E) / Re /feE) is' of order Im( CL), 

we may neglect the terms inside the bracket compared to one 

and obtain the. approximate sum rule we have used in the pre-" 

vious sections. However, as E-+ 0 ( as we approach the 

threshold) 1m(CL) necessarily goes to zero and in order to 

'" keep cot y near one, we would have to increase s, to ex-

tremely large values. On the other hand, if we wish to res

trict ourselves to the intermediate values of 5, and still 

use Eq. (33) to calculate the. real part of the residue 

, function, we would have to estimate the magnitude of the 

quantity Im ')feE) / Re/f(E) for E near zero • \ For s, finite ' 

and Im(~) ~ 0 , the sum rule becomes, 

F 1 1 ' , Im(~) nE = RelfeE) ( ns +c1.) 
ReCL +1/2. I . 

2E 

+ _I_m_i1_(E_)_ + 0 rIm ( C:L )21+O(l/N) '- ReI
l 2 1m ( CL ) ,L J ' (38)' 

In order to study the behavior of Eq. (38) as E -+ 0 , we need 

tne behavior of CL (E) and If (E) near threshold. This be

havior is derived from the discontinuity'equation for 

b- l (J,E) 6, 
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, 
.~ 

. '1' l' =. -2i (E)J +1/2 /' rt b-(J,E) ~. b- (J,E ) J~ 
2 - . 

1'he quantityY(J.,E) defined as, 

Y{J J E) == It cos ('1T J) b -1(3 ,E) . 
J+l/2 

(-E) 

can be easily shown to be free of the cut at the elastic 

threshold ( E: 0 ). A Regge pole occurs when, 

J+~/2 
Y(J,'E) + (-E) _ 0 

(39) 

(40) 

1'he residue of the pole, }'(E) , is It C08'1TQL times the 

coefficient of (J-,Ot) in the expansion of the left hand 

side of Eq. (41) around the point J =CL , 

It cos '1TCL (E) 
(42) 

Eq. (41) can also be expanded around the point {OL(O}, 0 ) 

to give the threshold behavior of ct(E). Actually, only 

an expansion in the variable J is needed. It will be much 

simpler, although not absolutely necessary, for our purposes 

(we are, only interested in the behavior of ImOL) to expand 

around the point ( CLo,E ) defined in the following way: 

From Eq. (41) it is olear that Y( ct(O) , 0 )= 0 • If this 

zero is simple [a simple pole of b{J,E)] , then for small 

enough E , there exists a real point CL near to C:L (0) such 
o 

28 
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that y( &~,E ) = 0 • ' We will expand around this point and 

write, 

Y( CL (E) , E ) ::: YJ ( Ot.{E) CL o ) + Y;( CL.(E) - CLo )2 , 

+ ...... (43) 

29, 

Note that ~o and the coefficients of the expansion are all· , 

real functions, ot E which gp to their threshold value smooth..' ,', 

1y as E-+O (We can make them as close to their E=-O value, 

as we wish by making E small) • The function CL (E) near 

E:O is thus the solution of the following equation: 

+ .0 ••••• (44) 

"In the following, we will use as our ,expansion parameter the 

quanti ty t;, defined as I 

y -1 Oto+1/2 
S = Y J cos7TClo (E) '(45) 

Therefore, 

;...i1T{Y, , 
('L(E) = o£.o + i t;, e 0/ cos1TOLfO( inE 

2 

1m CL(E) = t;, + 0 ( lnE t;, ) (46) 

, Substituting the expansion for CL(E) and ~Jinto Eq. 

(42), :we' get the following expansion of L(E) in terms of t;, , 
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. . , .. ~ ~'.\ i., 

~,: .. , .-i'ITCL 

,
!f {~)"-$ y;1 cos7r~ [1+ e • (, [7r -i'ITtan1T~ . 

. 0 cos'lTCL
o 

0 . 

' .. 

'."'" -21 yjl y~ + 1 JnEJ + O<1nE (,2)J (47) 
; 

Then, the quantity . Im If (E) 12Im ( ~ ) occuring in Eq. (38) 

1s g1ven by , 

1m L(E) It -1 [ , '-1 ' 

2Im( CL ) 
- t YJ COS1TOLo 1Ttan7TCLo +1T Y J Y J 

'_ J:E ] + o(s) 

substituting th1s in Eq. (38) and using the fact that 

It y~l cos1TCL~ == Re l(~) + 0 ( S), we obtain, 

(48) 

./ 

[ 1 'IT Y Re }' (E) ] 
o - He !f{E) ns + °2 -7rtan1Tct. - ./r 

' t cos7TOLo 

Thus in the limit of very small Im(et) but finite s. an 
; 

unknown quantity,. YJ ' has appeared 1n our sum rule which 

no longer can be neglected. This quant1ty is actually 

closely related to the background term in b(J,E). For J 

near CL we can wr1te b(J ,E) as, 

J- CL 
h (J -~)+ ••• J b(J,E) =. (50) 

L 
, " 

r-. 
I 
t 

. ' 

i 
I 
i' 

f 

i 
t· 

r 
f 
i 
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substituting this in the definition of Y(J,E) ~ Eq. (46) , 
and differentiating twice, we find, 

. Therefore, the sum rule has reduced to, 

o = Re ')J' (E) [ins, + 0'2. + h ] -Re II - He I3 +O( I;; ) 
+ ()(l/N) (52) 

It is now possible to see explicitly from Eq. (52) that 

in this 1imi tof Im ( CL) ~ 0 and s , finite, the sum rule 

has become an empty statement, since Eq. (52) is merely the 

definition of the background term h in terms of the Froissart

Qribov definition of the partial wave amplitude, and could 

have been immediately written down without any use of two 

body unitarity. In short, the resu1tsof this section indi

cate that at, least for this sum rule, when the limit ImCL -'" 0 

is taken, all the content of unitarity ( and thus any non

linearity in the equation ) is lost, and one is left with 

a trivial definition of a background term. 

We will close this section with some rather vague re

marks a~out the background. If we still wish to use Eq. (52) 

to calculate 1(E), or if we wish to estimate the first 

correction to the approximate sum rule of the previous 8ec-

tions, we should calculate the quantity h. One possible 

model to use for this calculation is an N/D model. It 1s 

31 



easy to Bee that it we write b(J,E) -= N(J,E)ID(J,E), and 

expand this as in Eq. (50) , the quantity h is given by, 

,-
h = N ( CL ,E) I N{ CL ,E} (53) 

I 
where N ( CL ,E) is the derivative of N(J,E) with respect to 

J evaluated at J -= Ci • It seems plausible that even 

though an NID model may not lead to the correct value of 

the position and the residue of the pole ( which would in

volve the accurate calculation of both N. and D ), a few 

iterations of the integral equation for N may give a good 

estimate of the background term h. In the case of the. P 
\'.. residue in the 1fTr--i" NN reaction, the quantity Re I l , tor 

E ~o is very large, because the nucleon pole gives a very 

large contribution. Thus it we neglect h and use the sum 

rule to calculate r±(E~O) we obtain a result about ten 

times larger than what we expect from Regge fits for t '0. 

This is because the left hand cut of b{J,E) is very close to 

E =.0, a fact that is indicated by the large contribution of 

the nucleon pole. The crudest estimate of the function 

N(J,E), but certainly not a numerically reliable one, is ·the 

sum of the Born terms, namely the quantity II In fact 

( dIll d J ) I II has the correct sign and the correct order 

of magnitude to bring the value of r t closer to the expected 

value. These results are of course only qualitative , since 
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Table I. Contribution'ot each resonance to our sum rules, 
Eqs. (23)and (24) , and to the finite-energy , 
sum rule, Eq. (25) • The numerical values of 
the masses, widths, and inelasticities are found 
in Ref. 5 • A value of g~= 14 was used for the 
TrN coupling. 
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Eqs. (23)and (24) Finite-Energy,' 
Sum Rule 

Resonance 
Identification n+ 

Nucleon 2.70 

N(1470) 

N(15l8) " 

N(1550) 

N(1680) 

N(1688) 

N(1710) 

Ll(1236) 

6(1640) 

6(1920) 

Total 

N(2190) 

1l(2420) . 

Pil 

D13 
811 

D15 

F15 

Sll 

P33 

S31 

F37 

.09 

.21 , 

.01 

.10 

.44 

.02 

-.99 

'-.01 

-.12 

,Ii .i.~ ......... , 

2.45 

~11 

-.05 

8.53 

.30 

.72 

.003 

-.19 

1.54 

.01 

1.42 

.05 

.09 

'.28 

.62 

.43 

1.27 

.01 ' .01 " 

.29 -.55 

1.31 4.59 

.08 .04 

-.25 .76 

. - .003 - .02 -.01 

1.50 .25 -.97 

12.6 .87 

.36 2.02 

.11 -1.66 

8.66 

3.79 

1.79 
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Curve (a)'results from our sum rule, Eq. (24). 

. t1ni te':'energy sum rule, Eq. (25) ,produces euj.ve(b)~ 
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This report was prepared a~ an account of Government 
sponsored work. Neither the United States, nor the Com~ 
mISSIon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied,· with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employm~nt or contract 
with the Commission, or his employment with such contractor. 
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