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It’s July 2022, and the San Francisco 
Bay has turned a murky brown. Scattered 
reports of skin irritation and respiratory 
complications surface, followed by thousands 
of dead !sh sweeping onto Bay Area shores.1

This is no freak die-off, though; San 
Francisco’s waterways are being choked by 
masses of Heterosigma akashiwo, a species of 
photosynthetic algae, in the most severe algal 
bloom the region has experienced to date. 
Months will pass before the bloom, sustained 
by warm waters polluted with excess nitrogen 
and phosphorus, !nally subsides.2

In uncontrolled blooms like the one San 
Francisco experienced last summer, algae’s 
swi$ reproduction rate and ability to subsist 

on limited resources allow these unsightly 
algal aggregations to devastate ecological 
balance and threaten public health. On the 
other hand, these same traits also make algae 
a potent candidate for commercial application. 
Already, certain species of unicellular 
microalgae have found their market footholds 
as nutritional supplements, pharmaceuticals, 
and bioremediation agents in a rapidly 
expanding, multibillion-dollar industry.3

Among the most promising avenues of 
development for algae is in bioenergy. In fact, 
Heterosigma akashiwo itself has been cited 
for its potential to be converted from health 
hazard to viable source of biofuel.4

Biofuels di'er from fossil fuels, such as 

coal and petroleum, in that they are derived 
directly from living, rather than long-dead, 
organic material. (e interest in using living 
organisms, o$en fast-growing crops like corn, 
switchgrass, and soybean, lies mainly in the 
fact that these plants naturally reuptake the 
carbon dioxide that is released when fuel is 
burned. (ose who back biofuels contend that 
this strategy of closing the “energy loop” will 
play a key role in cutting back on atmospheric 
carbon dioxide, a major greenhouse gas 
responsible for climate change and ultimately 
large-scale biodiversity loss.5 (ere’s just one 
problem: biofuel crops fail to match fossil fuels 
in energy production. 
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Hunting for Hydrocarbons 
(e energy de!cit between bioenergy 

crops and fossil fuels is due to di'erences 
in chemical structure. (e main output of 
growing bioenergy crops is lignocellulosic 
matter, a dry, !brous plant material composed 
of lignin, cellulose, and hemicellulose, which 
are made up of carbon, hydrogen, and 
oxygen.6 Meanwhile, 97% of commercial 
petroleum consists of hydrocarbons with 
negligible amounts of oxygen.7

It’s this presence or absence of oxygen that 

plays a key role in determining the molecule’s 
energetic capacity. When fuels are combusted, 
high energy chemical bonds between 
hydrogen and carbon in the fuel source are 
broken down to release useful energy. As 
these bonds are broken, some atoms are 
reshu,ed and new chemical bonds form. An 
important example of this is oxidation. (is 
process occurs when fuel is combusted and 
ambient oxygen atoms are incorporated into 
the broken-down molecules to produce water, 
carbon dioxide, and other waste products.8

A fuel feedstock like lignocellulose that 
initially contains oxygen is already partially 
oxidized at the beginning of the reaction. For 
these fuels, less bonds need to be broken and 
rearranged to convert the fuel into its !nal 
product, meaning less energy is released 
from the reaction. As a result, compounds like 
lignocellulose with lower hydrogen to carbon 
ratios and carbon to oxygen ratios tend to 
produce fuels that are less dense in energy.9

Meanwhile, microalgae lack the 
lignocellulosic mass used in traditional 
biofuels and thus may o'er a more e/cient 
alternative. Algae yield greater proportions 
of high-energy compounds with higher 
hydrogen to oxygen ratios, particularly from 
its membranes and energy-storing lipids. 
Various species of algae are reported to contain 
anywhere from 20-50% lipids by weight,10 thus 
increasing the amount of extractable energy 
compared to its plant-based counterpart: the 
same acre that produces 18 gallons of oil from 
corn can yield up to 6,000 gallons of biodiesel 
if used to produce microalgae.11

These algal lipids are primarily 
triacylglycerols (TAGs) and diacylglycerols 
(DAGs).  In a process known as 
transesteri!cation, TAGs and DAGs react 
with small alcohols, such as methanol, to 
form long-chain fatty acid esters—the basis of 
biodiesel.12 Since most microalgae technology 
is not yet optimized to have our economy run 
exclusively on biodiesel, the current product 
can either be mixed into regular diesel to 
supplement petroleum-based fuel or used in 
its pure form in a limited number of diesel 
engines.13

!e Dark Side of Sunlight Energy
In theory, microalgae offer a feasible 

and scalable source of energy. Algae do not 

Figure 1:  Red regions indicate elevated chlorophyll levels in the San Francisco Bay from algal 
photosynthetic activity during the July 2022 bloom. In the following weeks, the algal bloom 
spread from Alameda County to South San Francisco Bay and San Pablo Bay, culminating in 
the death of 10,000 !sh in late August.

Figure 2: Transesteri"cation converts TAGs and DAGs, glycerols with ester linkages to three and two fatty acid chains, respectively, into fatty acid 
alkyl esters.
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need to be grown on arable land as crops do, 
and the Department of Energy estimates that 
reserving roughly 15,000 square miles for 
algae production, an area roughly the size of 
Maryland, would provide enough biomass 
to meet all petroleum demand in the United 
States.14

However, major inefficiencies in 
producing algal biofuels will have to be 
resolved before algae can support an entire 
country. While the appeal of algal biofuels 
is mainly due to its unique ability to turn 
sunlight—an unlimited and carbon-free 
resource—into fuel, solar energy is unavailable 

at nighttime and di'use during periods of 
heavy cloud cover.

To make a bad problem worse, just 30% 
of incident sunlight that reaches the Earth 
can be absorbed by the plants and used in 
photosynthesis by the algal photosystems, 
which operate solely at the 680 and 700 nm, 
or red, wavelengths. A$er lipid extraction 
and processing, this number shrinks to a slim 
8-10% theoretical maximum of sunlight’s 
original energy that is actually harnessed in 
biofuels.15

To mitigate these issues, methods of 
arti!cially accumulating TAGs, the primary 

energy storage lipid in algae, remain a major 
area of development. Much of algal research 
is in determining environmental conditions 
associated with optimal algal growth and lipid 
production. Currently, there is evidence that 
modulating light intensity, carbon dioxide 
concentration, the length of  light  and  
dark  cycles,  and  temperature may induce 
an increase in lipid metabolism. Another 
approach has been stressing algae, o$en by 
depriving them of nutrients or adding toxic 
levels of heavy metals or salts to the culture. 
Starving, toxin-stressed algae may invest more 
e'ort in storing energy in the form of TAGs. 
Still another strategy is to engineer genes that 
control algal metabolism to upregulate TAG 
production.16

A Future in Photosynthesis
As it stands, microalgae are largely 

overlooked and underutilized as a source 
of energy. Yet, San Francisco proved last 
summer that microalgae—by virtue of inborn 
hardiness and anthropogenic activity—are 
becoming an increasingly abundant resource, 
with or without the development of lab-raised 
strains. At the same time, dire consequences 
of climate change call more urgently than 
ever for a reliable source of sustainable 
energy, and growing evidence supports both 
bioprospecting naturally occurring algae and 
engineering algae in the lab as viable energy 
production strategies.17 If it’s greener energy 
that the planet needs to embrace, the solution 
(both in hue and function) may very well have 
been blooming in our periphery all along.
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Figure 3: Some companies cultivate algae in “racetrack ponds,” large, shallow pools of microalgae that 
are mechanically stirred to ensure uniform sunlight and nutrient exposure. Upscaling microalgae 
production in areas that enjoy consistent and bright sunlight exposure could feasibly supplement 
or replace the petroleum supply.

Figure 4: !e majority of solar energy is not stored as chemical energy; it is either not absorbed 
by algal photosystems, lost as heat, or used by the alga. Only about 10% of this energy will be 
available to be used in algal biofuels.
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