
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Fixing Dependency Errors for Python Build Reproducibility

Permalink
https://escholarship.org/uc/item/4q982974

Author
Mukherjee, Suchita

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q982974
https://escholarship.org
http://www.cdlib.org/


Fixing Dependency Errors for Python Build Reproducibility

By

Suchita Mukherjee
Thesis

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Cindy Rubio-González

Premkumar T. Devanbu

Aditya V. Thakur

Committee in Charge

2021

-i-



Copyright © 2021 by

Suchita Mukherjee

All rights reserved.



To Ma, Baba and Puchu

-iii-



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1

1.1 Advances in Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Reproducibility for Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Reproducibility for Bug Datasets . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Overview of Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Overview of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Motivation 6

2.1 Managing Python Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 An Example of Broken Dependencies . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Dependency Version Specifications 11

3.1 Frequency of Version Specifications . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Challenges in Fixing Broken Dependencies . . . . . . . . . . . . . . . . . . . 14

4 Technical Approach 16

4.1 Log Error Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Error Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Installation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Extracting Candidate Packages for Fix . . . . . . . . . . . . . . . . . 19

4.2 Iterative Dependency Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Generating Patch Candidates . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 Selecting and Applying Patch Candidates . . . . . . . . . . . . . . . 23

-iv-



4.2.3 Evaluating Patch Impact . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.4 Elimination of Patch Candidates . . . . . . . . . . . . . . . . . . . . 26

5 Experimental Evaluation 27

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Impact of Dependency Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Evaluation of Fixing Dependency Issues . . . . . . . . . . . . . . . . . . . . 30

6 Threats to Validity 33

7 Related Work 34

7.1 Reusable Research Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 Automatic Build Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.3 Inferring Environment Dependencies . . . . . . . . . . . . . . . . . . . . . . 36

7.4 Dependency Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.5 Log Parsing to Detect Build Anomalies . . . . . . . . . . . . . . . . . . . . . 38

8 Conclusion and Future Work 39

-v-



List of Figures

2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Builds by number of project and transitive dependencies. . . . . . . . . . . . 12

3.2 Dependencies by Version Specification . . . . . . . . . . . . . . . . . . . . . 12

3.3 Breakdown of Builds by Dependency Version Specifications and Dependency

Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 PyDFix Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

-vi-



List of Tables

4.1 Log Error Regex Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Log Patterns for Package Installation . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Fix Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Builds Identified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 PyDFix Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 BugSwarm Patch Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

-vii-



Abstract of the Thesis

Fixing Dependency Errors for Python Build Reproducibility

Software reproducibility is important for re-usability and the cumulative progress of research.

An important manifestation of unreproducible software is the outcome of software builds

changing over time. While enhancing code reuse, the usage of open-source dependency

packages hosted on centralized software repositories like PyPI can have adverse effects on build

reproducibility. Frequent updates of these packages often cause their latest versions to have

breaking changes for applications using them. Large Python applications risk their historical

builds to become unreproducible due to the widespread usage of Python dependencies,

and the lack of uniform practices for dependency version specification. Manually fixing

dependency errors requires expensive developer time and effort, while automated approaches

face challenges such as parsing unstructured build logs, finding transitive dependencies,

and dealing with an exponential search space of dependency versions. In this thesis, we

investigate how open-source Python projects specify dependency versions, and how their

reproducibility is impacted by dependency packages. We propose a tool PyDFix to detect

and fix unreproducibility in Python builds caused by dependency version errors. The ability

of PyDFix to fix unreproducible builds is evaluated on two bug datasets BugSwarm

and BugsInPy, both of which are built from real-world open-source projects. PyDFix

analyzes a total of 2,702 builds, identifying 1,921 (71.1%) of them to be unreproducible due

to dependency errors. From these, PyDFix provides a complete fix for 859 (44.7%) builds,

and partial fixes for an additional 632 (32.9%) builds.

-viii-



Acknowledgments

The continued mentorship and support of my advisor, Professor Cindy Rubio-González made

this thesis possible and for that I would like to express my gratitude. Her guidance has

transformed my experience in the world of research and expanded my appreciation of scientific

rigor.

I would also like to thank Professor Aditya V. Thakur for his detailed and insightful

comments during the developmental stages of this thesis and Professor Premkumar Devanbu

for his encouragement, and both for taking the time to review my work.

Abigail Alamanza, who participated in exploratoration and brainstorming phases has also

helped shape the direction of this work.

Last but not the least, I acknowledge the indispensable support provided by my parents,

my partner and the UC Davis community all of whom made it possible to accomplish this

thesis.

-ix-



Chapter 1

Introduction

Reproducibility of software artifacts is one of the most significant and consistent challenges

faced by developers and researchers. Reproducibility can be defined as the repeatability of the

process of establishing a fact or of conditions under which the same fact can be observed [20].

While the re-use of code components is important for building on existing knowledge and

computations, it becomes increasingly more important for open-source software. Open-source

software is often built through extensive collaborations, often involving several years of

effort. For open-source software to be truly accessible, providing access to source code and

documentation may not be sufficient if the reproducibility of the artifact or computational

experiment does not stand the test of time.

The adherence to the principle of re-usability is exemplified by the evolution of highly

interconnected ecosystems of open-source software libraries hosted on centralized code

repositories like Maven Central Repository [8] and PyPI [13]. While this has made the

development of new software easier, dependence on other software packages has also led to

more build breakage and spread of bugs in dependency networks. Seo et al. [36] found in

their study of Java and C++ build failures that nearly half of all build errors are caused

by dependencies. When evaluating Python gists available on GitHub, Horton and Parnin

[29] found that 52.4% of the gists failed to execute due to a dependency error. The growth

of dependency packages in each programming language’s ecosystem has created transitive

dependencies between these packages. Such dependencies can have the effect of propagating

bugs and vulnerabilities, and the removal of a package central to such dependency networks

1



can affect up to 30% of the existing applications [32]. Tomassi et al. [38] while reproducing

fail-pass build pairs had a success rate of 5.56% out of the 55,586 pairs collected. Their

manual evaluation of 100 unreproducible artifacts showed failure to install dependencies to

be the leading cause of unreproducibility.

1.1 Advances in Reproducibility

The software engineering community has made great strides towards achieving reproducibility.

The advent of tools like Docker [5] and Kubernetes [7] has simplified the creation and

deployment of containers. However, the problem of dependency versions continues to hinder

attempts of achieving reproducibility through containerization. Software dependencies are

constantly evolving packages and often receive regular updates for fixing bugs and adding

features. While the new versions are aimed to enhance the software, they may cause many

new issues to surface in applications utilizing these packages. Backward compatibility may

change with updated packages, potentially leading to unwanted modified behavior that affects

reproducibility. As older versions of dependency packages become deprecated, or the package

index URLs become stale, reproducing artifacts that require those older versions becomes

difficult.

1.2 Reproducibility for Python

Recently, Python was reported by several language popularity indices to have become the

second most popular language amongst developers, displacing Java [39]. This shows how

ubiquitous Python has become in the programming world. However, with the transition from

Python 2.x to 3.x there have been several backward incompatible changes in the language

itself [15]. As a consequence, many Python packages have released versions with breaking

changes, thus contributing to the unreproducibility of Python artifacts. This is a huge concern

even for projects that pin all their dependencies as these can be removed from the Python

index without warning. While it is possible to manually fix dependency issues when re-using

an application, it requires expensive developer hours and domain knowledge.

2



1.3 Reproducibility for Bug Datasets

The issue of reduced reproducibility caused by changing package versions is especially

significant for bug datasets, whose growth and longevity depend on the reproducibility of

artifacts. Datasets of software bugs play a significant role in evaluation of fault localization

and repair techniques. Two recent Python bug datasets BugSwarm [38] and BugsInPy [40]

collect bugs from GitHub open-source projects. While BugSwarm has reported the low

reproducibility rate of these bugs as a hindrance for the growth of the dataset, BugsInPy has

manually pinned appropriate versions for the dependencies of each project. Neither dataset

has considered the impact of configuration drift as described by Horton and Parnin [31] as

the phenomenon of a code snippet going out-of-date because APIs it depends on experience

breaking change over time. Consequently, these datasets have not addressed configuration

drift in the design of their tool and in their measures to preserve reproducibility of the collected

artifacts. In our analysis of 1,981 BugSwarm builds, we find a total of 44,012 installed

packages, comprising of 22,264 project and 21,748 transitive dependencies, respectively. 62.4%

of project dependencies are pinned while only 4.5% of transitive dependencies are pinned.

Overall, 38.1%, 33.7% and 28.1% dependencies were found to be constrained, pinned and

unconstrained, respectively.

1.4 Overview of Approach

In this thesis, we look into the usage of dependency packages and their version specifications

in builds of open-source Python projects. We focus on current build logs that contain

dependency-related errors which were not present in the original logs, thus making the build

unreproducible. We propose a tool PyDFix that identifies dependency-related error messages

in build logs that contribute to unreproducibility, and extracts dependencies that are possibly

causing these errors. PyDFix then iteratively builds a final list of pinned dependencies to fix

dependency-related build errors that form a ”patch” to make the build reproducible again.

The reproducibility is ensured by validating against the original build logs to check the final

status of the build and the results of any associated tests. Each artifact in the bug datasets

consists of a failed build triggered by a buggy commit and a passed build triggered by the

commit with a bug fix. PyDFix’s goal is to achieve reproducibility. The builds associated

3



with buggy commits should terminate with the same build errors or failed test results as

originally observed, and for passed builds, the build should be successful and all tests pass.

While we expect PyDFix to be useful for maintainers of bug datasets, any developer facing

issues while rebuilding a historical Python commit due to package dependencies can utilize

PyDFix.

1.5 Overview of Related Work

Recent approaches [34, 27, 33] repair build failures in Java projects, but do not focus on

reproducibility. In terms of Python, DockerizeMe [30] works on inferring environment

configurations for Python gists, and V2 [31] identifies out-of-date gists and notebooks due to

breaking changes in APIs used by them. Although these studies have a focus on resolving

Python dependency issues, their approaches do not work for large Python applications.

Sciunit [37] and ReproZip [21] present a preventive approach based on operating-system

call traces to containarize applications and maintain their reproducibility. However, these

approaches cannot be used if an artifact is already unreproducible.

1.6 Contributions

We evaluate PyDFix on a total of 2,702 Python builds from the BugSwarm and BugsInPy

datasets. PyDFix identifies a total of 1,921 builds as being unreproducible due to dependency

issues. These include 67.2% of analyzed builds from BugSwarm, and 84.90% of analyzed

builds from BugsInPy. PyDFix successfully computes a complete fix for 859 builds (40.91%

and 55.53% of identified builds from BugSwarm and BugsInPy respectively) while also

creating partial fixes, which have not restored reproducibility but resolved a number of

dependency-related errors for 632 builds (32.06% of BugSwarm builds and 35.39% of

BugsInPy builds).

The main contributions of this thesis are:

� We design an algorithm to automatically identify dependency errors and likely candidate

dependencies causing such issues from build logs (Section 4.1).

� We design an iterative solving algorithm to synthesize and apply patches based on identified

candidate dependencies (Section 4.2).

4



� We study dependency usage, version specifications and inclusion of transitive dependencies

in Python projects (chapter 3).

� We develop PyDFix to identify and fix unreproducible Python builds caused by dependency

packages, and conduct a large-scale evaluation on 2,702 builds from two Python bug datasets

BugSwarm and BugsInPy (Sections 5.2 and 5.3).

5



Chapter 2

Background and Motivation

This section provides background on Python dependencies, an example of broken dependencies,

and some terminology.

2.1 Managing Python Dependencies

Python developers have multiple options to specify their applications’s dependencies. Dependency

requirements can be declared in text files containing one dependency specification per line,

or by using the install requires keyword in a setup.py file, which is a script used for

packaging and distribution of Python projects. Configuration files for continuous integration

(CI) tools like TravisCI [19] can also contain Python dependency package declarations. Several

virtual environment management packages like tox [17] and pyenv [12] allow configurations

to declare dependencies. Moreover, there exist multiple package managers for Python, the

two most popular being pip [9] and conda [3]. We only consider packages installed using pip

as it is Python’s standard package manager [10].

PEP 440 [35] and PEP 508 [22] provide detailed information about the versioning system

of Python packages as well as the types of dependency declaration and version specification

available to Python developers. However, there is no single set of best practices that the

Python developer community follows and it can vary greatly depending on developer choice.

Dependency version specification in Python can be done in three ways:

� Pinned Dependency: a specific version is included in the dependency declaration e.g.,

numpy==1.17.5.

6



� Constrained Dependency: a range of versions is specified in the dependency declaration

e.g., numpy>=1.17.5,!=1.18.2.

� Unconstrained Dependency: no version specification is mentioned with the dependency

declaration.

Dependency packages with a pinned version can affect a build outcome if the package

gets removed from PyPI, or if its versioning system changes. For example, the package

pytest-capturelog, which is documented in libraries.io [14] no longer exists in PyPI. Another

example is pyatom, which still exists in PyPI but whose versioning system completely changed

in January 2020 [11]. Earlier versions are no longer hosted on PyPI.

The default behavior of pip for constrained dependencies is to fetch the latest available

version that satisfies the constraint. Thus, both unconstrained and constrained dependencies

can lead to the installation of versions newer than those originally used. While later versions

of dependency packages have bug fixes and additional functionalities, they may also contain

breaking changes that cause build failure for applications that worked with older versions.

Apart from declared dependencies, unreproducibility can also be caused by transitive

dependencies. Transitive dependencies are packages not directly used by the application itself,

but by a package used by the application. Each package used by an application can have

any number of such transitive dependencies, and it is difficult to infer which version would

be appropriate for a failing transitive dependency without analyzing the source code of the

dependency package directly used by the application.

2.2 An Example of Broken Dependencies

Figure 2.1 shows an example of broken dependencies in a Python project. Figure 2.1a

shows the current build outcome for a historical commit [1] of the GitHub repository

cloudify-system-tests [2]. The build failure message indicates that the failure is due

to the package stevedore [16]. However, this dependency is not declared within the

application. In the log line documenting the installation of stevedore shown in Figure 2.1b,

we observe that the package stevedore is actually a transitive dependency, required by

the package openstacksdk. Although cloudify-system-tests’s source code has pinned a

7



Command "python setup.py egg info" failed with error code 1 in /tmp/pip-build-D943WL/stevedore/

The command "pip install ." failed and exited with 1 during .

The build has stopped.

(a) Initial build error

Collecting stevedore>=1.17.1 (from openstacksdk0.9.13->cloudify-system-tests==4.0.1)

(b) Dependency installation of stevedore in build log

File "/home/travis/virtualenv/python2.7.9/lib/python2.7/site-packages/flake8/main/mercurial.py",

line 7, in <module>

import configparser

ImportError, No module named configparser

travis time:end:Occ6ae93:start=1608325842106715960,finish=1608325842255517368,duration=148801408

The command "flake8 ." exited with 1.

Done. Your build exited with 1.

(c) Build Error after pinning correct version of stevedore

Collecting configparser (from flake8==3.3.0)

(d) Dependency installation of configparser in build log

stevedore==1.17.1

configparser==3.5.0

(e) Final patch with pinned problematic dependencies

The command "flake8 ." exited with 0.

Done. Your build exited with 0.

(f) Build fixed

Figure 2.1: Motivating Example

An example requiring multiple version specification changes to restore build reproducibility.

8



version for openstacksdk, the version constraint from stevedore is actually being controlled

by openstacksdk. At the time when this code was committed to the GitHub repo, the

stevedore version fetched by pip was compatible with Python2.7, which is correct for this

version of cloudify-system-tests. However, the current version of stevedore requires a

Python version greater than equal to 3.6 and hence, causes an error when pulled into the

build process for this commit.

As shown in Figure 2.1c, pinning stevedore does not repair the build completely and

another error is encountered. While the error due to stevedore was during the installation

steps, this new error occurs during the run of flake8 on the source code. The error message

now indicates that it is caused by a failure to find the module configparser [4]. Inspecting

the installation steps of the logs show that configparser was indeed installed and it is a

transitive dependency of flake8 [6]. Although the developers specified a particular version

for flake8, there is no version constraint added for configparser within the package

flake8. The current version of configparser again works only with Python versions

greater than 3.6 and hence, is incompatible in the current build process. Pinning the correct

version of configparser along with stevedore results in restoring the build to original

status(Figure 2.1f).

2.3 Terminology

Here we introduce some terms to be used in the following sections.

� Build Outcome: A build outcome is the final status of a build. For a passed build, build

outcome is success. In case of a failed build, the build outcome is the error that terminates

the build.

� Unreproducible Build: A build whose current build outcome differs from its original

build outcome. For example, a failed build that currently terminates due to an error

different from the error of the original build, or a passed build that is currently failing.

Both failed and passed builds are considered unreproducible if associated tests have different

results from the original logs. In Figure 2.1, the original build outcome was a successful

build, but the current outcome was a build error, shown in Figure 2.1a.

9



� Patch: A patch is any change to an application intended to fix a problem. In our study, a

patch is a list of dependency specifications that pin the versions of dependency packages to

fix dependency-related errors that make an application’s build unreproducible. An example

of a patch is shown in Figure 2.1e.

� Patch Candidate: For PyDFix, a patch candidate consists of a single dependency

package and its suitable version. A patch consists of one or more patch candidates.

� Dependency Chain: Every transitive dependency has a dependency chain showing

the dependency packages that led to the inclusion of this transitive dependency. E.g., in

Figure 2.1b the dependency chain for the transitive dependency stevedore is openstacksdk==0.9.13→cloudify-system-tests==4.0.1.

� Triggering Commit: A commit that triggered a build.

10



Chapter 3

Dependency Version Specifications

To further motivate our work, we investigate the frequency in different dependency version

specifications used in 1,119 BugSwarm artifacts, i.e., 2,238 builds after excluding 173

artifacts for which the original logs are not available.1 Our approach consists of parsing the

original log of each build. We adopt this method instead of directly analyzing the source code

because of two reasons. Firstly, we only identify the dependencies that are installed and used,

thus avoiding redundant dependencies that may have been declared in unused sections of the

source code. Secondly, this approach allows us to identify all transitive dependencies being

installed, which are not declared in the source code but are required by other dependencies.

3.1 Frequency of Version Specifications

We observe a widespread use of dependency packages with a total of 44,012 instances of

package installations across all builds. Figures 3.1a and 3.1b show the count of builds

containing a range of project and transitive dependencies, respectively. We found that 256

builds (11.43%) did not fetch any packages from the PyPI index, i.e., these builds have zero

dependencies. Additionally, a total of 550 builds (24.57%) did not show evidence of installing

any transitive dependencies. For both project and transitive dependencies, most builds

have less than 10 dependencies per project. However, the number of builds having a large

number of dependencies is not insignificant. Especially in the case of transitive dependencies,

the number of builds in higher dependency ranges is evenly distributed. While builds can

1BugsInPy could not be analyzed because the original logs were not available.

11



1-5 6-10 11-15 16-25 26-100 >100
0

500

1,000

1,500
1,241

438

102 94 59 40

Number of Project Dependencies

N
u
m

b
er

of
B

u
il
d
s

(a) Builds by number of project dependencies.

1-5 6-10 11-15 16-20 21-25 26-50 51-75 76-100 >100
0

200

400

600

434
483

147
78 76 86 79

42
6

Number of Transitive Dependencies

N
u
m

b
er

of
B

u
il
d
s

(b) Builds by number of transitive dependencies.

Figure 3.1: Builds by number of project and transitive dependencies.

Pinned Constrained Unconstrained
0

1

2

·104

13,884

62.4%

2,718

12.2%

5,662

25.4%969

4.5%

14,060

64.6%

6,719

30.9%

14,853
33.7%

16,778
38.1%

12,381
28.1%

N
u
m

b
er

of
D

ep
en

d
en

ci
es

Project Transitive Total

Figure 3.2: Dependencies by Version Specification

12



15.5%43.1%

33.3%

8.1%

Majority Pinned
Majority Constrained
Majority Unconstrained
Majority Not Pinned

(a) Breakdown of Builds by Majority Dependency Version Specification

40.5%

59.5%

Has More Transitive Dependencies
Has More Project Dependencies

(b) Breakdown of Builds by Majority Type of Dependency

Figure 3.3: Breakdown of Builds by Dependency Version Specifications and Dependency
Type

fail due to an error caused by even a single dependency and fixing such an error requires

domain knowledge, the need for an automated approach for dependency resolution is more

pronounced for artifacts having a large number of dependencies.

In Figure 3.2 we show the distribution of types of dependency version specifications

encountered. These are all dependencies found in the entire set of build logs analyzed. The

labels above each bar in the plot refer to the absolute count represented by the bar followed

by its percentage across all dependencies of that type, i.e., project, transitive, and total

dependencies. The figure shows that the majority, 62.4% of project dependencies are pinned

while 25.4% are unconstrained and 12.2% are constrained. However, most of the transitive

dependencies are constrained while only 4.5% are pinned. A significant percentage of transitive

dependencies, 30.9% are also unconstrained. While looking at the total dependencies including

both types, the largest portion which is 38.1% is constrained followed by 33.7% pinned and

28.1% unconstrained. This highlights the need for developing tools like PyDFix to address

13



dependency-related errors.

We also find that only 15.5% of the builds have most of their required dependencies

pinned, 43.1% of the builds have the majority of their required dependencies constrained,

and 33.3% builds have the majority of the package dependencies unconstrained as shown

in Figure 3.3a. Finally, from Figure 3.3 we observe that 40.5% of the builds contain more

transitive dependencies than project dependencies. This underscores how important transitive

dependencies and their version specifications are while maintaining reproducibility of builds.

Finding: 44,012 packages are installed across 2,238 builds. 1,034 builds have 10+ project

or transitive dependencies. While most project dependencies were pinned at 62.4%, only

4.5% of transitive dependencies are pinned. We find 12,381 (28.1%) total unconstrained

and 16,778 (38.1%) constrained dependencies, which increase the likelihood of build

breakage. The 14,853 (33.7%) pinned dependencies can also lead to unreproducibility if

removed from the package index. 40.5% of builds contain more transitive than project

dependencies, highlighting the importance of transitive dependencies in build repair.

3.2 Challenges in Fixing Broken Dependencies

The main challenge in identifying dependency-related unreproducible builds is due to the

unstructured nature of build logs. Logging of build errors is varied, and often does not provide

exact information about the cause of an error. Log parsing approaches have to take into

account error traces preceding error messages in the search of a root cause when unable to

extract desired information from error messages in logs. Moreover, there exists no exhaustive

set of errors that are caused by package dependencies and can be used for identification.

Thus, identifying dependency-related build errors is a significant challenge.

Second, for large Python applications using many dependency packages, the search space

of version specifications is exponential. Each Python package has several release versions

available on package indexes, and a brute force approach to find the correct version is not

feasible. Hence, it is important to limit the modification of version specifications to only

dependencies causing errors while excluding versions not likely to fix errors.

A third challenge is posed by transitive dependencies, which are not explicitly included in

a project but are required by a project dependency or other transitive dependencies. The

14



inclusion of a transitive dependency cannot be detected from the source code of a project, and

can only be inferred from the build logs of the installation process. Transitive dependencies

also give rise to dependency chains (explained in Section 2.3) that contribute to the expansion

of the search space. To the best of our knowledge, PyDFix is the first to address all above

challenges for large Python projects, and be evaluated on a large and wide-ranging set of

builds.

15



Chapter 4

Technical Approach

Final  
Patch, Fi x  
Outcom e

Ident i f i ed dependency er r or s + 
dependency candidates

Bui l d l og af ter  applying cur r ent  patch

Or iginal  Bui l d 
Log

Log Er r or  
Analyzer

CSV
I ter at ive 

Dependency 
Solver

CSV

Cur r ent  Bui l d 
Log

Cur r ent  Bui l d 
Log

Figure 4.1: PyDFix Workflow

PyDFix is shown in Figure 4.1. The two main components are LogErrorAnalyzer for

identifying dependency-related errors causing unreproducibility, and IterativeDependency-

Solver for fixing unreproducible builds due to dependencies. PyDFix takes as input the

current build log and the original build log. PyDFix first identifies dependency errors

and possible dependency packages causing these errors using LogErrorAnalyzer. This

is followed by iteratively building a patch that makes the build reproducible again by

IterativeDependencySolver. The iterative algorithm for building the patch keeps

re-running the build with intermediate patches and analyzing the new build logs produced

to further identify errors and problematic dependency version specifications. This process

continues until the build becomes reproducible, or all patch options have been tested and

deemed not useful. The key challenges addressed by PyDFix are the identification of

dependency-related unreproducible builds from build logs, and the selection of both project

16



and transitive dependencies along with their appropriate versions to fix dependency errors

and test failures. We expect PyDFix to be of great value for maintainers of bug datasets as

well as developers attempting to reproduce a historical build.

4.1 Log Error Analyzer

The first step in solving dependency-related build breakage is the identification and localization

of build errors. Build tools like Gradle for Java may have pre-defined sections in the build

logs (”What went wrong”) where error messages and exceptions are collected. However, not

all Python applications need or have build tools. Hence, while analyzing TravisCI build

logs we cannot depend on any pre-defined section of log messages showing the reasons for

build failure. LogErrorAnalyzer analyzes TravisCI build logs to extract the following

information:

1. What are the lines indicating errors due to dependency packages, and are these errors

absent in the original build?

2. What are the dependency packages that cause these errors?

3. What files lead to the inclusion of these dependency packages in the project?

4.1.1 Error Patterns

To understand which error messages in a build log indicate failure related to dependency

packages, we manually inspected the TravisCI build logs of 40 unreproducible artifacts from

the BugSwarm dataset which led to the identification of 20 different error messages. Based

on these error messages, we created 17 regex patterns which are listen in Table 4.1

The error patterns in Table 4.1 indicate that dependency errors are related to the failure

of pip install, failure to setup Python egg, package or dependency file requiring a different

Python version, an error from a virtual environment, ImportError and TypeError. An

additional indication of an incorrect version installation appeared to be code style checks

failing. For example, flake8 is a PyPI package which keeps adding new code style rules with

every new version. However, older artifacts that use flake8 to check for code style issues may

not be compliant with newer rules in the latest version of flake8. In such a case, flake8

17



Table 4.1: Log Error Regex Patterns

Error Type Error Pattern

REQUIREMENTS TXT NEEDS PYTHON requirements.txt needs (.*)

python

PIP INSTALL FAILED AND EXITED The command ”pip3? install

(.*) failed and exited with

(.*) during

SETUP EGG INFO FAILED Command ”python3?

setup.py egg info” failed

PIP INSTALL FAILED TIMES The command ”pip3? install

(.*) failed (.*) times

PYTHON SETUP FAILED EXITED The command ”python3?

(.*) failed and exited (.*)

VIRTUAL ENV ERROR virtualenv.py: error

PACKAGE REQUIRES PYTHON (.*) requires Python (.*)

PACKAGE REQUIRES DIFF PYTHON (.*) requires a different

Python (.*)

SCRIPT REQUIRES PYTHON ERROR: this script requires

Python (.*)

PACKAGE IN REQ TXT NEEDS PYTHON (.*) from requirements.txt

needs (.*)

IMPORT ERROR ImportError (.*)

MODULE NOT FOUND ERROR ModuleNotFoundError: (.*)

TYPE ERROR TypeError (.*)

FLAKE ERROR The command ”(.*)flake8

(.*) exited with 1

NO MODULE FOUND -ERROR No module named (.*)

CYTHON ERROR Cannot cythonize without

Cython installed(.*)

COMMAND NOT FOUND ERROR (.*) : command not found

18



Table 4.2: Log Patterns for Package Installation

Package Installation Pattern

ˆCollecting(.*)

ˆSearching(.*)

ˆDownloading(.*)

ˆRequirement already satisfied:(.*)

ˆBest Match(.*)

needs to be pinned to an appropriate version and hence, we have included errors from such

code style checking packages into our list of dependency-related errors.

4.1.2 Installation Patterns

Based on the log inspection from Section 4.1.1, we also created a set of regex patterns to

identify package installation messages in build logs. The installation patterns are shown in

Table 4.2. These patterns are used by LogErrorAnalyzer to answer questions (2) and

(3). In particular, the analyzer tracks: (i) required packages, (ii) package versions fetched

and installed, (iii) whether a package is a transitive dependency in which case the analyzer

also extracts the dependency chain, and (iv) files in which the dependencies are specified.

4.1.3 Extracting Candidate Packages for Fix

Algorithm 1 shows how LogErrorAnalyzer parses build logs to extract information

required to address the errors of an unreproducible Python build. LogErrorAnalyzer

iterates over each line of the current log for which the build is unreproducible. The analyzer

looks to match error patterns (Section 4.1.1) and installation patterns (Section 4.1.2). For

every match against an installation pattern, further package details are extracted such as

pinned version, version constraints, and transitive dependency chain, after which the package

is added to the set of installed packages. When an error pattern is matched, the analyzer first

checks whether the same error (and error trace) already exist in the original log (Algorithm 1

Lines 10-16). If that is the case, then the error is discarded and not considered to be a new

error contributing to the unreproducible state of the build. For errors not found in original

logs, the error message itself and the associated error trace is parsed to extract packages

19



Algorithm 1: LogErrorAnalyzer

Data: Dependency error regex, Package installation regex

Input: Current build log, TravisCI original build log

Output: Dependency errors, Candidate dependency packages, Dependency files

1 installed← [], candidates← []

2 errorLines← [], fileNames← []

3 for each line in log do

4 if line matches package installation regex then

5 pkgInfo← package details extracted from line

6 installed.insert(packageInfo)

7 if fileName present in line then

8 fileNames.insert(fileName)

9 end

10 else if line matches dependency error regex and error not in original log then

11 errorLines.insert(line)

12 pkgNames← package names in error trace

13 pkgInfoList← packages in pkgNames from installed

14 candidates.insert(pkgInfoList)

15 else if line shows start of an error trace and error trace not in original log then

16 pkgNames← package names in error trace

17 pkgInfoList← packages in pkgNames from installed

18 candidates.insert(pkgInfoList)

19 end

20 orderPossibleCandidatesByPriority(candidates)

21 return errorLines, candidates, fileNames

associated with the error. The detailed information about the error-related dependency

packages is collected from the already gathered information on installed packages and these are

added to the possible candidates for a fix. If any of these packages are transitive dependencies,

then all packages appearing in its dependency chain are also considered possible candidates.

20



If an identified error trace is not associated with any known error pattern, and the error

does not exist in the original log, then the trace is still parsed and analyzed to extract

mentions of dependency packages. Finally, the last installed package before the build error

occurred is also included in the possible candidates since it is highly likely that the error

occurred during the installation of that package.

LogErrorAnalyzer arranges the candidate packages in a priority order used by

IterativeDependencySolver (Section 4.2.2) when applying fixes. The order is described

as follows:

1. The dependency package mentioned in the error line itself.

2. Dependency packages listed in the error trace associated with the error line, with

priority decreasing with further distance from the error line.

3. Dependency packages listed in an error trace not associated with any of the recognized

error patterns, with decreasing priority as we go down the error frames of the trace.

4. The dependency installed right before the error occurred.

4.2 Iterative Dependency Solver

Once LogErrorAnalyzer has identified the possible candidates and their priorities, the

IterativeDependencySolver shown in Algorithm 2 generates patch candidates for each

possible candidate and adds them to the dependency requirements of the build according to

the prioritized order. Every iteration, a previously unapplied patch candidate is added to the

final accepted patch or discarded based on the build outcome. Algorithm 3 is used to reason

with the progress of the newly added patch candidate depending on build outcome. Thus,

pinned dependencies are incrementally added to the final accepted patch until encountering

either one of the terminal states in Table 4.3 (Section 4.2.3), or a non-dependency error.

Based on each iteration’s build outcome, new candidates are found by analyzing the build

log generated after applying the current patch.

4.2.1 Generating Patch Candidates

As shown in Algorithm 2 (Line 1) and Algorithm 3 (Line 21), patch candidates are generated

at the beginning, and again every time the patch candidates need to be updated due to new

21



Algorithm 2: IterativeDependencySolver

Input: buildDetails, errors, candidates

Output: A patch that pins dependencies

1 patchCandidates = genPatches(candidates)

2 acceptedPatch← [], currentPatch← [], fixOutcome = None

3 while True do

4 currentPatch = acceptedPatch

5 newPatchCandidate = None

/* Patch Candidate Selection */

6 newPatchCandidate← getUnappliedPatch(patchCandidates, acceptedPatch)

7 if newPatchCandidate == None then

/* Encountered terminal state */

8 fixOutcome← Exhausted All Options

9 break

/* Patch Candidate Application */

10 newBuildOutcome, newBuildLog ← runBuildJob(currentPatch, buildDetails)

/* Patch Impact Evaluation */

11 fixOutcome, accpetedPatch, updatedCandidates, updatedErrors,

updatedPatchCandidates← EvaluatePatchImpact(newBuildOutcome,

acceptedPatch, currentPatch, newBuildLog)

12 end

13 if fixOutcome then // Terminal State

14 break

15 else if updatedCandidates then// New Patches

16 candidates← updatedCandidates, errors← updatedErrors

17 patchCandidates← updatedPatchCandidates

18 return fixOutcome, acceptedPatch

22



possible candidates. The patch generation function identifies one or more suitable versions of

the dependencies included in the possible candidates list. The criterion for a suitable version

based on version specification is as follows:

� For Unconstrained Dependencies, the latest version available before the date of the

triggering commit.

� For Constrained Dependencies, the latest version available that satisfies the given

constraints and was released before the date of the triggering commit. If such a version is

not available, the latest available version is used.

� For Pinned Dependencies, the latest version available except the version originally

pinned which was released before the date of the triggering commit. An additional patch

candidate is created with the latest available version of the package and is given lower

priority.

� For Transitive Dependencies, the above rules apply to transitive dependencies based on

the specification type. Similarly, additional patch candidates are created for all packages

included in the dependency chain of transitive dependencies, the highest priority given to

the dependency preceeding the broken dependency in the chain.

For fetching the version history of the packages, IterativeDependencySolver uses

the PyPI JSON API to get all available versions and then applies the above conditions to

find the best suited versions for patch candidates.

4.2.2 Selecting and Applying Patch Candidates

The list of patch candidates is sorted by priority according to the rules described in

Section 4.2.1. In every iteration, the first patch candidate in the list of candidates that has

not been applied yet is added to the current patch (Algorithm 2 Line 6). If all patches have

been applied and discarded, the IterativeDependencySolver can no longer proceed and

returns the current patch with the status ”Exhausted All Options” (Algorithm 2 Line 7).

Before the iterative application of patches, a modification to the build script is made

such that patch dependencies are installed before the installation of any other project

23



Table 4.3: Fix Outcomes

Fix Outcome Fix Status

Successfully Fixed Build Complete Fix

Restored to Original Error Complete Fix

No longer recognized as Dependency Error Partial Fix

Exhausted All Options Partial Fix

dependencies. This is sufficient to force the new version for originally constrained or

unconstrained dependencies. However, in the case of already pinned dependencies, it is

necessary to change the source code to replace the previous pinned version with the version

specified in the patch. After build and source code modifications are completed, the build

is run with the current patch in a clean environment with no Python packages installed.

This is particularly important because the success of the fix may depend on discarding some

dependencies included in previous patches as explained in Section 4.2.4.

One of the goals when repairing unreproducible software artifacts is to minimize the

number changes made to the existing code and configuration. Unnecessary changes to a

project’s dependency specifications can cause unprecedented errors while not resolving the

original cause of unreproducibility. Thus, an approach which pins all unpinned dependencies to

versions the original build uses (if available) may introduce additional security vulnerabilities

and bugs through dependencies that did not need to be fixed. Furthermore, the correct patch

for a build may change over time due to the ever changing nature of dependency packages.

In general, breakage due to dependencies can occur at any time, and fewer changes can

facilitate debugging. Moreover, for a purpose similar to our study, users may wish to check

the reproducibility of a build without any modifications and juxtapose it against the fix

outcome using the patch. In such a case a patch applied with minimum source code editing

can be helpful.

4.2.3 Evaluating Patch Impact

After the patched build is run, the log status is checked (Algorithm 3) and the algorithm either

exits with one of the fix outcomes in Table 4.3, or proceeds to the next iteration. If the build

24



Algorithm 3: EvaluatePatchImpact

Input: newBuildOutcome, acceptedPatch, currentPatch, newBuildLog,

newPatchCandidate

Output: fixOutcome, acceptedPatch, candidates, errors, patchCandidates

1 fixOutcome← None

2 if newBuildOutcome == SUCCESSFUL then // Terminal state

3 acceptedPatch← currentPatch

4 fixOutcome← Successfully Fixed Build

5 return fixOutcome, acceptedPatch,None,None,None

6 else if newBuildOutcome == NO CHANGE then// Discard

7 return fixOutcome, acceptedPatch,None,None,None

8 else if newBuildOutcome == DIFFERENT ERROR then

9 errorType, newErrors, newCandidates←

runLogErrorAnalyzer(newBuildLog)

10 if errorType ! = DEPENDENCY ERROR or no newCandidates then

// Terminal state

11 if newErrors in originalLog then // Same error as original build

12 fixOutcome = Restored to original error

13 else // Partial Fix

14 fixOutcome = No longer a dependency error

15 acceptedPatch← currentPatch

16 return fixOutcome, acceptedPatch,None,None,None

17 else if newCandidates[0] == newPatchCandidate then// Discard

18 return fixOutcome, acceptedPatch,None,None,None

19 else // Patch Candidates Elimination

20 candidates← newCandidates, errors← newErrors

21 acceptedPatch← currentPatch

22 patchCandidates← genPatches(candidates)

23 return fixOutcome, acceptedPatch, candidates, errors, patchCandidates

25



is successful, the current patch is accepted as final and the algorithm returns the outcome

”Successfully Fixed Build”. If the build error remains unchanged, the last dependency package

added to the patch is rejected and the next iteration of Algorithm 2 starts. If a new build

error is encountered, Algorithm 3 runs LogErrorAnalyzer to analyze the new build log.

If LogErrorAnalyzer outputs no possible candidates or no identified dependency errors,

and the build terminating error is the same as in the original log, then the final fix outcome

is ”Restored to original error” (Algorithm 3 Lines 10-12). If the new error is different from

the terminating error in the original build, the algorithm returns the current patch as the

final patch and the outcome ”No longer recognized as dependency error” (Algorithm 3, Lines

13-15). In case the highest priority possible candidate is the same dependency that was added

to the patch in the current iteration, the algorithm decides that the added dependency has

caused the new error and removes it from the patch (Algorithm 3, Lines 16-17). Otherwise,

the current patch list is accepted as the correct one so far (Algorithm 3, Lines 19-23).

4.2.4 Elimination of Patch Candidates

When IterativeDependencySolver reaches a build outcome that still contains a dependency-

related error that is not caused by the last added patch, it eliminates all remaining patch

candidates in the current list of patch candidates (Algorithm 2 Lines 15-17 and Algorithm 3

Lines 19-23). The possible candidates that are identified by LogErrorAnalyzer from the

current build log are used for generating a new patch candidate list, which constitutes the

search space for subsequent iterations.

26



Chapter 5

Experimental Evaluation

This experimental evaluation answers the following questions:

RQ1 How many builds become unreproducible over time due to dependency errors?

RQ2 How effective is PyDFix in restoring unreproducible builds to reproducible status?

5.1 Experimental Setup

To evaluate our approach to fix unreproducible builds by resolving dependency issues, we

use the software artifacts from two bug datasets built from real-world open-source projects:

BugSwarm [38] and BugsInPy [40]. The BugSwarm dataset version 1.1.3 contains 1,292

Python artifacts from 56 unique open-source projects, each artifact is a fail-pass build pair

whose source code and build scripts are packaged in a Docker container. BugsInPy consists

of 501 Python artifacts from 17 open-source projects, each having a buggy and fixed commit

pair, with the buggy commit causing test failures and the fix commit passing those same

tests. In the end, 1,351 artifacts were eligible for our study: 1,053 from BugSwarm, and

298 from BugsInPy. Each artifact includes two builds, thus a total of 2,702 builds were

used in this evaluation: 2,106 from BugSwarm and 596 from BugsInPy.

Both the BugSwarm and BugsInPy datasets have measures in place to maintain

reproducibility. For BugSwarm, we noticed some differences from the original source code:

some dependencies have been pinned. Similarly, BugsInPy artifacts include a dependency

specification file that lists manually pinned dependency packages. These measures would

interfere with our evaluation in determining reproducibility of the original build, and the

27



actual effectiveness of PyDFix. To avoid this problem, we used the original code obtained

from GitHub instead of the code available through BugSwarm and BugsInPy. This led

to the exclusion of 239 BugSwarm artifacts whose source code is no longer available on

GitHub.

For BugsInPy, we used the setup and test information provided as a part of the metadata

for each artifact to generate a .travis.yml file. We then used the generated YAML file to

create a build script using travis-build [18], as done by the BugSwarm infrastructure [38].

We locally run the build on the source code fetched from GitHub repositories. We had to

omit 203 BugsInPy artifacts that did not contain setup instructions, and thus could not be

built.

To identify whether a build is reproducible, LogErrorAnalyzer requires the original

build logs. BugSwarm artifacts are mined from TravisCI [19] history, and each artifact

includes the original build logs in its Docker image. BugsInPy artifacts do not include

any build information and thus original build logs are not available for the dataset. To

overcome this, we used the logs generated by running the BugsInPy commands i.e.,

bugsinpy-checkout, bugsinpy-compile and bugsinpy-test on the modified source (with

pinned dependencies) as a substitute for original logs.

State-of-the-art tools that fix Python dependency errors, like V2 [30] and DockerizeMe [29],

are not a suitable baseline for PyDFix. Both work on Python gists and V2 also works on

notebooks, but not on entire applications. In fact, V2’s evaluation excluded all gists with

10 or more direct dependencies to restrict the number of solutions. PyDFix’s goal is to

restore reproducibility of a build for an application, and it can handle hundreds of direct

(and transitive) dependencies. All experiments were run on a workstation with 88 Intel(R)

Xeon(R) Gold 2.10GHz CPUs and 384GB RAM.

5.2 Impact of Dependency Errors

In chapter 3 we observed that the use of dependency packages is widespread in Python projects,

and that many projects have a significant number of unpinned dependencies. However, not all

builds become unreproducible due to dependency issues and not all causes of unreproducibility

are due to dependency packages. As explained in Section 3.2, there can be a number of

28



Table 5.1: Builds Identified

Columns ”#Available” and ”#Analyzed” show the total number of builds in the datasets and the

number of builds analyzed. Column ”# Identified” shows the number and percentage of builds

identified by PyDFix.

Dataset # Available # Analyzed # Identified

BugSwarm 2,584 2,106 1,415 (67.2%)

BugsInPy 1,002 596 506 (84.9%)

Total 3,586 2,702 1921 (71.1%)

different reasons for unreproducible builds and in this study we focus on identification of

builds that have become unreproducible due to dependency issues. For this purpose we

use LogErrorAnalyzer to analyze current build logs of artifacts from BugSwarm and

BugsInPy datasets using the approach presented in Section 4.1. LogErrorAnalyzer

takes original and current build logs as input for each build to be analyzed and provides

a list of dependency errors found, a list of possible candidate dependencies and identified

dependency specification files as output. We analyzed a total of 2,106 and 596 builds from

BugSwarm and BugsInPy, respectively. As shown in Table 5.1, LogErrorAnalyzer

identified 1,415 (67.2%) BugSwarm builds and 506 (84.9%) BugsInPy builds as having

dependency-related errors not present in the original log.

From the identification results of LogErrorAnalyzer, we see that without the measures

taken in BugSwarm and BugsInPy to maintain reproducibility, a large number of builds

from open-source Python projects encounter dependency-related issues that did not occur

at the time of the original build. It is evident that manually repairing so many builds

affected by different kinds of dependency errors is extremely time consuming. Furthermore,

resolving errors from transitive dependencies may require domain knowledge. For example,

on inspecting the possible package candidates suggested by LogErrorAnalyzer, we find

that 324 and 90 identified builds from BugSwarm and BugsInPy respectively include

at least one transitive dependency in their possible candidates. This observation further

emphasizes the need for automated fixing of unreproducible builds due to dependency issues.

29



Table 5.2: PyDFix Results

”Identified” shows number of builds to be fixed. ”Complete Fix” and ”Partial Fix” give the builds

that were made reproducible, and those that although unreproducible did no longer had

dependency errors.

Patch Result Identified Complete Fix Partial Fix

BugSwarm 1,415 578 (40.91%) 453 (32.06%)

BugsInPy 506 281 (55.53%) 179 (35.39%)

Total 1,921 859 (44.7%) 632 (32.9%)

RQ1 Answer: For BugSwarm, out of 2,106 builds analyzed, 1,415 (67.2%) were

identified as having dependency issues. For BugsInPy out of 596 builds analyzed,

506 (84.9%) were found to have dependency issues. This shows that breakage due to

dependencies is quite common.

5.3 Evaluation of Fixing Dependency Issues

We ran PyDFix on the broken builds identified by LogErrorAnalyzer as dependency

related: 1,415 and 506 builds from BugSwarm and BugsInPy, respectively. Table 5.2

shows the results. The patches under ”Complete Fix” were successful in making the build

reproducible. Patches under ”Partial Fix” were not entirely successful but resolved some

dependency errors. For BugSwarm, PyDFix was successful in providing complete fixes

for 578 (40.91%), and partial fixes for 453 (32.06%) of 1,415 identified builds. While for

BugsInPy, PyDFix found complete fixes for 281 (55.53%), and partial fixes for 179 (35.39%)

out of 506 identified builds. Overall, PyDFix was able to create complete fixes for 859

(44.72%) and partial fixes for an additional 632 (32.90%) of the identified artifacts. Among the

partial fixes, 204 are no longer dependency-related errors while 428 still contained dependency

errors but PyDFix has no more patch candidates to explore.

We also analyzed the dependencies included in the patches computed by PyDFix for

BugSwarm builds. Table 5.3 shows that a total of 2,497 dependency packages were included

in patches, with the largest patch including 22 dependencies. This showcases how time

30



Table 5.3: BugSwarm Patch Metrics

”All” presents metrics for all patches, Columns ”Complete” and ”Partial” list complete and partial

fixes, ”Max” and ”Average” show the maximum and average number of dependencies in a patches.

Type All Complete Partial Max Average

Unconstrained 1,031 577 454 11 0.99

Constrained 1,068 436 632 18 1.03

Pinned 398 175 223 9 0.38

Project 1,780 815 965 14 1.71

Transitive 717 373 344 16 0.68

Total 2,497 1,188 1,309 22 2.40

consuming and difficult it can be to manually resolve an unreproducible build with multiple

dependency issues. On average, a patch includes 2.4 dependencies. Among all patches,

PyDFix pins correct versions of 1,031 originally unconstrained, 1,068 constrained, and 398

pinned dependencies. The smaller number of pinned dependencies show that these cause less

dependency-related errors as compared to constrained and unconstrained dependencies. Out

of the total number of dependencies, 1,780 are project dependencies, and 717 are transitive

dependencies, which illustrates the importance of handling transitive dependencies while

fixing dependency errors.

An interesting observation from these results is that PyDFix was successful in automatically

finding the correct patch for the problem described in Section 2.2. While patching builds from

the same Python projects, PyDFix computed similar patches. For example, for 70 complete

patches computed by PyDFix for builds from the project numpy, 64 of these patches required

version pinning for the same packages. However, for builds from different projects we do not

see repetitions of many packages across patches.

For 22.4% of builds PyDFix was not successful in finding a patch. A preliminary manual

inspection revealed that this is caused by an incorrect identification of the build as having

dependency-related errors, or to not identifying the correct packages to patch because of log

errors not considered by PyDFix.

Due to the large number of builds to process, serial execution of each process was extremely

31



time consuming. Since the processing of each build is completely independent, PyDFix was

implemented using Python multiprocessing, processing each build in a separate process. The

average, median and maximum time taken by PyDFix to fix an artifact is 70.64, 16.07 and

414.14 minutes, respectively. Note that PyDFix’s runtime is highly impacted by the runtime

of each build and its associated tests.

RQ2 Answer: Out of 1,415 BugSwarm builds, PyDFix found a complete fix for 578

(40.91%) and a partial fix for 453 (32.06%) builds. For BugsInPy, out of 506 identified

builds, 281 (55.53%) builds were made reproducible while 179 builds (35.39%) were

partially fixed. The average and median time PyDFix required to fix artifacts are 70.64

and 16.07 minutes, respectively.

32



Chapter 6

Threats to Validity

In this study, we analyze 2,702 builds from two state-of-the-art Python bug datasets,

BugSwarm and BugsInPy, which are built from 56 and 17 open-source Python projects,

respectively. Thus, although the number of builds is large, the variety of projects is still limited.

Moreover, the set of error messages that we have compiled and used in LogErrorAnalyzer

is not inclusive of all types of build errors that may arise from dependency issues. Builds

from a more wide variety of Python projects may contain dependency-related build errors

that are not included in our set. Note that such errors could be easily added to PyDFix,

which would improve its effectiveness. Finally, there also exists the possibility that changing

a version specification of a dependency may resolve build errors but changes application

behavior. We try to address this concern by taking into account the results of tests included

in the build to ensure consistent application behavior. But in doing so, we are dependent on

the thoroughness of the tests included in the build.

33



Chapter 7

Related Work

7.1 Reusable Research Objects

The need for reproducibility in computational experiments is extremely important for

researchers to collaborate and build on others’ work. Containerization of artifacts using

platforms like Docker have made reproducibility easier and faster but still require substantial

user actions. As mentioned earlier, containerization does not guarantee that the correct

dependencies are available as it depends on the metadata provided in the software project.

Sciunit [37] provides an open-source command-line interface for creating reusable research

objects that are lightweight and robust. Sciunit uses OS-specific monitoring utilities to

automatically generate the required dependencies in an application during its runtime. It

also facilitates versioned storage using a common block-based storage based on content

de-duplication techniques.

Similar to Sciunit, ReproZip[21] is an open-source desktop application that traces

system calls to identify the files essential for reproducing the application. With this meta-data

gathered on the fly, ReproZip creates a distributable bundle which provides the flexibility

of being reproduced in chroot environments, Vagrant-built VMs and Docker Containers.

However, in comparison with Sciunit ReproZip does not provide support for versioned

storage and also requires the download of a separate ”unzipper” application.

The method used in this project is different from these previous approaches in that

PyDFix does not require to be running simultaneously during the runtime of the application.

However, the idea of enhancing space utilization can be adapted by having a common cache

34



of pinned dependencies for different Docker images to use. This project is not currently

focused on how to prevent build breakage or maintain build stability, but instead on repairing

those builds that break due to incompatible dependency versions.

7.2 Automatic Build Repair

BuildMedic[34] is a tool to automatically repair dependency related build breakages for

Maven builds in Java projects. The data gathering procedure employed by BuildMedic

is similar to PyDFix, as it uses regular expression matching in Maven LogAnalyzer

to analyze the execution logs of Maven build to identify artifacts that showed dependency

related issues. BuildMedic narrows down to three repair strategies, namely Version

Update, Dependency Delete and Add Repository. However, BuildMedic is not focussed

on reproducibility of builds, and only tries to repair failed builds. BuildMedic also skips

running tests associated with the build, while the results of tests is an important factor in

evaluating PyDFix’s success. The authors do not take into account that their build fixes

may alter application behaviour, which tests expose. This is especially important since only

36% of BuildMedic’s repairs are identical to developer performed repairs. Macho et al.

[34]’s focus is emphasized by their investigation of developers’ fixing strategies while our

study investigates the usage patterns of dependency packages, their version specifications

and their impact on reproducibility of builds.

An approach for automated program repair using build history was introduced by

HireBuild[27]. HireBuild identifies unique generalized patterns in how build scripts

were modified to repair build failure from historical build breakage data. These identified

patterns are matched with the generalized AST nodes of the buggy build script. A patch

is generated for all the patterns that match the faulty build script and are applied based

on a descending order of priority. The patches are applied till they are exhausted or the

build is fixed. HireBuild focuses only on modifying Gradle build scripts for fixing build

failure and not on resolving the dependency issues or reproducibility of builds. Moreover, 23%

of builds which could not be resolved by HireBuild were due to Dependency Resolution

failures which brings to focus the need for PyDFix and the focus on build breakage caused

by problems arising from package dependencies.

35



Lou et al. [33] evaluate the state-of-the-art HireBuild on an extended dataset of real

world build failure and concluded that the history-driven build fixing technique implemented

in HireBuild may suffer from the overfitting problem and the historical information plays a

marginal role in a successful fix. The authors present HoBuff which utilizes the current

information present in build logs for generating build fix patches for erroneous build scripts.

After identifying the bug revealing statement from either explicit mention in the build logs

or using Levenshtein distance of element names in the build script with the configuration

name extracted from the build logs, HoBuff finds the set of potential root cause statement

through interprocedural dataflow analysis. A list of patch candidates are generated using

fixing operators Insert, Delete and Update and fixing ingredients gathered by searching within

the project for internal configuration elements or by searching Gradle Central Repository

or Gradle DSL Documentation for external configuration elements like third party libraries.

All patch candidates are applied to the associated root cause statement till the build is

fixed or the candidates are exhausted. HoBuff is evaluated to be capable of fixing 2X real

world reproducible build failures than HireBuild and is faster. Neither of HireBuild nor

HoBuff address the reproducibility of the builds they fix and are focussed on implementing

their solution for the Gradle build tool for Java projects using Maven. Gradle makes it

relatively easier to identify the cause of build failure owing to its dedicated section of errors

and exceptions in its build logs. PyDFix cannot benefit from such specifics in the build logs

because most python applications do not need or use build tools.

7.3 Inferring Environment Dependencies

DockerizeMe [29] is a technique for inferring environment dependencies of a Python code

snippet to resolve ImportErrors using an offline knowledge base of Python packages in the

PyPI index.

This tool draws upon the information source created through an iteration of pre-processing

of the existing packages in PyPi and project configuration files on GitHub. DockerizeMe

creates environment configurations when it is not available as in the case of Python gists.

While the algorithm attempts to understand required package dependencies and also maintain

their installation order, it does not handle the issue of installing the correct version of the

36



package. DockerizeMe also has the limitation of having only ImportErrors within its scope

while dependency errors can cause varied and complex issues as seen by error patterns used

by PyDFix. V2[31], an extension of DockerizeMe adds support for package versions and

detects out-of-date code snippets by detecting configuration drift. V2 which works on Python

gists as well as Jupyter notebooks, creates initial candidate environment configurations based

on the inferred Python version of the code. Using a Feedback-Directed Search the correct

versions of package dependencies included in each candidate environment is found.

Both DockerizeMe and V2 focus on Python dependency issues similar to our approach,

but these tools can only be used for code snippets and V2 additionally works on Jupyter

notebooks. Their approach can be time consuming and less effective for fixing unreproducible

software artifacts of a larger scale like those that are present in the BugSwarm and

BugsInPy datasets. This is supported by the fact that Horton and Parnin [31] excluded

all code snippets having more than 10 dependencies from their dataset used for evaluating

V2. In contrast, PyDFix works on builds from real world Python applications and thus is

capable of resolving more complex dependency problems and handling a large number of

dependencies.

7.4 Dependency Graphs

VeriBuild [26] approaches the problem of declared dependencies and actual dependencies in

Makefile build scripts by narrowing it down to missing and redundant dependencies. A new

type of dependency graph is proposed, namely unified dependency graph which captured both

static and dynamic dependencies thus making the identification and analysis of dependency

errors easier. VeriBuild[26] only addresses discrepancies between dependencies of build

targets while PyDFix fixes unreproducibility of builds caused by incompatible dependency

package versions.

The studies presented in [28], [32] and [23] provide insightful information about dependency

packages, their networks, evolution and impact. However, the focus of our study is not

understanding dependency networks. We show through our collection of metrics, how

widespread the use of dependency packages is, how frequently transitive dependencies are

included and the impact of their dependency version specifications.

37



7.5 Log Parsing to Detect Build Anomalies

A rich body of work exists for parsing of system logs with the focus concentrated on generating

features from raw logs, building execution models to compare with future execution patterns

and identifying system dependencies. Spell [24] is a parser for streaming log data which

parses unstructured log messages into structured message types and parameters which

facilitates the storage and querying of log messages. Each incoming log entry is tokenized

using system defined delimiters and the sequence of tokens are compared to existing sequences

using the longest common subsequence (LCS), clustering together the sequences whose LCS

is more than half the length of the incoming sequence. The intuition for this technique is

that the log entries coming from the same print statements will have a constant LCS once

the parameters are abstracted.

DeepLog [25] uses the intuition of applying natural language processing for parsing logs

since log entries have distinct patterns and adhere to a strict grammar. DeepLog framework

extracts log keys and parameter values from log entries and trains a LSTM neural network to

detect execution path anomaly as well as parameter value and performance anomaly. Both

Spell and DeepLog both are used for parsing system logs while PyDFix works with build

logs from TravisCI, however it can be argued that parsing system logs is similar to build

logs although they differ in the ways that they are generated. The main difference is that

PyDFix’s objective while parsing logs is not to identify deviations from normal execution

but to identify a particular type of error. Due to this, it is not necessary for PyDFix to

create a vocabulary of all log sequences or learn patterns in the order of log sequences.

38



Chapter 8

Conclusion and Future Work

Dependencies find widespread use in open-source Python projects. We investigated the

impact of dependency package usage on unreproducibility of builds and propose PyDFix

to identify and fix unreproducible builds due to dependency errors. PyDFix was evaluated

on two Python bug datasets, BugSwarm and BugsInPy, which are built from real-world

open-source projects. PyDFix analyzed 2,702 builds in total, identifying 1,921 (71.1%) of

them to be unreproducible due to dependency errors. Out of these, PyDFix computed

complete fixes for 859 (44.7%) builds, and partial fixes for an additional 632 (32.9%) builds.

In the future, we would like to automate the process of extracting error patterns for

dependencies. While regular expression matching is an effective way of identifying known

patterns, a set of error patterns have to be manually created for the basis of these expressions.

This method also requires new errors to be added to the set of errors each time a new error

is manually identified. Automated log parsing techniques can be used for identification of

dependency errors which would improve our identification of unreproducible builds due to

dependency errors, and the precision of PyDFix at identifying candidate dependencies.

39



References

[1] cloudify-system-tests triggering commit. https://github.com/cloudify-cosmo/

cloudify - system - tests / tree / bf27ad94b2fb11183beb2f374f5eb06b7af31bdf,

Accessed 2021.

[2] cloudify-system-tests GitHub repo. https://github.com/cloudify-cosmo/cloudify-

system-tests, Accessed 2021.

[3] Conda. https://docs.conda.io/en/latest/, Accessed 2021.

[4] configparser. https://pypi.org/project/configparser/, Accessed 2021.

[5] Docker. https://www.docker.com/, Accessed 2021.

[6] flake8. https://pypi.org/project/flake8/, Accessed 2021.

[7] Kubernetes. https://kubernetes.io/, Accessed 2021.

[8] Maven Central Repository. https://repo1.maven.org/maven2/, Accessed 2021.

[9] pip. https://pypi.org/project/pip/, Accessed 2021.

[10] What Is Pip? A Guide for New Pythonistas. https://realpython.com/what-is-pip/,

Accessed 2021.

[11] pyatom versions. https://libraries.io/pypi/pyatom/versions, Accessed 2021.

[12] pyenv. https://pypi.org/project/pyenv/, Accessed 2021.

[13] Python Package Index. https://pypi.org/, Accessed 2021.

[14] pytest-capturelog. https://libraries.io/pypi/pytest-capturelog, Accessed 2021.

[15] What’s New In Python 3.0. https://docs.python.org/3/whatsnew/3.0.html, Accessed

2021.

[16] stevedore. https://pypi.org/project/stevedore/, Accessed 2021.

40



[17] tox. https://pypi.org/project/tox/, Accessed 2021.

[18] travis-build. https://github.com/travis-ci/travis-build, Accessed 2021.

[19] Travis CI. https://travis-ci.org/, Accessed 2021.

[20] B. Anda, D. I. K. Sjøberg, and A. Mockus. Variability and reproducibility in software

engineering: A study of four companies that developed the same system. IEEE Trans.

Software Eng., 35(3):407–429, 2009. doi: 10.1109/TSE.2008.89. URL https://doi.org/

10.1109/TSE.2008.89.

[21] F. Chirigati, R. Rampin, D. E. Shasha, and J. Freire. Reprozip: Computational

reproducibility with ease. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings

of the 2016 International Conference on Management of Data, SIGMOD Conference

2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 2085–2088. ACM, 2016.

doi: 10.1145/2882903.2899401. URL https://doi.org/10.1145/2882903.2899401.

[22] R. Collins. Pep 508 – dependency specification for python software packages, Jan. 2015.

URL https://www.python.org/dev/peps/pep-0508/.

[23] A. Decan, T. Mens, and P. Grosjean. An empirical comparison of dependency network

evolution in seven software packaging ecosystems. CoRR, abs/1710.04936, 2017. URL

http://arxiv.org/abs/1710.04936.

[24] M. Du and F. Li. Spell: Streaming parsing of system event logs. In F. Bonchi,

J. Domingo-Ferrer, R. Baeza-Yates, Z. Zhou, and X. Wu, editors, IEEE 16th International

Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain,

pages 859–864. IEEE Computer Society, 2016. doi: 10.1109/ICDM.2016.0103. URL

https://doi.org/10.1109/ICDM.2016.0103.

[25] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly detection and diagnosis

from system logs through deep learning. In B. M. Thuraisingham, D. Evans, T. Malkin,

and D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November

41



03, 2017, pages 1285–1298. ACM, 2017. doi: 10.1145/3133956.3134015. URL https:

//doi.org/10.1145/3133956.3134015.

[26] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang. Escaping dependency hell:

finding build dependency errors with the unified dependency graph. In S. Khurshid and

C. S. Pasareanu, editors, ISSTA ’20: 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020, pages 463–

474. ACM, 2020. doi: 10.1145/3395363.3397388. URL https://doi.org/10.1145/

3395363.3397388.

[27] F. Hassan and X. Wang. Hirebuild: an automatic approach to history-driven repair

of build scripts. In M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, editors,

Proceedings of the 40th International Conference on Software Engineering, ICSE 2018,

Gothenburg, Sweden, May 27 - June 03, 2018, pages 1078–1089. ACM, 2018. doi:

10.1145/3180155.3180181. URL https://doi.org/10.1145/3180155.3180181.

[28] J. Hejderup, A. van Deursen, and G. Gousios. Software ecosystem call graph for

dependency management. In A. Zisman and S. Apel, editors, Proceedings of the

40th International Conference on Software Engineering: New Ideas and Emerging

Results, ICSE (NIER) 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages

101–104. ACM, 2018. doi: 10.1145/3183399.3183417. URL https://doi.org/10.1145/

3183399.3183417.

[29] E. Horton and C. Parnin. Gistable: Evaluating the executability of python code snippets

on github. In 2018 IEEE International Conference on Software Maintenance and

Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018, pages 217–227. IEEE

Computer Society, 2018. doi: 10.1109/ICSME.2018.00031. URL https://doi.org/

10.1109/ICSME.2018.00031.

[30] E. Horton and C. Parnin. Dockerizeme: automatic inference of environment dependencies

for python code snippets. In J. M. Atlee, T. Bultan, and J. Whittle, editors, Proceedings

of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,

42



QC, Canada, May 25-31, 2019, pages 328–338. IEEE / ACM, 2019. doi: 10.1109/

ICSE.2019.00047. URL https://doi.org/10.1109/ICSE.2019.00047.

[31] E. Horton and C. Parnin. V2: fast detection of configuration drift in python. In

34th IEEE/ACM International Conference on Automated Software Engineering, ASE

2019, San Diego, CA, USA, November 11-15, 2019, pages 477–488. IEEE, 2019. doi:

10.1109/ASE.2019.00052. URL https://doi.org/10.1109/ASE.2019.00052.

[32] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl. Structure and evolution of package

dependency networks. In J. M. González-Barahona, A. Hindle, and L. Tan, editors,

Proceedings of the 14th International Conference on Mining Software Repositories, MSR

2017, Buenos Aires, Argentina, May 20-28, 2017, pages 102–112. IEEE Computer Society,

2017. doi: 10.1109/MSR.2017.55. URL https://doi.org/10.1109/MSR.2017.55.

[33] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang. History-driven build failure fixing: how

far are we? In D. Zhang and A. Møller, editors, Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China,

July 15-19, 2019, pages 43–54. ACM, 2019. doi: 10.1145/3293882.3330578. URL

https://doi.org/10.1145/3293882.3330578.

[34] C. Macho, S. McIntosh, and M. Pinzger. Automatically repairing dependency-

related build breakage. In R. Oliveto, M. D. Penta, and D. C. Shepherd, editors,

25th International Conference on Software Analysis, Evolution and Reengineering,

SANER 2018, Campobasso, Italy, March 20-23, 2018, pages 106–117. IEEE Computer

Society, 2018. doi: 10.1109/SANER.2018.8330201. URL https://doi.org/10.1109/

SANER.2018.8330201.

[35] D. S. Nick Coghlan. Pep 440 – version identification and dependency specification, Jan.

2013. URL https://www.python.org/dev/peps/pep-0440/.

[36] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge. Programmers’

build errors: a case study (at google). In P. Jalote, L. C. Briand, and A. van der

Hoek, editors, 36th International Conference on Software Engineering, ICSE ’14,

43



Hyderabad, India - May 31 - June 07, 2014, pages 724–734. ACM, 2014. doi:

10.1145/2568225.2568255. URL https://doi.org/10.1145/2568225.2568255.

[37] D. H. T. That, G. Fils, Z. Yuan, and T. Malik. Sciunits: Reusable research objects.

In 13th IEEE International Conference on e-Science, e-Science 2017, Auckland, New

Zealand, October 24-27, 2017, pages 374–383. IEEE Computer Society, 2017. doi:

10.1109/eScience.2017.51. URL https://doi.org/10.1109/eScience.2017.51.

[38] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y. Liu, P. T. Devanbu, B. Vasilescu,

and C. Rubio-González. Bugswarm: mining and continuously growing a dataset of

reproducible failures and fixes. In J. M. Atlee, T. Bultan, and J. Whittle, editors,

Proceedings of the 41st International Conference on Software Engineering, ICSE 2019,

Montreal, QC, Canada, May 25-31, 2019, pages 339–349. IEEE / ACM, 2019. doi:

10.1109/ICSE.2019.00048. URL https://doi.org/10.1109/ICSE.2019.00048.

[39] B. Vigliarolo. Python overtakes java to become the second-most popular programming

language, Jan. 2020. URL https://www.techrepublic.com/article/python-

overtakes-java-to-become-the-second-most-popular-programming-language/.

[40] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee, J. E. Tan,

Y. Yieh, B. Goh, F. Thung, H. J. Kang, T. Hoang, D. Lo, and E. L. Ouh. Bugsinpy: a

database of existing bugs in python programs to enable controlled testing and debugging

studies. In P. Devanbu, M. B. Cohen, and T. Zimmermann, editors, ESEC/FSE ’20:

28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, pages

1556–1560. ACM, 2020. doi: 10.1145/3368089.3417943. URL https://doi.org/10.1145/

3368089.3417943.

44




