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1. INTRODUCTION

The questions that motivate most studies in the social and behavioral
sciences are causal, not statistical. For example, what is the efficacy
of a given social program in a given community? Can data prove an
employer guilty of hiring discrimination? What fraction of past crimes
could have been prevented by a given policy? Why did one group of
students succeed where others failed? What can a typical public school
student gain by switching to a private school? These are causal questions
because they require some knowledge of the data-generating process;
they cannot be computed from the data alone, regardless of sample size.

Remarkably, although much of the conceptual and algorithmic tools
needed for tackling such problems are now well established, and al-
though these tools invoke structural equations—a modeling tool devel-
oped by social scientists—they are hardly known among rank and file
researchers. The barrier has been cultural; formulating causal problems
mathematically requires certain extensions to the standard mathemat-
ical language of statistics, and these extensions are not generally em-
phasized in the mainstream literature and education. As a result, the
common perception among quantitative social scientists is that causal-
ity is somehow “controversial” or “ill understood” or requiring esoteric
assumptions, or demanding extreme caution and immense erudition in
the history of scientific thought. Not so.

This paper introduces basic principles and simple mathematical
tools that are sufficient for solving most (if not all) problems involving
causal and counterfactual relationships. The principles are based on
the nonparametric structural equation model (SEM)—a natural gener-
alization of the models used by econometricians and social scientists in
the 1950s and 1960s, yet cast in new mathematical underpinnings, liber-
ated from the parametric blindfolds that have conflated regression with
causation and thus obscured the causal content of traditional SEMs.
This semantical framework, enriched with a few ideas from logic and
graph theory, gives rise to a general, formal, yet friendly calculus of
causes and counterfactuals that resolves many long-standing problems
in sociological methodology.

To this end, Section 2 (based on Pearl 2009a:38–40) begins by
illuminating two conceptual barriers that impede the transition from
statistical to causal analysis: (1) coping with untested assumptions and
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(2) acquiring new mathematical notation; it is then followed by a brief
historical account of how these barriers have impeded progress in so-
cial science methodology. Crossing these barriers, Section 3.1 (based
on Pearl 2009a, ch. 1) then introduces the fundamentals of the struc-
tural theory of causation, with emphasis on the formal representation of
causal assumptions, and formal definitions of causal effects, counterfac-
tuals, and joint probabilities of counterfactuals. Section 3.2 (based on
Pearl 2009a, ch. 3) uses these modeling fundamentals to represent inter-
ventions and develops mathematical tools for estimating causal effects
(Section 3.3) and counterfactual quantities (Section 3.4). Sections 3.3.2
and 3.5 introduce new results, concerning the choice of measurements
(3.3.2) and the limits of analytical tools in coping with heterogeneity
(3.5).

The tools described in Section 3 permit investigators to commu-
nicate causal assumptions formally using diagrams, then to inspect the
diagram and

1. decide whether the assumptions made are sufficient for obtaining
consistent estimates of the target quantity;

2. derive (if the answer to item 1 is affirmative) a closed-form expres-
sion for the target quantity in terms of distributions of observed
quantities; and

3. suggest (if the answer to item 1 is negative) a set of observations and
experiments that, if performed, would render a consistent estimate
feasible.

4. identify the testable implications (if any) of the model’s assump-
tions, and devise ways of testing the assumptions behind each causal
claim.

5. decide, prior to taking any data, what measurements ought to be
taken, whether one set of measurements is as good as another,
and which measurements tend to bias our estimates of the target
quantities.

Section 4 outlines a general methodology to guide problems
of causal inference. It is structured along five major steps: (1) define,
(2) assume, (3) identify, (4) test, and (5) estimate. Each step benefits
from the tools developed in Section 3. This five-step methodology is an
expansion of the one presented in Pearl (2010a) and clarifies the role of
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local testing (4.3.1), propensity score matching (4.3.2), and approxima-
tion methods (4.3.3).

Section 5 relates these tools to those used in the potential-
outcome framework, and offers a formal mapping between the two
frameworks and a symbiosis (based on Pearl 2009a:231–34) that
exploits the best features of both and demystifies enigmatic terms
such as “potential outcomes,” “ignorability,” “treatment assignment,”
and more. Finally, the benefit of this symbiosis is demonstrated in
Section 6, in which the structure-based logic of counterfactuals is har-
nessed to estimate causal quantities that cannot be defined within the
paradigm of controlled randomized experiments. These include direct
and indirect effects, or “mediation,” a topic with a long tradition in so-
cial science research, which only recently has been given a satisfactory
formulation in nonlinear systems (Pearl 2001, 2010b).

2. FROM ASSOCIATION TO CAUSATION

2.1. The Basic Distinction and Its Implications

The aim of standard statistical analysis, typified by regression, estima-
tion, and hypothesis testing techniques, is to assess parameters of a
distribution from samples drawn of that distribution. With the help of
such parameters, one can infer associations among variables, estimate
probabilities of past and future events, as well as update those prob-
abilities in light of new evidence or new measurements. These tasks
are managed well by standard statistical analysis so long as experimen-
tal conditions remain the same. Causal analysis goes one step further;
its aim is to infer not only beliefs or probabilities under static condi-
tions, but also the dynamics of beliefs under changing conditions—for
example, changes induced by treatments, new policies, or other external
interventions.

This distinction implies that causal and associational concepts do
not mix. There is nothing in the joint distribution of symptoms and dis-
eases to tell us that curing the former would or would not cure the latter.
More generally, there is nothing in a distribution function to tell us how
that distribution would differ if external conditions were to change—say
from observational to experimental setup—because the laws of proba-
bility theory do not dictate how one property of a distribution ought to
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change when another property is modified. This information must be
provided by causal assumptions that identify relationships that remain
invariant when external conditions change.

A useful demarcation line that makes the distinction between
associational and causal concepts crisp and easy to apply can be formu-
lated as follows. An associational concept is any relationship that can
be defined in terms of a joint distribution of observed variables, and
a causal concept is any relationship that cannot be defined from the
distribution alone. Examples of associational concepts are correlation,
regression, dependence, conditional independence, likelihood, collapsi-
bility, propensity score, risk ratio, odds ratio, marginalization, Granger
causality, conditionalization, “controlling for,” and so on. Examples
of causal concepts are randomization, influence, effect, confounding,
“holding constant,” disturbance, error terms, structural coefficients,
spurious correlation, faithfulness/stability, instrumental variables, in-
tervention, explanation, and attribution. The former can, while the
latter cannot, be defined in term of distribution functions.

This demarcation line is extremely useful in tracing the assump-
tions that are needed for substantiating various types of scientific claims.
Every claim invoking causal concepts must rely on some premises that
invoke such concepts; it cannot be inferred from or even defined in
terms of statistical associations alone.

This principle, though it goes back to the late nineteenth century,
has far reaching consequences that are not generally recognized in the
standard literature. Wright (1923), for example, specifically declared
that “prior knowledge of the causal relations is assumed as prerequi-
site” before one can draw causal conclusions from path diagrams. The
same understanding overrides the classical works of Blalock (1964) and
Duncan (1975). And yet, even today, it is not uncommon to find “so-
ciologists [who] routinely employ regression analysis and a variety of
related statistical models to draw causal inferences from survey data”
(Sobel 1996:p. 353). More subtly, it is not uncommon to find seasoned
sociologists wondering why an instrumental variable is a causal concept
while a propensity score would not be.1 Such confusions may tempt one

1 The answer of course is that the defining conditions for an instrumental
variable invoke unobserved variables (see Pearl 2009a:247–48) while the propen-
sity score is defined in terms of the conditional probability of observed variables
(see equation 31). I am grateful to one reviewer for demonstrating this prevailing
confusion.
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to define the former in terms of the latter, or to ignore the untestable
causal assumptions that are necessary for the former.

This association/causation demarcation line further implies that
causal relations cannot be expressed in the language of probability and
hence that any mathematical approach to causal analysis must acquire
new notation for expressing causal relations—probability calculus is
insufficient. To illustrate, the syntax of probability calculus does not
permit us to express the simple fact that “symptoms do not cause
diseases,” let alone draw mathematical conclusions from such facts.
All we can say is that two events are dependent—meaning that if we
find one, we can expect to encounter the other, but we cannot distin-
guish statistical dependence, quantified by the conditional probability
P(disease | symptom) from causal dependence, for which we have no
expression in standard probability calculus.

2.2. Untested Assumptions and New Notation

The preceding two requirements—to commence causal analysis with
untested,2 theoretically or judgmentally based assumptions, and to ex-
tend the syntax of probability calculus—constitute the two main ob-
stacles to the acceptance of causal analysis among professionals with
traditional training in statistics.

Associational assumptions, even untested, are testable in princi-
ple, given sufficiently large samples and sufficiently fine measurements.
Causal assumptions, in contrast, cannot be verified even in principle,
unless one resorts to experimental control. This difference stands out in
Bayesian analysis. Though the priors that Bayesians commonly assign
to statistical parameters are untested quantities, the sensitivity to these
priors tends to diminish with increasing sample size. In contrast, sensi-
tivity to prior causal assumptions, say that treatment does not change
gender, remains substantial regardless of sample size.

This makes it doubly important that the notation we use for
expressing causal assumptions be cognitively meaningful and unam-
biguous so that we can clearly judge the plausibility or inevitability of
the assumptions articulated. Analysts can no longer ignore the mental

2 By “untested” I mean untested using frequency data in nonexperimental
studies.



THE FOUNDATIONS OF CAUSAL INFERENCE 81

representation in which scientists store experiential knowledge, since it
is this representation and the language used to access it that determine
the reliability of the judgments upon which the analysis so crucially
depends.

How do we recognize causal expressions in the social science lit-
erature? Those versed in the potential-outcome notation (Neyman 1923;
Rubin 1974; Holland 1988; Sobel 1996) can recognize such expressions
through the subscripts that are attached to counterfactual events and
variables—for example, Yx(u) or Zxy. (Some authors use parentheti-
cal expressions such as Y(0), Y(1), Y(x, u), or Z(x, y).) The expression
Yx(u), for example, stands for the value that outcome Y would take in
individual u, had treatment X been at level x. If u is chosen at random,
Yx is a random variable, and one can talk about the probability that
Yx would attain a value y in the population, written P(Yx = y) (see
Section 5 for a formal definition). Alternatively, Pearl (1995) used ex-
pressions of the form P(Y = y | set(X = x)) or P(Y = y | do(X = x)) to
denote the probability (or frequency) that event (Y = y) would occur
if treatment condition X = x were enforced uniformly over the pop-
ulation.3 Still a third notation that distinguishes causal expressions is
provided by graphical models, where the arrows convey causal direction-
ality, or structural equations, in which the equality signs (=) represent
right-to-left assignment operators (:=) (Pearl 2009a:138).4

2.3. SEM and Causality: A Brief History5

Quantitative sociological researchers have chosen structural equation
models and their associated causal diagrams as the primary lan-
guage for causal analysis. Influenced by the pioneering work of Sewall

3 Clearly, P(Y = y | do(X = x)) is equivalent to P(Yx = y). This is what
we normally assess in a controlled experiment, with X randomized, in which the
distribution of Y is estimated for each level x of X .

4 These notational clues should be useful for detecting inadequate def-
initions of causal concepts; any definition of confounding, randomization, or in-
strumental variables that is cast in standard probability expressions, void of graphs,
counterfactual subscripts or do(∗) operators, can safely be discarded as inadequate.

5 A more comprehensive account of the history of SEM and its causal
interpretations is given in Pearl (1998). Pearl (2009a:368–74) further devotes a whole
section of his book Causality to advise SEM students on the causal reading of SEM
and how to defend it against the skeptics.



82 J. PEARL

Wright (1923) and early econometricians (Haavelmo 1943; Simon 1953;
Marschak 1950; Koopmans 1953), Blalock (1964) and Duncan (1975)
considered SEM a mathematical tool for drawing causal conclusions
from a combination of observational data and theoretical assumptions.
They were explicit about the importance of the latter, and about the
unambiguous causal reading of the model parameters, once the as-
sumptions are substantiated.

In time, however, the proper causal reading of structural equa-
tion models and the theoretical basis on which it rests became suspect
of ad hockery, even to seasoned workers in the field. This occurred par-
tially due to the revolution in computer power, which made sociological
workers “lose control of their ability to see the relationship between
theory and evidence” (Sørensen 1998:241). But it was also due to a
steady erosion of the basic understanding of what SEMs stand for.

In his critical paper Freedman (1987:114) challenged the causal
interpretation of SEM as “self-contradictory,” and none of the 11 dis-
cussants of his paper were able to articulate the correct, noncontra-
dictory interpretation of the example presented by Freedman. Instead,
SEM researchers appeared willing to live with the contradiction. In
his highly cited commentary on SEM, Chin (1998) writes: “researchers
interested in suggesting causality in their SEM models should consult
the critical writing of Cliff (1983), Freedman (1987), and Baumrind
(1993).”

This, together with the steady influx of statisticians into the field,
has left SEM researchers in a quandary about the meaning of the SEM
parameters, and has caused some to avoid causal vocabulary altogether
and to regard SEM as an encoding of parametric family of density func-
tions, void of causal interpretation. Muthén (1987), for example, wrote,
“It would be very healthy if more researchers abandoned thinking of
and using terms such as cause and effect” (Muthén 1987). Many SEM
textbooks have subsequently considered the term “causal modeling”
to be an outdated misnomer (e.g., Kelloway 1998:8), giving clear pref-
erence to causality-free nomenclature such as “covariance structure,”
“regression analysis,” or “simultaneous equations.”

The confusion between regression and structural equations has
further eroded confidence in the latter’s adequacy to serve as a language
for causation. Sobel (1996), for example, states that the interpretations
of the parameters of the model as effects “do not generally hold, even if
the model is correctly specified and a causal theory is given,” and “the
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way sociologists use structural equation models to draw causal infer-
ences is problematic in both experimental and nonexperimental work.”
Comparing structural equation models to the potential-outcome frame-
work, Sobel (2008) further states that “In general (even in randomized
studies), the structural and causal parameters are not equal, implying
that the structural parameters should not be interpreted as effect.” In
Section 3 of this paper we show the opposite: structural and causal
parameters are one and the same thing, and they should always be
interpreted as effects.

Another advocate of the potential-outcome framework is
Holland (1995:54), who explains the source of the confusion: “I am
speaking, of course, about the equation: {y = a + bx + ε}. What does
it mean? The only meaning I have ever determined for such an equation
is that it is a shorthand way of describing the conditional distribution
of {y} given {x}.” We will see that the structural interpretation of the
equation above has in fact nothing to do with the conditional distribu-
tion of {y} given {x}; rather, it conveys counterfactual information that
is orthogonal to the statistical properties of {x} and {y} (see footnote
18).

We will further see (Section 4) that the SEM language in its non-
parametric form offers a mathematically equivalent and conceptually
superior alternative to the potential-outcome framework that Holland
and Sobel advocate for causal inference. It provides in fact the formal
mathematical basis for the potential-outcome framework and a friendly
mathematical machinery for a general cause-effect analysis.

3. STRUCTURAL MODELS, DIAGRAMS, CAUSAL EFFECTS,
AND COUNTERFACTUALS

This section provides a gentle introduction to the structural framework
and uses it to present the main advances in causal inference that have
emerged in the past two decades. We start with recursive linear models,6

in the style of Wright (1923), Blalock (1964), and Duncan (1975) and,

6 By “recursive” we mean systems free of feedback loops. We allow how-
ever correlated errors, or latent variables that create such correlations. Most of
our results, with the exception of Sections 3.2.3 and 3.3, are valid for nonrecursive
systems, allowing reciprocal causation.
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after explicating carefully the meaning of each symbol and the causal
assumptions embedded in each equation, we advance to nonlinear and
nonparametric models with latent variables, and we show how these
models facilitate a general analysis of causal effects and counterfactuals.

3.1. Introduction to Structural Equation Models

How can we express mathematically the common understanding that
symptoms do not cause diseases? The earliest attempt to formulate such
relationship mathematically was made in the 1920s by the geneticist
Sewall Wright (1921). Wright used a combination of equations and
graphs to communicate causal relationships. For example, if X stands
for a disease variable and Y stands for a certain symptom of the disease,
Wright would write a linear equation:

y = βx + uY, (1)

where x stands for the level (or severity) of the disease, y stands for the
level (or severity) of the symptom, and uY stands for all factors, other
than the disease in question, that could possibly affect Y when X is held
constant.7 In interpreting this equation we should think of a physical
process whereby nature examines the values of x and u and, accordingly,
assigns to variable Y the value y = βx + uY. Similarly, to “explain” the
occurrence of disease X , we could write x = u X, where UX stands for
all factors affecting X .

Equation (1) still does not properly express the causal relation-
ship implied by this assignment process, because algebraic equations
are symmetrical objects; if we rewrite (1) as

x = (y − uY)/β, (2)

it might be misinterpreted to mean that the symptom influences the
disease. To express the directionality of the underlying process, Wright
augmented the equation with a diagram, later called “path diagram,”

7 Linear relations are used here for illustration purposes only; they do
not represent typical disease-symptom relations but illustrate the historical devel-
opment of path analysis. Additionally, we will use standardized variables—that is,
zero mean and unit variance.
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FIGURE 1. A simple structural equation model, and its associated diagrams, showing (a)
independent unobserved exogenous variables (connected by dashed arrows), (b)
dependent exogenous variables, and (c) an equivalent, more traditional notation,
in which latent variables are enclosed in ovals.

in which arrows are drawn from (perceived) causes to their (perceived)
effects, and more importantly, the absence of an arrow makes the em-
pirical claim that Nature assigns values to one variable irrespective of
another. In Figure 1, for example, the absence of an arrow from Y to
X represents the claim that symptom Y is not among the factors UX

that affect disease X . Thus, in our example, the complete model of a
symptom and a disease would be written as in Figure 1: The diagram
encodes the possible existence of (direct) causal influence of X on Y ,
and the absence of causal influence of Y on X , while the equations
encode the quantitative relationships among the variables involved, to
be determined from the data. The parameter β in the equation is called
a “path coefficient,” and it quantifies the (direct) causal effect of X on
Y . Once we commit to a particular numerical value of β, the equa-
tion claims that a unit increase for X would result in β units increase
of Y regardless of the values taken by other variables in the model,
and regardless of whether the increase in X originates from external or
internal influences.

The variables UX and UY are called “exogenous”; they represent
observed or unobserved background factors that the modeler decides to
keep unexplained—that is, factors that influence but are not influenced
by the other variables (called “endogenous”) in the model. Unobserved
exogenous variables are sometimes called “disturbances” or “errors”;
they represent factors omitted from the model but judged to be rele-
vant for explaining the behavior of variables in the model. Variable UX,
for example, represents factors that contribute to the disease X , which
may or may not be correlated with UY (the factors that influence the
symptom Y ). Thus, background factors in structural equations differ
fundamentally from residual terms in regression equations. The latters,
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usually denoted by letters εX, εY, are artifacts of analysis which, by def-
inition, are uncorrelated with the regressors. The formers are part of
physical reality (e.g., genetic factors, socioeconomic conditions), which
are responsible for variations observed in the data; they are treated
as any other variable, though we often cannot measure their values
precisely and must resign ourselves to merely acknowledging their ex-
istence and assessing qualitatively how they relate to other variables in
the system.

If correlation is presumed possible, it is customary to connect the
two variables, UY and UX, by a dashed double arrow, as shown in Figure
1(b). By allowing correlations among omitted factors, we allow in effect
for the presence of latent variables affecting both X and Y , as shown
explicitly in Figure 1(c), which is the standard representation in the SEM
literature (e.g., Bollen 1989). In contrast to traditional latent variable
models, however, our attention will not be focused on the connections
among such latent variables but, rather, on the causal effects that those
variables induce among the observed variables. In particular, we will
not be interested in the causal effect of one latent variable on another
and, therefore, there will be no reason to distinguish between correlated
errors and causally related latent variables; it is only the distinction
between correlated and uncorrelated errors (e.g., between Figure 1(a)
and (b)) that needs to be made. Moreover, when the error terms are
uncorrelated, it is often more convenient to eliminate them altogether
from the diagram (as in Figure 3, Section 3.2.3), with the understanding
that every variable, X , is subject to the influence of an independent
disturbance UX.

In reading path diagrams, it is common to use kinship relations
such as parent, child, ancestor, and descendent, the interpretation of
which is usually self-evident. For example, the arrow in X → Y des-
ignates X as a parent of Y and Y as a child of X . A “path” is any
consecutive sequence of edges, solid or dashed. For example, there are
two paths between X and Y in Figure 1(b), one consisting of the direct
arrow X → Y while the other traces the nodes X, UX, UY, and Y .

Wright’s major contribution to causal analysis, aside from in-
troducing the language of path diagrams, has been the development
of graphical rules for writing down the covariance of any pair of ob-
served variables in terms of path coefficients and of covariances among
the error terms. In our simple example, we can immediately write the
relations
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Cov(X, Y) = β (3)

for Figure 1(a), and

Cov(X, Y) = β + Cov(UY, UX) (4)

for Figure 1(b)–(c). (These can be derived of course from the equations,
but, for large models, algebraic methods tend to obscure the origin of the
derived quantities.) Under certain conditions (e.g., if Cov(UY, UX) = 0),
such relationships may allow us to solve for the path coefficients in terms
of observed covariance terms only, and this amounts to inferring the
magnitude of (direct) causal effects from observed, nonexperimental
associations, assuming of course that we are prepared to defend the
causal assumptions encoded in the diagram.

It is important to note that, in path diagrams, causal assump-
tions are encoded not in the links but, rather, in the missing links. An
arrow merely indicates the possibility of causal connection, the strength
of which remains to be determined (from data); a missing arrow repre-
sents a claim of zero influence, while a missing double arrow represents
a claim of zero covariance. In Figure 1(a), for example, the assump-
tions that permit us to identify the direct effect β are encoded by the
missing double arrow between UX and UY, indicating Cov(UY, UX) = 0,
together with the missing arrow from Y to X . Had any of these two
links been added to the diagram, we would not have been able to iden-
tify the direct effect β. Such additions would amount to relaxing the
assumption Cov(UY, UX) = 0, or the assumption that Y does not affect
X , respectively. Note also that both assumptions are causal, not statisti-
cal, since none can be determined from the joint density of the observed
variables, X and Y ; the association between the unobserved terms, UY

and UX, can only be uncovered in an experimental setting; or (in more
intricate models, as in Figure 5) from other causal assumptions.

Although each causal assumption in isolation cannot be tested,
the sum total of all causal assumptions in a model often has testable im-
plications. The chain model of Figure 2(a), for example, encodes seven
causal assumptions, each corresponding to a missing arrow or a missing
double-arrow between a pair of variables. None of those assumptions
is testable in isolation, yet the totality of all those assumptions implies
that Z is unassociated with Y in every stratum of X . Such testable
implications can be read off the diagrams using a graphical criterion
known as d-separation (Pearl 1988).
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FIGURE 2. The diagrams associated with (a) the structural model of equation (5) and (b)
the modified model of equation (6), representing the intervention do(X = x0).

Definition 1 (d-separation): A set S of nodes is said to block a path p
if either (a) p contains at least one arrow-emitting node that is in S,
or (b) p contains at least one collision node that is outside S and has
no descendant in S. If S blocks all paths from X to Y , it is said to
“d-separate X and Y,” and then, X and Y are independent given S,
written X ⊥⊥Y | S.

To illustrate, the path UZ → Z → X → Y is blocked by S = {Z} and by
S = {X}, since each emits an arrow along that path. Consequently we
can infer that the conditional independencies UZ ⊥⊥Y | Zand UZ ⊥⊥Y | X
will be satisfied in any probability function that this model can generate,
regardless of how we parametrize the arrows. Likewise, the path UZ →
Z → X ← UX is blocked by the null set {∅}, but it is not blocked by
S = {Y} since Y is a descendant of the collision node X . Consequently,
the marginal independence UZ ⊥⊥UX will hold in the distribution, but
UZ ⊥⊥UX | Y may or may not hold. This special handling of collision
nodes (or colliders, e.g., Z → X ← UX) reflects a general phenomenon
known as Berkson’s paradox (Berkson 1946), whereby observations on
a common consequence of two independent causes render those causes
dependent. For example, the outcomes of two independent coins are
rendered dependent by the testimony that at least one of them is a tail.

The conditional independencies entailed by d-separation con-
stitute the main opening through which the assumptions embodied
in structural equation models can confront the scrutiny of nonexper-
imental data. In other words, almost all statistical tests capable of in-
validating the model are entailed by those implications.8 In addition,
d-separation further defines conditions for model equivalence (Verma

8 Additional implications called “dormant independence” (Shpitser and
Pearl 2008) may be deduced from some semi-Markovian models, i.e., graphs with
correlated errors (Verma and Pearl 1990).
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and Pearl 1990; Ali et al. 2009) that are mathematically proven and
should therefore supercede the heuristic (and occasionally false) rules
prevailing in social science research (Lee and Hershberger 1990).

3.2. From Linear to Nonparametric Models and Graphs

Structural equation modeling (SEM) has been the main vehicle for
effect analysis in economics and the behavioral and social sciences
(Goldberger 1972; Duncan 1975; Bollen 1989). However, the bulk of
SEM methodology was developed for linear analysis, with only a few
attempts (e.g., Muthén 1984; Winship and Mare 1983; Bollen 1989,
ch. 9) to extend its capabilities to models involving discrete variables,
nonlinear dependencies, and heterogeneous effect modifications.9 A
central requirement for any such extension is to detach the notion of
“effect” from its algebraic representation as a coefficient in an equa-
tion, and redefine “effect” as a general capacity to transmit changes
among variables. Such an extension, based on simulating hypothetical
interventions in the model, was proposed in Haavelmo (1943), Strotz
and Wold (1960), Spirtes et al. (1993), Pearl (1993a, 2000a), and Lind-
ley (2002), and it has led to new ways of defining and estimating causal
effects in nonlinear and nonparametric models (that is, models in which
the functional form of the equations is unknown).

The central idea is to exploit the invariant characteristics of
structural equations without committing to a specific functional form.
For example, the nonparametric interpretation of the diagram in
Figure 2(a) corresponds to a set of three functions, each corresponding
to one of the observed variables:

z = fZ(uZ)

x = fX(z, u X)

y = fY(x, uY), (5)

where in this particular example UZ, UX, and UY are assumed to be
jointly independent but otherwise arbitrarily distributed. Each of these

9 These attempts were limited to ML estimation of regression coefficients
in specific nonlinear functions but failed to relate those coefficients to causal effects
among the observed variables (see Section 6.5).
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functions represents a causal process (or mechanism) that determines
the value of the left variable (output) from the values on the right
variables (inputs). The absence of a variable from the right-hand side of
an equation encodes the assumption that nature ignores that variable
in the process of determining the value of the dependent variable. For
example, the absence of variable Z from the arguments of fY conveys
the empirical claim that variations in Z will leave Y unchanged, as long
as variables UY and X remain constant. A system of such functions is
said to be structural if they are assumed to be autonomous—that is,
each function is invariant to possible changes in the form of the other
functions (Simon 1953; Koopmans 1953).

3.2.1 Representing Interventions
This feature of invariance permits us to use structural equations as a ba-
sis for modeling causal effects and counterfactuals. This is done through
a mathematical operator called do(x), which simulates physical inter-
ventions by deleting certain functions from the model, replacing them
with a constant X = x, while keeping the rest of the model unchanged.
For example, to emulate an intervention do(x0) that holds X constant
(at X = x0) in model M of Figure 2(a), we replace the equation for x in
equation (5) with x = x0, and obtain a new model, Mx0 ,

z = fZ(uZ)

x = x0

y = fY(x, uY) (6)

the graphical description of which is shown in Figure 2(b).
The joint distribution associated with the modified model, de-

noted P(z, y | do(x0)), describes the postintervention distribution of
variables Y and Z (also called “controlled” or “experimental” dis-
tribution), to be distinguished from the preintervention distribution,
P(x, y, z), associated with the original model of equation (5). For ex-
ample, if X represents a treatment variable, Y a response variable, and
Z some covariate that affects the amount of treatment received, then
the distribution P(z, y | do(x0)) gives the proportion of individuals that
would attain response level Y = y and covariate level Z = z under the
hypothetical situation in which treatment X = x0 is administered uni-
formly to the population.
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In general, we can formally define the postintervention distribu-
tion by the equation

PM(y | do(x)) �= PMx(y) (7)

In words: In the framework of model M, the postintervention distribu-
tion of outcome Y is defined as the probability that model Mx assigns
to each outcome level Y = y.

From this distribution, we are able to assess treatment efficacy
by comparing aspects of this distribution at different levels of x0. A
common measure of treatment efficacy is the average difference

E(Y | do(x′
0)) − E(Y | do(x0)), (8)

where x′
0 and x0 are two levels (or types) of treatment selected for

comparison. Another measure is the experimental risk ratio

E(Y | do(x′
0))/E(Y | do(x0)). (9)

The variance Var (Y | do(x0)), or any other distributional parame-
ter, may also enter the comparison; all these measures can be ob-
tained from the controlled distribution function P(Y = y | do(x)) =∑

z P(z, y | do(x)), which was called “causal effect” in Pearl (2000a,
1995) (see footnote 3). The central question in the analysis of causal ef-
fects is the question of identification: Can the controlled (postinterven-
tion) distribution, P(Y = y | do(x)), be estimated from data governed
by the preintervention distribution, P(z, x, y)?

The problem of identification has received considerable attention
in econometrics (Hurwicz 1950; Marschak 1950; Koopmans 1953) and
social science (Duncan 1975; Bollen 1989), usually in linear parametric
settings, where it reduces to asking whether some model parameter, β,
has a unique solution in terms of the parameters of P (the distribution of
the observed variables). In the nonparametric formulation, identifica-
tion is more involved, since the notion of “has a unique solution” does
not directly apply to causal quantities such as Q(M) = P(y | do(x)),
which have no distinct parametric signature and are defined proce-
durally by simulating an intervention in a causal model M, as in
equation (6). The following definition provides the needed extension:
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Definition 2 (identifiability, [Pearl 2000a:77]): A quantity Q(M) is iden-
tifiable, given a set of assumptions A, if for any two models M1 and M2

that satisfy A, we have

P(M1) = P(M2) ⇒ Q(M1) = Q(M2) (10)

In words, the details of M1 and M2 do not matter; what matters
is that the assumptions in A (e.g., those encoded in the diagram) would
constrain the variability of those details in such a way that equality of
Ps would entail equality of Qs. When this happens, Q depends on P
only and should therefore be expressible in terms of the parameters of
P. The next subsections exemplify and operationalize this notion.

3.2.2 Estimating the Effect of Interventions
To understand how hypothetical quantities such as P(y | do(x)) or
E(Y | do(x0)) can be estimated from actual data and a partially speci-
fied model, let us begin with a simple demonstration on the model of
Figure 2(a). We will see that, despite our ignorance of fX, fY, fZ, and
P(u), E(Y | do(x0)) is nevertheless identifiable and is given by the condi-
tional expectation E(Y | X = x0). We do this by deriving and comparing
the expressions for these two quantities, as defined by equations (5) and
(6), respectively. The mutilated model in equation (6) dictates

E(Y | do(x0)) = E( fY(x0, uY)), (11)

whereas the preintervention model of equation (5) gives

E(Y | X = x0)) = E( fY(x, uY) | X = x0)

= E( fY(x0, uY) | X = x0)

= E( fY(x0, uY)) (12)

which is identical to (11). Therefore,

E(Y | do(x0)) = E(Y | X = x0)) (13)

Using a similar though somewhat more involved derivation, we can
show that P(y | do(x)) is identifiable and given by the conditional prob-
ability P(y | x).
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We see that the derivation of (13) was enabled by two assump-
tions: (1) that Y is a function of X and UY only, and (2) that UY is in-
dependent of {UZ, UX}, hence of X . The latter assumption parallels the
celebrated “orthogonality” condition in linear models, Cov(X, UY) = 0,
which has been used routinely, often thoughtlessly, to justify the esti-
mation of structural coefficients by regression techniques.

Naturally, if we were to apply this derivation to the linear models
of Figure 1(a) or (b), we would get the expected dependence between Y
and the intervention do(x0):

E(Y | do(x0)) = E( fY(x0, uY))

= E(βx0 + uY)

= βx0 (14)

This equality endows β with its causal meaning as “effect coefficient.”
It is extremely important to keep in mind that in structural (as op-
posed to regressional) models, β is not “interpreted” as an effect co-
efficient but is “proven” to be one by the derivation above. β will re-
tain this causal interpretation regardless of how X is actually selected
(through the function fX in Figure 2(a)) and regardless of whether
UX and UY are correlated (as in Figure 1(b)) or uncorrelated (as in
Figure 1(a)). Correlations may only impede our ability to estimate β

from nonexperimental data, but it will not change its definition as
given in (14). Accordingly, and contrary to endless confusions in the
literature (see footnote 18), structural equations say absolutely nothing
about the conditional expectation E(Y | X = x). Such connection may
exist under special circumstances—for example, if cov(X, UY) = 0, as in
equation (13)—but it is otherwise irrelevant to the definition or in-
terpretation of β as effect coefficient, or to the empirical claims of
equation (1).

Section 3.2.3 will circumvent these derivations altogether by re-
ducing the identification problem to a graphical procedure. Indeed,
since graphs encode all the information that nonparametric structural
equations represent, they should permit us to solve the identification
problem without resorting to algebraic analysis.

3.2.3 Causal Effects from Data and Graphs
Causal analysis in graphical models begins with the realization that all
causal effects are identifiable whenever the model is Markovian—that is,
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the graph is acyclic (i.e., containing no directed cycles) and all the error
terms are jointly independent. Non-Markovian models, such as those
involving correlated errors (resulting from unmeasured confounders),
permit identification only under certain conditions, and these condi-
tions too can be determined from the graph structure (Section 3.3). The
key to these results rests with the following basic theorem.

Theorem 1 (the causal markov condition): Any distribution generated
by a Markovian model M can be factorized as

P(v1, v2, . . . , vn) =
∏

i

P(vi | pai ) (15)

where V1, V2, . . . , Vn are the endogenous variables in M, and pai are
(values of) the endogenous “parents” of Vi in the causal diagram asso-
ciated with M.

For example, the distribution associated with the model in Figure 2(a)
can be factorized as

P(z, y, x) = P(z)P(x | z)P(y | x), (16)

since X is the (endogenous) parent of Y , Z is the parent of X , and Z
has no parents.

Corollary 1 (truncated factorization): For any Markovian model, the
distribution generated by an intervention do(X = x0) on a set X of
endogenous variables is given by the truncated factorization

P(v1, v2, . . . , vk | do(x0)) =
∏

i | Vi 	∈X

P(vi | pai )|x=x0 (17)

where P(vi | pai ) are the preintervention conditional probabilities.10

Corollary 1 instructs us to remove from the product of equation (15)
those factors that quantify how the intervened variables (members of

10 A simple proof of the causal Markov theorem is given in (Pearl 2000a:
30). This theorem was first presented in Pearl and Verma (1991), but it is implicit in
the works of Kiiveri et al. (1984) and others. Corollary 1 was named “Manipulation
Theorem” in Spirtes et al. (1993), and it is also implicit in the G-computation
formula of Robins (1987); see also Lauritzen (2001).
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set X) are influenced by their preintervention parents. This removal
follows from the fact that the postintervention model is Markovian as
well, hence, following Theorem 1, it must generate a distribution that
is factorized according to the modified graph, yielding the truncated
product of Corollary 1. In our example of Figure 2(b), the distribution
P(z, y | do(x0)) associated with the modified model is given by

P(z, y | do(x0)) = P(z)P(y | x0),

where P(z) and P(y | x0) are identical to those associated with the prein-
tervention distribution of equation (16). As expected, the distribution
of Z is not affected by the intervention, since11

P(z | do(x0)) =
∑

y

P(z, y | do(x0)) =
∑

y

P(z)P(y | x0) = P(z)

while that of Y is sensitive to x0 and is given by

P(y | do(x0)) =
∑

z

P(z, y | do(x0)) =
∑

z

P(z)P(y | x0) = P(y | x0).

This example demonstrates how the (causal) assumptions embedded
in the model M permit us to predict the postintervention distribution
from the preintervention distribution, which further permits us to es-
timate the causal effect of X on Y from nonexperimental data, since
P(y | x0) is estimable from such data. Note that we have made no as-
sumption whatsoever on the form of the equations or the distribution
of the error terms; it is the structure of the graph alone (specifically, the
identity of X ’s parents) that permits the derivation to go through.

The truncated factorization formula enables us to derive causal
quantities directly, without dealing with equations or equation mod-
ification as in equations (11)–(13). Consider, for example, the model
shown in Figure 3, in which the error variables are kept implicit. In-
stead of writing down the corresponding five nonparametric equations,
we can write the joint distribution directly as

11 Throughout this paper, summation signs should be understood to rep-
resent integrals whenever the summed variables are continuous.
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FIGURE 3. A Markovian model illustrating the derivation of the causal effect of X on Y , as
shown in equation (20). Error terms are not shown explicitly.

P(x, z1, z2, z3, y) = P(z1)P(z2)P(z3 | z1, z2)P(x | z1, z3)P(y | z2, z3, x)

(18)

where each marginal or conditional probability on the right-hand side
is directly estimable from the data. Now suppose we intervene and
set variable X to x0. The postintervention distribution can readily be
written (using the truncated factorization formula (17)) as

P(z1, z2, z3, y | do(x0)) = P(z1)P(z2)P(z3 | z1, z2)P(y | z2, z3, x0), (19)

and the causal effect of X on Y can be obtained immediately by
marginalizing over the Z variables, giving

P(y | do(x0)) =
∑

z1,z2,z3

P(z1)P(z2)P(z3 | z1, z2)P(y | z2, z3, x0) (20)

Note that this formula corresponds precisely with what is commonly
called “adjusting for Z1, Z2, and Z3,” and moreover we can write down
this formula by inspection, without thinking on whether Z1, Z2, and Z3

are confounders, whether they lie on the causal pathways, and so on.
Though such questions can be answered explicitly from the topology of
the graph, they are dealt with automatically when we write down the
truncated factorization formula and marginalize.

Note also that the truncated factorization formula is not re-
stricted to interventions on a single variable; it is applicable to simulta-
neous or sequential interventions such as those invoked in the analysis
of time-varying treatment with time-varying confounders (Pearl and
Robins 1995; Arjas and Parner 2004). For example, if X and Z2 are
both treatment variables, and Z1 and Z3 are measured covariates, then
the postintervention distribution would be
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P(z1, z3, y | do(x), do(z2)) = P(z1)P(z3 | z1, z2)P(y | z2, z3, x) (21)

and the causal effect of the treatment sequence do(X = x), do(Z2 =
z2)12 would be

P(y | do(x), do(z2)) =
∑

z1,z3

P(z1)P(z3 | z1, z2)P(y | z2, z3, x) (22)

This expression coincides with the G-computation formula in
Robins (1987), which was derived from a more complicated set of (coun-
terfactual) assumptions. As noted by Robins, the formula dictates an
adjustment for covariates (e.g., Z3) that might be affected by previous
treatments (e.g., Z2).

3.3. Coping with Latent Confounders

Things are more complicated when we face latent confounders—
that is, unmeasured factors that affect two or more observed vari-
ables. For example, it is not immediately clear whether the formula in
equation (20) can be estimated if any of Z1, Z2, and Z3 is not measured.
A few but challenging algebraic steps would reveal that we can perform
the summation over Z2 to obtain

P(y | do(x0)) =
∑

z1,z3

P(z1)P(z3 | z1)P(y | z1, z3, x0), (23)

which means that we need only adjust for Z1 and Z3 without ever
measuring Z2. In general, it can be shown (Pearl 2000a:73) that
whenever the graph is Markovian the postinterventional distribution
P(Y = y | do(X = x)) is given by the expression

P(Y = y | do(X = x)) =
∑

t

P(y | t, x)P(t), (24)

where T is the set of direct causes of X (also called “parents”) in the
graph.13 This allows us to write (23) directly from the graph, thus

12 For clarity, we drop the (superfluous) subscript 0 from x0 and z20 .
13 The operation described in equation (24) is known as “adjusting for

T” or “controlling for T .” In linear analysis, the problem amounts to finding an
appropriate set of regressors.
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FIGURE 4. A Markovian model illustrating the back-door criterion. Error terms are not
shown explicitly.

skipping the algebra that led to (23). It further implies that, no matter
how complicated the model, the parents of X are the only variables that
need to be measured to estimate the causal effects of X .

It is not immediately clear however whether other sets of vari-
ables beside X ’s parents suffice for estimating the effect of X , whether
some algebraic manipulation can further reduce equation (23), or that
measurement of Z3 (unlike Z1 or Z2) is necessary in any estimation of
P(y | do(x0)). Such considerations become transparent from a graphical
criterion to be discussed next.

3.3.1 Covariate Selection—the Back-Door Criterion
Consider an observational study where we wish to find the effect of
X on Y—for example, treatment on response—and assume that the
factors deemed relevant to the problem are structured as in Figure 4;
some are affecting the response, some are affecting the treatment, and
some are affecting both treatment and response. Some of these factors
may be unmeasurable, such as genetic trait or life style, while others are
measurable, such as gender, age, and salary level. Our problem is to select
a subset of these factors for measurement and adjustment—namely,
that if we compare treated versus untreated subjects having the same
values of the selected factors, we get the correct treatment effect in that
subpopulation of subjects. Such a set of factors is called a “sufficient
set” or “admissible set” for adjustment. The problem of defining an
admissible set, let alone finding one, has baffled epidemiologists and
social scientists for decades (see Greenland et al. [1999] and Pearl [1998]
for a review).

The following criterion, named “back-door” in Pearl (1993a),
settles this problem by providing a graphical method of selecting ad-
missible sets of factors for adjustment.

Definition 3 (admissible sets—the back-door criterion): A set S is ad-
missible (or “sufficient”) for adjustment if two conditions hold:
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1. No element of S is a descendant of X
2. The elements of S “block” all “back-door” paths from X to Y—

namely, all paths that end with an arrow pointing to X .

In this criterion, “blocking” is interpreted as in Definition 1. For ex-
ample, the set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y,
because the arrow-emitting node Z3 is in S. However, the set S = {Z3}
does not block the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y be-
cause none of the arrow-emitting nodes, Z1 and Z2, are in S, and the
collision node Z3 is not outside S.

Based on this criterion we see, for example, that the sets
{Z1, Z2, Z3}, {Z1, Z3}, {W1, Z3}, and {W2, Z3} are each sufficient for
adjustment, because each blocks all back-door paths between X and
Y . The set {Z3}, however, is not sufficient for adjustment because, as
explained above, it does not block the path X ← W1 ← Z1 → Z3 ←
Z2 → W2 → Y.

The intuition behind the back-door criterion is as follows. The
back-door paths in the diagram carry spurious associations from X to
Y , while the paths directed along the arrows from X to Y carry causative
associations. Blocking the former paths (by conditioning on S) ensures
that the measured association between X and Y is purely causative—
namely, it correctly represents the target quantity: the causal effect of
X on Y . The reason for excluding descendants of X (e.g., W3 or any of
its descendants) is given in Pearl (2009a:338–41).

Formally, the implication of finding an admissible set S is that
stratifying on S is guaranteed to remove all confounding bias relative
to the causal effect of X on Y . In other words, the risk difference in
each stratum of S gives the correct causal effect in that stratum. In the
binary case, for example, the risk difference in stratum s of S is given by

P(Y = 1 | X = 1, S = s) − P(Y = 1 | X = 0, S = s)

while the causal effect (of X on Y ) at that stratum is given by

P(Y = 1 | do(X = 1), S = s) − P(Y = 1 | do(X = 0), S = s).

These two expressions are guaranteed to be equal whenever S is a
sufficient set, such as {Z1, Z3} or {Z2, Z3} in Figure 4. Likewise, the
average stratified risk difference, taken over all strata,
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∑

s

[P(Y = 1 | X = 1, S = s) − P(Y = 1 | X = 0, S = s)]P(S = s),

gives the correct causal effect of X on Y in the entire population

P(Y = 1 | do(X = 1)) − P(Y = 1 | do(X = 0)).

In general, for multivalued variables X and Y , finding a sufficient
set S permits us to write

P(Y = y | do(X = x), S = s) = P(Y = y | X = x, S = s)

and

P(Y = y | do(X = x)) =
∑

s

P(Y = y | X = x, S = s)P(S = s) (25)

Since all factors on the right-hand side of the equation are estimable
(e.g., by regression) from the preinterventional data, the causal effect
can likewise be estimated from such data without bias.

An equivalent expression for the causal effect (25) can be ob-
tained by multiplying and dividing by the conditional probability
P(X = x | S = s), giving

P(Y = y | do(X = x)) =
∑

s

P(Y = y, X = x, S = s)
P(X = x | S = s)

(26)

from which the name “Inverse Probability Weighting” has evolved
(Pearl 2000a:73, 95).

Interestingly, it can be shown that any irreducible sufficient set, S,
taken as a unit, satisfies the associational criterion that epidemiologists
have been using to define “confounders.” In other words, S must be
associated with X and, simultaneously, associated with Y , given X .

In linear analysis, finding a sufficient set S is tantamount to
finding a set S of regressors such that the total effect X on Y is given
by the partial regression coefficient of Y on X , given S. A similar
criterion applies to the identification of path coefficients (Pearl 2009a:
150).
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The back-door criterion allows us to write equation (25) directly,
by selecting a sufficient set S directly from the diagram, without manip-
ulating the truncated factorization formula. The selection criterion can
be applied systematically to diagrams of any size and shape, thus freeing
analysts from judging whether “X is conditionally ignorable given S,”
a formidable mental task required in the potential-response framework
(Rosenbaum and Rubin 1983). The criterion also enables the analyst to
search for an optimal set of covariates—namely, a set S that minimizes
measurement cost or sampling variability (Tian et al. 1998).

All in all, we can safely state that, armed with the back-door cri-
terion, causality has removed “confounding” from its store of enigmatic
and controversial concepts.

3.3.2 Confounding Equivalence—A Graphical Test
Another problem that has been given graphical solution recently is that
of determining whether adjustment for two sets of covariates would
result in the same confounding bias (Pearl and Paz 2010). The reasons
for posing this question are several. First, an investigator may wish to
assess, prior to taking any measurement, whether two candidate sets of
covariates, differing substantially in dimensionality, measurement error,
cost, or sample variability, are equally valuable in their bias-reduction
potential. Second, assuming that the structure of the underlying DAG
is only partially known, we may wish to test, using adjustment, which
of two hypothesized structures is compatible with the data. Structures
that predict equal response to adjustment for two sets of variables must
be rejected if, after adjustment, such equality is not found in the data.

Definition 4 (c-equivalence): Define two sets of covariates, T and Z, as
c-equivalent (c connotes “confounding”) if the following equality holds:

∑

t

P(y | x, t)P(t) =
∑

z

P(y | x, z)P(z) ∀x, y (27)

Definition 5 (Markov boundary): For any set of variables S in a DAG G,
and any variable X 	∈ S, the Markov boundary Sm of S (relative to X)
is the minimal subset of S that d-separates X from all other members
of S.

In Figure 4, for example, the Markov boundary of S = {W1, Z1, Z2, Z3}
is Sm = {W1, Z3}, while the Markov boundary of X = {W3, Z3, Y} is
Sm = S.
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Theorem 2 Pearl and Paz (2010). Let Z and T be two sets of variables in
G, containing no descendant of X . A necessary and sufficient condition
for Z and T to be c-equivalent is that at least one of the following
conditions holds:

1. Zm = Tm, (i.e., the Markov boundary of Z coincides with that of T).
2. Z and T are admissible (i.e., satisfy the back-door condition).

For example, the sets T = {W1, Z3} and Z = {Z3, W2} in Figure 4 are
c-equivalent, because each blocks all back-door paths from X to Y .
Similarly, the nonadmissible sets T = {Z2} and Z = {W2, Z2} are c-
equivalent, since their Markov boundaries are the same (Tm = Zm =
{Z2}). In contrast, the sets {W1} and {Z1}, although they block the same
set of paths in the graph, are not c-equivalent; they fail both conditions
of Theorem 2.

Tests for c-equivalence (27) are fairly easy to perform, and they
can also be assisted by propensity score methods. The information that
such tests provide can be as powerful as conditional independence tests.
The statistical ramification of such tests is explicated in Pearl and Paz
(2010).

3.3.3 General Control of Confounding
Adjusting for covariates is only one of many methods that permits
us to estimate causal effects in nonexperimental studies. Pearl (1995)
has presented examples in which there exist no set of variables that is
sufficient for adjustment and where the causal effect can nevertheless be
estimated consistently. The estimation, in such cases, employs multistage
adjustments. For example, if W3 is the only observed covariate in the
model of Figure 4, then there exists no sufficient set for adjustment
(because no set of observed covariates can block the paths from X to
Y through Z3), yet P(y | do(x)) can be estimated in two steps: first,
we estimate P(w3 | do(x)) = P(w3 | x) (by virtue of the fact that there
exists no unblocked back-door path from X to W3): second, we estimate
P(y | do(w3)) (since X constitutes a sufficient set for the effect of W3 on
Y ), and, finally, we combine the two effects together and obtain
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P(y | do(x)) =
∑

w3

P(w3 | do(x))P(y | do(w3)) (28)

In this example, the variable W3 acts as a “mediating instrumental
variable” (Pearl 1993b; Chalak and White 2006; Morgan and Winship
2007).

The analysis used in the derivation and validation of such results
invokes mathematical rules of transforming causal quantities, repre-
sented by expressions such as P(Y = y | do(x)), into do-free expressions
derivable from P(z, x, y), since only do-free expressions are estimable
from nonexperimental data. When such a transformation is feasible, we
can be sure that the causal quantity is identifiable.

Applications of this calculus to problems involving multiple in-
terventions (e.g., time-varying treatments), conditional policies, and
surrogate experiments were developed in Pearl and Robins (1995),
Kuroki and Miyakawa (1999), and Pearl (2000a, ch. 3–4).

A more recent analysis (Tian and Pearl 2002) shows that the
key to identifiability lies not in blocking paths between X and Y but
rather in blocking paths between X and its immediate successors on the
pathways to Y . All existing criteria for identification are special cases
of the one defined in the following theorem.

Theorem 3 (Tian and Pearl 2002): A sufficient condition for identifying
the causal effect P(y | do(x)) is that every path between X and any of its
children traces at least one arrow emanating from a measured variable.14

For example, if W3 is the only observed covariate in the model of
Figure 4, P(y | do(x)) can be estimated since every path from X to
W3 (the only child of X) traces either the arrow X → W3, or the arrow
W3 → Y, both emanate from measured variables (X and W3).

Shpitser and Pearl (2006) have further extended this theorem by
(1) presenting a necessary and sufficient condition for identification,
and (2) extending the condition from causal effects to any counterfac-
tual expression. The corresponding unbiased estimands for these causal
quantities are readable directly from the diagram.

Graph-based methods for effect identification under measure-
ment errors are discussed in (Pearl 2010e; Hernán and Cole 2009; Cai
and Kuroki 2008).

14 Before applying this criterion, one may delete from the causal graph
all nodes that are not ancestors of Y .



104 J. PEARL

3.4. Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P(y | do(x)) type
expressions, thus implying that not all causal questions can be answered
from experimental studies. For example, questions of attribution or sus-
ceptibility (e.g., what fraction of test failure cases are due to a specific
educational program?) cannot be answered from experimental studies,
and naturally this kind of question cannot be expressed in P(y | do(x))
notation.15 To answer such questions, a probabilistic analysis of coun-
terfactuals is required, one dedicated to the relation “Y would be y
had X been x in situation U = u,” denoted Yx(u) = y. Remarkably,
unknown to most economists and philosophers, structural equation
models provide the formal interpretation and symbolic machinery for
analyzing such counterfactual relationships.16

The key idea is to interpret the phrase “had X been x” as an
instruction to make a minimal modification in the current model, which
may have assigned X a different value, say X = x′, so as to ensure the
specified condition X = x. Such a minimal modification amounts to
replacing the equation for X by a constant x, as we have done in equation
(6). This replacement permits the constant x to differ from the actual
value of X (namely fX(z, u X)) without rendering the system of equations
inconsistent, thus yielding a formal interpretation of counterfactuals in
multistage models, where the dependent variable in one equation may
be an independent variable in another.

Definition 6: (unit-level counterfactuals—the “surgical” definition
[Pearl 2000a:98]). Let M be a structural model and Mx a modified

15 The reason for this fundamental limitation is that no death case can
be tested twice, with and without treatment. For example, if we measure equal
proportions of deaths in the treatment and control groups, we cannot tell how
many death cases are actually attributable to the treatment itself; it is quite possible
that many of those who died under treatment would be alive if untreated and,
simultaneously, many of those who survived with treatment would have died if not
treated.

16 Connections between structural equations and a restricted class of
counterfactuals were first recognized by Simon and Rescher (1966). These were
later generalized by Balke and Pearl (1995), using surgeries (equation 29), thus per-
mitting endogenous variables to serve as counterfactual antecedents. The “surgery
definition” was used in Pearl (2000a, p. 417) and criticized by Cartwright (2007)
and Heckman (2005); see Pearl (2009a:362–63, 374–79) for rebuttals.
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version of M, with the equation(s) of X replaced by X = x. Denote
the solution for Y in the equations of Mx by the symbol YMx(u). The
counterfactual Yx(u) (Read: “The value of Y in unit u, had X been x”)
is given by

Yx(u) �= YMx(u). (29)

In words: The counterfactual Yx(u) in model M is defined as the solution
for Y in the “surgically modified” submodel Mx.

We see that the unit-level counterfactual Yx(u), which in the
Neyman-Rubin approach is treated as a primitive, undefined quantity,
is actually a derived quantity in the structural framework. We use the
same subscripted notation for both, because they represent the same
physical entity: the response Y of experimental unit u under the hypo-
thetical condition X = x. The fact that we equate the experimental unit
u with a vector of background conditions, U = u, in M, reflects the
understanding that the name of a unit or its identity do not matter; it
is only the vector U = u of attributes characterizing a unit that deter-
mines its behavior or response. As we go from one unit to another, the
laws of nature, as they are reflected in the functions fX, fY, etc., remain
invariant; only the attributes U = u vary from individual to individual.

To illustrate, consider the solution of Y in the modified model
Mx0 of equation (6), which Definition 6 endows with the symbol
Yx0 (u X, uY, uZ). This entity has a clear counterfactual interpretation,
for it stands for the way an individual with characteristics (u X, uY, uZ)
would respond, had the treatment been x0, rather than the treatment
x = fX(z, u X) actually received by that individual. In our example, since
Y does not depend on u X and uZ, we can write

Yx0 (u) = Yx0 (uY, u X, uZ) = fY(x0, uY). (30)

In a similar fashion, we can derive

Yz0 (u) = fY( fX(z0, u X), uY),

Xz0,y0 (u) = fX(z0, u X),

and so on. These examples reveal the counterfactual reading of each in-
dividual structural equation in the model of equation (5). The equation
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x = fX(z, u X), for example, advertises the empirical claim that, regard-
less of the values taken by other variables in the system, had Z been
z0, X would take on no other value but x = fX(z0, u X).

Clearly, the distribution P(uY, u X, uZ) induces a well-defined
probability on the counterfactual event Yx0 = y, as well as on joint
counterfactual events, such as “Yx0 = y AND Yx1 = y′,” which are, in
principle, unobservable if x0 	= x1. Thus, to answer attributional ques-
tions such as whether Y would be y1 if X were x1, given that in fact
Y is y0 and X is x0, we need to compute the conditional probability
P(Yx1 = y1 | Y = y0, X = x0), which is well defined once we know the
forms of the structural equations and the distribution of the exogenous
variables in the model. For example, assuming linear equations (as in
Figure 1),

x = u X y = βx + u X,

the conditioning events Y = y0 and X = x0 yield UX = x0 and UY =
y0 − βx0, and we can conclude that, with probability one, Yx1 must
take on the value Yx1 = βx1 + UY = β(x1 − x0) + y0. In other words,
if X were x1 instead of x0, Y would increase by β times the difference
(x1 − x0). In nonlinear systems, the result would also depend on the
distribution of {UX, UY} and, for that reason, attributional queries are
generally not identifiable in nonparametric models (see Pearl 2000a,
ch. 9).

In general, if x and x′ are incompatible, then Yx and Yx′ cannot
be measured simultaneously, and it may seem meaningless to attribute
probability to the joint statement “Y would be y if X = x and Y would
be y′ if X = x′.”17 Such concerns have been a source of objections to
treating counterfactuals as jointly distributed random variables (Dawid
2000). The definition of Yx and Yx′ in terms of two distinct submodels
neutralizes these objections (Pearl 2000b), since the contradictory joint
statement is mapped into an ordinary event, one where the background
variables satisfy both statements simultaneously, each in its own distinct
submodel; such events have well-defined probabilities.

The surgical definition of counterfactuals given by (29) pro-
vides the conceptual and formal basis for the Neyman-Rubin

17 For example, “The probability is 80% that Joe belongs to the class of
patients who will be cured if they take the drug and die otherwise.”



THE FOUNDATIONS OF CAUSAL INFERENCE 107

potential-outcome framework, an approach to causation that takes a
controlled randomized trial (CRT) as its ruling paradigm, assuming
that nothing is known to the experimenter about the science behind the
data. This “black-box” approach, which has thus far been denied the
benefits of graphical or structural analyses, was developed by statisti-
cians who found it difficult to cross the two mental barriers discussed
in Section 2.2. Section 5 establishes the precise relationship between
the structural and potential-outcome paradigms, and outlines how the
latter can benefit from the richer representational power of the former.

3.5. Remarks on Heterogeneity

The distinction between general, or population-level causes (e.g.,
“Drinking hemlock causes death”) and singular or unit-level causes
(e.g., “Socrates’ drinking hemlock caused his death”), which many
philosophers have regarded as irreconcilable (Eells 1991), introduces
no tension at all in the structural theory. The two types of sentences dif-
fer merely in the level of situation-specific information that is brought
to bear on a problem—that is, in the specificity of the evidence e that
enters the quantity P(Yx = y | e). When e includes all factors u, we have
a deterministic, unit-level causation on our hand; when e contains only
a few known attributes (e.g., age, income, occupation) while others are
assigned probabilities, a population-level analysis ensues.

The inherently nonlinear nature of nonparametric structural
equations permits us to go beyond constant-coefficient models and en-
code the way causal effects may vary across individuals having differing
characteristics, a pervasive condition known as “effect heterogeneity”
(Xie 2007; Elwert and Winship 2010). This does not mean of course
that we are able to quantify the degree of heterogeneity due to totally
unknown (hence unobserved) individual variations. No analysis can
recover individual-level effects from a one-time population-level study,
be it observational or experimental. In a population where some indi-
viduals respond positively and some negatively, it is quite possible to
find an average causal effect of zero (Pearl 2009a:36) without knowing
which subpopulation a given individual belongs to, or whether such
subpopulations exist.

What structural modeling enables us to do is, first, account for
individual variations whenever they are due to observed characteristics
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(say income, occupation, age, etc.); second, estimate average causal
effects despite variation in unobserved characteristics, whenever they
are known not to influence certain variables in the analysis (as in Section
3.4); and, finally, assess, by simulation, the extent to which regression
type estimators would yield biased results when the parametric form
used misspecifies the nonlinearities involved (VanderWeele and Robins
2007; Elwert and Winship 2010).

4. METHODOLOGICAL PRINCIPLES OF CAUSAL
INFERENCE

The structural theory described in the previous sections dictates a prin-
cipled methodology that eliminates much of the confusion concerning
the interpretations of study results as well as the ethical dilemmas that
this confusion tends to spawn. The methodology dictates that every
investigation involving causal relationships (and this entails the vast
majority of empirical studies in the health, social, and behavioral sci-
ences) should be structured along the following five-step process:

1. Define: Express the target quantity Q as a function Q(M) that can
be computed from any model M.

2. Assume: Formulate causal assumptions using ordinary scientific lan-
guage and represent their structural part in graphical form.

3. Identify: Determine if the target quantity is identifiable (i.e., express-
ible in terms of estimable parameters).

4. Test: Identify the testable implications of M (if any) and test those
that are necessary for the identifiability of Q.

5. Estimate: Estimate the target quantity if it is identifiable, or approx-
imate it, if it is not.

4.1. Defining the Target Quantity

The definitional phase is the most neglected step in current practice
of quantitative analysis. The structural modeling approach insists on
defining the target quantity, be it “causal effect,” “mediated effect,”
“effect on the treated,” or “probability of causation,” before specifying
any aspect of the model, without making functional or distributional
assumptions and prior to choosing a method of estimation.
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The investigator should view this definition as an algorithm that
receives a model M as an input and delivers the desired quantity Q(M)
as the output. Surely, such algorithm should not be tailored to any
aspect of the input M nor to the interpretation of the variables in V ; it
should be general, and ready to accommodate any conceivable model M
whatsoever. Moreover, the investigator should imagine that the input M
is a completely specified model, with all the functions fX, fY, . . . and all
the U variables (or their associated probabilities) given precisely. This is
the hardest step for statistically trained investigators to make; knowing
in advance that such details will never be estimable from the data, the
definition of Q(M) appears like a futile exercise in fantasyland—but it
is not.

For example, the formal definition of the interventional distribu-
tion P(y | do(x)), as given in equation (7), is universally applicable to all
models, parametric as well as nonparametric, through the formation of
a submodel Mx. This definition remains the same regardless of whether
X stands for treatment, gender, or the gravitational constant; manipu-
lation restrictions do not enter the definitional phase of the study (Pearl
2009a:361, 375). By defining causal effect procedurally, thus divorcing
it from its traditional parametric representation, the structural theory
avoids the many pitfalls and confusions that have plagued the inter-
pretation of structural and regressional parameters for the past half
century.18

4.2. Explicating Causal Assumptions

This is the second most neglected step in causal analysis. In the past, the
difficulty has been the lack of a language suitable for articulating causal
assumptions which, aside from impeding investigators from explicating

18 Note that β in equation (1), the incremental causal effect of X on Y is
defined procedurally by

β
�= E(Y | do(x0 + 1)) − E(Y | do(x0)) = ∂

∂x
E(Y | do(x)) = ∂

∂x
E(Yx).

Naturally, all attempts to give β statistical interpretation have ended in frustrations
(Holland 1988; Whittaker 1990; Wermuth 1992; Wermuth and Cox 1993), some
persisting well into the twenty-first century (Sobel 2008).



110 J. PEARL

assumptions, also inhibited them from giving causal interpretations to
their findings.

Structural equation models, in their counterfactual reading, have
removed this lingering difficulty by providing the needed language
for causal analysis. Figures 3 and 4 illustrate the graphical compo-
nent of this language, where assumptions are conveyed through the
missing arrows in the diagram. If numerical or functional knowledge
is available, for example, linearity or monotonicity of the functions
fX, fY, . . ., those are stated separately, and applied in the identifica-
tion and estimation phases of the study. Today we understand that the
longevity and natural appeal of structural equations stem from the fact
that they permit investigators to communicate causal assumptions for-
mally and in the very same vocabulary in which scientific knowledge is
stored.

Unfortunately, however, this understanding is not shared by all
causal analysts; some analysts vehemently oppose the re-emergence of
structure-based causation and insist, instead, on articulating causal
assumptions exclusively in the unnatural (though formally equiva-
lent) language of “potential outcomes,” “ignorability,” “missing data,”
“treatment assignment,” and other metaphors borrowed from clinical
trials. This modern assault on structural models is perhaps more danger-
ous than the regressional invasion that suppressed the causal readings
of these models in the late 1970s (Richard 1980). While sanctioning
causal inference in one narrow style of analysis, the modern assault
denies validity to any other style, including structural equations, thus
discouraging investigators from subjecting models to the scrutiny of
scientific knowledge.

This exclusivist attitude is manifested in passages such as: “The
crucial idea is to set up the causal inference problem as one of missing
data” or “If a problem of causal inference cannot be formulated in
this manner (as the comparison of potential outcomes under different
treatment assignments), it is not a problem of inference for causal effects,
and the use of ‘causal’ should be avoided,” or, even more bluntly, “the
underlying assumptions needed to justify any causal conclusions should
be carefully and explicitly argued, not in terms of technical properties
like ‘uncorrelated error terms,’ but in terms of real world properties,
such as how the units received the different treatments” (Wilkinson
et al. 1999).
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The methodology expounded in this paper testifies against such
restrictions. It demonstrates the viability and scientific soundness of
the traditional structural equation paradigm, which stands diametri-
cally opposed to the “missing data” paradigm. It renders the vocabu-
lary of “treatment assignment” stifling and irrelevant (e.g., there is no
“treatment assignment” in sex discrimination cases). Most importantly,
it strongly prefers the use of “uncorrelated error terms” (or “omitted
factors”) over its “strong ignorability” alternative as the proper way
of articulating causal assumptions. Even the most devout advocates of
the “strong ignorability” language use “omitted factors” when the need
arises to defend assumptions (e.g., Sobel 2008).

4.3. Identification, Tests, Estimation, and Approximation

Having unburdened itself from parametric representations, the iden-
tification process in the structural framework proceeds either in the
space of assumptions (i.e., the diagram) or in the space of mathematical
expressions, after translating the graphical assumptions into a coun-
terfactual language, as demonstrated in Section 5.3. Graphical criteria
such as those of Definition 3 and Theorem 3 permit the identification of
causal effects to be decided entirely within the graphical domain, where
it can benefit from the guidance of scientific understanding. Identi-
fication of counterfactual queries, on the other hand, often require a
symbiosis of both algebraic and graphical techniques. The nonparamet-
ric nature of the identification task (Definition 1) makes it clear that
contrary to traditional folklore in linear analysis, it is not the model that
need be identified but the query Q—the target of investigation. It also
provides a simple way of proving nonidentifiability: the construction
of two parameterizations of M, agreeing in P and disagreeing in Q, is
sufficient to rule out identifiability.

4.3.1 Testing the Relevant Assumptions
When Q is identifiable, the structural framework also delivers an al-
gebraic expression for the estimand EST(Q) of the target quantity Q,
examples of which are given in equations (24) and (25), and estimation
techniques are then unleashed as discussed in Section 4.3.2. A prerequi-
site part of this estimation phase is a test for the testable implications, if
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any, of those assumptions in M that render Q identifiable—there is no
point in estimating EST(Q) if the data prove those assumptions false
and EST(Q) turns out to be a misrepresentation of Q. The testable
implications of any given model are vividly advertised by its associated
graph G. Each d-separation condition in G corresponds to a conditional
independence test that can be tested in the data to support the validity
of M. These can easily be enumerated by attending to each missing
edge in the graph. For example, in Figure 3, the missing edges are
Z1 − Z2, Z1 − Y, and Z2 − X. Accordingly, the testable implications of
M are

Z1 ⊥⊥ Z2

Z1 ⊥⊥ Y | {X1, Z2, Z3}
Z2 ⊥⊥ X | {Z1, Z3}.

In linear systems, these conditional independence constraints
translate into zero coefficients in the proper regression equations. For
example, the three implications above translate into a = 0, b1 = 0, and
c1 = 0 in the following regressions:

Z1 = aZ2 + ε

Z1 = b1Y + b2 X + b3 Z2 + b4 Z3 + ε′

Z2 = c1 X + c3 Z1 + c4 Z3 + ε′′.

Such tests are easily conducted by routine regression techniques,
and they provide valuable diagnostic information for model modifica-
tion, in case any of them fail (see Pearl 2009a:143–45). Software for
automatic detection of all such tests, as well as other implications of
graphical models, are reported in Kyono (2010).

If the model is Markovian (i.e., acyclic with no unobserved con-
founders), then the d-separation conditions are the ONLY testable im-
plications of the model. If the model contains unobserved confounders,
then additional constraints can be tested, beyond the d-separation con-
ditions (see footnote 8).

Investigators should be reminded, however, that only a fraction,
called “kernel,” of the assumptions embodied in M are needed for
identifying Q (Pearl 2004), the rest may be violated in the data with no
effect on Q. In Figure 2, for example, the assumption {UZ ⊥⊥UX} is not

X
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necessary for identifying Q = P(y | do(x)); the kernel {UY ⊥⊥UZ,

UY ⊥⊥UX} (together with the missing arrows) is sufficient. Therefore,
the testable implication of this kernel, Z⊥⊥Y | X, is all we need to test
when our target quantity is Q; the assumption {UZ ⊥⊥UX} need not
concern us.

More importantly, investigators must keep in mind that only
a tiny fraction of any kernel lends itself to statistical tests; the bulk
of it must remain untestable, at the mercy of scientific judgment. In
Figure 2, for example, the assumption set {UX ⊥⊥UZ, UY ⊥⊥UX} con-
stitutes a sufficient kernel for Q = P(y | do(x)) (see equation 28), yet
it has no testable implications whatsoever. The prevailing practice of
submitting an entire structural equation model to a “goodness of fit”
test (Bollen 1989) in support of causal claims is at odds with the logic
of structural modeling (see Pearl 2000a:144–45). Statistical tests can be
used for rejecting certain kernels in the rare cases where such kernels
have testable implications, but passing these tests does not prove the va-
lidity of any causal claim; one can always find alternative causal models
that make a contradictory claim and, yet, possess identical statistical
implications.19 The lion’s share of supporting causal claims falls on the
shoulders of untested causal assumptions.20

Some researchers consider this burden to be a weakness of struc-
tural models and would naturally prefer a methodology in which claims
are less sensitive to judgmental assumptions; unfortunately, no such
methodology exists. The relationship between assumptions and claims
is a universal one—namely, for every set A of assumptions (knowledge)
there is a unique set of conclusions C that one can deduce from A,
given the data, regardless of the method used. The completeness results
of Shpitser and Pearl (2006) imply that structural modeling operates at
the boundary of this universal relationship; no method can do better.

19 This follows logically from the demarcation line of Section 2.1. The
fact that some social scientists were surprised by the discovery of contradictory
equivalent models (see Pearl 2009a:148 ) suggests that these scientists did not take
very seriously the ramifications of the causal-statistical distinction, or that they
misunderstood the conditional nature of all causal claims drawn from observational
studies (see Pearl 2009a:369–73).

20 The methodology of “causal discovery” (Spirtes et al. 2000; Pearl
2000a, ch. 2) is likewise based on the causal assumption of “faithfulness” or
“stability”—a problem-independent assumption that constrains the relationship
between the structure of a model and the data it may generate. We will not assume
stability in this paper.

UY
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4.3.2 Estimation and Propensity Score Matching
The mathematical derivation of causal effect estimands, like equations
(25) and (28), is merely a first step toward computing quantitative es-
timates of those effects from finite samples, using the rich traditions
of statistical estimation and machine learning, Bayesian as well as non-
Bayesian. Although the estimands derived in (25) and (28) are nonpara-
metric, this does not mean that one should refrain from using parametric
forms in the estimation phase of the study. Parameterization is in fact
necessary when the dimensionality of a problem is high. For example,
if the assumptions of Gaussian, zero-mean disturbances and additive
interactions are deemed reasonable, then the estimand given in (28) can
be converted to the product E(Y | do(x)) = rW3 XrYW3·Xx, where rYZ·X
is the (standardized) coefficient of Z in the regression of Y on Z and
X . More sophisticated estimation techniques are the “marginal struc-
tural models” of Robins (1999), and the “propensity score” method
of Rosenbaum and Rubin (1983), which were found to be particularly
useful when dimensionality is high and data are sparse (see Pearl 2009a:
348–52).

The method of propensity score (Rosenbaum and Rubin 1983),
or propensity score matching (PSM), is the most developed and pop-
ular strategy for causal analysis in observational studies (Morgan and
Winship 2007; D’Agostino 1998); it deserves therefore a separate discus-
sion. PSM is based on a simple, yet ingenious, idea of purely statistical
character. Assuming a binary action (or treatment) X , and an arbitrary
set S of measured covariates, the propensity score L(s) is the probability
that action X = 1 will be chosen by a participant with characteristics
S = s, or

L(s) = P(X = 1 | S = s). (31)

Rosenbaum and Rubin showed that, viewing L(s) as a function
of S (hence, as a random variable) X and S are independent given
L(s)—or X ⊥⊥S | L(s). In words, all units that map into the same value
of L(s) are comparable, or “balanced,” in the sense that, within each
stratum of L, treated and untreated units have the same distribution of
characteristics S.21

21 This independence emanates from the special nature of the function
L(s) and is not represented in the graph; i.e., if we depict L as a child of S, L would
not in general d-separate S from X .
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Let us assume, for simplicity, that L(s) can be estimated sep-
arately from the data and approximated by discrete strata L =
{l1, l2, . . . , lk}. The conditional independence X ⊥⊥S | L(s), together
with the functional mapping S → L, renders S and L c-equivalent in
the sense defined in Section 3.3.2, equation (27)—namely, for any Y ,

∑

s

P(y | s, x)P(s) =
∑

l

P(y | l, x)P(l). (32)

This follows immediately by writing

∑

l

P(y | l, x)P(l) =
∑

s

∑

l

P(y | l, s, x)P(l)P(s | l, x)

=
∑

s

∑

l

P(y | s, x)P(l)P(s | l)

=
∑

s

P(y | s, x)P(s).

The c-equivalence of S and L implies that, if for any reason we
wish to estimate the “adjustment estimand”

∑
s P(y | s, x)P(s), with S

and Y two arbitrary sets of variables, then, instead of summing over a
high-dimensional set S, we might as well sum over a one-dimensional
vector L(s). The asymptotic estimate, in the limit of a very large sample,
would be the same in either method.

This c-equivalence further implies that if we choose to approx-
imate the interventional distribution P(y | do(x)) by the adjustment
estimand Es P(y | s, x), then, asymptotically, the same approximation
can be achieved using the estimand El P(y | l, x), where the adjustment
is performed over the strata of L. The latter has the advantage that, for
finite samples, each of the strata is less likely to be empty and each is
likely to contain both treated and untreated units for comparison.

The method of propensity score can thus be seen as an efficient
estimator of the adjustment estimand, formed by an arbitrary set of
covariates S; it makes no statement regarding the appropriateness of S,
nor does it promise to correct for any confounding bias, or to refrain
from creating new bias where none exists.

In the special case where S is admissible, that is,

P(y | do(x)) = Es P(y | s, x), (33)
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L would be admissible as well, and we would then have an unbiased
estimand of the causal effect,22

P(y | do(x)) = El P(y | l, x),

accompanied by an efficient method of estimating the right-hand side.
Conversely, if S is inadmissible, L would be inadmissible as well, and
all we can guarantee is that the bias produced by the former would be
faithfully and efficiently reproduced by the latter.

The simplicity of PSM methods and the strong endorsement
they received from prominent statisticians (Rubin 2007), social scien-
tists (Morgan and Winship 2007; Berk and de Leeuw 1999), health
scientists (Austin 2008), and economists (Heckman 1992) has increased
the popularity of the method to the point where some federal agencies
now expect program evaluators to use this approach as a substitute
for experimental designs (Peikes et al. 2008). This move reflects a gen-
eral tendency among investigators to play down the cautionary note
concerning the required admissibility of S, and to interpret the math-
ematical proof of Rosenbaum and Rubin as a guarantee that, in each
strata of L, matching treated and untreated subjects somehow elimi-
nates confounding from the data and contributes therefore to overall
bias reduction. This tendency was further reinforced by empirical stud-
ies (Heckman et al. 1998; Dehejia and Wahba 1999) in which agree-
ment was found between propensity score analysis and randomized
trials, and in which the agreement was attributed to the ability of the
former to “balance” treatment and control groups on important char-
acteristics. Rubin (2007) has encouraged such interpretations by stating:
“This application uses propensity score methods to create subgroups of
treated units and control units . . . as if they had been randomized. The
collection of these subgroups then ‘approximate’ a randomized block
experiment with respect to the observed covariates.”

Subsequent empirical studies, however, have taken a more critical
view of propensity scores, noting with disappointment that a substantial
bias is sometimes measured when careful comparisons are made to

22 Rosenbaum and Rubin (1983) proved the c-equivalence of S and L only
for admissible S, which is unfortunate; it gave users the impression that propensity
score matching somehow contributes to bias reduction vis-à-vis ordinary adjust-
ment.
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results of clinical studies (Smith and Todd 2005; Luellen et al. 2005;
Peikes et al. 2008).

The reason for these disappointments lies in a popular belief
that adding more covariates can cause no harm (Rosenbaum 2002:76),
which seems to absolve one from thinking about the causal relation-
ships among those covariates, the treatment, the outcome, and, most
importantly, the confounders left unmeasured (Rubin 2009).

This belief stands contrary to the conclusions of the structural
theory of causation. The admissibility of S can be established only
by appealing to causal knowledge, and such knowledge, as we know
from d-separation and the back-door criterion, makes bias reduction
a nonmonotonic operation—that is, eliminating bias (or imbalance)
due to one confounder may awaken and unleash bias due to dormant,
unmeasured confounders. Examples abound where adding a variable
to the analysis not only is not needed but would introduce irrepara-
ble bias (Pearl 2009a; Shrier 2009; Sjölander 2009). In Figure 3, for
example, if the arrows emanating from Z3 are weak, then no adjust-
ment is necessary; adjusting for Z3 or matching with the propensity
score L(z3) = P(X = 1 | Z = z3) would introduce bias by opening the
back-door path

X ← Z1 → Z3 ← Z2 → Y.

Another general belief that stands contrary to the structural
theory is that the bias-reducing potential of propensity score methods
can be assessed experimentally by running case studies and comparing
effect estimates obtained by propensity scores to those obtained by
controlled randomized experiments (Shadish and Cook 2009). Such
comparisons would be informative for problems governed by the same
graph structures and the same choice of S. In general, however, such
comparison tells us very little about the performance of PSM methods
in problems that differ from the one in the randomized trial. Measuring
significant bias reduction in one problem instance (say, an educational
program in Oklahoma) does not preclude a bias increase in another (say,
crime control in Arkansas), even under identical statistical distributions
P(x, s, y).

It should be emphasized, though, that contrary to conventional
wisdom (e.g., Rubin 2007, 2009), propensity score methods are merely
efficient estimators of the right-hand side of (25); they entail the same
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asymptotic bias and cannot be expected to reduce bias in the event
that the set S does not satisfy the back-door criterion (Pearl 2000a,c,d).
Consequently, the prevailing practice of conditioning on as many pre-
treatment measurements as possible is dangerously misguided; some
covariates (e.g., Z3 in Figure 3) may actually increase bias if included in
the analysis (see footnote 28). Using simulation and parametric anal-
ysis, Heckman and Navarro-Lozano (2004), Bhattacharya and Vogt
(2007) indeed confirmed the bias-raising potential of certain covariates
in propensity score methods. In particular, such covariates include (1)
colliders, (2) variables on the pathways from X to Y , or descendants
thereof (Pearl 2009a:339–40), and (3) instrumental variables and vari-
ables that affect X more strongly than they affect Y (Bhattacharya and
Vogt 2007; Pearl 2010d).23 The graphical tools presented in this sec-
tion unveil the character of these covariates and show precisely what
covariates should and should not be included in the conditioning set
for propensity score matching.

4.3.3 Bounds and Approximations
When conditions for identification are not met, the best we can do is
derive bounds for the quantities of interest—namely, a range of possible
values of Q that represents our ignorance about the details of the data-
generating process M and that cannot be improved with increasing
sample size. A classical example of a nonidentifiable model that has been
approximated by bounds is the problem of estimating causal effect in
experimental studies marred by noncompliance, the structure of which
is given in Figure 5.

Our task in this example is to find the highest and lowest values
of Q

Q �= P(Y = y | do(x)) =
∑

u X

P(Y = y | X = x, UX = u X)P(UX = u X)

(34)

23 Contrary to prevailing practice (documented in Bhattacharya and Vogt
(2007)), adding an instrumental variable as a predictor in the propensity score
tends to amplify bias (if such exists) despite the improvement in prediction of the so
called “treatment assignment.” This is one of several bad practices that graph-based
analysis may help rectify.
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FIGURE 5. Causal diagram representing the assignment (Z), treatment (X), and outcome
(Y ) in a clinical trial with imperfect compliance.

subject to the equality constraints imposed by the observed probabilities
P(x, y, | z), where the maximization ranges over all possible functions
P(uY, u X), P(y | x, u X), and P(x | z, uY) that satisfy those constraints.

Realizing that units in this example fall into 16 equivalence
classes, each representing a binary function X = f (z) paired with a
binary function y = g(x), Balke and Pearl (1997) were able to derive
closed-form solutions for these bounds.24 They showed that, in cer-
tain cases, the derived bounds can yield significant information on the
treatment efficacy. Chickering and Pearl (1997) further used Bayesian
techniques (with Gibbs sampling) to investigate the sharpness of these
bounds as a function of sample size. Kaufman and colleagues (2009)
used this technique to bound direct and indirect effects (see Section 6).

5. THE POTENTIAL-OUTCOME FRAMEWORK

This section compares the structural theory presented in Sections 1–
3 to the potential-outcome framework, usually associated with the
names of Neyman (1923) and Rubin (1974), which takes the random-
ized experiment as its ruling paradigm and has appealed therefore to
researchers who do not find that paradigm overly constraining. This
framework is not a contender for a comprehensive theory of causation
for it is subsumed by the structural theory and excludes ordinary cause-
effect relationships from its assumption vocabulary. We here explicate
the logical foundation of the Neyman-Rubin framework, its formal
subsumption by the structural causal model, and how it can benefit
from the insights provided by the broader perspective of the structural
theory.

24 These equivalence classes were later called “principal stratification” by
Frangakis and Rubin (2002). Looser bounds were derived earlier by Robins (1989)
and Manski (1990).
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The primitive object of analysis in the potential-outcome frame-
work is the unit-based response variable, denoted Yx(u), which stands
for “the value that outcome Y would obtain in experimental unit u, had
treatment X been x.” Here, unit may stand for an individual patient, an
experimental subject, or an agricultural plot. In Section 3.4 (equation
(29)) we saw that this counterfactual entity has a natural interpretation
in structural models; it is the solution for Y in a modified system of
equations, where unit is interpreted as a vector u of background factors
that characterize an experimental unit. Each structural equation model
thus carries a collection of assumptions about the behavior of hypothet-
ical units, and these assumptions permit us to derive the counterfactual
quantities of interest. In the potential-outcome framework, however,
no equations are available for guidance and Yx(u) is taken as primitive,
that is, an undefined quantity in terms of which other quantities are
defined; not a quantity that can be derived from the model. In this
sense the structural interpretation of Yx(u) given in (29) provides the
formal basis for the potential-outcome approach; the formation of the
submodel Mx explicates mathematically how the hypothetical condition
“had X been x” is realized, and what the logical consequences are of
such a condition.

5.1. The “Black-Box” Missing-Data Paradigm

The distinct characteristic of the potential-outcome approach is that,
although investigators must think and communicate in terms of unde-
fined, hypothetical quantities such as Yx(u), the analysis itself is con-
ducted almost entirely within the axiomatic framework of probabil-
ity theory. This is accomplished by postulating a “super” probability
function on both hypothetical and real events. If U is treated as a ran-
dom variable, then the value of the counterfactual Yx(u) becomes a
random variable as well, denoted as Yx. The potential-outcome analy-
sis proceeds by treating the observed distribution P(x1, . . . , xn) as the
marginal distribution of an augmented probability function P∗ defined
over both observed and counterfactual variables. Queries about causal
effects (written P(y | do(x)) in the structural analysis) are phrased as
queries about the marginal distribution of the counterfactual variable
of interest, written P∗(Yx = y). The new hypothetical entities Yx are
treated as ordinary random variables; for example, they are assumed to
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obey the axioms of probability calculus, the laws of conditioning, and
the axioms of conditional independence.

Naturally, these hypothetical entities are not entirely whimsy.
They are assumed to be connected to observed variables via consistency
constraints (Robins 1986) such as

X = x =⇒ Yx = Y, (35)

which states that, for every u, if the actual value of X turns out to be
x, then the value that Y would take on if “X were x” is equal to the
actual value of Y (Pearl 2010c).25 For example, a person who chose
treatment x and recovered would also have recovered if given treatment
x by design. When X is binary, it is sometimes more convenient to write
(35) as

Y = xY1 + (1 − x)Y0.

Whether additional constraints should tie the observables to the unob-
servables is not a question that can be answered in the potential-outcome
framework, for it lacks an underlying model to define such constraints.

The main conceptual difference between the two approaches
is that, whereas the structural approach views the intervention do(x)
as an operation that changes a distribution but keeps the variables
the same, the potential-outcome approach views the variable Y under
do(x) to be a different variable, Yx, loosely connected to Y through
relations such as (35), but remaining unobserved whenever X 	= x. The
problem of inferring probabilistic properties of Yx then becomes one of
“missing-data” for which estimation techniques have been developed in
the statistical literature.

Pearl (2000a, ch. 7) uses the structural interpretation of Yx(u)
to show that it is indeed legitimate to treat counterfactuals as jointly
distributed random variables in all respects, that consistency constraints
like (35) are automatically satisfied in the structural interpretation, and
moreover, that in recursive models investigators need not be concerned
about any additional constraints except the following two:

25 Note that we are using the same subscript notation Yx for counterfac-
tuals in both the “missing data” and the “structural” paradigms to emphasize their
formal equivalence and the fact that the “surgery” definition of equation (29) is the
mathematical basis for both.
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Yyz = y for ally, subsets Z, and values z for Z (36)

Xz = x ⇒ Yxz = Yz for all x, subsets Z, and values z for Z (37)

equation (36) ensures that the interventions do(Y = y) result in the
condition Y = y, regardless of concurrent interventions, say do(Z = z),
that may be applied to variables other than Y . Equation (37) generalizes
(35) to cases where Z is held fixed, at z. (See Halpern [1998] for proof
of completeness.)

5.2. Problem Formulation and the Demystification of “Ignorability”

The main drawback of this black-box approach surfaces in problem
formulation—namely, the phase where a researcher begins to articulate
the “science” or “causal assumptions” behind the problem of interest.
Such knowledge, as we have seen in Section 1, must be articulated at
the onset of every problem in causal analysis—causal conclusions are
only as valid as the causal assumptions upon which they rest.

To communicate scientific knowledge, the potential-outcome
analyst must express assumptions as constraints on P∗, usually in
the form of conditional independence assertions involving counter-
factual variables. For instance, in the example shown in Figure 5,
the potential-outcome analyst would use the independence constraint
Z⊥⊥{Yz1, Yz2, . . . , Yzk} to communicate the understanding that Z is ran-
domized (hence independent of UX and UY).26 To further formulate
the understanding that Z does not affect Y directly, except through
X , the analyst would write a so called “exclusion restriction”: Yxz =
Yx.

A collection of constraints of this type might sometimes be suffi-
cient to permit a unique solution to the query of interest. For example,
if we can plausibly assume that in Figure 4 a set Z of covariates satisfies
the conditional independence

Yx ⊥⊥X | Z (38)

26 The notation Y⊥⊥X | Z stands for the conditional independence re-
lationship P(Y = y, X = x | Z = z) = P(Y = y | Z = z)P(X = x | Z = z) (Dawid
1979).
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(an assumption termed “conditional ignorability” by Rosenbaum and
Rubin [1983]), then the causal effect P(y | do(x)) = P∗(Yx = y) can
readily be evaluated to yield

P∗(Yx = y) =
∑

z

P∗(Yx = y | z)P(z)

=
∑

z

P∗(Yx = y | x, z)P(z) (using (38))

=
∑

z

P∗(Y = y | x, z)P(z) (using (35))

=
∑

z

P(y | x, z)P(z). (39)

The last expression contains no counterfactual quantities (thus permit-
ting us to drop the asterisk from P∗) and coincides precisely with the
standard covariate-adjustment formula of equation (25).

We see that the assumption of conditional ignorability (38) qual-
ifies Z as an admissible covariate for adjustment; it mirrors therefore
the “back-door” criterion of Definition 3, which bases the admissibility
of Z on an explicit causal structure encoded in the diagram.

The derivation above may explain why the potential-outcome
approach appeals to mathematical statisticians; instead of constructing
new vocabulary (e.g., arrows), new operators (do(x)), and new logic for
causal analysis, almost all mathematical operations in this framework
are conducted within the safe confines of probability calculus. Save for
an occasional application of rule (37) or (35), the analyst may forget
that Yx stands for a counterfactual quantity—it is treated as any other
random variable, and the entire derivation follows the course of routine
probability exercises.

This orthodoxy exacts a high cost: Instead of bringing the the-
ory to the problem, the problem must be reformulated to fit the theory;
all background knowledge pertaining to a given problem must first be
translated into the language of counterfactuals (e.g., ignorability condi-
tions) before analysis can commence. This translation may in fact be the
hardest part of the problem. The reader may appreciate this aspect by
attempting to judge whether the assumption of conditional ignorability
(38), the key to the derivation of (39), holds in any familiar situation, say
in the experimental setup of Figure 3(a). This assumption reads: “the
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value that Y would obtain had X been x, is independent of X , given Z.”
Even the most experienced potential-outcome expert would be unable
to discern whether any subset Z of covariates in Figure 4 would satisfy
this conditional independence condition.27 Likewise, to derive equa-
tion (28) in the language of potential-outcome (see Pearl 2000a:223),
we would need to convey the structure of the chain X → W3 → Y using
the cryptic expression W3x ⊥⊥{Yw3, X}, read: “the value that W3 would
obtain had X been x is independent of the value that Y would obtain
had W3 been w3 jointly with the value of X .” Such assumptions are cast
in a language so far removed from ordinary understanding of scientific
theories that, for all practical purposes, they cannot be comprehended
or ascertained by ordinary mortals. As a result, researchers in the graph-
less potential-outcome camp rarely use “conditional ignorability” (38)
to guide the choice of covariates; they view this condition as a hoped-
for miracle of nature rather than a target to be achieved by reasoned
design.28

Replacing “ignorability” with a conceptually meaningful con-
dition (i.e., back-door) in a graphical model permits researchers to
understand what conditions covariates must fulfill before they elimi-
nate bias, what to watch for and what to think about when covariates
are selected, and what experiments we can do to test, at least partially,
if we have the knowledge needed for covariate selection.

Aside from offering no guidance in covariate selection, formu-
lating a problem in the potential-outcome language encounters three
additional hurdles when counterfactual variables are not viewed as
byproducts of a deeper, process-based model: it is hard to ascertain (1)
whether all relevant judgments have been articulated, (2) whether the
judgments articulated are redundant, and (3) whether those judgments
are self-consistent. The need to express, defend, and manage formidable

27 Inquisitive readers are invited to guess whether Xz ⊥⊥Z | Y holds in Fig-
ure 2(a), then reflect on why causality is so slow in penetrating statistical education.

28 The opaqueness of counterfactual independencies explains why many
researchers within the potential-outcome camp are unaware of the fact that adding
a covariate to the analysis (e.g., Z3 in Figure 4, Z in Figure 5) may actually increase
confounding bias in propensity score matching. According to Rosenbaum (2002:
76), for example, “there is little or no reason to avoid adjustment for a true covariate,
a variable describing subjects before treatment.” Rubin (2009) goes as far as stating
that refraining from conditioning on an available measurement is “nonscientific ad
hockery” for it goes against the tenets of Bayesian philosophy (see Pearl [2009c,d]
and Heckman and Navarro-Lozano [2004] for a discussion of this fallacy).
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counterfactual relationships of this type explains the slow acceptance of
causal analysis among health scientists and statisticians, and why most
economists and social scientists continue to use structural equation
models (Wooldridge 2002; Stock and Watson 2003; Heckman 2008) in-
stead of the potential-outcome alternatives advocated in Angrist et al.
(1996), Holland (1988), and Sobel (1998, 2008).

On the other hand, the algebraic machinery offered by the coun-
terfactual notation, Yx(u), once a problem is properly formalized, can
be extremely powerful in refining assumptions (Angrist et al. 1996;
Heckman and Vytlacil 2005), deriving consistent estimands (Robins
1986), bounding probabilities of necessary and sufficient causation
(Tian and Pearl 2000), and combining data from experimental and
nonexperimental studies (Pearl 2000a:302). The next subsection (5.3)
presents a way of combining the best features of the two approaches. It
is based on encoding causal assumptions in the language of diagrams;
translating these assumptions into counterfactual notation; perform-
ing the mathematics in the algebraic language of counterfactuals, using
(35), (36), and (37); and, finally, interpreting the result in graphical
terms or plain causal language. The mediation problem of Section 6 il-
lustrates how such symbiosis clarifies the definition and identification of
direct and indirect effects, a task deemed insurmountable, “deceptive,”
and “ill-defined” by advocates of the structureless potential-outcome
approach (Rubin 2004, 2005).

5.3. Combining Graphs and Potential Outcomes

The formulation of causal assumptions using graphs was discussed in
Section 3. In this subsection we will systematize the translation of these
assumptions from graphs to counterfactual notation.

Structural equation models embody causal information in both
the equations and the probability function P(u) assigned to the exoge-
nous variables; the former is encoded as missing arrows in the diagrams;
the latter as missing (double arrows) dashed arcs. Each parent-child
family (PAi , Xi ) in a causal diagram G corresponds to an equation in
the model M. Hence, missing arrows encode exclusion assumptions;
that is, claims that manipulating variables that are excluded from an
equation will not change the outcome of the hypothetical experiment
described by that equation. Missing dashed arcs encode independencies
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among error terms in two or more equations. For example, the absence
of dashed arcs between a node Y and a set of nodes {Z1, . . . , Zk} implies
that the corresponding background variables, UY and {UZ1, . . . , UZk},
are independent in P(u).

These assumptions can be translated into the potential-outcome
notation using two simple rules (Pearl 2000a:232); the first interprets
the missing arrows in the graph, the second, the missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PAY and
for every set of endogenous variables S disjoint of PAY , we have

YpaY
= YpaY ,s . (40)

2. Independence restrictions: If Z1, . . . , Zk is any set of nodes not con-
nected to Y via dashed arcs, and PA1, . . . , PAk their respective sets
of parents, we have

YpaY ⊥⊥{Z1pa1, . . . , Zkpak}. (41)

The exclusion restrictions express the fact that each parent set
includes all direct causes of the child variable; hence, fixing the parents
of Y determines the value of Y uniquely, and intervention on any
other set S of (endogenous) variables can no longer affect Y . The
independence restriction translates the independence between UY and
{UZ1, . . . , UZk} into independence between the corresponding potential-
outcome variables. This follows from the observation that, once we
set their parents, the variables in {Y, Z1, . . . , Zk} stand in functional
relationships to the U terms in their corresponding equations.

As an example, consider the model shown in Figure 5, which
serves as the canonical representation for the analysis of instrumental
variables (Angrist et al. 1996; Balke and Pearl 1997). This model displays
the following parent sets:

PAZ = {∅}, PAX = {Z}, PAY = {X}. (42)

Consequently, the exclusion restrictions translate into
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Xz = Xyz

Zy = Zxy = Zx = Z

Yx = Yxz,

(43)

and the absence of any dashed arc between Z and {Y, X} translates into
the independence restriction

Z⊥⊥{Yx, Xz}. (44)

This is precisely the condition of randomization; Z is independent of all
its nondescendents—namely, independent of UX and UY, which are the
exogenous parents of Y and X , respectively. (Recall that the exogenous
parents of any variable, say Y , may be replaced by the counterfactual
variable YpaY

, because holding PAY constant renders Y a deterministic
function of its exogenous parent UY.)

The role of graphs is not ended with the formulation of causal as-
sumptions. Throughout an algebraic derivation, such as the one shown
in equation (39), the analyst may need to employ additional assump-
tions that are entailed by the original exclusion and independence as-
sumptions, yet are not shown explicitly in their respective algebraic
expressions. For example, it is hardly straightforward to show that
the assumptions of equations (43)–(44) imply the conditional indepen-
dence (Yx ⊥⊥Z | {Xz, X}) but do not imply the conditional independence
(Yx ⊥⊥Z |X). These are not easily derived by algebraic means alone. Such
implications can, however, easily be tested in the graph of Figure 5 us-
ing the graphical reading for conditional independence (Definition 1).
(See Pearl 2000a:16–17, 213–15.) Thus, when the need arises to employ
independencies in the course of a derivation, the graph may assist the
procedure by vividly displaying the independencies that logically follow
from our assumptions.

6. MEDIATION: DIRECT AND INDIRECT EFFECTS

6.1. Direct Versus Total Effects

The causal effect we have analyzed so far, P(y | do(x)), measures the
total effect of a variable (or a set of variables) X on a response variable
Y . In many cases, this quantity does not adequately represent the target
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of investigation and attention is focused instead on the direct effect of
X on Y . The term “direct effect” is meant to quantify an effect that is
not mediated by other variables in the model or, more accurately, the
sensitivity of Y to changes in X while all other factors in the analysis
are held fixed. Naturally, holding those factors fixed would sever all
causal paths from X to Y with the exception of the direct link X → Y,
which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects involves legal
disputes over race or sex discrimination in hiring. Here, neither the effect
of sex or race on applicants’ qualification nor the effect of qualification
on hiring are targets of litigation. Rather, defendants must prove that
sex and race do not directly influence hiring decisions, whatever indirect
effects they might have on hiring by way of applicant qualification.

From a policymaking viewpoint, an investigator may be inter-
ested in decomposing effects to quantify the extent to which racial salary
disparity is due to educational disparity, or, more generally, the extent
to which sensitivity to a given variable can be reduced by eliminating
sensitivity to an intermediate factor, standing between that variable and
the outcome. Often, the decomposition of effects into their direct and
indirect components carries theoretical scientific importance, for it tells
us “how nature works” and, therefore, enables us to predict behavior
under a rich variety of conditions and interventions.

Structural equation models provide a natural language for ana-
lyzing path-specific effects and, indeed, considerable literature on direct,
indirect, and total effects has been authored by SEM researchers (Alwin
and Hauser 1975; Graff and Schmidt 1981; Sobel 1987; Bollen 1989), for
both recursive and nonrecursive models. This analysis usually involves
sums of powers of coefficient matrices, where each matrix represents
the path coefficients associated with the structural equations.

Yet despite its ubiquity, the analysis of mediation has long been
a thorny issue in the social and behavioral sciences (Judd and Kenny
1981; Baron and Kenny 1986; Muller et al. 2005; Shrout and Bolger
2002; MacKinnon, Fairchild, and Fritz 2007) primarily because struc-
tural equation modeling in those sciences were deeply entrenched in lin-
ear analysis, where the distinction between causal parameters and their
regressional interpretations can easily be conflated. The difficulties were
further amplified in nonlinear models, where sums and products are no
longer applicable. As demands grew to tackle problems involving cate-
gorical variables and nonlinear interactions, researchers could no longer
define direct and indirect effects in terms of structural or regressional
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coefficients, and all attempts to extend the linear paradigms of ef-
fect decomposition to nonlinear systems produced distorted results
(MacKinnon, Lockwood, et al. 2007). These difficulties have accentu-
ated the need to redefine and derive causal effects from first principles,
uncommitted to distributional assumptions or a particular parametric
form of the equations. The structural methodology presented in this pa-
per adheres to this philosophy and it has produced indeed a principled
solution to the mediation problem, based on the counterfactual reading
of structural equations (29). The subsections that follow summarize the
method and its solution.

6.2. Controlled Direct Effects

A major impediment to progress in mediation analysis has been the
lack of notational facility for expressing the key notion of “holding the
mediating variables fixed” in the definition of direct effect. Clearly, this
notion must be interpreted as (hypothetically) setting the intermediate
variables to constants by physical intervention, not by analytical means
such as selection, regression conditioning, matching, or adjustment. For
example, consider the simple mediation models of Figure 4(a), which
reads

x = u X

z = fZ(x, uZ)

y = fY(x, z, uY)

(45)

and where the error terms (not shown explicitly) are assumed to be
mutually independent. To measure the direct effect of X on Y it is
sufficient to measure their association conditioned on the mediator Z.
In Figure 6(b), however, where the error terms are dependent, it will
not be sufficient to measure the association between X and Y for a
given level of Z because, by conditioning on the mediator Z, which is a
collision node (Definition 1), we create spurious associations between
X and Y through W2, even when there is no direct effect of X on Y
(Pearl 1998; Cole and Hernán 2002).29

29 The need to control for mediator-outcome confounders (e.g., W2 in
Figure 6(b)) was evidently overlooked in the classical paper of Baron and Kenny
(1986), and has subsequently been ignored by most social science researchers.
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FIGURE 6. A generic model depicting mediation through Z (a) with no confounders and (b)
with two confounders, W1 and W2.

Using the do(x) notation enables us to correctly express the no-
tion of “holding Z fixed” and to obtain a simple definition of the
controlled direct effect of the transition from X = x to X = x′:

CDE �= E(Y | do(x′), do(z)) − E(Y | do(x), do(z)).

Or, equivalently, we can use counterfactual notation

CDE �= E(Yx′z) − E(Yxz)

where Z is the set of all mediating variables. Readers can easily verify
that, in linear systems, the controlled direct effect reduces to the path
coefficient of the link X → Y (see footnote 18) regardless of whether
confounders are present (as in Figure 6(b)) and regardless of whether
the error terms are correlated or not.

This separates the task of definition from that of identification,
as demanded by Section 4.1. The identification of CDE would depend,
of course, on whether confounders are present and whether they can
be neutralized by adjustment, but these do not alter its definition. Nor
should trepidation about infeasibility of the action do(gender = male)
enter the definitional phase of the study. Definitions apply to symbolic
models, not to human biology.30

Graphical identification conditions for multi-action expressions
of the type E(Y | do(x), do(z1), do(z2), . . . , do(zk)) in the presence of
unmeasured confounders were derived by Pearl and Robins (1995) (see

30 In reality, it is the employer’s perception of applicant’s gender and his
or her assessment of gender-job compatibility that renders gender a “cause” of
hiring; manipulation of gender is not needed.
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Pearl 2000a, ch. 4) using sequential application of the back-door con-
ditions discussed in Section 3.2.

6.3. Natural Direct Effects

In linear systems, the direct effect is fully specified by the path coef-
ficient attached to the link from X to Y ; therefore, the direct effect is
independent of the values at which we hold Z. In nonlinear systems,
those values would, in general, modify the effect of X on Y and thus
should be chosen carefully to represent the target policy under analysis.
For example, it is not uncommon to find employers who prefer males
for the high-paying jobs (i.e., high z) and females for low-paying jobs
(low z).

When the direct effect is sensitive to the levels at which we hold
Z, it is often more meaningful to define the direct effect relative to some
“natural” base-line level that may vary from individual to individual,
and represents the level of Z just before the change in X . Conceptu-
ally, we can define the natural direct effect DEx,x′(Y)31 as the expected
change in Y induced by changing X from x to x′ while keeping all
mediating factors constant at whatever value they would have obtained
under do(x). This hypothetical change, which Robins and Greenland
(1992) conceived and called “pure” and Pearl (2001) formalized and
analyzed under the rubric “natural,” mirrors what lawmakers instruct
us to consider in race or sex discrimination cases: “The central question
in any employment-discrimination case is whether the employer would
have taken the same action had the employee been of a different race
(age, sex, religion, national origin etc.) and everything else had been the
same.” (In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th
Cir. [1996].) Thus, whereas the controlled direct effect measures the ef-
fect of X on Y while holding Z fixed at a uniform level (z) for all units,32

the natural direct effect allows z to vary from individual to individual

31 Pearl (2001) used the acronym NDE to denote the natural direct effect.
We will delete the letter “N” from the acronyms of both the direct and indirect
effect, and use DE and IE, respectively.

32 In the hiring discrimination example, this would amount, for example,
to testing gender bias by marking all application forms with the same level of
schooling and other skill-defining attributes.
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to be held fixed at whatever level each individual obtains naturally, just
before the change in X .

Extending the subscript notation to express nested counterfac-
tuals, Pearl (2001) gave the following definition for the “natural direct
effect”:

DEx,x′(Y) = E(Yx′,Zx) − E(Yx). (46)

Here, Yx′,Zx represents the value that Y would attain under the opera-
tion of setting X to x′ and, simultaneously, setting Z to whatever value
it would have obtained under the setting X = x. We see that DEx,x′(Y),
the natural direct effect of the transition from x to x′, involves proba-
bilities of nested counterfactuals and cannot be written in terms of the
do(x) operator. Therefore, the natural direct effect cannot in general be
identified or estimated, even with the help of ideal, controlled exper-
iments (see footnote 15 for an intuitive explanation). However, aided
by the surgical definition of equation (29) and the notational power
of nested counterfactuals, Pearl (2001) was nevertheless able to show
that, if certain assumptions of “no confounding” are deemed valid, the
natural direct effect can be reduced to

DEx,x′(Y) =
∑

z

[E(Y | do(x′, z)) − E(Y | do(x, z))]P(z | do(x)). (47)

The intuition is simple; the natural direct effect is the weighted average
of the controlled direct effect, using the causal effect P(z | do(x)) as a
weighing function.

One condition for the validity of (47) is that Zx ⊥⊥Yx′,z | W holds
for some set W of measured covariates. This technical condition in
itself, like the ignorability condition of (38), is close to meaningless for
most investigators, as it is not phrased in terms of realized variables.
The surgical interpretation of counterfactuals (29) can be invoked at
this point to unveil the graphical interpretation of this condition (41). It
states that W should be admissible (i.e., satisfy the back-door condition)
relative to the path(s) from Z to Y . This condition, satisfied by W2

in Figure 6(b), is readily comprehended by empirical researchers, and
the task of selecting such measurements, W , can then be guided by
available scientific knowledge. Additional graphical and counterfactual
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conditions for identification are derived in Pearl (2001), Petersen et al.
(2006), and Imai et al. (2008).

In particular, it can be shown (Pearl 2001) that expression (47)
is both valid and identifiable in Markovian models (i.e., no unobserved
confounders) where each term on the right can be reduced to a “do-free”
expression using equation (24) or (25) and then estimated by regression.

For example, for the model in Figure 6(b), equation (47) reads

DEx,x′(Y) =
∑

z

∑

w2

P(w2)[E(Y | x′, z, w2)) − E(Y | x, z, w2))]

×
∑

w1

P(z | x, w1)P(w1). (48)

while for the confounding-free model of Figure 6(a) we have

DEx,x′(Y) =
∑

z

[E(Y | x′, z) − E(Y | x, z)]P(z | x). (49)

Both (48) and (49) can easily be estimated by a two-step regression.

6.4. Natural Indirect Effects

Remarkably, the definition of the natural direct effect (46) can be turned
around and provide an operational definition for the indirect effect—a
concept shrouded in mystery and controversy, because it is impossible,
using any physical intervention, to disable the direct link from X to Y
so as to let X influence Y solely via indirect paths (Pearl 2009a:355).

The natural indirect effect, IE, of the transition from x to x′ is
defined as the expected change in Y affected by holding X constant, at
X = x, and changing Z to whatever value it would have attained had X
been set to X = x′. Formally, this reads

IEx,x′(Y) �= E[(Yx, Zx′ ) − E(Yx)], (50)

which is almost identical to the direct effect (equation 46) save for
exchanging x and x′ in the first term (Pearl 2001).
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Indeed, it can be shown that, in general, the total effect TE of
a transition is equal to the difference between the direct effect of that
transition and the indirect effect of the reverse transition. Formally,

TEx,x′(Y) �= E(Yx′ − Yx) = DEx,x′(Y) − I Ex′,x(Y). (51)

In linear systems, where reversal of transitions amounts to negating the
signs of their effects, we have the standard additive formula

TEx,x′(Y) = DEx,x′(Y) + I Ex,x′(Y). (52)

Since each term above is based on an independent operational defi-
nition, this equality constitutes a formal justification for the additive
formula used routinely in linear systems.33

Note that, although it cannot be expressed in do-notation, the
indirect effect has clear policymaking implications. For example, in
the hiring discrimination context, a policymaker may be interested in
predicting the gender mix in the workforce if gender bias is eliminated
and all applicants are treated equally—say, the same way that males are
currently treated. This quantity will be given by the indirect effect of
gender on hiring, mediated by factors such as education and aptitude,
which may be gender-dependent.

More generally, a policymaker may be interested in the effect of
issuing a directive to a select set of subordinate employees, or in carefully
controlling the routing of messages in a network of interacting agents.
Such applications motivate the analysis of path-specific effects—that is,
the effect of X on Y through a selected set of paths (Avin et al. 2005).

In all these cases, the policy intervention invokes the selection
of signals to be sensed rather than variables to be fixed. Pearl (2001)
has therefore suggested that signal sensing is more fundamental to the
notion of causation than manipulation; the latter being but a crude way
of stimulating the former in an experimental setup. The mantra “No
causation without manipulation” must be rejected (see Pearl 2009a, sec.
11.4.5).

33 Some authors (e.g., VanderWeele 2009) define the natural indirect effect
as the difference TE–DE. This renders the additive formula a tautology of definition,
rather than a theorem predicated upon the anti-symmetry I Ex,x′ (Y) = −I Ex′,x(Y).
Violation of (52) will be demonstrated in the next section.
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It is remarkable that counterfactual quantities like DE and IE,
which could not be expressed in terms of do(x) operators and therefore
appear void of empirical content, can under certain conditions be es-
timated from empirical studies, and serve to guide policies. Awareness
of this potential should embolden researchers to go through the defini-
tional step of the study and freely articulate the target quantity Q(M)
in the language of science—that is, structure-based counterfactuals—
despite the seemingly speculative nature of each assumption in the
model (Pearl 2000b).

6.5. The Mediation Formula: A Simple Solution to a Thorny Problem

This subsection demonstrates how the solution provided in equations
(49) and (52) can be applied in assessing mediation effects in nonlin-
ear models. We will use the simple mediation model of Figure 6(a),
where all error terms (not shown explicitly) are assumed to be mutually
independent, with the understanding that adjustment for appropriate
sets of covariates W may be necessary to achieve this independence
(as in equation 48) and that integrals should replace summations when
dealing with continuous variables (Imai et al. 2008).

Combining (47) and (52), the expression for the indirect effect,
IE, becomes

I Ex,x′(Y) =
∑

z

E(Y | x, z)[P(z | x′) − P(z | x)] (53)

which provides a general formula for mediation effects, applicable to
any nonlinear system, any distribution (of U), and any type of variables.
Moreover, the formula is readily estimable by regression. Owing to
its generality and ubiquity, I have referred to this expression as the
“Mediation Formula” (Pearl 2009b, 2010a).

The Mediation Formula represents the average increase in the
outcome Y that the transition from X = x to X = x′ is expected to pro-
duce absent any direct effect of X on Y . Though based on solid causal
principles, it embodies no causal assumption other than the generic
mediation structure of Figure 6(a). When the outcome Y is binary
(e.g., recovery, or hiring) the ratio (1 − I E/TE) represents the frac-
tion of responding individuals who owe their response to direct paths,
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while (1 − DE/TE) represents the fraction who owe their response to
Z-mediated paths.

The Mediation Formula tells us that IE depends only on the
expectation of the counterfactual Yxz, not on its functional form
fY(x, z, uY) or its distribution P(Yxz = y). It calls therefore for a two-
step regression which, in principle, can be performed nonparametrically.
In the first step we regress Y on X and Z, and obtain the estimate

g(x, z) = E(Y | x, z)

for every (x, z) cell. In the second step we estimate the conditional
expectation of g(x, z) with respect to z, conditional on X = x′ and
X = x, respectively, and take the difference

I Ex,x′(Y) = Ez[g(x′, z) − g(x, z)].

Nonparametric estimation is not always practical. When Z con-
sists of a vector of several mediators, the dimensionality of the problem
might prohibit the estimation of E(Y | x, z) for every (x, z) cell, and
the need arises to use parametric approximation. We can then choose
any convenient parametric form for E(Y | x, z) (e.g., linear, logit, pro-
bit), estimate the parameters separately (e.g., by regression or maximum
likelihood methods), insert the parametric approximation into (53), and
estimate its two conditional expectations (over z) to get the mediated
effect (VanderWeele 2009; Pearl 2010a).

Let us examine what the Mediation Formula yields when applied
to the linear version of Figure 6(a) (equation 45), which reads

x = u X

z = b0 + bxx + uZ

y = c0 + cxx + czz + uY

(54)

with u X, uY, and uZ uncorrelated. Computing the conditional expecta-
tion in (53) gives

E(Y | x, z) = E(c0 + cxx + czz + uY) = c0 + cxx + czz

and yields

IEx,x' (Y) = EZ|X [g (x,z)|x'] - EZ|X [g (x,z|x')].
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IEx,x′(Y) =
∑

z

(cxx + czz)[P(z | x′) − P(z | x)].

= cz[E(Z | x′) − E(Z | x)] (55)

= (x′ − x)(czbx) (56)

= (x′ − x)(b − cx) (57)

where b is the total effect coefficient,

b = (E(Y | x′) − E(Y | x))/(x′ − x) = cx + czbx.

We thus obtained the standard expressions for indirect effects
in linear systems, which can be estimated either as a difference in two
regression coefficients (equation 57) or a product of two regression
coefficients (equation 56), with Y regressed on both X and Z (see
(MacKinnon et al. 2007)). These two strategies do not generalize to
nonlinear systems, as shown in Pearl (2010a); direct application of (53)
is necessary.

To understand the difficulty, consider adding an interaction term
cxzxz to the model in equation (54), yielding

y = c0 + cxx + czz + cxzxz + uY

Now assume that, through elaborate regression analysis, we obtain
accurate estimates of all parameters in the model. It is still not clear what
combinations of parameters measure the direct and indirect effects of X
on Y , or, more specifically, how to assess the fraction of the total effect
that is explained by mediation and the fraction that is owed to mediation.
In linear analysis, the former fraction is captured by the product cxbx/b
(equation 56), the latter by the difference (b − cx)/b (equation 57), and
the two quantities coincide. In the presence of interaction, however,
each fraction demands a separate analysis, as dictated by the Mediation
Formula.

DE = cx + b0cxz

IE = bxcz

TE = cx + b0cxz + bx(cz + cxz)

= DE + IE + bxcxz.
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We therefore conclude that the fraction of output change for
which mediation would be sufficient is

IE/TE = bxcx/(cx + b0cxz + bx(cx + cxz)),

while the fraction for which mediation would be necessary is

1 − DE/TE = bx(cz + cxz)/(cx + b0cxz + bx(cz + cxz)).

We note that, due to interaction, a direct effect can be sustained
even when the parameter cx vanishes and, moreover, a total effect can
be sustained even when both the direct and indirect effects vanish. This
illustrates that estimating parameters in isolation tells us little about the
effect of mediation and, more generally, mediation and modetration are
intertwined and cannot be assessed separately.

If the policy evaluated aims to prevent the outcome Y by weak-
ening the mediating pathways, the target of analysis should be the dif-
ference TE − DE, which measures the highest prevention effect of any
such policy. If, on the other hand, the policy aims to prevent the out-
come by weakening the direct pathway, the target of analysis should
shift to IE, for TE − I E measures the highest preventive impact of this
type of policies.

The main power of the Mediation Formula shines in studies
involving categorical variables, especially when we have no parametric
model of the data generating process. To illustrate, consider the case
where all variables are binary, still allowing for arbitrary interactions
and arbitrary distributions of all processes. The low dimensionality of
the binary case permits both a nonparametric solution and an explicit
demonstration of how mediation can be estimated directly from the
data. Generalizations to multivalued outcomes are straightforward.

Assume that the model of Figure 6(a) is valid and that the ob-
served data are given by Figure 7. The factors E(Y | x, z) and P(Z | x)
can be readily estimated as shown in the two right-most columns of
Figure 7 and, when substituted in (49), (52), (53), yield

DE = (g10 − g00)(1 − h0) + (g11 − g01)h0 (58)

I E = (h1 − h0)(g01 − g00) (59)
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FIGURE 7. Computing the Mediation Formula for the model in Figure 6(a), with X, Y, Z
binary.

TE = g11h1 + g10(1 − h1) − [g01h0 + g00(1 − h0)] (60)

We see that logistic or probit regression is not necessary; simple arith-
metic operations suffice to provide a general solution for any conceiv-
able data set, regardless of the data-generating process.

In comparing these results to those produced by conventional
mediation analyses, we should note that conventional methods do not
define direct and indirect effects in a setting where the underlying pro-
cess is unknown. MacKinnon (2008, ch. 11), for example, analyzes
categorical data using logistic and probit regressions and constructs ef-
fect measures using products and differences of the parameters in those
regressional forms. This strategy is not compatible with the causal in-
terpretation of effect measures, even when the parameters are precisely
known; IE and DE may be extremely complicated functions of those re-
gression coefficients (Pearl 2010b). Fortunately, those coefficients need
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not be estimated at all; effect measures can be estimated directly from
the data, circumventing the parametric analysis altogether, as shown in
equations (58) and (59).

In addition to providing causally sound estimates for mediation
effects, the Mediation Formula also enables researchers to evaluate an-
alytically the effectiveness of various parametric specifications relative
to any assumed model (Imai et al. 2008; Pearl 2010a). This type of an-
alytical “sensitivity analysis” has been used extensively in statistics for
parameter estimation but could not be applied to mediation analysis,
owing to the absence of an objective target quantity that captures the
notion of indirect effect in both linear and nonlinear systems, free of
parametric assumptions. The Mediation Formula of equation (53) ex-
plicates this target quantity formally, and casts it in terms of estimable
quantities.

The derivation of the Mediation Formula was facilitated by tak-
ing seriously the five steps of the structural methodology (Section 4) to-
gether with the graphical-counterfactual-structural symbiosis spawned
by the surgical interpretation of counterfactuals (equation 29).

In contrast, when the mediation problem is approached from an
exclusivist potential-outcome viewpoint, void of the structural guidance
of equation (29), counterintuitive definitions ensue, carrying the label
“principal stratification” (Rubin 2004, 2005), which are at variance with
common understanding of direct and indirect effects. For example, the
direct effect is definable only in units absent of indirect effects. This
means that a grandfather would be deemed to have no direct effect on
his grandson’s behavior in families where he has had some effect on the
father. This precludes from the analysis all typical families, in which a
father and a grandfather have simultaneous, complementary influences
on children’s upbringing. In linear systems, to take an even sharper
example, the direct effect would be undefined whenever indirect paths
exist from the cause to its effect. The emergence of such paradoxical
conclusions underscores the wisdom, if not necessity of a symbiotic
analysis, in which the counterfactual notation Yx(u) is governed by its
structural definition, equation (29).34

34 Such symbiosis is now standard in epidemiology research (Robins 2001;
Petersen et al. 2006; VanderWeele and Robins 2007; Hafeman and Schwartz 2009;
VanderWeele 2009) and is making its way slowly toward the social and behavioral
sciences.
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7. CONCLUSIONS

Traditional statistics is strong in devising ways of describing data and
inferring distributional parameters from samples. Causal inference re-
quires two additional ingredients: a science-friendly language for artic-
ulating causal knowledge and a mathematical machinery for processing
that knowledge, combining it with data and drawing new causal con-
clusions about a phenomenon. This paper surveys recent advances in
causal analysis from the unifying perspective of the structural theory
of causation and shows how statistical methods can be supplemented
with the needed ingredients. The theory invokes nonparametric struc-
tural equation models as a formal and meaningful language for defin-
ing causal quantities, formulating causal assumptions, testing identifi-
ability, and explicating many concepts used in causal discourse. These
include randomization, intervention, direct and indirect effects, con-
founding, counterfactuals, and attribution. The algebraic component
of the structural language coincides with the potential-outcome frame-
work, and its graphical component embraces Wright’s method of path
diagrams. When unified and synthesized, the two components offer
statistical investigators a powerful and comprehensive methodology for
empirical research.
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Myllymäki. Arlington, VA: AUAI.

Cartwright, N. 2007. Hunting Causes and Using Them: Approaches in Philosophy
and Economics. New York: Cambridge University Press.

Chalak, K., and H. White. 2006. “An Extended Class of Instrumental Variables for
the Estimation of Causal Effects.” Discussion Paper, Department of Economics,
Univerisity of California, San Diego.

Chickering, D., and J. Pearl. 1997. “A Clinician’s Tool for Analyzing Noncompli-
ance.” Computing Science and Statistics 29:424–31.

Chin, W. 1998. “Commentary: Issues and Opinion on Structural Equation Model-
ing.” Management Information Systems Quarterly 22:7–16.

Cliff, N. 1983. “Some Cautions Concerning the Application of Causal Modeling
Methods.” Multivariate Behavioral Research 18:115–26.

Cole, S., and M. Hernán. 2002. “Fallibility in Estimating Direct Effects.” Interna-
tional Journal of Epidemiology 31:163–65.

D’Agostino, Jr., R. 1998. “Propensity Score Methods for Bias Reduction in the
Comparison of a Treatment to a Nonrandomized Control Group.” Statistics in
Medicine 17:2265–81.

Dawid, A. 1979. “Conditional Independence in Statistical Theory.” Journal of the
Royal Statistical Society, Series B 41:1–31.

———. 2000. “Causal Inference Without Counterfactuals” (with Comments and
Rejoinder). Journal of the American Statistical Association 95:407–48.

Dehejia, R., and S. Wahba. 1999. “Causal Effects in Nonexperimental Studies:
Re-evaluating the Evaluation of Training Programs.” Journal of the American
Statistical Association 94:1053–63.



THE FOUNDATIONS OF CAUSAL INFERENCE 143

Duncan, O. 1975. Introduction to Structural Equation Models. New York: Academic
Press.

Eells, E. 1991. Probabilistic Causality. New York: Cambridge University Press.
Elwert, F., and C. Winship. 2010. “Effect Heterogeneity and Bias in Main-effects-

only Regression Models.” Pp. 327–36 in Heuristics, Probability and Causality:
A Tribute to Judea Pearl, edited by R. Dechter, H. Geffner, and J. Halpern.
London: College Publications.

Frangakis, C., and D. Rubin. 2002. “Principal Stratification in Causal Inference.”
Biometrics 1:21–29.

Freedman, D. 1987. “As Others See Us: A Case Study in Path Analysis” (with
Discussion). Journal of Educational Statistics 12:101–223.

Goldberger, A. 1972. “Structural Equation Models in the Social Sciences.” Econo-
metrica: Journal of the Econometric Society 40:979–1001.

Graff, J., and P. Schmidt. 1981. “A General Model for Decomposition of Effects.”
Pp. 131–48 in Systems Under Indirect Observation, Part 1, edited by K. Jöreskog
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