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Abstract

A growing number of individuals who are considered at high risk of cancer are now routinely 

undergoing population screening. However, noted harms such as radiation exposure, 

overdiagnosis, and overtreatment underscore the need for better temporal models that predict who 

should be screened and at what frequency. The mean sojourn time (MST), an average duration 

period when a tumor can be detected by imaging but with no observable clinical symptoms, is a 

critical variable for formulating screening policy. Estimation of MST has been long studied using 

continuous Markov model (CMM) with Maximum likelihood estimation (MLE). However, a lot of 

traditional methods assume no observation error of the imaging data, which is unlikely and can 

bias the estimation of the MST. In addition, the MLE may not be stably estimated when data is 

sparse. Addressing these shortcomings, we present a probabilistic modeling approach for periodic 

cancer screening data. We first model the cancer state transition using a three state CMM model, 

while simultaneously considering observation error. We then jointly estimate the MST and 

observation error within a Bayesian framework. We also consider the inclusion of covariates to 

estimate individualized rates of disease progression. Our approach is demonstrated on participants 

who underwent chest x-ray screening in the National Lung Screening Trial (NLST) and validated 

using posterior predictive p-values and Pearson’s chi-square test. Our model demonstrates more 

accurate and sensible estimates of MST in comparison to MLE.
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1. Introduction

Lung cancer, breast cancer, diabetes and coronary heart disease are today’s leading causes of 

death [1]. A better understanding of these diseases’ progression and dynamics, such as the 

expected time to reach a certain disease state, may lead to more appropriate prevention, 

management and treatment, as well as early detection [2]. Periodic screening using imaging 

is one of the most common ways to detect early stage disease, especially for cancer. 

Longitudinal data collected as a result of screening [3] provide an opportunity to discover 

better approaches for characterizing natural disease progression and generate predictions for 

individualized screening or diagnostic policies [4]. Traditionally, a “one size fits all” 

approach has been used for programs such as mammography screening. However, patients at 

lower risk of cancer should likely have longer screening intervals or not be screened at all.

The mean sojourn time (MST) measures how fast a disease progresses from a preclinical 

state (imaging detectable but without observable symptoms) to a clinical state (with 

observable symptoms). MST has been widely used [5] to model disease progression and in 

the context of population screening, calculate the optimal interval between screens and 

estimate the extent of overdiagnosis. The overarching objective of our work is to determine 

how the estimation of MST can be used to inform individualized screening strategies [6]. 

Four informatics-related challenges exist in leveraging retrospective screening data. First, 

observations for disease states made in clinical practice are often subject to interpretation 

error such as when radiologists incorrectly miss a cancerous nodule due to reasons such as 

noise and artifacts in an image. Failure to model this observation error will bias the MST 

estimation [7]. Second, missing or partial observations are common in clinical practice. For 

example, some patients may miss a scheduled screening exam or undergo care at another 

facility where data is not shared. Third, the interval between screening exams is frequently 

irregular (e.g., patients do not always come back exactly within one year). Thus, the 

discretization of continuous time information results in the loss of valuable information [8]. 

Fourth, the sample size of certain observed disease states may be very small (sparse), thus 

making the estimation difficult. For instance, patients will usually undergo an intervention if 

early state cancer is detected, thereby removing them from further observations. As a result, 

transitions to later states have fewer individuals with which probabilities can be estimated.

To overcome the aforementioned challenges, we use a continuoustime Markov model to 

represent disease transitions between states. Maintaining continuous time information 

permits estimation of unobserved states and maintains the interval between screens that is 

unique for each individual. We then utilize a Bayesian approach to jointly estimate MST, 

interpretation error, and disease incidence rates using the CMM model and to derive the 

observed transition probability between states for subsequent rounds of screening. Finally, 

we demonstrate how the MST can be estimated for different subgroups that are stratified by 

covariates such as demographics and patient history. We evaluate our model using data from 

the National Lung Screening Trial (NLST) [9]. In particular, we model the natural history of 

lung cancer in the chest x-ray (CXR) arm, whose participants underwent three rounds of 

lung cancer screening.
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In Section 2, we introduce prior work related to estimating MST using Bayesian approaches 

and CMMs. In Section 3, we describe the NLST dataset and the corresponding data pre-

processing. The theoretical formulations of our CMM-based Bayesian approach along with 

specific implementation details of the framework are presented in Sections 3.2–3.4. In 

Section 4, we summarize the results, comparing the performance of our framework with that 

of maximum likelihood estimation (MLE) for a three-state Markov model. Finally, in 

Section 5, we discuss the advantages and limitations of our models and future directions.

2. Background

Numerous techniques for modeling multi-state disease progression, especially for MST, 

have been proposed. Aalen et al. modeled HIV/AIDS progression using a discrete-time 

Markov model [10]; Chen et al. presented a three-state discrete progressive model for breast 

cancer [11]. Multi-state continuous-time Markov models can be adapted to solve the loss of 

continuous-time information [8] due to interval censoring. In particular, they have been used 

to model hepatocellular carcinoma [12], liver cirrhosis [13], periodontal disease [2] and 

diabetic retinopathy [14]. Duffy et al. applied a three-state continuous Markov model to data 

from a breast cancer randomized controlled trial to estimate the MST and the sensitivity of 

the screening process [8]. This method assumes perfect sensitivity in estimating the 

transition times between states and then subsequently estimates the sensitivity using fixed 

transition times. Chen et al. extended and applied the continuous-time Markov model in 

breast screening to jointly estimate mean sojourn time, screening sensitivity, and the positive 

predictive value [15]. Nevertheless, information from the control group (e.g., individuals 

who received usual care) was needed to properly estimate the desired parameters. Bayesian 

approaches have been increasingly applied [16–20] to infer MST and screening sensitivity. 

Our model is capable of modeling the situation where no control group information is 

available. This is especially relevant in clinical settings where it is unethical to deny 

treatment. A Bayesian framework applied to breast cancer screening data was used in [16] to 

obtain age-dependent sensitivity and estimates of transition probabilities. Chien et al. 

applied a Bayesian approach to validate the effectiveness of computed tomography (CT) for 

mortality reduction in lung cancer and to estimate the MST [17]. In 2010, Wu et al. used 

data from the Mayo Lung Project (MLP) to estimate lung cancer screening sensitivity, age-

dependent transition probability between states, and the distribution of sojourn time using a 

Bayesian approach [18]. Bayesian methods have advantages over classical techniques such 

as enabling small sample inference, providing appropriate measures of uncertainties, 

allowing inference on non-linear functions of parameters, and constructing predictive 

distributions to allow for additional inferences of interest [16]. More recently, Jiang et al. 

[21] used the Day and Walter model [22] to estimate the MST and the false negative rate 

from the Ontario breast cancer screening program in Canada. Taghipour et al. [23] modeled 

the natural history of breast cancer with a 4-state hidden Markov model and analyzed the 

effects of covariates and over different subpopulations. Jia et al. [24] used a 5-state Markov 

model to detect the worsening of patient symptoms in order to prioritize by symptom 

severity. Ma et al. [25] used a Bayesian approach on a 5-state continuous time Markov 

model to investigate a transtheoretical model. The advent of lung cancer and in particular 

lung screening trials also stimulated the development of a number of risk models to predict 
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lung cancer incidence from epidemiological and clinical data. Bach et al. [26] developed and 

combined two logistic regression models that predict the 10-year cumulative probability of 

dying from lung cancer and dying without lung cancer. Cronin et al. [27] validated this 

model with the placebo Arm of the Alpha-Tocopherol Beta-Carotene Cancer Prevention 

(ATBC) study. The model underestimated the observed lung cancer risk and the observed 

non-lung cancer risk individuals that smoked less than 20 cigarettes per day. A cox 

proportional hazards regression was developed from the COSMOS trial from 

epidemiological and clinical data [28]. Model’s performance was poor on early cancers but 

it could identify lower risk individuals and prevent overdiagnosis. Using the PLCO dataset 

Tammemagi et al. [29] developed a logistic regression model that predicts the six year 

probability of cancer from a wider range, of incrementally validated using AUC, 

epidemiological and clinical factors. Petousis et al. [30] developed discrete time dynamic 

Bayesian networks (DBNs) that predict lung cancer incidence at the different screening 

points of the NLST trial. The models achieved results comparable to expert’s decisions.

In this paper, we extend previous probabilistic models and demonstrate how our model 

yields a more accurate picture of lung cancer progression. The contributions of this paper 

are:

1. We provide an approach that serves as the basis for generating individualized 

screening policies based on estimations of MST for a specific group of 

individuals stratified by their covariates.

2. We describe how a CMM model parameterized using a Bayesian approach can 

be applied to accurately model data collected from three rounds of screening.

3. We explore the effect of age and gender on MST in the lung cancer screening 

population.

Results are validated using Pearson’s chi-squared test and posterior predictive p-value to 

measure the model’s fit to the data.

3. Materials and methods

3.1. Overview

As with prior work, we model the natural progression of lung cancer as transitioning through 

three states (see Fig. 1): a disease-free state (State 1), a preclinical state detectable via 

screening but asymptomatic (State 2), and a symptomatic state (State 3) [7,8,15,17,31]. The 

model assumes that a patient in State 1 must go through State 2 to reach State 3. When a 

patient undergoes screening, one of two states can be observed: if the screening result is 

positive and confirmed by a diagnostic evaluation, such as a biopsy, the patient is in the 

preclinical state; otherwise, the patient is in the disease-free state. Thus, the second state 

(preclinical state) is identified under two conditions: 1) a positive screening test; 2) a 

confirmed positive pathology diagnosis. However, patients in the preclinical state include 

both false-negatives due to interpretation error, and true-negatives, both of which can 

progress to the clinical state. When cancer is first detected by emerging lung cancer 

symptoms (not through screening), the patient is in the clinical state. In multi-round 

screening settings, patients who do not progress to the clinical state and are not found to be 
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preclinical during screening will repeat the process in subsequent rounds. Those found to be 

symptomatic of lung cancer prior to another round of screening are considered to be interval 

cases. Fig. 2 illustrates this process. There is observation error when we observe State 1 (i.e., 

the underlying real state could be either State 1 or State 2), but no observation error is 

assumed when we observe State 2 and State 3, because both of them are confirmed 

clinically.

MST is difficult to estimate because the direct transition from the disease-free state to the 

preclinical state is clinically unobservable. Patients will undergo intervention/treatment after 

being observed in a preclinical state (a positive cancer screening), thus obviating the natural 

progression from a preclinical state to a clinical state. Therefore, interval cases become the 

only source of information for estimating MST if no control group (individuals who never 

undergo screening) is available. As the discovery of interval cancers is affected by false-

negative screening results, estimation of MST is affected by detection sensitivity; a biased 

estimate of sensitivity can influence the estimate of MST [17]. Sensitivity is the unknown 

probability of screening detecting preclinical cancer.

3.2. National lung screening trial (NLST) data

The National Lung Screening Trial (NLST) was a large multi-center randomized controlled 

trial (RCT) of over 53,000 high-risk current or former smokers. Participants were initially 

between 55 and 74 years old, had smoking histories of at least 30 pack-years and were 

cancerfree at the start of the trial. The study followed participants between 2002 – 2007, 

with follow-ups through 2009. Each participant had up to three rounds of screening, with 

roughly one year between screenings. The study consisted of two arms, chest x-ray (CXR) 

and computed tomography (CT). If at any point in the study the participant was found to 

have cancer, he/she did not receive further screenings and was removed from the trial. In this 

study, we utilize data from the CXR arm. Of the 26,730 total patients originally in the CXR 

arm, 807 were removed from our analysis due to withdrawal from the study or loss of 

contact, and 100 were removed because they were discovered to have been ineligible after 

enrollment (e.g., patient had a CT within 18 months of enrollment). A further 579 patients 

who did not receive the first round of screening were removed. Only clinically confirmed 

positive screenings are considered preclinical (State 2). Interval cancers are cases detected 

after a negative screen, but before the next screen (between first and second screen or 

between second and third screen). Post-screening cancer cases are those detected after a 

negative third screen during follow-up, and the follow-up time is up to 5.09 years. Both 

interval and post-screening cancers are assumed to be symptomatic cancers and defined as 

clinical (State 3). False-positives were considered to not be cancer (State 1). Table 1 presents 

a detailed breakdown of events.

3.3. Continuous-time markov model

Let k and l denote one of the three disease states, where k, l ∈ {1, 2, 3}. Suppose the disease 

is in State k at time t and let pkl (Δt) = pkl (t, t + Δt) denote the probability of transition from 

State k to l during time period Δt. Then, the instantaneous λkl(t) transition intensity, which 

represents the instantaneous hazard rate of progression to State l [32], is
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(1)

Using a time-homogeneous model, both the transition intensity and transition probability is 

independent of t, where λkl(t) = λkl. In this case, the process is stationary and the transition 

probability pkl(Δt) = pkl(t, t + Δt) = pkl(0, Δt). The three-state instantaneous transition rate 

matrix Q is

(2)

whose rows sum to 0, so that the diagonal entries are [32,33]

(3)

As shown in Fig. 1, transitions could only happen from State 1 to State 2 and from State 2 to 

State 3. For other undefined transitions, transition rates are 0. Transition rate λ12 represents 

the instantaneous hazard rate to the preclinical state from the disease free state and λ23 is the 

instantaneous hazard rate of transitioning to clinical state from the preclinical state. In the 

CMM, MST is calculated as 1/λ23. The transition probability matrix in time Δt is the matrix 

exponential [33] P(Δt) = exp(QΔt)

(4)

whose (k,l)th entry is pkl(Δt). We first assume no observation error, that is, sensitivity equals 

1. We can easily write the likelihood function for each observation, and the parameters can 

be estimated using maximum likelihood. Transition probabilities from baseline to the first 

screening time point are conditional on no cancer at baseline. Probabilities for different 

transitions can be computed and are given in Table 2. The Markov assumption states that 

transitions only depend on the previous state. Patients are independent given the parameters 

and thus the log-likelihood function for all subjects is equal to the summation over all 

participants.
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3.4. Modeling imperfect screening sensitivity

Eq. (4) and Table Table (2) assume that sensitivity of the low-dose lung cancer screening 

exam is 100%. However, in practice, false negatives reduce the test sensitivity. In this 

section, we introduce a Bayesian model for inferring both sensitivity and transition 

probabilities simultaneously.

We develop the model for three rounds of screening, including interval cancer and post-

screening cancer cases. Time intervals between the first and second screenings and second 

and third screenings are Δt12 and Δt23, respectively. We assume Δt12 and Δt23 are the same 

for all participants.

Let A be the average age of all participants at first screening and A is used as the time 

interval for the first screening (participants are assumed to be disease-free at birth and the 

first observation time is at first screening) [7,8,17,31]. The real state at time t is Yt, a random 

variable with three possible states {1, 2, 3} modeled by the three-state homogeneous 

Markov process (Fig. 1) with transition hazard matrix Q and transition probability matrix 

P(Δt). The observed state at time t is denoted as Zt, also with three possible states {1, 2, 3}. 

At screening, the observed state Zt is subject to error due to false-negatives, meaning a 

preclinical state may be incorrectly observed as disease-free. The sensitivity S is S = Pr(Zt = 

2|Yt = 2) and 1 − S = Pr(Zt = 1|Yt = 2). The observation error for the other two states are 

assumed to be zero because they are confirmed clinically: Pr(Zt = 1|Yt = 1) = 1 and Pr(Zt = 

3|Yt = 3) = 1. Suppose there are T rounds of screening in total (T observations), we make 

two conditional independence assumptions about Yt and Zt, (a) observational independence 

assumption, that the tth observation given the tth real state is independent of all other 

observations and real states on that subject

and (b) Markov assumption, that the tth real state given previous real states is independent of 

all previous observations and real states except the most recent real state,

Given the total number of participants in the jth round of screening and the probability that a 

participant will be observed as preclinical this round, the number of observed preclinical 

cases at this screening follows a binomial distribution [34]. Let Nj be the total number of 

attendees at screening j; let πj be the probability of being observed at the preclinical state at 

the jth screening, and let nj be the number of subjects observed at the preclinical state at the 

jth screening, then we have

(5)

The probability π1 that a subject is observed in the preclinical state on the first screening 

given the subject is not in the clinical state is
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(6)

Detailed derivations are given in the appendix. Next π2 is the probability that a subject is 

observed in the preclinical state on the second screening given that the patient is not 

observed in the clinical state after the first screen and was disease-free on the first screening. 

The true preclinical case here may come from two sources: 1) the patient is disease-free at 

the first screening and progresses to preclinical at the second screening; 2) the false-negative 

patient whose real state is preclinical at the first screening and stays in the preclinical state 

for the second screening.

(7)

where

(8)

(9)

(10)

Finally, π3 is the probability that one is observed as preclinical on the third screening given 

disease-free observations in the two previous screenings and not in the clinical state in any 

screening. The formula for π3 is similar to that of π2

(11)

where

(12)

(13)
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(14)

Observed interval cancers and follow-up cancers are assumed to be clinical. Let  be the 

number of subjects observed in the clinical state between the jth and (j+1)th screening 

within time interval Δt. Then  is a random variable that can be modeled as a Poisson 

process [34]. Let Mj(Δt) be the mean of the Poisson distribution. Then Mj(Δt) is the sum of 

two parts: 1) the number of patients who progress to the clinical state from the disease-free 

state within Δt; and 2) the number of progressions from the preclinical states, which are 

false-negatives of the previous screening that transit into the clinical state within Δt [34]. 

The first part is the product of the number of disease-free patients at jth screening  times 

p13(Δt); and the second part is the product of the number of false-negative subjects at jth 

screening times p23(Δt).

Section 4 discusses the priors adopted for the model. We use Markov Chain Monte Carlo 

(MCMC) to generate random samples from the joint posterior distribution of the parameters 

with the WinBUGS software program [35].

3.5. Considering covariates

Our model can be extended to evaluate the effects of covariates, such as gender and age, on 

parameter estimation. In this study, the effects of covariates are investigated with a stratified 

analysis by fitting our model separately for age groups >60 and ≤60 to yield independent 

estimates of parameters (λ12, λ23, S) for each age group [31]. The same analysis is also 

performed on different gender groups. The NLST CXR dataset used in this work enrolled 

only high-risk lung cancer subjects, who are former or current smokers and have a minimum 

of 30 pack-years of cigarette smoking history. To further divide the dataset into sub-cohorts 

and investigate the cancer progression differences, covariates are identified from 

demographics, smoking history and disease history, including age, gender, family history of 

cancer, body mass index, disease history, cancer history, current or former smoker, number 

of packs of cigarette per year and smoke years. Distributions of each covariates within no-

cancer, non-symptomatic cancer, symptomatic cancer and post-screening cancer groups are 

plotted and compared to identify the significant covariates in this high-risk cohort for further 

stratification. Age and gender are two significant and important factors that have also been 

used by previous lung cancer studies [18,36], thus being used here and reported in Section 

4.3 and Appendices A and B.

3.6. Evaluation

To validate the proposed model and compare with other methods, two metrics are employed. 

First, we use Pearson’s chi-square to check the adequacy of the proposed model and validate 

parameter estimates by checking whether there are significant differences between the 

observed and expected counts [7,17,31,34,37]. A p-value larger than 0.05 suggests no 

significant difference indicating a good fit and accurate estimation of parameters. Then, 
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posterior predictive p-values (PPPV) [38] are employed to check the inconsistency between 

model predictions and observed counts for the Bayesian approach. A p-value away from 0 

for the PPPV indicates a good fit.

In the Results section, we first present the results of a CMM model (no observation error) fit 

with MLE using NLST dataset for estimation of MST. We then present the results of the 

model including observation error using the proposed Bayesian approach. Using Pearson’s 

chi- square and PPPV, we show that the proposed model fits the data better than the model 

without observation error.

4. Results

Section 4.1 gives results using the simple CMM model assuming 100% sensitivity. 

Pearson’s chi-square reveals a poor fit using simple CMM model. Section 4.2 gives results 

for transition intensities and sensitivity using the Bayesian approach with and without 

covariates. Both Pearson’s chi-square test and the PPPV suggest a good fit for the proposed 

model. Based on our covariate analysis in Section 4.3, the MST is longer in the older 

population.

4.1. Maximum likelihood without observation error

MLE is used to estimate the parameters of the three-state CMM when assuming sensitivity is 

1. Two parameters θ (λ12, λ23) need to be estimated. The likelihood calculation is 

implemented in R and quasiNewton function maximization is used for the optimization step. 

The initial value for λ12, the incidence rate of preclinical disease, is set to 0.00552 based on 

a study done by Manser et al. [34,39]. The initial value for λ23, the incidence rate of clinical 

disease and the inverse of MST, is set to 0.52 based on the inverse of the average reported 

CXR MST range (0.46 – 3.35) [17,19,20,34]. With these initial values, λ12 is estimated at 

0.0154 (95% CI: 0.0143 – 0.0164), λ23 is estimated at 3.31 (95% CI: 2.90 – 3.72) and MST 

is estimated as 0.302 years (95% CI: 0.269 – 0.345). However, the chi-square is 610.7 with p 
smaller than 0.00001, indicating a poor fit for the model.

4.2. Bayesian approach

In our analysis of the CXR data using the proposed Bayesian approach, there are now three 

parameters to be estimated, θ = (λ12, λ23, S). In previous studies, sensitivity of CXR in lung 

cancer is reported as being in the range of 69 – 90% [18,34,40] with a mean around 80%. 

Thus, a Beta distribution with α = 5 and β = 2 is adopted as the prior for sensitivity with a 

mode at 80%. Uniform distributions are employed as priors for λ 12 and λ 23. A range from 

0.0005 to 0.05 is selected as the prior for λ12 to allow enough flexibility given previously 

reported values in studies [34,39] as described in Section 4.1. Similarly, the prior of λ23 is 

chosen to be uniform of 0.2–5 based on previous studies [17,19,20,34].

We use two sub-chains and WinBUGS [35] to sample from the posterior for θ = (λ12, λ23, 

S). Each MCMC simulation is run for 45,000 iterations, with a burn-in of 5,000 iterations. 

Convergence was essentially immediate. After the burn-in, the posteriors are sampled and 

stored every 8 iterations, generating 5,000 posterior samples per chain. The 10,000 posterior 

samples, θi, i = 1, …, 10000, are pooled for analysis. The program is running on a Windows 
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8.1 desktop with a Intel Xeon CPU (3.3 GHz and 3.30 GHz) and 16 GB RAM. The 

WinBUGS program running time is 3.2 min.

Table 3 shows summaries of the posterior for the parameters. MST and sensitivity are 

estimated as 1.09 years (95% CI: 0.914 – 1.34) and 0.899 (95% CI: 0.761 – 0.984), 

respectively. Table 4 shows results of the chi-square test. There is no significant difference 

between observed and expected values, indicating a good fit to the empirical data. Compared 

to the model with perfect sensitivity, the expanded model fits the data better. The estimated 

MST is much longer compared to the reduced model fit assuming a sensitivity of 1. This 

corresponds to the expectation that lower sensitivity will lead to higher MST. This trend is 

also demonstrated in Fig. 3, which plots 1000 randomly selected posterior samples of MST 

and sensitivity.

To further evaluate the expanded model, we also employ a posterior predictive p-value [38] 

to assess the model fit. Let y = (y1, …y9) denote the observed data, where ya is the number 

of positive, negative and interval cases or post-screening cancer subjects for all three 

screenings. Let yrep = (yrep1, … yrep9) be the replicated data that could have been observed. 

A χ2 discrepancy is the sum of squares of standardized residuals of the data with respect to 

their expectations under a posterior model and defined as [38]

(15)

where Var(ya|θ) represents the variance of ya given the parameter vector θ and E(ya|θ) 

represents the expectation. For each posterior sample θ(b), b = 1, …,10000, draw a simulated 

replicated data set, , from the sampling distribution . Then, calculate 

and . Fig. 4 plots . The 

estimated PPPV is calculated as the proportion of the 10,000 pairs for which 

exceeds χ2(y; θ(b)) [38]. The estimated PPPV is 0.381 as shown in Fig. 4 and it does not 

indicate a lack fit for the model.

4.3. Covariate analysis

The explanatory variables (covariates) can be included using a stratified analysis. For 

gender, the data is divided into male and female and the model refit for each group. At the 

first screening, there are 14,936 males and 10,308 females. Table 5 shows posterior 

summaries for these two groups. There is little difference between females and males in 

terms of MST, sensitivity, and incidence rate of preclinical disease (λ12). For age, the 

sample is divided into two groups: age≤60 (12,669 participants) and those older than 60 

(12,575 participants). Table 6 shows the posterior summaries for these two groups. The 

incidence rate λ12 of preclinical disease is two times larger in the older age group, and the 

95% confidence intervals do not overlap. However, the MST and sensitivity are similar. This 

indicates that subjects (heavy smokers) older than 60 are twice as likely to progress to the 

preclinical state compared to those who are younger, consistent with the observations that 
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there are significantly more detected preclinical cases as shown in Appendix Table A1. 

There is also a significantly higher percentage of observed interval/post-screening cancers in 

the older group. This is reasonable given that there are more subjects in the preclinical state. 

Tables A1 and A2 give the chi-square test results for the models fit separately by age and 

gender. The results suggest that the model fits well in all sub-groups. Compared to the whole 

population, fit is improved in each of the age groups. The estimated PPPV for the age sub-

groups ≤60, >60, male and female are 0.604, 0.507, 0.610 and 0.259, respectively. All values 

indicate no lack of fit (Table 7).

5. Discussion

We present a CMM-based model that incorporates observation error to model estimate 

multi-state disease progression. Applied to lung cancer screening data from the NLST 

dataset, the model produces results that are plausible and consistent with published literature 

[17,18,34,41]. The CMM is a natural approach to take for modeling the transitions of 

discrete health states [31]. It can model transitions over time by incorporating longitudinal 

patient data and variable observation intervals. Sensitivity and MST are two important 

unknown parameters in the model. However, these two parameters are correlated and 

difficult to untangle as shown in Fig. 3, especially when no information is available for the 

incidence rate from a control group [7]. Without a control group, MST can only be estimated 

from the occurrence of interval cancer cases. On the other hand, more falsenegative cases 

leads to more occurrences of interval cases, resulting in a shorter MST estimate. Thus, MST 

and sensitivity should be modeled jointly [42,43] and estimates are sensitive to small 

changes in interval cancer counts [7]. In [17,31], MST is estimated assuming sensitivity is 1, 

which is quite optimistic in reality. Dufiy and Chen et al. [8] proposed a two step method: 

firstly, MST is estimated by assuming sensitivity to be 1, and secondly, sensitivity is re-

estimated using the obtained MST. This method is similarly still subject to error due to not 

estimating both jointly. In our study, we first investigated MST assuming sensitivity to be 1 

similar to step 1 in [8]. As shown in Section 4.1, the model did not fit well. In [7,15,32,37], 

sensitivity is modeled as part of the likelihood function, and MLE is adopted to estimate the 

parameters.

To compare with other methods, we implemented a three-state model from [7] using the R 

programming language [44] to model the same NLST CXR data. A general multi-state 

Markov model software package developed in [37] was also used to try to fit the data. 

However, no stable estimates were obtained in either case. Overall, our method uses the 

probabilistic Bayesian approach to model the observed occurrences for each state and jointly 

estimated MST and sensitivity and provides improved fit. An additional benefit is that the 

likelihood is able to use all the data including data from the third screening and post-

screening cancer cases.

There are some limitations to this work. First, the preclinical state is defined as the state in 

which the disease is detectable by screening. Therefore, depending on the screening 

modality, the probability of transition into the preclinical state will also vary. For instance, 

CT has better resolution for detecting lung cancer, and a CT-screened patient might enter the 

preclinical state earlier relative to a CXR-screened patient. Therefore, MST and sensitivity 
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are specific to each screening modality. Second, our current model models population level 

information by using average transition times between states as in [7,17,31,34]. By using 

individual data, we can make inferences on the MST distribution across the patient 

population, possibly improving accuracy of the estimates. This also opens the path towards 

using patients’ electronic health record (EHR) data for individualized screening schedules. 

Future work will focus on an individualized Bayesian framework that models each patient’s 

information separately. In the reduced model where sensitivity is 1, both average and 

individualized patient transition times were investigated and the estimates for MST were 

very similar. Thus, the fit of our proposed model does not lose much generalizability using 

average transition time.

This work builds the basis for providing individualized screening recommendations for a 

specific group of individuals stratified by their covariates. In traditional clinical settings, 

screening programs, such as mammography screening, employ a “one size fits all” 

paradigm. Nevertheless, subjects with lower risk (cancer progression rates) should receive 

less frequent screenings to reduce cost and radiation exposure. MST provide a way to 

quantify this screening period for difierent cohorts. This work provide a way to more 

robustly calculate MST for specific cohorts with sparse observations, while considering the 

observation error. In clinical practice, with collected screening data (may be noisy and 

sparse), this work make it possible to more accurately determine suitable screening periods. 

It also serves as the foundation to move towards individualized screening, where a 

personalized screening paradigm will be provided for each subject.

6. Conclusion

In this paper, we propose a Bayesian approach to model disease progression based on a 

continuous-time Markov model using periodic screening data. Observation error (sensitivity) 

is incorporated into the model as one of the parameters. The model is able to capture 

continuous time information, while compensating for missing observations in disease 

transitions. Priors are included to narrow the parameter space. The method is applied to a 

large chest x-ray screening dataset collected on heavy smokers as part of the National Lung 

Screening Trial. Gender and age are evaluated as two explanatory covariates in the proposed 

model. The participants older than 60 are found to have twice the incidence rate of 

preclinical lung cancer compared to subjects between ages 55 and 60. Pearson’s chi-square 

and posterior predictive p-values are adopted to validate the model. Compared to previous 

Markov models, estimation using our method is stable and yields a better fit of the empirical 

data.
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Appendix A. Chi-square test table

Table A1

Goodness of fit by age group.

Observed Expected Residual

Age≤60

 First screen negative 12631 12633.5 −2.5

 First screen positive 38 35.5 2.5

 Interval cancers after first screen 14 19.1 −5.1

 Second screen negative 11828 11830.2 2.2

 Second screen positive 18 15.8 −2.2

 Interval cancers after second screen 16 15.2 0.8

 Third screen negative 11258 11257.2 0.8

 Third screen positive 20 20.8 −0.8

 Post-screening cancers after third screen 154 146.9 7.1

χ2 = 2.261, P=0.894

age>60

 First screen negative 12481 12481.3 −0.3

 First screen positive 94 93.7 0.3

 Interval cancers after first screen 34 38 −4

 Second screen negative 11614 11605.3 8.7

 Second screen positive 46 54.7 −8.7

 Interval cancers after second screen 26 31.9 −5.9

 Third screen negative 11079 11082.5 −3.5

 Third screen positive 54 50.5 3.5

 Post-screening cancers after third screen 330 316.8 13.2

χ2 = 3.697, P=0.718

Table A2

Goodness of fit by gender group.

Observed Expected Residual

Male

 First screen negative 14858 14859.7 −1.7

 First screen positive 78 76.3 1.7

 Interval cancers after first screen 30 34 −4

 Second screen negative 13932 13927.8 4.2

 Second screen positive 42 46.2 −4.2

 Interval cancers after second screen 23 29 −6

 Third screen negative 13307 13303.3 3.7

 Third screen positive 39 42.7 −3.7

 Post-screening cancers after third screen 293 277.9 15.1

χ2 = 3.275, P=0.774
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Observed Expected Residual

Female

 First screen negative 10254 10255.4 −1.4

 First screen positive 54 52.6 1.4

 Interval cancers after first screen 18 22.8 −4.8

 Second screen negative 9510 9500.8 9.2

 Second screen positive 22 31.2 −9.2

 Interval cancers after second screen 19 18.6 0.4

 Third screen negative 9030 9036.3 −6.3

 Third screen positive 35 28.7 6.3

 Post-screening cancers after third screen 191 185.6 5.4

χ2 = 5.323, P=0.503

Appendix B. Formulas for π1, π2 and π3

(B.1)

(B.2)

where (B.2) follows from assumptions (a) and (b) and

(B.3)

(B.4)
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(B.5)

(B.6)

where

(B.7)

(B.8)

(B.9)
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Fig. 1. 
Model state transition diagram. State 1 is the disease-free state, State 2 is the preclinical state 

and State 3 is the clinical state. Parameters λ12 and λ23 are the transition intensities for 

transitioning from State 1 to State 2 and State 2 to State 3, respectively.
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Fig. 2. 
An illustration of possible outcomes from periodic CXR screening, where CXRj represents 

the jth screening. CXR2 and following screening will have similar possible outcomes and 

procedure as with CXR1. If the subjects are observed in the preclinical state in the first 

screening, they will enter treatment (and stop periodic screening CXR). Otherwise, subjects 

are observed to be in the disease free state. However, these observed disease-free subjects 

include both false-negatives (missed preclinical cases) and true-negatives. Some subjects, 

who are found at the clinical state (lung cancer symptoms emerge) prior to another round of 

screening, are called interval cases and also will not undergo additional screening. These 

interval cases may come from missed preclinical subjects or true disease-free subjects. 

Subjects who do not progress to the clinical state repeat the process in subsequent rounds.
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Fig. 3. 
Scatter plot of 1000 randomly selected posterior samples of sensitivity and corresponding 

MST.
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Fig. 4. 
Scatter plot of predictive and realized log likelihood ratio discrepancies for the proposed 

Bayesian model using the whole CXR data set; the proportion of points above the red 45° 

line represents the proportion of  exceeding  and is the posterior 

predictive p-value (PPPV). A PPPV away from 0 indicates a good model fit. The PPPV is 

0.381.
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Table 1

Detailed chest x-ray participant breakdown.

Screening Detection Mode Number Transition Types

First screening Participants 25244

Screening-Detected Cases 132 No disease→Preclinical

Negative Screening Cases 25112 No disease→No disease

Interval Cancers (Between 1st/2nd screenings) 48 No disease→Clinical

Second screening Participants 23506

Screening-Detected Cases 64 No disease→Preclinical

Negative Screening Cases 23442 No disease→No disease

Interval Cancers (Between 2nd/3rd screenings) 42 No disease→Clinical

Third Screening Participants 22411

Screening-Detected Cases 74 No disease→Preclinical

Negative Screening Cases 22337 No disease→No disease

Post-screening Cancers (after 3rd screening) 484 No disease→Clinical
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Table 2

Likelihood function for the Markov model.

Observation Type Probability

Disease free at 1st screening

Disease free at 2nd or 3rd screening

Preclinical disease at 1st screening

Preclinical disease at 2nd or 3rd screening

Clinical disease (interval and post-screening cases)
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Table 3

Summaries of the posterior.

Parameter Mean SD 2.5% 97.5%

λ12 0.00525 0.000185 0.00489 0.00562

λ23 0.927 0.0889 0.748 1.09

MST (year) 1.09 0.108 0.914 1.34

Sensitivity 0.899 0.0589 0.761 0.984
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Table 4

Goodness of fit with sensitivity<1.

Observed Expected Residual

First screening negative 25112 25115.1 −3.1

First screening positive 132 128.9 3.1

Interval cancers after first screening 48 55 −7

Second screening negative 23442 23428.9 13.1

Second screening positive 64 77.1 −13.1

Interval cancers after second screening 42 47 −5

Third screening negative 22337 22339.2 2.2

Third screening positive 74 71.8 −2.2

Post-screening cancers after third screening 484 464.2 19.8

χ2 = 4.643, P=0.590
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Table 7

Comparison between modeling approaches.

Model Comment

Shih et al. [31] Uses a Markov model in conjunction with the prevalence pool concept, but has the limitations of assuming a steady state 
disease rate. Parameters are estimated using an Expectation-Maximum likelihood algorithm.

Chien et al. [17]
Uses a Bayesian approach to estimate parameters of a 3-state lung cancer Markov model. The authors assumes imaging 
exams have 100% sensitivity.

Petousis et al. [30] Uses a discrete time dynamic Bayesian network to predict lung cancer incidence across time points. But the discrete time 
nature make it impossible to estimate MST.

Proposed method Uses continuous-time Markov model and developed a Bayesian framework for parameter estimation. Provides analytical 
solutions to model observed occurrences for each state and jointly estimated MST and sensitivity. It is able to use all 
observed data including data from the third screening and postscreening cancer cases.
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