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Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant sub-
strates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the 
quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found 
few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these 
decisions on the final output.
Methods Therefore, we present this “Field Guide” with the goal to explain the mathematical basis of common TFM meth-
ods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific 
experimental design and analytical choices.
Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical prop-
erties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and 
data-reporting strategies.
Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two 
decades, we provide researchers in the field with a better understanding of their options to make more informed choices when 
creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists 
to quantify cell contractility with confidence.

Keywords Traction force microscopy · Cell biomechanics · Mechanobiology

Introduction

Traction force microscopy (TFM), first proposed in 1996 by 
Dembo et al. [1–3], enables quantitative measurements of 
cellular contractility as cells deform a compliant, linearly 
elastic substrate. The traction stress field is inferred from 
observations of cell-generated surface displacements by 
using a mechanical model of the material [4]. TFM has been 
used to understand the biomechanical factors impacting a 
range of biological processes, including stem-cell differenti-
ation [5–7], maturation of stem cell-derived cardiomyocytes 
[8], and tumor cell force generation and migration [9–11].

Several review papers and tutorials exist to aid laborato-
ries in setting up their own TFM experiments [4, 12–14], yet 
we have not found resources discussing TFM data process-
ing steps and how experimental design choices contribute to 
sources of error within TFM workflows. Therefore, we will 
first focus on explaining the mathematical basis of common 
TFM methods and then move on to building an understand-
ing of the assumptions of the mathematical methods and 
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how experimental design choices lead to error propagation 
in the TFM workflow.

As an overview, in the following sections we will dis-
cuss TFM techniques (“TFM Techniques” section), present 
sources of error in TFM experiments based on experimental 
design and analytical choices (“Sources of Error in TFM” 
section), and provide discussion on strategies in TFM data 
processing (“Strategies in TFM Data Processing” section). 
Objectively selecting TFM analysis parameters for cells with 
different properties, particularly with low signal-to-noise 
ratio, can be challenging so we delve deeper into specific 
approaches used in the literature to tune these parameters 
in the “Choosing TFM Parameters for Challenging Applica-
tions” section. The “Matching Types of TFM Data to Analy-
sis Pipelines” section focuses on helping TFM practitioners 
match their experiments to analysis pipelines. To further 
aid experimentalists, we analyzed 63 TFM-focused research 
articles from the last two decades to provide an overview 
of which TFM methods were used, how TFM data were 
reported, and the cell type analyzed with resulting maximum 
traction stress (Supplementary Table 1). In “Matching Types 
of TFM Data to Analysis Pipelines” section, we draw from 
our analysis of the literature and discuss ways to represent 
TFM data.

TFM Techniques

Here we outline the basics of TFM. Other reviews of TFM 
provide in-depth details [4, 12, 13], and thus we focus on 
specifics crucial to regularization parameters used in the 
calculation of traction stress.

Briefly, the TFM workflow involves obtaining images of 
the surface of a material deformed by a cell, interpolating 
the displacement field generated by the cell on that material, 
and calculating the traction stress vectors that most likely 
led to the observed displacement field [15]. Linear elasticity 
assumptions are important to all TFM methods. Polyacryla-
mide has been widely accepted as a linearly elastic material 
under a wide range of strains (up to 90%) [16, 17]. Further, 
polyacrylamide hydrogels can be tuned to a specific stiff-
ness (0.2–150 kPa [18, 19]) and can be functionalized selec-
tively with extracellular matrix proteins [20]. Alternative 
substrates include silicones such as polydimethoxysilane, 
CY52-276A/B, and gelatin. It is important to verify that the 
material used for TFM satisfies the linear elasticity assump-
tion and this can depend on a variety of factors including 
specific formulation of the material and how it was func-
tionalized with extracellular matrix (how cells are tethered 
to the material). Fluorescent nanobeads embedded in the 
polyacrylamide act as fiducial markers for tracking displace-
ment of the material. The material displacement is typically 
measured by comparing two images: one image with the 

cell contracted and one reference image in which the cell is 
removed or force-production is inhibited. A notable alterna-
tive approach that permits measurement of traction force 
in-vivo utilizes regular bleaching patterns in a fluorescent 
basement membrane as fiducial markers to measure trac-
tions cells on the surface [21]. However, in-vivo measure-
ments are challenging and correspondingly Yamaguchi et al. 
restrict their interpretation to qualitatively observing that the 
tissues are pushing themselves forward instead of pulling, 
which even without quantitative forces is a compelling result 
[21]. For this review, we will focus on studies employing 
characterized materials and in vitro experiments. Simultane-
ous control of cell force generation and TFM readout can be 
performed using a variety of techniques including optogenet-
ics as demonstrated by Valon et al. [22]. Performing FRET 
(Förster resonance energy transfer) and TFM experiments 
on cells under the same conditions enables correlations of 
molecular and cellular tractions, as demonstrated a variety 
of papers: [23–26]. In vivo techniques are emerging but 
involve significant characterization of the model system to 
yield traction stress readout.

These images can be compared using a variety of algo-
rithms to generate displacement vectors. Broadly speaking, 
these approaches can be split into two categories based on 
whether (1) regions or (2) discrete particles are tracked. In 
Particle Image Velocimetry (PIV) [27–30] and the related 
Digital Image Correlation [31], the image is split into regu-
larly gridded regions. The regions from one image are then 
compared to slightly displaced regions in the second image 
using cross-correlation in an iterative process using progres-
sively smaller window sizes to determine the most probable 
grid displacement. In optical flow [32, 33], the image once 
again is split into regularly gridded regions, but here the 
intensities between frames are subtracted and an advection 
equation is applied to describe the movement of the regions. 
Particle Tracking Velocimetry (PTV) [34] involves seg-
menting images to identify individual beads by locating the 
peak centroids and following the movement of these beads 
[35]. These techniques can also be used in combination. 
For example PTV can also be used after obtaining “coarse" 
information about displacements by correlation-based PIV 
[27, 36]. Once these displacements are inferred, a strain field 
is generated by assigning a vector from each position in the 
unstressed state towards the new position in the stressed state 
with a magnitude proportional to the displacement. The bead 
displacement tracking methods and substrate materials used 
by various groups are reported in Supplementary Table 1.

Conventional TFM with wide-field epifluorescence 
microscopy assumes that dominant stresses exist in the 
imaging plane and therefore neglects displacements in the 
out-of-plane axis. To gather information about cell traction 
forces in 3D, a confocal microscope must be used to measure 
vertical displacements [37, 38]. Digital volume correlation 
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algorithms are needed to extend these 3D measurements in 
order to estimate traction stresses for cells embedded in 3D 
environments [37, 39, 40]. Note that in the Supplementary 
Table 1 “Traction Method” column we report whether the 
authors used 3D TFM. To be able to discuss the mathemat-
ics behind TFM in detail and point to potential sources of 
error, we focus on methods that measure bead displacements 
only in the plane of the substrate (2D). We will proceed to 
discuss underlying mathematical equations and mechanical 
assumptions below in the context of 2D TFM. Extensions 
to 3D can be made using similar sets of constitutive equa-
tions and regularization approaches, as well as alternative 
formulations. However, this extension is not trivial due to 
the added complexity of creating and solving for complex 
meshes in efficient and numerically stable ways (see below 
on FEM). We point readers to the following two manuscripts 
(Mulligan et al. [41], Feng et al. [42]) that describe applying 
the constitutive equations to 3D meshes.

Once the displacement field is obtained, TFM methods 
differ in how cell-generated traction stress is calculated. 
Direct TFM computes the spatial derivatives to the dis-
placement field and uses constitutive relations to construct 
the strain tensor. The corresponding stress tensor is solved 
applying linear elasticity, equations of equilibrium, and 
appropriate boundary conditions. However, direct TFM is 
computationally expensive and noisy data can have a sig-
nificant effect on the final result [43, 44]. In contrast, inverse 
TFM, an indirect TFM approach, solves an inverse problem 
of linear elasticity [4]. Inverse TFM uses elasticity theory to 
reconstruct the traction stress from displacement data. The 
Appendix contains more detailed mathematical background 
and assumptions to derive the inverse problem. Substrates 
used for TFM need to exhibit linear elasticity to calculate 
traction stress. If the stress–strain relation in a material is 
linear, it is linearly elastic and we emphasize that experi-
mentalists should take care to validate this assumption for 
their particular formulation, thickness, functionalization, and 
other experimental parameters which may affect material 
properties.

Finite element discretization is a direct TFM method that 
estimates the force magnitude by discretizing the problem 
into smaller sections and solving a system of partial differ-
ential equations modeling elastic materials to minimize the 
distance between measured and computed displacements [4, 
9, 38, 45, 46]. FEMs enable calculations of traction stress 
with no specific assumptions about the substrate [47] and 
can be applied to characterize 2D and 3D systems with 
nonlinear materials and arbitrary gel geometries [38]. FEM 
based approaches have relaxed the linearity assumption, for 
example Steinwachs et al. [48] provide an example of 3D 
TFM with hyperelastic FEM in which they fit parameters 
to their non-linear constitutive model from biomechanical 

measurements. In the “Traction Method” column of Supple-
mentary Table 1, we indicate whether the authors used FEM.

Fourier transform traction cytometry (FTTC) is the most 
frequently used inverse TFM method (34 of 63 papers in 
Supplementary Table 1). One reason for the broad adoption 
of FTTC is that this method is much more computationally 
efficient, enabling quick processing of TFM data on a per-
sonal computer. FTTC based data-processing pipeline is now 
also easily accessible to the scientific community through 
ImageJ [28] and Matlab [13, 49] plug-ins that generate both 
displacement and traction stress fields. We point readers to 
work by Schwarz and Soiné for a table of many software 
tools developed for TFM [4] and the TFMLAB Matlab 
toolbox [50]. For a comparison between direct and FTTC 
approaches, see work by Blumberg and Schwarz [51]. Due 
to the popularity and accessibility of FTTC, we will focus 
this review more on the details relevant to FTTC.

Constitutive Equations used in FTTC 

The constitutive equations used in FTTC stem from assump-
tions of small strain of a linear elastic material (see Appen-
dix A). Furthermore, we assume that the traction stresses are 
produced in-plane and that tractions in the normal direction 
are negligible [52, 53].

The displacement at position x caused by a single point 
force at a position �′ is given by Eq. 1 [54],

where u is the displacement data (m), f are the traction 
forces (N), and G is a Green’s function defined in further 
detail below (m/N). The subscript s indicates the displace-
ment is due to a single point force. Throughout this paper, 
bold font indicates a vector or matrix.

However, usually there are multiple forces acting on the 
surface. The displacement at a given point is due to the net 
contributions of all the traction forces acting around that 
point and is therefore calculated with the convolution inte-
gral shown in Eq. 2,

where as before x are the positions where displacements are 
being calculated and �′ are the positions of traction and the 
variable of integration [55].

The assumption of small strain allows us to add traction 
forces from different sources at a given point [54, 56].

Specific solutions to the Green’s function are known for 
particular conditions. The Boussinesq solution is appropriate 
when the material can be approximated as a semi-infinite 
elastic half-space [4, 54, 57]. In experimental terms, this 
approximation is valid when the displacements made by 

(1)us(�) = �(� − �
�)�(��)

(2)�(�) = ∫ G(x − �
�)� (��)d��
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cells on the substrate surface are much smaller than the size 
of the gel in all dimensions.

The Boussinesq solution to the Green’s function for dis-
placement on a two-dimensional surface of a semi-infinite 
half-space is expressed in Eq. 3 [31, 36], where � is the 
Poisson’s ratio and E is the Young’s modulus (N/m2 ) for 
the substrate.

The inverse problem approach involves solving for the trac-
tion stress with a system of linear equations using Green’s 
function to fit equilibrium solutions to measured displace-
ments [4, 31]. The inverse method is applied in approaches 
such as the boundary element method [1, 58], but is compu-
tationally expensive [36]. FTTC addresses these issues by 
transforming the problem into Fourier space, removing the 
need for convolutions and reducing the problem to a simple 
matrix multiplication [59]. Equation 2 takes a simple form 
in Fourier space, i.e.,

where carets indicate a Fourier transform and k is the wave 
vector. f̂(k) can now be solved for by multiplying both sides 
by Ĝ(k)−1.

Sources of Error in TFM

The inverse problem is ill-posed due to the continuous 
assumptions of the elasticity equations, which cause the cal-
culated traction distributions to be very sensitive to noise in 
the displacement measurements [57]. Noise and systematic 
errors can be introduced and compounded through various 
steps in TFM experiments, from preparation of substrates to 
final force reconstruction (Fig. 1).

Substrate Manufacturing and Mechanical Properties

Errors can impact the inferred traction stress starting from 
how the compliant cell culture substrates used in TFM are 
manufactured (Fig. 1). Incorrect values for the elastic modu-
lus and Poisson’s ratio of the substrate introduce error into 
the Green’s function. While it may be convenient to use the 
elastic moduli from published formulations, variabilities in 
protocol can potentially lead to mechanical differences and 
therefore the mechanical properties of the substrate should 
be directly measured. When using polyacrylamide gels, sig-
nificant material heterogeneity can also occur for certain 

(3)

�(� − �′) = 1 + �
�E(� − �′)3
[

(1 − �)(� − �′)2 + �x2 �xy
�xy (1 − �)(� − �′)2 + �y2

]

(4)û(k) = Ĝ(k)f̂(k)

formulations [60]. We strongly suggest that experimenters 
perform their own characterization of TFM substrates using 
a microindentation approach, such as Atomic Force Micros-
copy, to mimic mechanics at the cell-scale [61]. Mechani-
cal characterization enables experimenters to derive specific 
elastic moduli for their materials and understand the error 
entering their TFM analysis from variability in mechani-
cal properties when fabricating substrates. Differences in 
substrate stiffness can introduce a secondary experimental 
variability: cells tend to display higher spread area and force 
generation on stiffer substrates [62]. Therefore, experiment-
ers should use caution when comparing cellular tractions 
under varying substrate stiffness and use proper controls.

The density of fluorescent beads in the substrate also 
impacts the resolution with which the displacement of the 
material can be calculated [12, 35, 63, 64]. When imag-
ing the substrates, while higher bead density enables finer 
traction reconstructions, optical-resolution places an upper 
limit on how dense the beads can become before they can 
no longer be resolved from one another [35, 36, 63–66]. 
TFM experiments therefore often undersample the dis-
placement field resulting in artificially coarse grain recon-
struction of the traction forces [63, 64]. Various super-
resolution techniques have been applied to recover these 
finer features [63, 64, 67, 68].

Semi‑infinite Half‑Space Assumption

The Boussinesq solution (Eq. 3) requires assumptions of 
linear elasticity of the substrate and that the substrate can 
be treated as a semi-infinite half space. But, how does one 
ensure that the strains measured within the experiment 
satisfy these conditions? For polyacrylamide, the linear 
range for strain is up to 90% [16, 17] and therefore not a 
limiting factor. The semi-infinite half-space assumption 
turns out to be more restrictive. The assumption requires 
lateral strains to be small compared to the lateral dimen-
sions and thickness of the gel. Consequently, many papers 
operate with the heuristic that displacements should be 
less than 1–5% of the gel thickness [39, 53, 58, 69]. How-
ever, this guideline is theoretically insufficient to guaran-
tee the semi-infinite half-space assumption. In an early 
paper, Butler et al. note that in the extreme case where a 
focal adhesion covers the entire gel surface, even a small 
lateral displacement will simply shear the gel and there-
fore “experience” the lower fixed boundary condition [59]. 
While this scenario is unrealistic, del Alamo et al. used 
spectral analysis to determine the length scale of tractions 
that make up the solution and found the peak contribu-
tions corresponded to a cell length [69]. Alternatively, Sen 
et al. used finite element modeling to show that lateral and 
depth sensing of cells depends on their type, morphology 
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(size and height), and gel stiffness [70]. In general, Sen 
et al. concluded that the depth-sensing length scale of 
most cells is 1–2 μ m (dominated by focal adhesions) and 
lateral-sensing decays within the first 2 μ m as well [70]. 
Altogether, it is advisable to ensure that cell-induced dis-
placements are within low single-digit percentages of the 
gel thickness and to make sure the gel is thicker than the 
length scale of the cell. Unfortunately, using thicker gels 
can preclude the use of higher resolution objectives since 
gels are often imaged using an inverted microscope. Alter-
natively, computational approaches that avoid the infinite 
half-space assumption can be used to bypass these trade-
offs [39, 53, 69].

Out of Plane and Out of View Tensions

The presence of out-of-plane fluorescence from the beads 
embedded below the substrate surface also are significant 
sources of error. The Airy disk patterns of subsurface 
beads can be clearly visible in images taken with wide-
field fluorescence microscopy, which has the potential to 
complicate the tracking of the displacement field. Given 
an applied traction, beads on the surface will displace 
further than beads below the surface, with the displace-
ments becoming vanishingly small far from the surface. 
The severity of this problem depends on the thickness of 

the optical slice taken. Furthermore, the analysis done 
by del Alamo et al. found that their semi-infinite half-
space error increased with the height mismatch between 
the plane of the gel surface and the plane of the fiducial 
marker beads [69]. Therefore, to avoid out-of-focus fluo-
rescence it is advisable to use a higher numerical aperture 
objective, or to use confocal microscopy [36, 71]. Another 
complementary approach is to use a protocol that ensures 
beads are only embedded on the surface of the gel during 
fabrication [63, 64] or by using a specific chemistry [72]. 
Restricting beads to the surface also avoids the potential 
error of focusing on the wrong plane. Altogether, the ideal 
experimental setup avoids out-of-plane signal through an 
optical setup with a thin focal plane and by restricting bead 
localization to the surface of gels.

The field of view must be carefully chosen because sub-
strate displacements propagate beyond the boundary of the 
cell. Sufficient padding around the cell is necessary to cap-
ture all the relevant lateral displacements. Simultaneously, it 
is important to avoid cells outside the field of view, but near 
the boundaries since the displacements of these cells can 
propagate into the field of view. Tractions occurring outside 
of the field of view of a TFM analysis will contribute to the 
results physically but cannot be accounted for mathemati-
cally. These extraneous displacements not only contribute 
spurious tractions near the edges of the traction map, but 

Fig. 1  Sources of error in TFM processing steps stem from differ-
ences in the mathematical assumptions made in TFM calculations 
and the experimental setup. TFM calculations rely on key assump-
tions about a cell displacing just the top surface of a homogene-
ous, linearly elastic material with known elastic modulus and Pois-
son’s ratio. Experimental conditions differ from these mathematical 

assumptions, including: cell displacements on three axes, inhomo-
geneous materials with assumed mechanical properties, tracking 
displacement of the material using beads (which may be distributed 
unevenly), gathering out-of-plane displacements in addition to sur-
face measurements, and image processing effects in both the PIV and 
FTTC steps
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also seriously compromise the zero-net force assumption in 
FTTC. Additionally, cells can influence the behavior of other 
proximal cells, complicating data analysis. For example, 
Tang et al. studied cardiomyocytes coupling across various 
separation distances and gel stiffness to derive a functional 
coupling that depends on the mechanical properties of the 
substrate and a cell-type specific constant [73]. Further, 
cell-cell spacing is often optimized for coupling if this is 
important for physiological function [47, 73], highlighting 
the importance of considering neighboring cells when evalu-
ating single cells or cells on protein patterns. To determine 
the proper amount of padding required around the cells, the 
experimenter should measure displacements around a cell 
and determine the distance at which displacements are indis-
tinguishable from background.

While the majority of cell tractions are in-plane with 
the substrate, there exists some out-of-plane displacement 
[38–40, 66] which can also contribute error to the calcula-
tion. This is especially true if the Poisson’s ratio of the gel 
is < 0.5 which necessitates that the in-plane tractions are 
not independent of the out-of-plane component of the trac-
tion since the material is not perfectly isotropic [47]. Image-
processing schemes for aligning images and calculating dis-
placement fields, particularly window sizes for PIV-based 
image analysis [36, 74], can contribute significant errors to 
the TFM pipeline [35]. Rotations of the sample should be 
avoided as this can impede bead tracking algorithms. Filter-
ing outliers by methods that detect and replace erroneous 
vectors with a median value from neighbors (the Normalized 
Median Test) may also contribute noise [75].

Strategies in TFM Data Processing

The many sources of error discussed so far results in data 
that is noisy and can produce erroneous traction fields using 
FTTC. Therefore, it is important to systematically limit the 
contributions of noise in the solution. A common and effec-
tive strategy for dealing with noisy data is to use regulariza-
tion [36, 76]. In regularization, a term is introduced into the 
equation to penalize certain features. For example, consider 
the noisy data in Fig. 2A. By observation, it is obvious that 
a third-order polynomial would fit the data well. Without 
regularization, the solution will minimize the error between 
the data and the fit. While this solution will pass near all 
data points, it also produces excessively complicated solu-
tions such as the higher-order polynomial in Fig. 2B. There-
fore, introducing a regularization term that promotes sim-
pler solutions by penalizing higher-order polynomials may 
be desirable. However, this strategy introduces yet another 
problem. If the regularization is too strong, then the solution 
may deviate greatly from a large number of data points in 
order to enforce a lower-order polynomial (Fig. 2C).

Similarly, in TFM, bead displacements should be viewed 
as noisy data (Fig. 2D). Without regularization, recon-
structed forces tend to overfit the noise in the measurement, 
resulting in highly discretized and high peak magnitude trac-
tions (Fig. 2E). Excessive regularization produces the oppo-
site result: highly smoothed traction distributions with low 
magnitude (Fig. 2F). Note that the peak traction stresses for 
the cases with low and high regularization vary by several 
orders of magnitude.

Tikhonov Regularization

The most popular implementation of regularization in TFM 
is zeroth-order Tikhonov Regularization [36, 36, 40, 49, 
57, 65, 71, 77–80], which we introduce intuitively below. 
Zeroth-order Tikhonov Regularization takes the form shown 
in Eq. 5 [36].

where f̂ is the computed traction field (N), û is the measured 
displacement field (m), Ĝ is the Green’s function (m/N), and 
� is the regularization constant (1/N). This equation returns 
f̂𝜆 , which is the value of f̂ for a given � such that the function 
inside the argmin() is minimized. || ⋅ ||

2
 indicates a Euclid-

ean or L2 norm. Note the arguments of the functions have 
been omitted for brevity.

The ||Ĝf̂ − û||2
2
 term is commonly referred to as the 

residual norm, because it measures the error between the 
measured displacements ( ̂u ) and the reconstructed displace-
ments ( Ĝf̂ ). The ||𝐋𝐟 ||2

2
 term is referred to as the solution 

norm and measures the size of the solution f̂ multiplied by 
some matrix L . Often, � is chosen by balancing the size of 
the residual norm versus the solution norm.

The L matrix determines what features of the solution are 
weighted in the solution norm. The ‘zero’ in zeroth-order 
Tikhonov regularization stems from the specific choice of 
L as the identity matrix, which like a zeroth-order deriva-
tive does not change the function. First- and second-order 
schemes employ a form of L that approximates first- and 
second-order derivatives, but the zeroth-order scheme has 
been reported to be superior in TFM [36]. In practice, the 
zeroth-order scheme smooths out the reconstructed traction 
because high spatial frequency solutions (i.e. solutions with 
punctate and noisy stresses) tend to produce larger norms 
[36]. Note, the ‘L’ in L2 norm does not refer to the L matrix.

Implementation of Tikhonov regularization results in the 
form shown in Eq. 6,

where the carets denote a Fourier transform and Ĥ is the 
Fourier transform of L squared.

(5)f̂𝜆 = argmin
f̂

(||Ĝf̂ − û||2
2
+ 𝜆2||Lf̂||2

2
)

(6)f̂𝜆 = (Ĝ
T
Ĝ + 𝜆2Ĥ)−1Ĝû
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The FTTC ImageJ plugin by Tseng implements this form 
of regularized TFM [76]. See Appendix A and papers by 
Sabass, Houben, et al. for further details about the derivation 
of this form [36, 81].

Other Regularization Schemes

Tikhonov regularization uses the L2 or Euclidean norm, but 
this is not the only option. Several publications implemented 
the L1 or taxicab norm and reported superior performance 
over the L2 norm [52, 82, 83]. This improvement stems from 
the sparse nature of cellular tractions in the spatial domain. 
Sparse data consists mostly of zeros and cellular tractions are 
sparse because they are restricted to focal adhesions which 
are much smaller than the cell. Sparsity allows application 
of the signal processing technique known as compressed 
sensing which allows high-resolution reconstructions using 
a lower sampling rate than typically required [52, 82, 83]. 
However, L1 regularization is computationally expensive 
because cellular tractions are only sparse in the spatial 
domain, denying the advantage of efficient computations 

in Fourier space [52, 83]. If detecting weak signals such 
as nascent focal adhesions is critical to a project, then L1 
regularization may be worth the computational cost.

Huang and co-authors implemented regularization strat-
egies from other fields to TFM, which have the advantage 
of not requiring input of manual parameters [84]. In one 
approach, the authors split the regularization parameters into 
an � and � term, where � captures contributions of back-
ground noise, and employed Bayesian approaches in which 
new evidence is used to update an earlier model to calculate 
these parameters. While � and � can be computed numeri-
cally, they also implemented a faster simplified scheme in 
which � is calculated directly from displacement data far 
from the cell, thus simplifying the optimization to only the 
alpha parameter and yielding tractions which limit exceed-
ingly high traction values and background noise. Huang and 
co-authors also implemented an Elastic Net regularization 
approach, a method from the computer vision field that 
combines L1 and L2 regularization, which yielded the most 
accurate traction reconstructions in the presence of noise for 
all the methods tested[84]. While these improvements on 

Fig. 2  Regularization strongly affects solutions. A Noisy measure-
ments (black dots) can be used to reconstruct the solution. B With lit-
tle or no regularization, the solution tends to overfit. C When regular-
ization is too high, the solution tends to underfit. D By analogy, bead 
displacements in TFM are noisy measurements of force. E Without 

regularization, the reconstructed force field is overfit to noisy con-
tributions and tends to be overly discretized with high traction stress 
magnitudes. F Excessive regularization results in an over-smoothened 
reconstructed force field with low peak tractions spread over large 
areas. Scale bars in D–F represent 50 μm
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TFM processing are exciting, they may all still be too com-
putationally expensive for practical use by many mechano-
biology labs. The authors report the Bayesian L2 and Elastic 
Net methods take 45 to 360 times longer per image frame 
than the typical Tikhonov Regularization approach, respec-
tively, and for their sample data it took several minutes to 
nearly an hour per data set [84]. However, Huang et al. also 
implemented a Fourier transform based Bayesian approach 
in a convenient Matlab package which they report to operate 
on the order of seconds [85].

To avoid ambiguity in the data processing methods and 
analyze dynamic processes (i.e., cell motility, cardiomyo-
cyte contraction), some studies have opted to use raw sub-
strate displacement values as a proxy for cell traction stress 
[86–89]. The downside to this approach is experimental 
results cannot be easily compared between different papers, 
as the raw displacements depend on substrate stiffness and 
other experimental conditions. In these cases, it is imperative 
that experimental conditions be well controlled and tech-
niques to control cell shape and morphology such as pro-
tein patterning can help obtain reproducible results [86, 90]. 
Furthermore, some projects require insights into the actual 
forces exerted to make meaningful interpretations of the 
experiments. However, this alternative approach can useful 
if relative differences in contractility between experimental 
groups within one project is all that is needed.

Choosing TFM Parameters for Challenging 
Applications

Choice of the regularization parameter � strongly influences 
the magnitude of the traction stresses inferred from displace-
ment data and, if chosen poorly, could allow for amplification 
of background noise or underestimation of traction stress [52]. 
We thus looked at how the � parameter was chosen in various 
papers. We note that 15 [8–10, 12, 26, 36, 40, 49, 52, 57, 65, 
71, 77, 80, 91] of the 21 papers that mentioned (or implied) use 
of zero-order Tikhonov regularization indicated the method 
by which the regularization factor � was determined. Some 
papers stated the � value used, but the authors did not explic-
itly explain how the value was chosen [78, 79, 92–95]. For 
investigations lacking information about the regularization 
factor, regularization may not have been used ( � = 0). It is 
often difficult to determine how � was chosen because the � 
values and methodology for selection are often not reported 
in the literature.

Reporting the � parameter used in TFM analysis is impor-
tant to understanding the degree of regularization applied to 
the data. We suggest that TFM users implement a reliable 
strategy to select the regularization parameter due to its exten-
sive effect on traction-stress distributions, magnitude, and, ulti-
mately, biological conclusions from the data [4]. We provide 

a rational approach to choosing a regularization parameter for 
TFM data in the following section.

Using the L‑curve to Minimize Solution and Residual 
Norms

A common approach to objectively selecting � is using the cor-
ner of the L-curve ( �corner ) [57]. To generate the L-curve, the 
inverse problem is solved using a range of � values. Then, the 
residual ( ||Ĝf̂ − û||2

2
 ) and solution ( ||Lf̂||2

2
 ) norms are plotted 

(Fig. 3). The left side of the L-curve is populated by solutions 
that produce extremely high solution norms and the right side 
is populated by solutions that have large residual norms. The 
L-curve provides insight into the trade-off between the size of 
the regularized solution (solution norm) and the fit to the data 
given (residual norm) [96]. Finding the corner of the L-curve 
is an empirical method to balance this trade-off. Hansen cre-
ated a useful, well-documented, and widely used MatLab 
package to locate the L-curve [96, 97]. We suggest that TFM 
users start their search for the optimal � for their experiment by 
evaluating the L-curves for a set of measurements.

When the L‑curve Fails

While finding the �corner minimizes the solution and residual 
norms (x-axis and y-axis of Fig. 3A–B), it may not be the 
best choice for all data and in some cases may not even be 
obvious to find. Figure 3 shows the L-curves and result-
ing traction stress maps for a human foreskin fibroblast 
and cardiomyocyte using different choices of � in the TFM 
analysis. Note the changes in the traction stress magnitude 
and distribution for the �corner compared to other � choices 
for the fibroblast as compared to the cardiomyocyte sample. 
The signal-to-noise ratio of the data may impact the degree 
to which � contributes to changes in the magnitude and 
distribution of traction stress. For example, the �corner may 
fall short whenever the signal-to-noise ratio is low, such as 
for fibroblasts or epithelial cells, while cardiomyocytes for 
which signal-to-noise ratio is higher may be less sensitive 
to how the regularization parameter impacts the output of 
TFM (see Fig. 4).

An important qualitative test is to verify that appreci-
able tractions do not occur far outside the footprint of the 
cell. Over-regularized solutions will artificially smear the 
results leading to large islands of traction that propagate far 
beyond the cell. Conversely, under-regularized solutions 
will lead to large punctate tractions that exist entirely out-
side of the cell boundary. In practice, the discrete nature of 
marker beads, as well as the presence of background noise 
means it is often impossible to neatly confine reconstructed 
forces within focal adhesions. While the threshold depends 
on experimental conditions, restricting tractions to the cell 
boundary dilated by ∼ 10% is a reasonable starting point. 
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TFM users can analyze the traction stress map resulting 
from �corner to evaluate background signal (where there is 
no adhered cell) and compare the cell-generated tractions to 
expected outcomes. We urge readers to develop a methodol-
ogy to choosing � values in their TFM pipeline that is based 
on expected traction stress (using biophysical models and 
co-localization experiments for proteins that are known to 
be mechanically active).

As we evaluate the traction stress outside the cell bound-
ary, we see that the �corner choice for the fibroblast in Fig. 3 
may not be appropriate for these data since we expect neg-
ligible traction stress in the “background” areas (see spatial 
patterns to signal outside of Fig. 3C–G and H–L). Although 

the traction-stress distribution within the cell area appears 
to follow the expected distribution of focal adhesions (by 
size and density), the solution is flawed because the traction 
stresses in areas outside of the cell are high. If � is too low, 
then the traction-stress solution is being fit to the noise rather 
than to cellular contractility. Tractions that extend beyond 
the cellular footprint, but have a significant portion directly 
underneath the cell, are acceptable (Fig. 3E, F). While the 
traction stresses in theory should not exist outside of the 
cellular footprint, in practice the limited spatial resolution 
of the reconstruction often generates tractions that are larger 
than focal adhesions and consequently extend beyond the 
cellular footprint [65].

Fig. 3  Regularization affects 
traction-force distributions and 
magnitude. A The L-curve 
shows the residual norm 
(x-axis) versus solution norm 
(y-axis) for a range of regu-
larization parameters ( � ) for a 
fibroblast and cardiomyocyte. 
B–E Tractions of a human 
foreskin fibroblast are discre-
tized and high in magnitude 
with low � . The distribution 
of tractions smoothens and 
traction magnitude decreases 
as � increases (C and D). F–I 
Tractions of a human cardio-
myocyte differentiated from an 
induced pluripotent stem cell 
are less sensitive to changes in � 
than the fibroblast. White lines 
indicate the cell outline
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We caution TFM users against comparing their measure-
ments to cell tractions measured on different platforms, such 
as micropillar arrays [98, 99]. Micropillar arrays are free-
standing microscale elastomeric features created in specific 
geometries that dictate the effective stiffness of each pil-
lar. We refer readers to reviews by Schoen, Ribeiro, et al. 
for detailed discussion on how cell tractions on micropil-
lar arrays compare to those on TFM on hydrogels [98, 99]. 
Briefly, although the effective stiffness of micropillar arrays 
and gels can be matched mathematically (see formulas 
reviewed by Schoen et al. [98]), cells may interact in a fun-
damentally different way with discrete micropillars than with 
continuous hydrogel substrates. We know of only one such 
comparison between the two substrate types, for E-cadherin 
coated micropillars and polyacrylamide gels [100]. Compar-
ison to molecular-level measurement, via Förster resonance 
energy transfer tension sensors integrated into different load-
bearing proteins, is also difficult. In this system, forces are 
inferred from the displacement of a calibrated molecular 
spring [101] and could yield confounding effects due to 
background signal and an unknown percentage of engaged 
proteins being analyzed [102]. Furthermore, Wu et al. used 
different methods for measuring cellular mechanics to reveal 
100–1000-fold differences in the measured elastic proper-
ties of MCF-7 cancer cells because the measurement length 
scale and technique have a significant impact [103].

Cell Type and Expected Displacements

We compared the signal-to-noise ratio in traction force data 
from several different experiments which use different cell 
types (Fig. 4). Some cell types (e.g. cardiomyocytes) pro-
duce much higher displacements than others (e.g. epithelial 
cells) (Fig. 4A). We measured the experimental signal-to-
noise as the mean displacement of the substrate within a 
cell boundary over the displacement in the background. 
High displacements produce better signal-to-noise ratio 
(Fig. 4B). However, we found that signal-to-noise could 
vary significantly even for the same cell type when compar-
ing data from two different experimenters using fibroblasts 
(Fig. 4A, B). Data with high signal-to-noise ratio works well 
with the L-curve, but data with low signal-to-noise ratio is 
under regularized and produces erratic tractions with the 
L-curve. Therefore, when the L-curve fails the first step is 
to consider modifications to the protocol to minimize the 
background noise of the experiment. In particular, rejecting 
out of plane signal by using a higher NA objective or confo-
cal microscopy and taking steps to minimize disturbing the 
sample between acquisitions are good first steps (see above 
section on Sources of Errors in TFM). However, in some 
cases the cells produce low forces and even with low noise 
the signal-to-noise ratio remains poor, or other practical 

experimental considerations prohibit strategies for lower-
ing the background noise.

One alternate approach to finding the appropriate � 
value is to use the Discrepancy Theorem, or �-criterion, 
which involves choosing � based on an expected value for 
the residual norm [57]. The Discrepancy Theorem posits 
that the optimal fit for the solution has a specific residual 
norm that depends on the standard deviation of noise in the 
experimental data and the expected number of data points 
[4]. Essentially, the estimated noise of the system sets a limit 
for how well the solution can fit the data by suggesting a 
specific value for the residual norm [56]. Reconstruction 

Fig. 4  The signal-to-noise ratio for displacement is higher for cardio-
myocytes and patterned fibroblasts compared to fibroblasts and epi-
thelial cells. Signal is defined as the mean displacement within the 
cell boundary and noise is the displacement outside of the dilated cell 
boundary. Box plots are shown with whiskers extending to 1.5 times 
the interquartile range plus the third quartile (upper whisker) and sub-
tracted from the first quartile (lower whisker)
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of the solution is limited by the noise; the Discrepancy 
Theorem limits the solution space because only a specific 
residual norm (the difference between the applied solution 
and the measured displacements) can be achieved. When 
noise makes a considerable contribution to the data, the � 
associated at the �corner would have a residual norm much 
lower than that specified by the Discrepancy Theorem (see 
Appendix B).

Due to the significant role of the regularization parameter 
in TFM outcomes, Soiné et al. suggest applying a biophysi-
cal model to eliminate the need for regularization by restrict-
ing possible traction stress solutions based on biophysical 
limits [104]. Appropriate biophysical models require visu-
alization of stress fibers and focal adhesions, which may not 
be available for every situation.

Global vs Local �

Once a regularization parameter has been found that pro-
duces quality data, one last issue remains. The optimal reg-
ularization parameter will vary for each traction map. As 
demonstrated, reconstructed traction maps are sensitive to 
regularization parameter values. Therefore, using different 
optimal values for each sample introduces the risk that dif-
ferences in measurements between samples artificially arise 
from the regularization parameter. This makes it unclear 
whether the correct approach is to use a single regulariza-
tion parameter for a given set of data, or to use the optimal 
value for each image.

Plotnikov et al. argue that once an optimal regularization 
parameter is found, it should be kept constant for the same 
cell type cultured on the substrates with a specific stiffness 
[12]. This requires the selection of some average � value. 
A reasonable approach is to find the optimal regularization 
parameter values from a random sample of images and use 
the mean value. However, different regularization param-
eters may need to be set between experimental conditions 
if cells have significantly differing mechanical properties, 
which reintroduces the uncertainty when ultimately compar-
ing between experimental conditions.

On the other hand, using simulated data Kulkarni et al. 
found that individually optimizing regularization param-
eters produce more accurate traction reconstructions [105]. 
These results suggest that using the optimal regularization 
parameter for each image will most accurately reconstruct 
the cellular forces in real experiments.

Currently, the convention in the field is to use a global 
regularization parameter. We recommend this as the default 
option, but to keep in mind the alternative. Due to the sensi-
tivity of traction magnitudes to the regularization parameter 
value, we recommend caution with either approach. In both 
cases it is important to try to keep experimental conditions 
such as frame size and bead density consistent, since these 

changes can affect the calculation of the optimal regulari-
zation parameter. Furthermore, wildly varying regulariza-
tion values should be viewed with a critical eye. Finally, the 
paper should report whether a single average regularization 
parameter was used, or whether the parameter was optimized 
for each image.

Matching Types of TFM Data to Analysis 
Pipelines

Broadly, we have found that TFM processing techniques 
can be categorized by two experimental parameters: image 
processing load and signal-to-noise ratio (Fig. 5). This pro-
duces four main groups which aid in selecting TFM data 
workflows. We defined image processing load as how many 
displaced bead images are compared to a reference to obtain 
PIV data. For some samples, one contracted image is com-
pared to a reference while others (dynamic cells like car-
diomyocytes) need to be evaluated over hundreds of frames 
to determine traction forces generated throughout the cell 
contraction cycle. Furthermore, higher-throughput assays 
demand a higher computational load [106]. Cells with high 
signal, regardless of image processing load, can be pro-
cessed using FTTC and the L-curve criterion (Fig. 5, quad-
rants A and B). The regularization parameter for high image 
processing load samples (i.e., cardiomyocytes) can either 
be chosen per frame or set at a single value after deriving it 
from subset of the sample. Because FTTC is one of the fast-
est TFM processing methods, it is often the only practical 
solution for samples with high processing load.

For samples with low signal-to-noise ratio (Fig. 5, quad-
rants C and D), TFM workflow selection depends on image 
processing load. For low loads, using biophysical models 
[104], Discrepancy Theorem [4], or Bayesian frameworks 
[84] (discussed earlier) can yield accurate and robust data. 
Yet, these methods may be computationally prohibitive 
when moving towards larger image processing loads. With 
migrating or dividing cells, many frames need to be analyzed 
yet straightforward L-curve optimizations fail for identifying 
appropriate regularization parameters.

Applying Machine Learning to Cellular Tractions

The advent of machine-learning tools offer a set of promis-
ing new approach to infer cellular traction forces. While 
an in-depth and comprehensive overview on this topic is 
out of the scope of this review, we provide the reader with 
some key points and references on where to read further.

One approach by Wang and Lin [107] trained a model 
to infer traction stresses from the displacement of fidu-
cial beads without the need for apply methods like FTTC 
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and the manual choice of regularization parameters. This 
model used a U-Net architecture and was trained on sim-
ulated data. They report that their model outperformed 
FTTC in inferring cellular tractions on their dataset. Fur-
thermore, they report the model generalizes to a range of 
substrate stiffnesses and maximal tractions, and that the 
results obtained from experimental data qualitatively seem 
comparable to FTTC. Another approach by Li et al. [108] 
attempts to infer traction forces from wrinkles on thin 
films. Here, the authors use a combination of U-Net and 
generative adversarial networks (GAN) to extract features 
from image data and build a model for inferring tractions. 
Their model was trained on an experimental dataset that 
combined a thin deformable layer on top of a PDMS sub-
strate with embedded fiducials. The fiducial layers were 
used to generate the traction fields for the ground truth. 
The authors report a good correlation in traction magni-
tude and direction. This approach potentially allows more 
freedom and ease in selecting and preparing substrates by 
removing the need to embed and track fiducial markers. 
However, it introduces a technical challenge of accurately 
detecting surface wrinkles. Another effort led by Schmitt 
et al. [109] demonstrates the inference of traction forces 

directly from fluorescent focal adhesion markers. Here the 
authors used a U-Net architecture trained on images of 
cells expressing various fluorescently tagged proteins on 
a polyacrylamide gel embedded with fiducial beads. Using 
the experimentally measured tractions as their ground 
truth, they found that the focal-adhesion protein zyxin in 
particular was sufficient to accurately reconstruct traction 
fields. The promise of this approach is that it removes the 
need for any special substrates, although it requires fluo-
rescently tagged zyxin.

In general, machine learning approaches to TFM offer 
unique opportunities to improve data quality and offer 
greater experimental flexibility. However, care is needed 
to validate the models on any specific dataset, as the model 
may not generalize to all situations [110]. One solution 
is to apply transfer learning to further train models on 
the user’s specific experimental conditions, although this 
process may be a significant undertaking [111].

Ways to Represent TFM Data

Having determined how to optimally choose a � value, the 
next decision is how to best represent and analyze the data. 
We have tabulated the various methods for reporting data to 
assist the reader in choosing their methods (Supplementary 
Table 1). Here we offer a few suggestions previously reported 
in the literature and show vignettes from published studies as 
examples of TFM visualizations (Fig. 6).

The simplest representation is to reproduce the traction 
field maps and to qualitatively report the results (Fig. 6A). We 
found that 40 of the 63 papers (Supplementary Table 1) that 
we analyzed reported a traction magnitude map in their results 
section in order to depict the distribution and magnitude of 
cell traction stresses (Fig. 6B). Another approach is to report 
values such as peak or mean tractions [3, 26, 40, 112–114]. 
However, because tractions only occur at focal adhesion along 
the cell periphery, the data are dominated by low-magnitude 
background signal, which needs to be filtered when calculat-
ing the mean tractions. Unfortunately, there is no generally 
accepted way to distinguish background noise from signal. 
One strategy is to set a threshold for expected cell-traction 
forces and to define background signal as displacements that 
correspond to traction magnitude values below this threshold 
(see expected deflection calculation, Eq. 8). Another approach 
is to sum the magnitude of traction forces within the foot-
print of a cell [7, 8, 77, 78, 92, 115] or within a specific site 
corresponding to cell structures (such as focal adhesions, see 
Fig. 6C and D) [66]. It is also possible to calculate the strain 
energy (work per unit area) done by the cell on the material 
by integrating the product of traction stress and displacement 
[6, 59, 79, 93, 94, 116–118].

Fig. 5  Experimenters should match TFM data processing methods 
based on the signal-to-noise ratio and image processing load. Broad 
classifications of TFM experiments fall into 4 categories: A cells 
patterned on proteins result in high signal and low image processing 
load, B cardiomyocytes which generate high forces and require analy-
sis of multiple dynamic frames compared to reference, C epithelial 
and fibroblast cell lines on unpatterned protein generate low signal-
to-noise ratio, and D similar cells which produce low traction forces 
and are dynamically migrating or dividing requiring comparisons of 
multiple frames against a reference
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Visualization of focal adhesions through fluorescent mark-
ers enables a wider variety of options for analysis. Groups have 
reported the tractions per focal adhesion [57, 65, 77, 78, 119] 
as well as the angle between the principle axis of focal adhe-
sions and the traction forces [40, 77, 80]. Further, visualization 
of focal adhesions provides a qualitative check to verify that 
tractions are localizing properly.

When analyzing multiple adhesive cells, TFM also affords 
the possibility of measuring the force between cells. Using 
force-balance principles, cell-cell tension between cell pairs 
can be measured (Fig. 6E-G) [94, 95, 120]. This type of analy-
sis can be extended to any number of cells as long as they do 
not form a loop [94]. FEM based approaches can be used to 
calculate tension between cells in a cluster containing loops, 
such as stresses within a cell monolayer (Fig. 6H and I) [94, 
121].

Conclusions

TFM is a powerful technique to quantify cellular function 
by measuring how cells displace a compliant substrate. 
Laboratory tools to perform TFM experiments are eas-
ily acquired (polyacrylamide or other hydrogels, beads, 
functionalization chemistries) and researchers can quickly 
download various packages to perform TFM calculations 
[4]. With this review paper, we shared mathematical 
details of the most common TFM methods (PIV followed 
by FTTC). We have sought to make TFM more acces-
sible by covering assumptions and considerations in the 
TFM workflow with highlights on how errors propagate 
to results and how to match TFM data processing meth-
ods to the type of experiment being performed. We hope 
that the strategies and background information outlined 
here will be helpful for researchers designing TFM experi-
ments to better understand and characterize mechanobiol-
ogy pathways.

Appendix A: Mathematical Background

Let us first consider continuum elasticity theory to under-
stand the displacement of the soft elastic substrate by the 
cell. We can relate a strain tensor � and a stress tensor � 
using material linearity assumptions when forces act on 
internal surfaces (full derivation in [4]), shown in Eq. 7,

where E is the Young’s modulus � is the Poisson’s ratio of 
the substrate, and � is the strain on the material, where the 
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E

1 + �

[
�xx +
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first subscript indicates the face acted on and the second 
subscript depicts the direction of the strain.

We can then extend the relationship to the displacement 
vector field and applied forces on the material using the 
Cauchy momentum equation,

which relates � density of the continuum, � the stress ten-
sor, u the flow velocity vector field dependent on time and 
space, and g the body forces per unit mass acting on the 
continuum (Eq. 8).

We can use conservation of linear momentum and sim-
plify to get a balance of the internal and body forces on the 
continuum (Eq. 9).

We can then combine Eqs. 7 and 9 [4] to yield Eq. 10.

Setting the body forces to zero because the displacements 
are due to forces on the surface [54], we can simplify Eq. 10 
to Eq. 11.

Following the derivation of Landau & Lifshitz (Section 8 
in 2nd edition of Theory of Elasticity) [54], we arrive at 
the relationship for calculating the displacement caused at x 
caused by a point force a distance �′ shown in Eq. 12.

where u is the displacement data, f are the traction forces, G 
is a Green’s function defined in further detail below.

The Boussinesq solution to the Green’s function for dis-
placement on a two-dimensional surface can be expressed 
as shown in Eq. 14 [31].

The displacement at a given point is due to the net contribu-
tions of all the traction forces and can therefore be calculated 
with the convolution integral shown in Eq. 13.  x are the 
positions where displacements are being calculated and �′ 
is the ‘dummy variable’ used in integration [55].

Given the regularization scheme shown in Eq. 15.
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where f is the computed traction field (N), u is the meas-
ured displacement field (m), M is a matrix derived from the 
Green’s function and numerical techniques (m/N), and � is 
the regularization constant (1/N). This equation returns f� , 
which is the value of f for a given � such that the function 
inside the argmin() is minimized. || ⋅ ||

2
 indicates a Euclid-

ean or L2 norm.
However, calculation of M is computationally expen-

sive. Instead, it is much more efficient to convert take the 
Fourier transform of 13, which removes the convolutions 
from the equation as shown in Eq. 17.

Using the same regularization scheme shown in Eq. 15,

Minimization of the function occurs when the first deriva-
tive is equal to zero. After taking the derivative and setting 
equal to zero, we obtain Eq. 16 which can be solved for f̂ 
[36] yielding the final Eq. 18.
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f
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2
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2
)
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2
)

(18)f̂𝜆(k) = (Ĝ
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Appendix B: Discrepancy Theorem

Thus, the Discrepancy Theorem results in � values higher than 
ones suggested by the �corner method. The residual norm for 
the optimal fit according to the Discrepancy Theorem is shown 
in Eq. 7,

where N is the number of sites at which the traction stress 
is measured, M is the number of positions at which focal 
contacts are made between the cell and substrate, and � is 
the standard deviation of the distribution of measurement 
errors for the displacement vectors.

Equation 7 is based on assuming a Gaussian distribution 
for the noise in the displacement vector with standard devia-
tion � [77]. By using the degrees of freedom (N–M) in the 
system [122], the Discrepancy Theorem allows for as much 
regularization as possible considering contributions from 
the noise to estimating the true traction-stress distribution.

To implement the Discrepancy Theorem, the user must 
make assumptions about the number of focal contacts in the 
sample and the standard deviation of the displacement vec-
tors. One can estimate the number of focal contacts by visu-
alizing focal adhesions or by estimating the percentage of 
the image area expected to be under cell traction. Since focal 
adhesions cannot be visualized in most cases, we choose to 

(19)||�� − �||2 = 2(N −M)�2

Fig. 6  Several strategies can represent traction force data. A Most 
publications will include representative images of the generated trac-
tion maps and B quantification of tractions such as a total force per 
cell measurement. Fluorescently labelling cellular structures enables 
additional options for interpreting traction force data. C Labelling of 
focal adhesions enables constriction of traction forces to relevant sites 
and D additional insights such as the correlation of focal adhesion 

size and force. E–G Labelling of cell-cell boundary markers enables 
calculation of cell-cell forces through force balance requirements. 
H, I Traction force microscopy is not limited to single cells or small 
clusters of cells but can also be applied to larger units such as epi-
thelial monolayers. C, D were adapted from [77], E–G were adapted 
from [120], and H, I were adapted from [136] with permission
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estimate the number of active cell tractions in each sam-
ple by evaluating how many displacement vectors achieve 
a magnitude greater than a specific threshold to qualify as a 
cell traction. We define the displacement threshold by setting 
a lower limit for the expected traction force and use linear 
elastic theory to calculate the expected displacement due to 
this traction force [123],

where d is the expected displacement in meters, F is the 
minimum traction force expected, u is the lateral resolution 
of the imaging platform used, and E is the elastic modulus 
of the substrate.

The expected force varies depending on the substrate 
stiffness and cell type used. We use Abbe’s diffraction limit 
for the lateral resolution, u,

where NA is the Numerical Aperture of our objective and 
�emission is the emission wavelength of our system.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12195- 024- 00801-6.
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