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The ocean provides numerous ecosystem services, or natural benefits, which are 

critical to the well-being of humanity. Over the last century, however, humans have had 

tremendous impacts on the ocean. Overexploitation of resources, habitat destruction, 

pollution and anthropogenic climate change jeopardize the ocean’s ability to support a 

growing population.  

The ocean will provide essential ecosystem services if human activities are 

managed sustainably. Traditional management, with its focus on single sectors or species, 

has often failed to conserve natural resources. Ecosystem-based management (EBM) has 
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been proposed as an alternative, holistic approach which considers the entire social-

ecological system, including humans. It calls for maintaining healthy, productive and 

resilient ecosystems.  

Implementation of marine EBM has largely focused on coastal areas. There has 

been much less emphasis on oceanic ecosystems. These systems represent a large 

proportion of the earth’s surface and face complex challenges – they include oceanic 

commons, multiple jurisdictions, trans-boundary resources, and global services. For these 

reasons, a more holistic approach is needed.  

This dissertation applies theoretical concepts of EBM to oceanic ecosystems in 

the eastern Pacific Ocean. Through analysis of long-term datasets containing biological, 

fisheries, oceanographic, and economic information, this research offers new perspectives 

to support oceanic EBM. The first two chapters focus on the eastern tropical Pacific 

(ETP), and the last chapter on the California Current Ecosystem. The chapters follow a 

progression from broad-scale, big-picture challenges to fine-scale, specific problems.  

The first chapter provides an ecosystem-level perspective, focusing on broad-

scale benefits provided by oceanic systems. It highlights and quantifies the variety of 

services in the ETP and sets the stage for further analysis of trade-offs. The second 

chapter focuses on the use of indicators to predict ecosystem characteristics that are 

associated with desired services. It demonstrates that tuna fishery metrics can be used as 

biological indicators for cetacean densities in the ETP. The third chapter focuses on fine-

scale problems that arise when EBM goals conflict and decisions must be made. It 

provides a quantitative tool for assessing bycatch of protected species in fisheries. 

xx 
 



 
 

Together, the results from the three chapters show promise for the implementation of 

EBM in oceanic ecosystems. 
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INTRODUCTION 
        

Anthropogenic impacts on ocean ecosystems remain intense and global, despite a 

growing awareness that marine ecosystems are degraded (Worm et al. 2006, Halpern et 

al. 2008). Social, economic, and political pressures interact to impact marine ecosystems 

in complex ways. Traditional management of living marine resources has focused on 

single species or stocks of interest and has relied on single disciplines of expertise. This 

has resulted in a piece-meal understanding of marine ecosystems and, by failing to 

address the complex interaction of factors that impact living resources, it has often failed 

to conserve them. Ecosystem-based management (EBM) offers an alternative, holistic 

approach that considers humans as integral components of social-ecological systems, and 

not only in negative ways. EBM does not focus on a single species, sector, activity, or 

concern, but rather considers all of the benefits provided by an ecosystem and all of the 

impacts that humans have on that system. The primary goal of EBM is to maintain an 

ecosystem in a healthy, productive, and resilient condition so that it will continue to 

provide humans with the goods and services they want and need (McLeod et al. 2005).  

A successful EBM approach requires implementation of several key concepts 

(McLeod and Leslie 2009). Humans should be viewed as inextricably linked to the 

natural world, thus forming social-ecological systems that are the focus of EBM.  

Resilience – the extent to which a system can absorb perturbations and still maintain its 

structure, function, and identity – should be investigated and understood. Management 

strategies should be: 1) based on input from monitoring, research, and 
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modeling, 2) adaptive over time, 3) focused on maintaining resilience of social-ecological 

systems in desirable states and eroding resilience of undesirable states, and 4) aimed at 

managing anthropogenic influences, rather than ecosystems themselves. The cumulative 

effects of different anthropogenic activities on the system should be assessed and the 

trade-offs associated with those different activities evaluated. To evaluate such trade-offs, 

economic valuation of ecosystem services (i.e., benefits humans obtain from ecosystems) 

can be used as a tool. And finally, prior to implementing an EBM approach, the legal and 

political landscape should be considered.   

EBM has been embraced by government institutions, academics, and conservation 

entities around the world, but practical implementation has been difficult to achieve, 

particularly for oceanic systems (Ballance and Whitty 2010). Oceanic ecosystems, those 

seaward of the continental shelf, face a complex set of challenges. They include waters 

under the jurisdiction of multiple nations, as well as the oceanic commons; the living 

marine resources they include are often trans-boundary; enforcement of international 

agreements is extremely difficult; and the ecosystem goods and services they provide are 

truly global. Yet it is precisely because of these complicating factors, and because these 

oceanic ecosystems represent such a large proportion of the world’s surface that is 

heavily utilized, that a more holistic approach needs to be developed.  

The goal of this dissertation is to apply theoretical concepts of EBM to oceanic 

ecosystems in the eastern Pacific Ocean. Through the integration and analysis of several 

long-term datasets containing biological, fisheries, oceanographic, and economic 

information, this research presents new perspectives that are intended to support practical 

implementation of EBM for oceanic ecosystems. The first two-thirds of the research 
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focus on the eastern tropical Pacific (ETP) ecosystem as a case study, and the final third 

on a case study from the California Current Ecosystem (CCE). The chapters follow a 

progression from broad-scale, big-picture challenges to fine-scale, specific problems 

associated with EBM for oceanic ecosystems.  

Chapter 1 

An Ecosystem Perspective: Oceanic Ecosystem Services 

The first chapter provides an ecosystem-level (in fact, a social-ecological system 

level) perspective, which focuses on understanding the broad-scale benefits that oceanic 

systems provide to humans. This perspective provides the foundation for an EBM 

framework. Understanding the full range of ecosystem services, and assigning monetary 

values where appropriate, offers an economic approach to evaluating trade-offs and 

informing decisions about natural resource use. This approach has been applied to coastal 

systems rather extensively (de Groot et al. 2012), but its application to oceanic systems is 

lacking. This chapter presents a case study application of the ecosystem services concept 

to the oceanic ETP. It integrates long-term datasets from the ETP that span nearly 100 

years of commercial fishing (data from the Inter-American Tropical Tuna Commission), 

35 years of market information on U.S. fish imports (data from National Marine Fisheries 

Service, NMFS), and 20 years of ship-based biological observations (data from NMFS). 

These rich data sources, along with other sources from the literature, markets, and 

recreational organizations, are used to quantify the major ecosystem services provided by 

the ETP – commercial fisheries, biodiversity, carbon storage, and recreational fishing – 

and provide a sense of the magnitude of economic value associated with each. The results 

indicate that ETP commercial fisheries may be worth an estimated $2.7 billion annually; 
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sport fishing is likely worth at least $1.2 billion annually; the potential value of natural 

carbon storage in the deep ocean and in large vertebrates is on the order of $10 billion; 

and values associated with biodiversity in the region, while not quantified here, are likely 

on the order of $1 billion based solely on ecotourism opportunities and conservation 

investments in the region. Our results illuminate the biological and commercial 

importance of the ETP in a global context, provide insights into the quantities and 

relative economic values of the major services, and contribute an initial assessment of 

ecosystem services that is important for future research and for implementation of EBM 

in the region.  

Chapter 2 

An Upper Trophic Level Perspective: Biological Indicators as Predictors 

The second chapter focuses on the use of indicators that can be measured and 

monitored through time to predict other characteristics of an ecosystem that are 

associated with desired ecosystem services. Characteristics of ideal indicators include 

ease of measurement and accessibility of information. Some ecosystem services (e.g., 

fisheries productivity) may be relatively easy to measure and monitor, particularly for 

cases in which observer programs have already been implemented. In contrast, 

monitoring biodiversity or the status of top predator populations that are not the target of 

fisheries can be challenging and expensive, particularly for oceanic ecosystems. 

Identification and use of indicators based on linkages within the ecosystem is critical. The 

research in this chapter is also focused on the ETP and is aimed at understanding linkages 

among upper trophic level animals, specifically a heavily-fished tuna species and 

communities of oceanic cetaceans (whales and dolphins). By linking long-term datasets 
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that capture 20 years of biological observation (data from NMFS) and commercial fishing 

activity (data from IATTC), this research uses fishery metrics associated with yellowfin 

tuna (Thunnus albacares) as biological indicators for cetacean densities in the ETP. Key 

results include maps of predicted cetacean densities that are qualitatively similar to (and 

validated by) maps produced by models that include environmental variables. The 

approach used here can now be extended to develop similar indicators for seabirds and 

larval fishes. By providing measurable indicators of upper trophic level communities, this 

approach provides great promise for EBM in the oceanic ETP.   

Chapter 3 

A Protected Species Perspective: Making Informed Management Choices 

The third chapter focuses on relatively fine-scale problems that arise when high-

level EBM goals come into conflict and informed decisions must be made. For example, 

marine fisheries provide an important source of protein for billions of people globally, 

but they can also negatively impact populations of long-lived, slow-growing megafauna 

(e.g., marine mammals, sea turtles, seabirds, and sharks) through incidental bycatch. If 

EBM goals for a system include maintaining productive fisheries and healthy populations 

of megafauna, then conflicts in which a fishery threatens an endangered species require 

difficult decisions. These decisions should be informed by the best available science 

regarding the impact of one ecosystem service (the fishery, in this case) on the other (the 

endangered species, in this case). This chapter is focused on the CCE and uses a 20-year 

fisheries observer dataset (data from NMFS) to model and predict rare-event bycatch of 

endangered leatherback sea turtles (Dermochelys coriacea) and humpback whales 

(Megaptera novaeangliae) in the drift gillnet fishery off California. Bayesian model-
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based methods are used to produce bycatch estimates with associated probabilities to 

characterize uncertainty. Results indicate that 50 to 153 leatherback turtles and 0 to 21 

humpback whales were killed by the fishery from 1990 to 2009. Comparison of bycatch 

predictions to a regulatory threshold for humpback whales (0.113 deaths per year) 

suggests that the fishery warrants a “medium bycatch risk” classification; a threshold 

does not exist for leatherback turtles, but the probability of exceeding 2 deaths per year (a 

de facto expectation) is extremely low. The approach presented in this chapter can be 

used by managers to objectively and probabilistically classify fisheries with respect to 

bycatch impacts on species, and declare with a stipulated level of certainty that the 

fishery did or did not exceed estimated upper bounds. Making informed management 

choices related to trade-offs between fisheries and protected species is an important 

component of the EBM goal to employ adaptive management strategies.   

 

LITERATURE CITED 

de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. 
Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. 
McVittie, R. Portela, L. C. Rodriguez, P. ten Brink, and P. van Beukering. 2012. 
Global estimates of the value of ecosystems and their services in monetary units. 
Ecosystem Services 1:50-61. 

Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. 
Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, 
E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, and R. 
Watson. 2008. A global map of human impact on marine ecosystems. Science 
319:948-952. 

McLeod, K. L. and H. Leslie. 2009. Ecosystem-based management for the oceans. Island 
Press, Washington, D.C. 

 
 



7 
 

McLeod, K. L., J. Lubchenco, S. R. Palumbi, and A. A. Rosenberg. 2005. Scientific 
consensus statement on marine ecosystem-based management. Signed by 217 
academic scientists and policy experts with relevant expertise and published by 
the Communication Partnership for Science and the Sea. Communication 
Partnership for Science and the Sea (COMPASS). 

Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern, J. B. C. 
Jackson, H. K. Lotze, F. Micheli, S. R. Palumbi, E. Sala, K. A. Selkoe, J. J. 
Stachowicz, and R. Watson. 2006. Impacts of biodiversity loss on ocean 
ecosystem services. Science 314:787-790. 

 

 

 

 
 



 
 

 

 

 

 

 

CHAPTER 1 

 

An ecosystem services perspective for the oceanic eastern tropical Pacific:  

commercial fisheries, biodiversity, carbon storage and cultural services 
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ABSTRACT 

Degradation of marine ecosystems and loss of biodiversity through 

overexploitation of natural resources, habitat destruction, pollution, and 

anthropogenically-induced climate change have been well documented. The drivers these 

problems are economic in nature; until recently, ecosystem services have been assumed 

to hold value only if traditionally traded in markets. This has historically made decision-

making for the marine environment simple. Society has extracted commodities that hold 

market value (e.g., fish) at the expense of ecosystem services that lack market value (e.g., 

biodiversity). Understanding the full range of ecosystem services, and assigning 

monetary values where appropriate, offers an economic approach to evaluating trade-offs 

and informing decisions about natural resource use. This approach has been applied to 

coastal systems, but its application to open ocean systems is lacking. Our research 

provides a case study application of the ecosystem services concept to an open ocean 

ecosystem, with a focus on the oceanic eastern tropical Pacific (ETP), an area of 21 

million km2 that includes waters of 12 nations and the oceanic commons. We analyzed 

the ETP in terms of production, distribution, and consumption of its major ecosystem 

services. We examined commercial fisheries as a key provisioning service, biodiversity 

(a measure of ecosystem resilience) as a key supporting service, carbon storage as a key 

regulating service, and examples of recreational uses (including recreational fishing) as 

cultural services. Using 35 years (1975-2010) of historical fisheries and economic data, 

we estimated a recent average market value of $2.7 billion for the 10 most abundant 

commercially-fished species. We linked total catch and landings to specific countries, 

identifying Ecuador, Mexico, and Panama as key fishing nations, with the first 2 also 
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receiving 3/4 of total landings. Using a 20-year (1986-2006) dataset, we quantified 

species richness patterns and geographic extent for cetaceans, seabirds, marine turtles, 

and larval fishes, showing that the ETP contains over 1/3 of the world’s species for the 

first 3 taxa, and that hotspots of diversity for cetaceans and seabirds exist hundreds of 

kilometers offshore. We estimated the value of carbon export to the deep ocean at $12.9 

billion per year, the lost value of carbon storage in two depleted dolphin populations at 

$1.6 million, and the annual carbon storage value for total fishery removals (544,000 mt) 

at $1.6 million. Finally, we highlighted the case of sport fishing from recent studies 

which suggest it is worth at least $1.2 billion. Our results illuminate the biological and 

commercial importance of the ETP in a global context, offer insights into the relative 

magnitudes of economic value associated with its major ecosystem services, and 

contribute to the challenging but critical movement toward ecosystem-based management 

for the open ocean. 

INTRODUCTION 

Ecosystem services are the material and non-material benefits (i.e., goods and 

services) that people derive from the ecological processes of the planet’s biosphere 

(Ehrlich and Ehrlich 1981, Costanza et al. 1997, Daily et al. 1997, Fisher et al. 2009). 

The oceans provide a wealth of ecosystem services that play a critical role in the survival 

and well-being of humanity (Ehrlich and Ehrlich 1981, Costanza et al. 1997, Daily et al. 

1997, Costanza 1999). These services range in nature and scale, from provisioning (e.g., 

production of food, fuel or water) and regulating (e.g., regulation of climate, floods or 

disease) to supporting (e.g., nutrient cycling, oxygen production or habitat creation) and 

cultural (e.g., recreational, spiritual or aesthetic uses) (Millenium Ecosystem Assessment 
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2003). Key examples highlight the magnitude of their importance. First, the oceans 

provision a major food source – nearly 4.3 billion people obtain 15% of their animal 

protein from fish (UNFAO 2014). Two-thirds of total (freshwater and marine) annual fish 

production comes from the ocean, with 80 million tonnes captured in wild fisheries and 

25 million tonnes produced through aquaculture (UNFAO 2014). Second, the oceans 

regulate climate by serving as a major carbon sink, absorbing nearly 50% of all 

anthropogenic carbon emissions (Sabine et al. 2004). This has dampened the immediate 

warming effects of greenhouse gases on the terrestrial biosphere. Third, marine 

organisms, most notably phytoplankton, account for nearly 50% of global primary 

production (Field et al. 1998). These primary producers support marine ecosystems by 

converting carbon dioxide into oxygen and particulate organic carbon (POC) for animals 

to consume. This process also starts the biological carbon pump, which transports a 

portion of POC from the surface layer to the deep ocean, where it is sequestered on 

timescales of hundreds to thousands of years (Henson et al. 2012). Fourth, the oceans 

provide a multitude of cultural services, including recreational opportunities (e.g., 

boating, diving, fishing and surfing) and spiritual, artistic, historical, and educational 

information (de Groot et al. 2002). These services have been historically important in 

human societies and in recent decades made marine tourism the fastest growing tourism 

sector in the world (Hall 2001). Globally, the economic value of all marine ecosystem 

services combined is estimated at $50 trillion in 2011 $US (Costanza et al. 2014).     

In the last century, humans have had a tremendous impact on the ocean. 

Degradation of marine ecosystems and loss of biodiversity through the overexploitation 

of resources, habitat destruction, pollution and anthropogenically-driven climate change 

 
 



12 
  

has been well documented (Jackson et al. 2001, Dulvy et al. 2003, Pandolfi et al. 2003, 

Worm et al. 2005, Lotze et al. 2006, Worm et al. 2006, Halpern et al. 2008). The drivers 

of these problems are economic in nature; modern industrial society has largely made 

decisions about resource use without considering the negative impacts of its actions on 

the environment. Until recently, ecosystem services have been assumed to hold value 

only if traditionally traded in markets. This has historically made decision-making for the 

marine environment simple. Society has chosen to extract commodities that hold market 

value (e.g., fish) potentially at the expense of ecosystem services that lack market value 

(e.g., biodiversity). Adding to this problem is the fact that nature’s benefits are often 

public goods to which individuals do not hold property rights. In many cases, including 

the case of commercial fishing, this has caused a race to exploit the resource without 

regard to its future or the impacts on the supporting ecosystem, resulting in the “tragedy 

of the commons” (Hardin 1968) and the current jeopardized state of many ecosystems. 

These impacts have diminished the ability of natural marine ecosystems to meet the 

demands of a growing human population (Worm et al. 2006). 

The oceans will provide essential ecosystem services if human activities are 

managed sustainably into the future. Traditional marine management has focused on 

single sectors, species, or activities, and has relied on single disciplines of expertise. This 

approach has resulted in a piece-meal understanding of marine ecosystems and has often 

failed to manage or protect natural resources because it does not consider the complex 

interaction of social, economic, and political factors impacting those resources. 

Ecosystem-based management (EBM) offers an alternative, holistic approach that 

considers the entire system, rather than single sectors or species, and explicitly factors 
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humans into the equation (McLeod et al. 2005). It emphasizes managing anthropogenic 

activities to maintain healthy, productive and resilient ecosystems that provide the 

services that humans want and need.  

An important step in implementing EBM is to employ an ecosystem services 

approach to understand the social-ecological system of interest. This involves 

identification and quantification of the natural benefits, human uses and impacts, relevant 

stakeholders, and monetary or cultural values associated with the various benefits. 

Application of this ecosystem services concept to marine environments has largely 

focused on coastal systems, including coral reefs, mangrove forests, salt marshes, 

seagrass beds, sand dunes, and beaches. This is apparent in the number of monetary value 

estimates that are available for coastal systems. Out of 275 estimates, 95% were relevant 

to coastal systems and only 5% pertained to the open ocean (de Groot et al. 2012). There 

has been much less emphasis on the open ocean because it is further offshore, more 

remote, and more difficult to study and manage. However, as management for open 

ocean ecosystems moves toward more holistic approaches, efforts to assess the ecosystem 

services they provide will need to progress.  

The goals of this paper are to apply the concept of ecosystem services to an open 

ocean (e.g., seaward of the continental shelf, which we will refer to as “oceanic”) system, 

identify potential trade-offs in alternative uses of the system, and estimate monetary 

values where appropriate to facilitate this process. We use the eastern tropical Pacific 

(ETP) as a case study and target commercial fisheries as a key provisioning service, 

biodiversity as a key supporting service, Carbon dynamics as a key regulating service, 

and direct and indirect use by recreational fishers, ecotourists, and conservationists as 
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examples of key cultural services. Our results illuminate the importance of the ETP in a 

global context and contribute to the challenging but critical movement toward ecosystem-

based management for the open ocean. 

METHODS 

Study Area 

The oceanic eastern tropical Pacific (ETP) as used here is defined as the area 

seaward of the continental shelf, from the Americas west to approximately 150° 

longitude, and from the U.S.-Mexico border south to central Peru (Fig. 1). This area is 

roughly 21 million km2, includes waters of 12 nations and the oceanic commons, and 

roughly corresponds to the area managed by two regional fishery management bodies: the 

Inter-American Tropical Tuna Commission (IATTC) and the Agreement on the 

International Dolphin Conservation Program. It has been used for more than 50 years as 

productive fishing grounds for yellowfin, bigeye, and skipjack tuna (Thunnus albacares, 

T. obesus, and Katsuwanus pelamis, respectively), and there has been a long history of 

interaction between the commercial tuna purse-seine fishery and pantropical spotted and 

spinner dolphins (Stenella attenuata and S. longirostris, respectively) (Wade et al. 2007). 

The ETP, as defined here, encompasses the entire range of the dolphin stocks impacted 

by the fishery. Because of the magnitude of the commercial fishery and the historical 

impacts on dolphin populations, the ETP has been well-studied and is relatively data rich 

compared to most other oceanic systems (Ballance et al. 2006 and references therein, 

Wade et al. 2007, Gerrodette et al. 2012).      
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Provisioning Services: Commercial Fisheries 

The IATTC maintains an online source of publicly available data on commercial 

fisheries catches in the IATTC Convention area. Time series data range from 1918 

through 2011, with data beginning in different years for different species groups. Metric 

tons (mt) of catch are aggregated by year, species group, vessel flag (country), and gear 

type. Combining all gear types and vessel flags, we calculated the mean, standard 

deviation, minimum, and maximum annual catch for each species group and for all 

species combined. Combining all species groups and gear types, we analyzed the 

distribution of total annual catch among vessel flags. Combining all species groups and 

vessel flags, we determined the percentage of cumulative total catch obtained by different 

gear types. We will refer to the fished species using their common names; Latin names 

are provided in Table 1.  

The National Marine Fisheries Service (NMFS) Office of Science and 

Technology maintains an online database of foreign trade fisheries statistics. For fish 

imported to the U.S., data on total weight imported (in kilograms) and price paid (in U.S. 

dollars) are aggregated by year, taxon (species group), and export country. We focused 

on data corresponding to the top 10 species groups in terms of maximum annual catch 

(from the IATTC dataset as described above). Data were available from 1975 to 2010 on 

imports from IATTC member countries in Latin America (Colombia, Costa Rica, 

Ecuador, El Salvador, Guatemala, Mexico, Nicaragua, Panama, Peru, and Venezuela). 

We excluded IATTC member countries that are not located in Latin America (France, 

Japan, South Korea, Spain, and Vanuatu) because the NMFS data include all fish 

imported from a country, regardless of where the fish were caught. For Latin American 
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countries, we examined fishery profiles from the Food and Agriculture Organization of 

the United Nations to confirm that the large majority of fish are caught in the Pacific 

rather than the Atlantic; thus, we assumed that all U.S. imports from those countries were 

caught in the ETP.  

For each of the 10 species groups, we calculated the annual price per metric ton 

using the U.S. imports data. We applied these annual prices to total annual catches to 

estimate the total market value for each year. Total market values were adjusted for 

inflation using the U.S. Inflation Calculator available online, which is based on U.S. 

government consumer price index data. All values are presented in 2010 U.S. dollars, 

thereby allowing for comparisons across years. Combining the 10 species groups, we 

produced a plot of cumulative annual catch and estimated market value (Fig. 4). We used 

linear regressions to analyze general temporal trends in catch and market value.  

Focusing on yellowfin tuna as the top species in terms of cumulative catch over 

the years, we mapped total effort and catch by the purse-seine fishery over a 20 year 

period (1986-2006). Effort was measured as the number of purse-seine sets of 3 different 

types (on dolphin schools, floating objects, or schools of tuna unassociated with objects 

or dolphins); catch was measured in metric tons (mt) of fish caught. The data used in this 

analysis were provided by IATTC through a special agreement. The spatial resolution 

was 2° latitude by 2° longitude for most of the data; however, when effort in a grid cell 

was comprised of fewer than 3 vessels or was solely within one country’s exclusive 

economic zone, the data were provided at a resolution of 5° to maintain confidentiality. 

For 5° by 5° cells, we divided the catch and effort by 6.25 (the number of 2° by 2° cells 
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in one 5° by 5° cell) to standardize values to the 2° by 2° cells. We binned the catch and 

effort data into 5 quantitative categories each to map them. 

Data on the distribution of purse-seine fishery landings among different ETP ports 

in 2010-2011 were provided by IATTC for this study. Species groups represented by 

these landings data include albacore tuna, eastern Pacific bonito, bigeye tuna, black 

skipjack tuna, eastern Pacific and striped bonito, dolphinfishes, bullet and frigate tunas, 

Pacific Bluefin tuna, skipjack tuna, tunas not elsewhere included, and yellowfin tuna. We 

plotted the 2010-2011 mean annual percent of landings for each port. For each country, 

the data also included the percentage of landings brought to shore by vessels carrying the 

flag of that country. From this, we determined the proportion of landings in each country 

that is supplied by foreign vessels.  

Supporting Services: Biodiversity 

Data on cetaceans (whales, dolphins, and porpoises), seabirds, marine turtles, and 

ichthyoplankton (includes larval fishes, squids, and octopuses) were collected during 

vessel-based surveys of the ETP conducted by the Southwest Fisheries Science Center 

(SWFSC) of the National Oceanic and Atmospheric Administration’s National Marine 

Fisheries Service between 1986 and 2006. Surveys took place between July and 

December, with most effort occurring between August and November. Cetacean data 

were collected using standard visual line-transect survey methods (Gerrodette and 

Forcada 2005).  For this analysis, we used data from 1986-1990, 1998-2000, 2003, and 

2006. Seabird data were collected using standard visual strip-transect survey methods 

(Ballance 2007). Our analysis includes seabird data from 1988-1990, 1998-2000, 2003, 

and 2006. Marine turtle data were collected during the cetacean line-transect surveys, and 
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data from 1998-2000, 2003, and 2006 were included here. Ichthyoplankton samples were 

collected daily using manta net tows (Vilchis et al. 2009). We included data from 1987-

1990, 1998-2000, 2003, and 2006.  

We used a spatial grid of 2° (roughly the distance the ship traverses in one day 

while conducting a survey) to investigate biodiversity patterns for cetaceans, seabirds, 

and larval fishes. Our metric of biodiversity was species richness, calculated for each 2° 

by 2° degree grid cell as the number of species observed over all data years. Sightings or 

specimens identified to order, family, or genus only counted toward the species tally if a 

species within that higher taxon had not already been observed in that cell. We used the 

same spatial grid for turtles, but we calculated sightings density instead of species 

richness because nearly all sightings were of olive ridley turtles (Lepidochelys olivacea). 

Survey effort (the number of hours the ship spent on survey effort for cetaceans, seabirds, 

and turtles, and total volume of water filtered by net tows) was also calculated per grid 

cell.  

Regulating Services: Carbon export and storage 

We estimated the amount of carbon (C) exported annually from the surface to the 

deep ocean in the ETP, and the potential market value of this carbon. The ETP as we 

have defined it has an area of approximately 2.1 x 1013 m2. Emerson et al. (1997) 

estimated that 24 grams of C m-2 yr-1 are exported from the surface to the deep ocean in 

an oligotrophic (nutrient poor) area in the Pacific Ocean. Portions of the ETP, notably, 

the Equatorial Cold Tongue and the Costa Rica Dome, are characterized by high nutrient 

concentrations relative to oligotrophic waters (Fiedler and Talley 2006), but we used this 

value as a conservative estimate for our calculations. The product of these quantities 
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estimates the amount of C exported annually in the ETP. After converting this quantity to 

metric tons (mt), we divided by 0.2729 mt, the amount of C in 1 mt of CO2 (1 trading 

unit = 1 mt of CO2 = 0.2729 mt of C + 0.7271 mt of O2) to estimate the equivalent 

number of CO2 trading units. To estimate the potential market value, we multiplied the 

CO2 units by a range of prices from the European Union Allowances Emissions Trading 

System, currently the largest carbon market in the world (USIWG 2013, World Bank 

2014). We used the recent average of $7 per mt (with $5 and $9 as lower and upper 

limits) to estimate current potential value. For a potential future scenario, we used a much 

higher price of $35 per mt, a recent estimate of the price required to achieve climate 

stabilization goals and pay for climate-change related damages. This price was also 

observed in an early phase of the market before the major economic downturn in 2008.  

The tuna purse-seine fishery has potentially impacted the amount of carbon stored 

in populations of large vertebrates, specifically populations of fish that are targeted either 

directly or indirectly (Gerrodette et al. 2012) and populations of dolphins that were 

incidentally depleted as bycatch in the past (Wade et al. 2007). For the fish populations, 

we estimated the amount of C that is removed annually by applying a total body carbon 

content of 11.5% (Czamanski et al. 2011) to the annual purse-seine fishery biomass 

removals of 543,533 mt (Gerrodette et al. 2012). After converting from mt of C to 

equivalent CO2 trading units, we applied the same range of market prices as above. For 

the depleted dolphin populations, we determined the decrease in standing stock biomass 

(mt) by taking the difference between the estimated pre-exploitation and current 

population sizes (Wade et al. 2007, Gerrodette et al. 2008) and applying a mean body 

mass of 65.4 kg and 52.5 kg for northeastern offshore spotted and eastern spinner 
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dolphins, respectively (Trites and Pauly 1998, Perrin et al. 2005). We applied a total body 

carbon content of 25% (based on an estimate for humans by Wang and Pierson (2010)) to 

that biomass, converted it to equivalent CO2 trading units, and applied a market price of 

CO2 to estimate the potential market value of the lost carbon.    

Cultural Services: Recreational Fishing 

The Billfish Foundation (TBF) exists to promote the conservation of billfish 

(marlins, sailfish, and swordfish) and associated species (e.g., tunas), healthy oceans, and 

a sustainable recreational fishing industry that targets these species. TBF lobbies for 

conservation-based management of both commercial fisheries and recreational fisheries 

as part of its strategy. Recently, TBF released a series of sport fishing socio-economic 

studies for 3 locations in Latin America: Los Cabos (Baja California Sur, Mexico), Costa 

Rica, and Panama (Southwick et al. 2008, Jimenez et al. 2010, Southwick et al. 2013). 

The purpose of these studies was to demonstrate the economic value of sport fishing to 

local economies. This effort, which included surveys of tourists at airports, anglers, 

hotels, restaurants, and local businesses, appears to be the first major attempt to quantify 

the economic impact of sport fishing in Latin America. The reports also aim to 

understand the factors appealing to international anglers traveling to those locations 

(mostly from the U.S.). We believe these reports, with their focus on highly migratory 

pelagic species, contain uniquely relevant information for understanding different uses of 

ETP ecosystem services. We summarize the important findings across the 3 reports as an 

example of key cultural services provided by this region.    
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RESULTS 

Provisioning Services: Commercial Fisheries 

Commercial fisheries operating in the ETP from 1918 to 2011 caught an 

estimated total of 28,281,645 mt (Tbl. 1). Of this estimated cumulative catch, 65% was 

captured using purse-seines, 18% by longlines, 9% with pole-and-line methods, and the 

remaining 8% with trolls, harpoons, gillnets, and hook-and-line methods. Annual catch 

ranged from 1,089 to 906,250 mt (mean = 300,869 mt, CV = 82%) across all years, with 

an increasing trend over time and high values in recent years that are often double the 

mean (e.g., 585,226 mt in 2011). Yellowfin tuna was by far the top species in terms of 

cumulative catch over time, mean annual catch, and maximum annual catch (Tbl. 1). It 

also had the largest range of annual catch amounts, with a minimum of 136 mt in 1919 

and a maximum of 439,317 mt in 2002. Skipjack tuna had the next highest cumulative 

catch and mean annual catch, both of which were roughly 60% of those amounts for 

yellowfin tuna. In 2011, the skipjack catch exceeded that of all other species. Bigeye tuna 

was the third most important species, with cumulative and mean annual catches 33% and 

52% of the yellowfin tuna amounts. Catch data for skipjack and yellowfin tuna began in 

1918-1919, while data for bigeye tuna only date back to 1954. Together, these 3 species 

comprise 86% of the cumulative catch.  

Twenty-seven different countries fished (legally, based on IATTC data) in the 

ETP from 1918-2011, each with a unique temporal trend in its annual catch (Fig. 2). 

Countries with the highest percentage of cumulative catch across all years included the 

U.S. (23%), Mexico (14%), Japan (13%), Ecuador (13%), Venezuela (6%), and Panama 

(4%). U.S. catch ramped up from the 1950s (Fig. 2a), peaked in the late 1970s when the 
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U.S. captured 60% of the total catch (Fig. 2b), and tapered to nearly zero in 2011. 

Mexico’s catch gradually increased from the 1960s to the 1980s and remained relatively 

steady thereafter (Fig. 2a); it was 22% of total catch in 2011 (Fig. 2b). Japan’s catch was 

fairly consistent from the late 1950s through the early 1990s (Fig. 2a), but it decreased in 

the 2000s and only represented 2% of the total in 2011 (Fig. 2b). Ecuador’s catch slowly 

increased from the 1960s onward (Fig. 2a); in 2011, it captured the largest portion of total 

catch (37%) (Fig. 2b). Venezuela began fishing in the early 1980s, increased its catch 

into the 1990s (Fig. 2a), and acquired an 8% share of total catch in 2011 (Fig. 2b). 

Panama’s relatively small fleet appeared in the 1970s, grew in the 2000s (Fig. 2a), and 

claimed 10% of total catch in 2011 (Fig. 2b). Colombia is represented in the “Other” 

categories in Fig. 2 because it only caught 1% of the cumulative catch; however, in 2011, 

its portion of total catch was 8%. Spain, Vanuatu, Korea, Peru, Taiwan, and Chile each 

caught 1-2% of the cumulative total. Spain, Korea, Nicaragua, and Taiwan each caught 1-

2% of the 2011 total.   

Increasing trends (p < 0.01) were observed in annual catch and market value from 

1975 to 2010 for yellowfin, albacore, dolphinfish, swordfish, and the “all species” group 

that combined 10 species groups (Fig. 3, 4). Increases in catch and value were notably 

disproportionate for yellowfin tuna (only a 30% increase in mean annual catch but a 

239% increase in mean annual value after 1990, when the dolphin-safe label was 

introduced in the U.S. (see Wade et al. (2007) for a brief review of the dolphin-safe label) 

and for “all species” (46% increase in catch and 226% increase in value after 1990). 

There was a significant increase (p < 0.001) in the price per ton for yellowfin tuna over 

time, which was $2,222 (mean annual price per ton) for 1975-1990 and $5,492 for 1991-

 
 



23 
  

2010. For “all species,” mean annual price per ton was $3,111 across all years (range: 

$1,431 - $6,339, CV = 53%), but increased from $1,932 for 1975-1990 to $4,055 for 

1991-2010. Mean annual market value increased from $830 million for 1975-1990 to 

$2.7 billion for 1991-2010, and was $1.9 billion for the entire period (range: $487 million 

- $4.7 billion, CV = 76%). Trends for “all species” largely reflect trends for yellowfin 

tuna, as it comprises 46% of the cumulative catch in this period (Fig. 4).  

Trends in annual catch and market value for the remaining species groups varied. 

Bonitos were the only group with significant decreases (p < 0.01) in both annual catch 

and market value (Fig. 3). There was no significant trend in catch for bluefin tuna, but 

value significantly increased (p < 0.001) (Fig. 3) due to an increase (p < 0.10) in the price 

per metric ton (mean of $5,424 for 1989-1990 and $10,853 for 1991-2010). For skipjack, 

bigeye, and elasmobranchs, annual catch increased significantly (p < 0.001), but there 

was no significant trend in value (Fig. 3),  due to significant decreases (p < 0.01) in the 

price per ton for skipjack tuna (mean of $1,836 for 1975-1990 and $1,355 for 1991-2010) 

and elasmobranchs (mean of $33,026 for 1975-1990 and $3,820 for 1991-2010). The 

price per ton for bigeye tuna did significantly increase (p < 0.01), but a decreasing trend 

in catch over the years for which we had price data (2001-2010) probably canceled this 

effect, leading to the absence of significant change in the total value. There were no 

significant trends for the “tunas – other” group.  

Typical supply and demand dynamics, in which the price per ton decreases with 

an increased supply of fish, were not apparent in all species groups. Skipjack tuna and 

elasmobranchs did follow these dynamics; however, the dynamics were reversed for 

yellowfin, bigeye, albacore, and dolphinfish. For these groups, the price per ton increased 
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as catch increased over time. For swordfish and bonitos, the price per ton did not change 

significantly through time, indicating an elastic demand that was not influenced by 

supply.  

Spatial patterns in purse-seine fishery effort and yellowfin tuna catch were 

slightly different (Fig. 5). The highest concentrations of catch occurred between the 

southern tip of Baja California and Mazatlan, near the Costa Rica dome, and along the 

10°N thermocline ridge. Concentrations of effort are also highest in those regions but 

have a broader geographic extent surrounding them and a clearer gradient of high values 

in the east and low values in the west.  

ETP fishery landings in 2010-2011 were distributed across ports in the following 

countries (Fig. 5): Ecuador (51%), Mexico (25%), Colombia (9%), El Salvador (5%), 

Guatemala (3%), Costa Rica (3%), Venezuela (3%), and Peru (2%). Differences between 

2010 and 2011 percentages were 0-2% for all port locations except Manta, Ecuador, 

where the percentage of total landings increased from 36% to 44%. The 2010-2011 mean 

percentages of landings that were brought to shore by vessels with the port’s national flag 

were: Venezuela (100%), U.S. (100%), Mexico (96%), Colombia (75%), El Salvador 

(68%), Ecuador (62%), Guatemala (6%), Costa Rica (0%), and Peru (0%). The reverse 

order of this ranked list indicates how commonly foreign vessels land fish in these ports 

(i.e., landings in Peru were all from foreign vessels, whereas landings in Venezuela were 

all from domestic vessels). These percentages for each country varied 0-6% between 

years, with the exception of a 14% decrease for Ecuador. For the U.S., there were only 

data for 2011.   
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Supporting Services: Biodiversity 

Cetacean species richness ranged from 1 to 16 species per grid cell (mean = 6.6, 

CV = 49%), excluding cells with no cetacean sightings (Fig. 6). Regions of high richness 

(12-16 species per cell) occurred off the southern of the tip of Baja California (near 

109°W, 23°N), around the Costa Rica Dome (near 90°W, 9°N), and in the Panama Bight 

(near 81°W, 8°N). Intermediate richness (4-11 species per cell) was observed in the 

majority of remaining cells throughout the ETP. Survey effort ranged from 0.2 to 109.2 

hours (0 – 9 survey days) per grid cell (mean = 31.7, C= 69%), with (by design) the 

highest levels of effort in the core of the ETP and the lowest levels near the western 

perimeter (Fig. 6). Nevertheless, qualitatively, patterns of richness do not simply reflect 

patterns of effort.  

Seabird species richness ranged from 1 to 38 species per grid cell (mean = 15.8, 

CV = 48%), excluding cells with no seabird sightings (Fig. 7). Richness was generally 

highest within the Exclusive Economic Zones (EEZs) of the bordering countries (i.e., 

within 200 nm, or within 2 cells, from the shoreline), and along the 10°N thermocline 

ridge. Survey effort ranged from 0.04 to 103.5 hours (0 – 8.6 survey days) per grid cell 

(mean = 27.5, CV = 71%), with patterns nearly identical to those for cetacean effort.  

Ichthyoplankton species richness ranged from 1 to 50 species per grid cell (mean 

= 8.5, CV = 94%), excluding cells with no larval specimens collected (Fig. 8). Sampling 

effort ranged from 52 to 13,283 m3 per grid cell (mean = 1,449, CV = 124%), and 

followed a similar east-west gradient with higher effort near the coasts.    

Marine turtle sightings density ranged from 1 to 158 sightings per grid cell (mean 

= 14.6, CV = 189%), excluding cells with no turtle sightings. The highest density of 
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sightings occurred in EEZ waters off southern Mexico (Guerrero and Oaxaca), 

Guatemala, and Costa Rica (Fig. 9). Survey effort ranged from 0.2 to 72.2 hours (0 – 6.0 

survey days) per grid cell (mean = 16.6, CV = 81%), with similar patterns to those for 

cetacean and seabird effort but with fewer areas of high and intermediate effort due to 

fewer years of data.       

Regulating Services: Carbon Storage 

Our conservative estimate for the amount of C exported from the surface to the 

deep ocean in the ETP was 5.0 x 1014 g or 5.0 x 108
 mt of C per year (Tbl. 3). This was 

equivalent to 1.8 x 109
 trading units of CO2, which had a total value of $12.9 billion per 

year (range: $9.2 - $16.6 billion per year) using an average carbon price (Tbl. 3). If the 

carbon price reaches $35 per mt, as experts suggest it should in order to capture the social 

cost of carbon, then the ETP’s export service would be worth $64.7 billion per year.    

The population of northeastern offshore spotted dolphins is estimated to have 

decreased by 76% from 3.6 million individuals in pre-exploitation years to 857,884 

individuals in 2006. With an average body mass of 65.4 kg, the 2.74 million dolphins lost 

from the population represent a total biomass of 179,334 mt, of which roughly 44,834 mt 

was carbon. This carbon amount was equivalent to 164,286 mt of CO2 trading units, with 

a total value of $1,398,161 (range: $998,687 - $1,797,636).  Spreading this value across 

the 2.74 million dolphins yields a potential carbon storage value per dolphin of $0.42 

(range: $0.30 - $0.54). At a carbon price of $35 per mt, the value of the lost portion of the 

population would be $5,750,003, or $2.10 per dolphin.     

The population of eastern spinner dolphins is estimated to have decreased by 41% 

from 1.8 million individuals prior to exploitation and 1,062,879 individuals in 2006. The 
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reduction of the population by 737,121 dolphins, with an average body mass of 52.5 kg, 

represented a loss of 38,699 mt total and 9,675 mt of carbon from the system. This was 

equivalent to 35,451 mt of CO2 trading units worth a total of $248,160 (range: $177,257 - 

$319,063) or $0.34 per dolphin (range: $0.24 - $0.43). The value would be $1,240,802, or 

$1.68 per dolphin, if the carbon price were $35 per mt.      

Total fishery removals of 543,533 mt per year contained 62,506 mt of carbon. 

This was equivalent to 229,045 mt of CO2 trading units with a potential value of 

$1,603,313 per year (range: $1,145,223 - $2,061,402). Spreading this value across the 

543,533 mt of fish caught yields a value of $2.95 per mt of fish (range: $2.11 - $3.79). At 

$35 per mt for CO2, the potential carbon value for the fishery removals would be 

$8,016,564, or $14.75 per mt.   

Cultural Services: Recreational Fishing 

Sport fishing was estimated to bring $634 million in expenditures to Los Cabos in 

2007, $467 million to Costa Rica in 2008, and $97 million to Panama in 2011. This total 

of $1.2 billion in expenditures in these 3 locations covered the cost of charter boats, 

lodging, food, transportation, tackle, fuel, and other fishing needs. The costs were 

incurred by an estimated 354,013 visitors who fished in Los Cabos, 283,790 who fished 

in Costa Rica, and 86,250 who fished in Panama. In Los Cabos, anglers paid an estimated 

$1,785 per person during a trip. Of visitors who flew to these destinations, anglers 

represented 25% in Los Cabos (mostly American), 22% in Costa Rica (Americans and 

Canadians were surveyed), and 9% in Panama. In Los Cabos, visitors who fished were 

estimated to provide 24.1% of the total dollars injected into the local economy by 

tourism. Given the choice of 4 locations in the Atlantic (Bahamas and South Florida) and 
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Pacific (Cabo San Lucas in Mexico and Golfo de Papagayo in Costa Rica), 46% of 

anglers stated a preference for fishing in the Pacific locations if given the choice (35% 

preferred the Atlantic locations and 19% had no preference) (Southwick et al. 2008). 

Anglers who had fished in Los Cabos revealed their perception that commercial fishing is 

detrimental to the quality of their experience. A large majority (88%) said they would be 

less likely to return to Los Cabos if commercial fishing for billfish increased, and more 

likely to return if commercial restrictions or bans were implemented.  

DISCUSSION 

Provisioning Service – Commercial Fisheries 

For nearly 100 years, humans have commercially harvested fish from the ETP. 

This remote region of the ocean has provided at least 28 million mt of large pelagic fish 

as a food source to the world. To put this large amount of biomass into more familiar 

units, it is equal to 5.7 million African elephants (Loxodonta africana) – these are the 

largest extant terrestrial animals, weighing 5 mt on average. These elephants could stand 

in a single-file line at the equator and wrap around the earth nearly 10 times. Annually, 

the current production in the ETP is equal to 117,045 African elephants, which could 

form a single-file line about half as long as the Baja California peninsula. As a 

provisioning service, commercial fisheries production in the ETP has made a significant 

contribution to feeding the world, and it currently accounts for 1% of global marine 

capture fisheries production (80 million mt per year). 

Numerous countries have benefited from commercial fishing in the ETP, 

particularly those with fishing fleets and processing ports that earn profits and create jobs. 

At least 27 countries have legally fished in the area over time. Historically, the key 
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players were the U.S. (which accounted for nearly a quarter of the historical biomass 

removals), Mexico, Japan, and Ecuador. In the last two decades, the U.S. and Japan have 

dropped from this list, and Panama, Venezuela, and Colombia have replaced them. 

Fishing fleets from Europe, Asia, the south and southwest Pacific, the Caribbean, and 

Africa have had a small presence. In terms of where the fish is landed after it is caught, 

Ecuador is by far the largest stakeholder with over half the annual landings coming into 

its ports. Mexico is also important in this regard, as its ports receive a quarter of annual 

landings. Panama is the only major fishing nation that does not also have ports with 

sufficient infrastructure to process landings. Now that all key fishing nations and ports 

are Latin American, perhaps the cooperation required for place-based management of the 

region is more feasible. 

Our estimated market values for commercial fisheries are only intended to 

provide some perspective on the magnitude of value associated with this sector. The 

values are not precise – they are only based on market prices from imports to the U.S., 

thus they do not capture the full picture. Because the processing plants are private 

business entities, obtaining data on where they distribute the fish is difficult, but we know 

the fish are exported to many countries other than the U.S. Similarly, obtaining data on 

the price paid for fish is difficult. Therefore, we made use of the information available 

through NMFS on historical U.S. import prices of fish from the ETP (1975-2010) and 

extrapolated an estimated value for the whole fishery. From our synthesis of these data 

with the IATTC catch data, we estimated that the U.S. imports roughly 15% of the total 

ETP catch, across all species, which means that we used the price paid in the U.S. to 

extrapolate a value for the remaining 85% of the catch. As an additional caveat, the price 
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of yellowfin tuna increased dramatically in the U.S. after the implementation of dolphin-

safe tuna labeling in 1990. Given these two issues, plus the fact that yellowfin tuna 

comprises nearly half the catch, we may have overestimated total market value across the 

10 species groups (mean of $2.7 billion per year after 1990). However, our goal was to 

understand the magnitude of market value for ETP commercial fisheries, not to provide 

the most accurate or precise estimate.  

Temporal dynamics in annual catch and market value for the 10 individual species 

groups for 1975-2010 were complex. The species groups all impact one another and are 

also part of a global market. Not all species groups followed typical supply and demand 

dynamics; the ones with inelastic demand (e.g., swordfish) likely indicate that they are 

part of a much larger global market in which demand for the fish had not yet been 

saturated. Those with reversed dynamics, where the price per ton increased with 

increasing supply (e.g., yellowfin tuna), might reflect a change in the product or increase 

in the cost of fishing. For example, the U.S. label for dolphin-safe tuna essentially created 

a new product that potentially cost fishers more to catch due to increased time to locate 

schools of tuna unassociated with dolphins. Trends for all 10 species groups combined 

essentially reflect trends of the species with largest portions of catch from 1975 to 2010 – 

those were yellowfin (46%), skipjack (27%) and bigeye (17%).  

Supporting Service – Biodiversity 

The ETP contains high species richness of oceanic megafauna. Over 1/3 of the 

world’s cetacean and seabird species and over 2/3 of marine turtle species occur in the 

region (Tbl. 2). Based on IUCN red list criteria, 17% of these cetacean species, 26% of 

the seabird species, and 100% of the marine turtle species are threatened to some degree 
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(critically endangered, endangered, or vulnerable) (Tbl. 2). Whereas seabirds and turtles 

spend a portion of their life cycle on land and are relatively easy to monitor, cetaceans 

reside completely in water, making it more difficult to assess their populations. Thus, 

nearly half (43%) of the ETP cetacean species lack sufficient data for assessing their 

conservation status. On a positive note, 59% of seabird species and 40% of cetacean 

species are designated as species of least concern (Tbl. 2).  

The diversity of these taxa is spread throughout the entire region, from the EEZ 

waters of bordering nations westward to 150° W (nearly as far west as Hawaii). While the 

highest concentrations of turtle sightings and ichthyoplankton richness occurred near the 

coasts, some richness hotspots for cetaceans and seabirds were located hundreds of 

kilometers offshore (e.g., off Baja California, near the Costa Rica Dome, and near the 

10°N thermocline ridge) (Figs. 5, 6). Regions of high diversity of cetaceans and seabirds 

overlapped with high and intermediate effort and catch by the yellowfin tuna purse-seine 

fishery. This is likely because productive fishing grounds are also productive feeding 

grounds for these apex predators. In many cases, this overlap leads to bycatch of these 

oceanic megafauna in commercial fisheries. This human threat is one of the reasons that 

¼ of the cetacean, seabird, and turtle species in the ETP are classified with a “threatened” 

status on the IUCN’s Red List. Spatial patterns in diversity almost certainly change over 

seasons and years, but we did not investigate temporal dynamics here. Rather, our 

intention was to provide a baseline understanding of the magnitude, extent, and 

conservation status of the existing diversity. 

Biodiversity is important in an EBM context because of its link ecosystem 

resilience. Resilience is defined as “the extent to which ecosystems can absorb recurrent 
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natural and human perturbations and continue to regenerate without slowly degrading or 

unexpectedly flipping into alternate states” (Hughes et al. 2005). The role of biodiversity 

in ecosystem resilience has been a long-standing theme in ecology – one that has 

captured the interest of those concerned with recent environmental degradation and 

associated biodiversity loss (Holling 1973, Levin and Lubchenco 2008). The concept that 

biodiversity is linked to ecosystem resilience was first explored theoretically and later 

tested experimentally. Walker (1995) argued that ecosystem resilience is enhanced when 

each functional group of organisms consists of several ecologically redundant species, 

each of which responds differently to changes in the environment. This ecological 

redundancy provides a measure of safety in the face of disturbance, such that if one 

species is depleted, another will assume the same functional role. This is referred to as 

the “insurance hypothesis” because a higher number of species insures against the 

collapse of the system in the face of environmental fluctuation (Yachi 1999, Loreau et al. 

2001). Indeed, marine ecosystems with fewer species are often functionally 

compromised, and those with more species are more likely to have functional redundancy 

(Steneck et al. 2002, 2004, Bellwood et al. 2004, Hughes et al. 2005). For example, 

studies have found species-rich kelp forests off the west coast of North America to be 

more resilient than the naturally species-poor kelp forests off the east coast (Steneck et al. 

2002, 2004). However, it is important to recognize that a higher number of species 

theoretically would not confer resilience on the ecosystem if the species have similar 

responses to external pressures, such as overfishing and pollution (Chapin et al. 1997, 

Folke et al. 2004, Hughes et al. 2005). Thus, the diversity of functional groups, diversity 

of species in functional groups, and diversity within species and populations all appear to 
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be critical for generation and resilience of ecosystem services (Chapin et al. 1997, Luck 

et al. 2003, Folke et al. 2004).  

Resilience of ecosystems is crucial for maintaining the continued flow of 

desirable services. While stakeholders of biodiversity in the ETP may not be as apparent 

as those associated with commercial fishing, there are indeed many of them. Those who 

benefit from a resilient ecosystem also benefit from biodiversity. For example, all of the 

countries with fishing fleets or major ports with processing facilities in the ETP benefit 

from a resilient ecosystem that continuously produces fish. Similarly, countries that 

import and consume the fish benefit from biodiversity. Additionally, benefits from non-

use values (existence, option, and bequest) and passive use values (e.g., viewing and 

photographing) associated with ETP species are distributed to people around the world. 

There are also several conservation organizations (e.g., Conservation International, 

World Wildlife Fund, United Nations Environment Programme, MarViva, Migramar, and 

the Galapagos Conservancy) focused on the protection of biodiversity and vulnerable 

megafauna species in the ETP. These organizations have invested considerable sums of 

money (on the order of $ millions) to support protected areas containing high diversity of 

species. 

Regulating Service – Carbon Storage 

Our estimates of carbon export from the surface to the deep ocean and the 

potential market value of that carbon are rough conservative estimates for a static system. 

The dynamics of this system are complex; however, we know that more productive ocean 

ecosystems are generally home to larger animals, starting with phytoplankton at the base 

of the food web, and relatively high abundance of top predators. These systems are 
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believed to be more efficient at exporting carbon out of the photic zone and into the deep 

ocean (Eppley and Peterson 1979). Thus, we can hypothesize that if fishing reduces the 

number of large animals present, we might expect less efficient transport of carbon to the 

deep and more recycling of nutrients in the surface layer, which would allow carbon to 

more easily transfer back to the atmosphere. What we do know is that if we had to pay 

for the ETP’s natural service of transporting carbon from the surface layer to the deep 

ocean, where it is essentially locked up for relevant timescales, then we might have to 

pay $16.2 billion. So if a human activity, such as fishing, disrupts that service or makes it 

less efficient, then society may want to pay to reduce the disruptive activity.   

The dynamics associated with carbon storage in dolphins, tunas, or other large 

vertebrates are similarly complex. How the system changes in response to the removal of 

top predators is unknown. In our static example of dolphin and fish biomass extraction, 

removing these animals from the ocean means that the carbon is no longer stored there. 

Payments for Ecosystem Services (PES) schemes exist in which carbon polluters pay for 

the maintenance of ecosystems that naturally store carbon but might be degraded without 

compensation (e.g., payments to prevent rainforest destruction). Hypothetically, there 

could be a PES scheme in which polluters would receive a carbon credit by paying 

fishers in the ETP not to fish. In order for this type of scheme to function, we would need 

to know the marginal (per-unit) impacts of fishing on carbon storage. For example, if 

fishers left 100 mt of fish in the water (roughly 20% of current annual catch), this would 

be approximately 11.5 mt of carbon, which is equivalent to 42 mt of CO2. We would 

want to know whether that 42 mt of CO2 left in the water is worth the 42 mt of carbon 

released to the atmosphere if those fish were caught and consumed on land. At the current 
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average price of carbon, we calculated a potential marginal value of leaving the fish in 

the water as a carbon store to be $2.95 per mt. The current mean annual market value of 

$4,055 per mt (1991-2010, all species) is 3 orders of magnitude higher than this. To make 

it more valuable to leave all of the fish in the water when the mean market value of 

catching the fish is $2.71 billion (1991-2010), the price of CO2 would need to exceed 

$11,820 per mt. This is a huge increase over the 2012 price of $9 per mt used in our 

analyses. 

Cultural Services – Recreational Fishing 

Our treatment of recreational fishing focused on existing economic analyses of 

three major locations to highlight the magnitude of the industry and the potential for 

growth in the region. Combined, the economic value of sport fishing in these three 

locations (Los Cabos, Costa Rica, and Panama) was estimated at $1.2 billion. This is 

nearly half the recent mean annual market value of the commercial fisheries ($2.7 

billion), and it does not include all known fishing locations. In Mexico, for example, 

there are other hotspots of sport fishing for billfish and tunas, including La Paz, 

Mazatlan, Puerto Vallarta, Manzanillo, and Acapulco. Opportunities also exist and may 

be growing in Ecuador (in Manta and the Galapagos). Sport fishing for billfish and tuna 

represents a major ecosystem service that should be quantified and valued in further 

detail.  

We focused on sport fishing as the major cultural service provided by the ETP, 

but there are others that also deserve more detailed investigation in future studies. 

Ecotourism involving viewing and photographing of charismatic megafauna, such as 

whales, turtles, and seabirds is growing in the region. On a global scale, whale watching 
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is already estimated worth over $2 billion and is expected to grow as an industry 

(Cisneros-Montemayor et al. 2010). Endangered and threatened species have been shown 

to hold significant value through different economic surveys (Richardson and Loomis 

2009 and references therein), but these are not specific to the ETP. As one example of a 

hotspot for ecotourism involving ETP species, tourism in the Galapagos Islands brings 

more than 145,000 people and generates $418 million annually, according to the 

Galapagos Conservancy. Given that the ETP contains 1/3 of the world’s cetacean, 

seabird, and marine turtle species, we can speculate that the value of ecotourism 

opportunities alone might on the order of $1 billion in the near future.    

Trade-offs Among Ecosystem Services 

Our analysis of the major ecosystem services provided by the oceanic ETP 

provides a new perspective for this large marine ecosystem and a baseline understanding 

for future research. We view this study as a first step toward answering important 

questions about trade-offs among the different services. An important next step is to 

improve our grasp on the linkages between each of the services and understand how 

marginal changes in one service might impact another (Fig. 10). For example, if 

commercial fisheries production decreased by one unit (e.g., 1 mt), how would this 

impact recreational fishing? Biodiversity? Carbon storage? Would these other services 

increase or decrease? Would the changes be linear or non-linear? For any change that 

occurs in another service, how much value is that change worth (in monetary or other 

terms)?  

Commercial fishing has had a long history in the ETP – it is a big industry and its 

stakeholders have been important in making decisions about ETP resources. What we 
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hope we have demonstrated here is that commercial fisheries production is not the only 

major ecosystem service in the ETP. On the contrary, biodiversity, carbon storage, and 

recreational fishing are major services that also have significant values associated with 

them. These should be more fully understood and considered in management schemes for 

this region. The analysis presented here is intended to support a movement toward true 

ecosystem-based management, in which all ecosystem services, activities, and users are 

considered. Oceanic ecosystems have historically only been recognized for their 

contribution to commercial fishing, but they provide much more for the world.  
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Table 2. Number of species in three taxa (cetaceans, seabirds, and marine turtles) that 
occur in the eastern tropical Pacific (ETP), with a comparison to the global number of 
species per taxon and the IUCN conservation status for ETP species. 
 

 Cetaceans Seabirds Turtles 

Global spp. 86 346 7 

ETP spp. 30   (35%) 123   (35%) 5    (71%) 

Critically 
Endangered 

0       (0%) 4        (3%) 2    (40%) 

Endangered 3     (10%) 10      (8%) 2    (40%) 

Vulnerable 2       (7%) 19    (15%) 1    (20%) 

Near Threatened 0      (0%) 14    (11%) 0     (0%) 

Data Deficient 13   (43%) 3        (2%) 0     (0%) 

Least Concern 12   (40%) 73    (59%) 0     (0%) 
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Table 3. Estimates of the quantity and potential market value of carbon that is exported 
from the surface to the deep ocean in the ETP (Emerson et al. 1997, USIWG2013, World 
Bank 2014). 
 

Estimate Description 

2.1 x 10
13

 m
2
 Area of ETP 

24 grams of C  m
-2  

yr
-1
 Oligotrophic C export estimate 

5.0 x 10
14

 grams C  yr
-1
 Conservative C export estimate for ETP 

5.0 x 10
8
 metric tons C  yr

-1
 ETP estimate in metric tons per year 

1.8 x 10
9
 trade units CO

2
  yr

-1
 CO

2

 
trade units (CO

2 
= 27.29% C) 

$16.6 Billion yr
-1
 Annual value  (using $9 price/mt) 
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FIGURES 

 
 
 

 

Figure 1. The oceanic eastern tropical Pacific (ETP) is defined as the area seaward of the 
continental shelf, from the Americas west to approximately 150° longitude, and from the 
U.S.-Mexico border south to central Peru. This area is roughly 21 million km2, includes 
waters of 12 nations and the oceanic commons, and roughly corresponds to the area 
managed by two regional fishery management bodies: the Inter-American Tropical Tuna 
Commission (IATTC) and the Agreement on the International Dolphin Conservation 
Program (AIDCP). The area managed by the IATTC is outlined in blue; this is also the 
relevant area for AIDCP. National Marine Fisheries Service survey effort for assessing 
dolphin populations historically impacted by the tuna purse-seine fishery is shown by the 
ship tracklines in black.  
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Figure 2. Distribution of annual commercial fisheries catch (mt) by vessel flags, for all 
species groups and gear types combined (1918-2011). The top 10 vessel flags by 
cumulative total catch are shown (USA=United States, MEX=Mexico, JPN=Japan, 
ECU=Ecuador, VEN=Venezuela, PAN=Panama, ESP=Spain, VUT=Vanuatu, 
KOR=Korea, PER=Peru). OTR pools data from various countries to protect the identity 
of individual vessels or companies (different groupings each year). OTR2 groups 17 
countries not included in the top 10 list (Colombia, Taiwan, Chile, Canada, Costa Rica, 
Nicaragua, French Polynesia, China, Netherlands, Belize, Bermuda, El Salvador, 
Honduras, Guatemala, Cayman Islands, Senegal, Portugal). Data source: IATTC public 
data. 
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Figure 4. Cumulative totals for annual catch (black lines) and estimated market value 
(green lines) for the 10 commercially fished species groups from Figure 3 combined. 
Cumulative totals across all years were 19.6 million metric tons (mt) for catch and $67.4 
billion for market value. Mean annual catch was 544,247 metric tons (range: 268,796 - 
891,019 mt; sd: 144,698 mt). Mean annual market value was $1.9 billion (range: $487 
million - $4.7 billion; sd: $1.4 billion).   
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Figure 10. Conceptual diagram of linkages among major oceanic ecosystem services: 
commercial fisheries, biodiversity, carbon storage, and recreational fishing. Potential 
impacts of one service on another are indicated as positive (+), negative (–), or unknown 
(?).  
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Yellowfin tuna (Thunnus albacares) as biological indicators of cetacean community 

structure and densities in the oceanic eastern tropical Pacific 
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ABSTRACT 

A critical component of ecosystem-based management (EBM) for oceanic 

systems is the development and use of a comprehensive suite of indicators. Indicators can 

be ecological, economic or social in nature. Ideally, they use continuously measured, 

readily available data to provide insights into harder-to-measure ecosystem attributes. In 

this study, we used one set of biological metrics (fishery effort and catch metrics for 

yellowfin tuna, Thunnus albacares) to make predictions about other biological 

components (cetacean community structure and density) of the oceanic eastern tropical 

Pacific (ETP). This is different from the more common approach of using environmental 

variables (e.g., physical oceanographic variables) to make predictions about biological 

components of an ecosystem. We validated our approach with comparisons to previous 

studies that related physical variables to cetaceans in the ETP. Relationships between 

cetacean taxa and three types of purse-seine fishing methods (“dolphin”, “log,” and 

“school” fishing, based on what the net is set upon) were revealed through canonical 

correspondence analysis. Dolphin fishing metrics were mostly associated with offshore 

spotted and eastern spinner dolphins (Stenella attenuata and S. longirostris orientalis), 

rough-toothed dolphins (Steno bredanensis), and dwarf sperm whales (Kogia sima). Log 

fishing metrics were associated with sperm whales (Physeter macrocephalus), Bryde’s 

whales (Balaenoptera edeni), and short-finned pilot whales (Globicephala 

macrorhynchus). School fishing metrics were associated with blue whales (Balaenoptera 

musculus), bottlenose dolphins (Tursiops truncatus), Risso’s dolphins (Grampus griseus), 

and offshore common dolphins (Delphinus delphis). Predicted maps of cetacean densities 

are qualitatively similar to those developed using environmental variables, including sea 
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surface temperature and salinity, chlorophyll, mixed-layer depth, bathymetry, and 

distance to shore. Many of them capture historically observed ranges and sighting rates 

remarkably well. Our results provide incredible support for moving forward with this 

approach and applying it to other taxa (e.g., seabirds and larval fishes) for which long-

term data exist in the ETP. This suite of indicators would facilitate predictions of 

communities and densities for these taxa in future years, demonstrating promise for EBM 

in this region. 

INTRODUCTION 

Management of living marine resources has traditionally focused on single 

species or stocks of interest and has relied on single disciplines of expertise. This 

approach has often failed to manage or protect marine resources because it does not 

consider the complex interaction of social, economic, and political pressures impacting 

those resources. Ecosystem-based management (EBM) has been proposed as an 

alternative, holistic approach to this traditional management style. EBM integrates 

principles from multiple disciplines in an approach that considers the entire ecosystem, 

including humans, and the cumulative impacts of different sectors and anthropogenic 

activities (McLeod et al. 2005). The primary goal of EBM is to maintain healthy, 

productive, and resilient social-ecological systems that continue to support humans by 

providing the services they want and need.  

EBM has been embraced by government institutions, academics, and conservation 

entities around the world, but practical implementation has been difficult to achieve, 

particularly for oceanic ecosystems (McLeod and Leslie 2009, Ballance and Whitty 

2010). Oceanic ecosystems, those seaward of the continental shelf, face a complex set of 
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challenges. They include waters under the jurisdiction of multiple nations, as well as the 

oceanic commons; the living marine resources they include are often transboundary; 

enforcement of international agreements is extremely difficult; and the ecosystem goods 

and services they provide are truly global. Yet it is precisely because of these 

complicating factors, and because these oceanic ecosystems represent such a large 

proportion of the world’s surface that is heavily utilized, that a more holistic approach 

needs to be developed.  

Resilience – the extent to which a system can absorb perturbations and still 

maintain its structure, function, and identity – is a guiding principle of EBM. Resilience-

based EBM strategies should rely on input from scientific monitoring, research, and 

modeling, and should include regular evaluation to ensure that they are adaptive over 

time (McLeod and Leslie 2009). Evaluation allows managers to document, anticipate, 

and respond when the system is approaching a threshold that, if crossed, will tip it into an 

undesirable state. Determining what to evaluate is challenging. Theoretically, resilience 

can be measured mathematically by fitting a dynamic model to a time series, calculating 

equilibria and size of basins of attraction; however, this would require extraordinary data 

and is typically not feasible (Carpenter et al. 2001). Instead, it is more effective and 

feasible to develop indicators, or proxies, of ecosystem resilience which can be 

implemented in an EBM approach. The benefit of indicators is that they reflect changes 

in harder-to-measure ecosystem attributes (Niemeijer and de Groot 2008, Samhouri et al. 

2009), one of these attributes being resilience. Thus, indicators only require one type of 

data to learn something about the ecosystem as a whole. 

 
 



60 
 

Indicators can be ecological, economic or social in nature, and they are critical to 

the implementation of EBM. A comprehensive suite of ecological indicators should: 1) 

include traditional indicators of physical and chemical processes, community structure, 

and biomass and relative abundance of ecologically and commercially important species, 

2) incorporate information about the ecological processes that sustain biodiversity 

patterns (e.g., recruitment, dispersal, and cross-scale interactions), and 3) incorporate 

information on the relative abundances and composition of functional groups that have 

strong effects on ecosystem functioning (Leslie and Kinzig 2009). Indicators that are 

clearly defined and are relevant to key processes or drivers in the system are a powerful 

tool for EBM (Carpenter et al. 2001, Carpenter et al. 2005).  

In the context of EBM, indicators have two important purposes. First, they 

provide something measurable that will reflect changes in the general state of the 

ecosystem. This requires that the indicators be concrete and measurable in practice (i.e., 

relatively easy to obtain, cost-effective, or widely available) (Samhouri et al. 2009). For 

an indicator to be effective, it has to be continuously measured, even when more 

thorough assessments of the ecosystem are prohibitively expensive. Second, indicators 

have the potential to predict changes in the economic value of the system. For example, if 

the yields of a fishery are related to another ecosystem component, then an indicator of 

the other component could provide insight into the yields of the fishery. The development 

of indicators, especially those that are process-related (i.e., reveal mechanisms of 

change), is the first step that scientists can take toward the implementation of EBM for 

oceanic systems (Levin et al. 2009, Samhouri et al. 2009). 
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The eastern tropical Pacific (ETP) is a model oceanic ecosystem on which to 

apply the concepts of EBM. It has a rich modern history of anthropogenic influence, 

particularly through industrial-scale commercial fishing. Interest in the productivity of 

the fishery and its impacts on the supporting ecosystem have led to the development of 

long-term data collection programs. Consequently, the ETP is well-studied relative to 

other large oceanic systems, and there are multiple long-term datasets available for the 

exploration of potential indicators. There are stakeholders invested in the future 

productivity of fisheries in the region (e.g., the Inter-American Tropical Tuna 

Commission (IATTC), which manages fisheries in the region) and stakeholders invested 

in the protection of the region’s biodiversity and endangered species (e.g., the National 

Marine Fisheries Service, NMFS). The development of indicators to facilitate an EBM 

approach could help inform future management strategies for the ETP.  

Yellowfin tuna (Thunnus albacares) have been hypothesized to be a keystone 

species in the ETP. Therefore, we explore the potential use of effort and catch metrics 

from the purse-seine fishery for this species as indicators of the broader biological 

ecosystem in the ETP. The fishery catches yellowfin tuna using one of three methods – 

by setting a massive purse-seine net around: 1) dolphins that have large-bodied yellowfin 

tuna swimming below them (“dolphin sets”), 2) floating objects, such as logs or man-

made fish aggregating devices (“log sets”), or 3) schools of tunas unassociated with 

dolphins or floating objects (“school sets”). It is possible, and perhaps likely, that these 

methods of fishing occur in different oceanographic conditions or habitats, and attract 

different suites of species. The objectives of the present study are to investigate 

relationships between the three types of purse-seine fishing and the broader biological 
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ecosystem. We focus on cetaceans, some of which are known to have strong ecological 

linkages to yellowfin tuna (Ballance et al. 2006 and references therein), as representatives 

of top predators in the system.  

METHODS 

Study area 

The ETP is defined here as the oceanic area seaward of the continental shelf, from 

the Americas west to approximately 150°W longitude, and from the U.S.-Mexico border 

south to central Peru (Fig. 1). This roughly corresponds to the region bounded by 150°W, 

40°S, and 40°N, and the coasts of the Americas, in which living marine resources are 

managed by the IATTC, the Regional Fisheries Management Organization for the ETP 

(Fig. 1).  

The ETP is characterized by several major oceanographic features that make it 

spatially heterogeneous (Fig. 1). It is located at the southern end of the California Current 

and the northern end of the Peru Current. These two eastern boundary currents feed into 

the westward flowing North Equatorial Current (10-15°N) and South Equatorial Current 

(near the equator), respectively. The North Equatorial Countercurrent (5-10°N) flows 

eastward between these two currents toward the Eastern Pacific Warm Pool, which has its 

western edge near 110°W and widens toward southern Mexico and Costa Rica in the east. 

There is a thermocline ridge near 10°N due to divergence along the boundary of the 

North Equatorial Countercurrent and the North Equatorial Current. To the southeast of 

the Eastern Pacific Warm Pool is the Costa Rica Dome, an upwelling feature centered 

near 89°W and 9°N (Fiedler and Talley 2006). Extending west along the equator from 

South America is the Equatorial Cold Tongue, characterized by Equatorial Surface Water 
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that is colder and saltier than the warm, low salinity Tropical Surface Water associated 

with the Eastern Warm Pool. The ETP is uniquely characterized by a sharp, shallow 

thermocline and a strongly depleted, shallow, and extensive oxygen minimum layer 

(Fiedler and Talley 2006).  

Conditions in the ETP vary seasonally, inter-annually, and with El-Niño South 

Oscillation (ENSO) phases. There are three ENSO phases: El Niño, La Niña, and 

Neutral. During El Niño conditions, surface water temperatures increase and the typically 

shallow thermocline deepens as warm water from the west piles up in the east. During La 

Niña conditions, temperatures are cooler. The Eastern Pacific Warm Pool experiences 

relatively low seasonal and ENSO variability, while the Equatorial Cold Tongue 

experiences relatively high variability (Fiedler and Talley 2006).    

Data sources 

Data on purse-seine fishery effort and yellowfin tuna catch were collected by 

fisheries observers onboard fishing vessels. These data were provided by IATTC at a 

spatial scale of 2° latitude by 2° longitude and a monthly temporal scale for 1986 through 

2006 through special agreement. Only data corresponding to NMFS survey years and 

months (see below) were used in this study. For each 2° x 2° grid cell and month, there 

are several effort and catch metrics. Effort metrics include: 1) the number of purse-seine 

vessel days spent in the area during the month, which includes all time spent transiting, 

searching, and conducting fishing operations, 2) the number of sets on yellowfin tuna 

associated with dolphins (“dolphin sets”), 3) the number of sets on yellowfin tuna 

associated with floating objects, including logs and man-made fish aggregating devices 

(“log sets”), and 4) the number of sets on yellowfin tuna schools that are unassociated 
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with dolphins or floating objects (“school sets”). Catch metrics include metric tons of 

yellowfin tuna caught on: 1) dolphin sets, 2) log sets, and 3) school sets. Catch-per-unit-

effort (“CPUE”) was calculated as metric tons of catch per day of fishing effort. Using 

days rather than sets as the unit of effort here avoids dividing by zero sets. Instances of 

zero sets of one or two types of sets occur frequently in the data, as certain time/location 

combinations often favor only one type of set. The average number of sets per day is less 

than one, and the maximum is three.  

Data on cetaceans were collected during shipboard research surveys conducted by 

NMFS from August through November between 1986 and 2006. The primary purpose of 

these surveys was to monitor the status and trends of dolphin populations historically 

impacted by the tuna purse-seine fishery. Surveys were planned and executed to 

systematically cover the entire range of the impacted dolphin populations. Visual 

observations of cetacean species and group sizes were made by rotating observers 

following standard line-transect methods (Gerrodette and Forcada 2005). Cetacean data 

were available for 10 years: 1986-1990, 1998-2000, 2003, and 2006. We limit this study 

to 19 cetacean taxa, all with at least 100 sightings over the 10 years. Latin and common 

names for these taxa are provided in Table 1; we will use common names throughout the 

paper.  

This study overlays a spatial grid of 2° latitude by 2° longitude over the entire 

ETP. This grid cell size was selected for two reasons. First, this was the lowest level of 

spatial resolution that IATTC could release without compromising confidentiality of 

vessels and nations. Second, previous research suggests an absence of scale-dependence 
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in the response of some dolphin species to spatial variability of oceanographic habitat in 

the ETP at this and smaller scales (Redfern et al. 2008).  

Depending on the analysis, data were aggregated temporally at one of three 

levels: 1) all data aggregated into one group, eliminating the temporal component and 

providing an average, or “climatological,” view, 2) by ENSO phase, aggregating data into 

three groups based on assignment of years into La Niña, El Niño, and Neutral categories, 

and 3) by individual year, grouping all data for each individual year together. ENSO 

phase assignment was based on the Oceanic Niño Index seasonal values for August to 

November (NOAA 2014) and confirmed with oceanographer P. Fiedler. Niña years 

include 1988, 1998, 1999, and 2000; Niño years include 1986, 1987, and 2006; Neutral 

years include 1989, 1990, and 2003.  

Analytical approaches 

A goal of EBM is to identify and utilize a comprehensive suite of ecological 

indicators; identifying indicators of community structure for ecologically and 

commercially important species is one element of that goal. To investigate general 

relationships between yellowfin tuna fishery metrics and the cetacean community in the 

ETP, we used canonical correspondence analysis (CCA). CCA is a multivariate statistical 

method that uses direct gradient analysis to relate a set of species data to a suite of 

predictor variables (ter Braak 1986). Our response metric is the number of sightings per 

hour for each of the 19 cetacean taxa for each sample site. The definition of “site” varies 

depending on the level of temporal aggregation used in the analysis. For the 

climatological analysis, sites are simply 2° x 2° grid cells. For ENSO analyses, sites are 

grid cells in a particular ENSO phase (e.g., grid cells in Niño years). For analyses of 
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individual years, sites are grid cells in each particular year (e.g., grid cells in 1990). These 

analyses were conducted using the community ecology package ‘vegan’ in the R 

statistical software environment.         

Interpretation of CCA results focused on three main aspects: 1) the percentage of 

variance in the cetacean data (total and per taxon) that was explained by the yellowfin 

tuna metrics, 2) definition of the canonical axis space by the yellowfin tuna metrics, and 

3) associations between cetacean taxa and yellowfin tuna metrics, and relative strength of 

those associations based on cetacean scores along the axes. Cetacean taxa with an axis 

score of 0.25 or greater for at least one of the first two canonical axes (those present on 

the triplots) were examined further to characterize their relationships with the yellowfin 

tuna metrics. Taxa with axis scores less than 0.25 for both axes (those taxa relatively 

close to the origin in the triplots) were not considered to have meaningful relationships 

with the axis space defined by the yellowfin tuna metrics in the analysis.  

Another element of the EBM indicators goal is to develop indicators of relative 

abundance and biomass of species, particularly those that have strong effects on 

ecosystem functioning. To quantify specific relationships between the fishery metrics and 

cetaceans, which are top predators, we used generalized additive models (GAMs). GAMs 

are commonly used to relate environmental variables of a habitat to characteristics of a 

population, such as abundance or distribution (Forney et al. 2012). They are extended, 

nonparametric versions of generalized linear models (likelihood-based regression 

models) that replace the linear function which relates covariates to the response with an 

additive smooth function (Hastie and Tibshirani 1986). In our models, the response 

variable is the number of cetacean sightings per hour for a selected taxon. There are 6 
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predictor variables: DolpCPUE (for dolphin fishing, metric tons of catch per day of 

fishing effort), SchlCPUE (for school fishing), LogCPUE (for log fishing), DolpSets 

(number of sets on dolphins), SchlSets (number of sets on schools), and LogSets (number 

of sets on logs). ‘Year’ and ‘ENSO’ were used as categorical variables when aggregating 

the data at those levels. The number of sightings was modeled using a quasi-Poisson 

likelihood (mean proportional to variance), a log link function, and the number of 

cetacean survey hours as an offset. The use of effort as an offset in the model 

standardizes for variations in the level of effort across grid cells, effectively modeling 

sightings per hour (rather than number of sightings). These analyses were conducted 

using the modeling package ‘mgcv’ in the R statistical software environment.          

Using the ‘year’ temporal aggregation, we built a model using all years of data 

except 2003. We left 2003 out of the model-building process so that we could validate the 

model by making predictions onto 2003 as an ENSO-Neutral year. The model results 

were used to make predictions for each cetacean taxon for 2003, both for grid cells that 

contained survey effort for the year and also grid cells that only had fishery data but no 

survey data. The result is a predicted map for each cetacean taxon, using only the 

yellowfin tuna metrics to make the predictions.  

RESULTS 

Canonical Correspondence Analysis (CCA) 

Climatological Analysis (All Data Aggregated Temporally) 

When the data were aggregated into one temporal group (the climatological 

view), the yellowfin tuna metrics explained 13.2% of the overall variance in the cetacean 

data (Fig. 2). Axis 1 (x-axis) was defined by school sets (SchlCPUE, SchlCatch, and 
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SchlSets) in the negative direction and dolphin sets (DolpCPUE, DolpCatch, and 

DolpSets) in the positive direction. Axis 2 (y-axis) was defined by dolphin sets in the 

negative direction (mainly DolpSets and DolpCatch) and log sets in the positive direction 

(mainly LogCPUE and LogSets). The three types of fishing occupied relatively separate 

areas in the axis space (Fig. 2). Appendix 1 shows that the cetaceans generally exhibited 

a unimodal response to Axis 1 and Axis 2, thus validating a primary assumption of the 

CCA method.  

Cetacean taxa were grouped into three tiers based on their scores for Axis 1 and 2 

(Fig. 2). The lowest tier contained taxa with scores below 0.25 for both axes. Coastal 

spotted dolphins, striped dolphins, Cuvier’s beaked whales, killer whales, and 

mesoplodont beaked whales fell into this category. For these taxa, the variance explained 

by Axes 1 and 2 combined was low, ranging from 0.3 to 6.5% (mean = 1.8%). Appendix 

2 provides a breakdown of the percent of variance explained by each of the first four 

canonical axes for each taxon. Axes 1 and 2 explain the largest portion of the variance for 

most taxa; therefore, we only focused on these two axes when interpreting results. 

The middle tier contained taxa with a maximum axis score between 0.25 and 0.5 

(Fig. 2). It included offshore spotted dolphins, offshore common dolphins, short-finned 

pilot whales, rough-toothed dolphins, sperm whales, Bryde’s whales, and dwarf sperm 

whales. The variance explained by the tuna metrics ranged from 3.6 to 10.3% (mean = 

6.7%).  

The top tier contained cetacean groups with a maximum score above 0.5 for Axis 

1 or 2 (Fig. 2). This included eastern spinner dolphins, whitebelly spinner dolphins, 

offshore spotted mixed with eastern spinner dolphins, offshore spotted mixed with 
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whitebelly spinner dolphins, Risso’s dolphins, bottlenose dolphins, and blue whales. For 

these taxa, the tuna metrics explained from 4.0 to 29.1% of the variance (mean = 14.1%). 

As such, the analysis lends the most support to associations found between these taxa and 

the tuna metrics.     

This analysis highlighted several relationships among cetaceans and tuna metrics 

(Fig. 2). 1) There were 5 taxa closely aligned with dolphin fishing metrics. In the top tier 

(taxa exhibiting the strongest relationships with tuna metrics), mixed schools of offshore 

spotted and eastern spinner dolphins, as well as pure schools of eastern spinner dolphins, 

were tightly linked to DolpCatch and DolpSets. In the middle tier, pure schools of 

offshore spotted dolphins, rough-toothed dolphins, and dwarf sperm whales were closely 

associated with DolpCPUE, DolpCatch, and DolpSets, respectively. 2) Four taxa were 

associated with school fishing metrics, including blue whales, bottlenose dolphins, and 

Risso’s dolphins in the top tier, and offshore common dolphins in the middle tier. 3) 

Three taxa in the middle tier were most closely linked to log fishing metrics. Sperm 

whales were closely associated with LogSets, and Bryde’s whales were closely linked to 

LogCPUE, as are short-finned pilot whales but to a lesser degree. 4) Pure schools of 

whitebelly spinner dolphins and mixed schools of offshore spotted with whitebelly 

spinner dolphins were both in the top tier with a strong position opposite school fishing 

metrics on Axis 1 and dolphin fishing metrics on Axis 2.  

El Niño Southern Oscillation (ENSO) Analysis 

The overall percent of variance in the cetacean data explained by the tuna metrics 

for the ENSO phases was similar to the climatological analysis and also across phases – 

14.8% for the Neutral phase, 11% for El Niño phase, and 10.6% for La Niña phase (Fig. 
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3). Definition of the axis space varied across phases. Under Neutral conditions, Axis 1 

was defined by school and log fishing on the negative end, and dolphin fishing on the 

positive end. Axis 2 was characterized by school and dolphin fishing in the negative 

direction, and log fishing in the positive direction. The Neutral axis space was the most 

similar to the climatological view. During El Niño conditions, Axis 1 was defined by 

school and log fishing on the negative side and dolphin fishing on the positive side. Axis 

2 was not clearly defined in the negative direction, and was influence by all three types of 

fishing in the positive direction, although DolpSets has the most influence. Thus, there 

appeared to be weaker axis definition for El Niño conditions. Under La Niña conditions, 

Axis 1 was defined by log fishing in the negative direction, with no clear definition in the 

positive direction. Axis 2 was defined by dolphin fishing in the negative direction and 

school fishing in the positive direction. Here, the separation between dolphin and school 

fishing is clear, but log fishing and school fishing were not as clearly segregated as they 

were in the climatological view.  

The amount of variance explained for each taxon was reflected by the axis scores 

they received, where higher scores indicated a higher proportion of variance explained. 

Compared with the three-tiered structure based on maximum axis scores in the 

climatological analysis (Fig. 2), Neutral conditions created the most similar structure and 

La Niña conditions the most different (Fig. 3). Under Neutral conditions, sperm whales, 

coastal spotted dolphins, and offshore spotted dolphins moved into the top tier (highest 

proportion of variance explained), while mixed offshore spotted with whitebelly spinner 

dolphins moved down into the middle tier (Fig. 3). Mesoplodont and Cuvier’s beaked 

whales moved up from the bottom tier to the middle tier. Under El Niño conditions, 
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sperm whales, coastal spotted dolphins, and offshore spotted dolphins again moved up 

into the top tier, along with dwarf sperm whales, while bottlenose dolphins and blue 

whales moved down into the middle tier. Killer whales moved from the bottom tier into 

the middle tier. Under La Niña conditions eastern spinner dolphins, mixed offshore 

spotted with eastern spinner dolphins, and Risso’s dolphins moved down into the middle 

tier, and offshore common dolphins, short-finned pilot whales, and sperm whales moved 

up into the top tier. Coastal spotted dolphins, striped dolphins, Cuvier’s beaked whales, 

killer whales, and mesoplodont beaked whales all moved from the bottom tier to the 

middle tier. Bryde’s whale moved down from the middle tier to become the only taxon in 

the bottom tier.  

Relationships between the cetaceans and tuna metrics varied to different degrees 

across ENSO phases depending on the taxon. Under Neutral conditions, mixed schools of 

offshore spotted with eastern spinner dolphins, pure schools of eastern spinner dolphins, 

and pure schools of offshore spotted dolphins had strong (top tier) associations with 

dolphin fishing metrics (Fig. 3). Whitebelly spinner dolphins had a strong negative 

relationship with dolphin fishing and school fishing metrics. Coastal spotted dolphins 

showed a strong association with log fishing metrics. Risso’s dolphins and sperm whales 

were strongly positioned between log and school fishing metrics. Blue whales and 

bottlenose dolphins had strong relationships with school fishing metrics.  

Under El Niño conditions, strong relationships were maintained between dolphin 

fishing metrics and mixed schools of offshore spotted with eastern spinner dolphins, pure 

schools of eastern spinner dolphins, and pure schools of offshore spotted dolphins (Fig. 

3). Dwarf sperm whales also showed a strong relationship with dolphin sets here. Pure 
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schools of whitebelly spinner dolphins and mixed schools of offshore spotted with 

whitebelly spinner dolphins again had strong negative relationship with dolphin fishing 

metrics. Coastal spotted dolphins appeared to have a strong relationship with school 

fishing metrics, though school fishing and log fishing metrics occupied similar axis 

space. Sperm whales and Risso’s dolphins were strongly aligned with school sets.  

Under La Niña conditions, the relationships weakened between dolphin fishing 

metrics and mixed schools of offshore spotted with eastern spinner dolphins, pure schools 

of eastern spinner dolphins, and pure schools of offshore spotted dolphins (Fig. 3). This 

was evidenced by these taxa dropping down into the middle tier of axis scores, indicating 

the relationships existed but were weaker. Pure schools of whitebelly spinner dolphins 

and mixed schools of offshore spotted with whitebelly spinner dolphins maintained their 

distance from dolphin sets and catch, but appeared to be strongly associated with 

DolpCPUE and LogCPUE. They typically occupied the space between those metrics, but 

that space was condensed here. Short-finned pilot whales were strongly linked to 

LogCPUE, and sperm whales were strongly positioned between log fishing and school 

fishing metrics. Offshore common dolphins were tightly and strongly associated with 

SchlSets and SchlCatch, while blue whales and bottlenose dolphins were top tier taxa 

oriented closest to SchlCPUE and distinctly opposite of log fishing metrics.  

Analysis of One Selected Year for Each ENSO Condition 

Of the three Neutral years (1989, 1990, and 2003), the analysis explained the 

highest percent of variance in the cetacean data (21.7%) for 2003. Thus, we used 2003 to 

as an example to demonstrate potential inter-annual variation that was lost when we 

grouped three years together into one analysis. For 2003, Axis 1 was clearly defined by 
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dolphin sets in the negative direction and school sets in the positive direction (Fig. 4). 

Axis 2 was less well-defined, with log sets and dolphin CPUE in the negative direction 

and school CPUE in the positive direction. The separation between dolphin and log 

fishing was less clear in this year than when we aggregated the three Neutral years. There 

were still strong relationships between dolphin fishing metrics and mixed schools of 

offshore spotted with eastern spinner dolphins, pure schools of eastern spinner dolphins, 

and pure schools of offshore spotted dolphins (Fig. 4). Rough-toothed dolphins were also 

located with this group. These taxa were all separated from school fishing metrics along 

Axis 1 and from log fishing metrics along Axis 2. Mixed offshore spotted with whitebelly 

spinner dolphins were still strongly positioned between dolphin fishing metrics and log 

fishing metrics, though that space was condensed here. Short-finned pilot whales and 

Risso’s dolphins were strongly associated with dolphin fishing and also nearby log 

fishing metrics. Cuvier’s beaked whales were tightly linked to log fishing metrics. 

Bryde’s whales were strongly positioned in between school fishing and log fishing 

metrics. Blue whales and sperm whales were strongly associated with school fishing 

metrics. Dwarf sperm whales and mesoplodont beaked whales were most strongly 

associated with school fishing metrics here. 

For El Niño years, the analysis explained the highest percent of variance for 2006 

(28.2%). In 2006, Axis 1 was defined by school sets on the negative side and dolphin 

metrics plus a small influence from log fishing metrics positive side (Fig. 4). Axis 2 was 

not well-defined in the negative direction and was defined by dolphin and school metrics 

in the positive direction. The separation between dolphin fishing and log fishing was not 

very clear here. Eastern spinner dolphins were still in the top tier, exhibiting a strong 
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relationship with dolphin fishing metrics only along Axis 1 (Fig. 4). Offshore spotted 

mixed with whitebelly spinner dolphins were associated with eastern spinner dolphins, 

which was unusual. Rough-toothed dolphins were also located in this group. Coastal 

spotted dolphins appeared to also have a strong relationship with dolphin fishing metrics, 

but on the positive side of Axis 2, opposite from eastern spinner dolphins. Offshore 

common dolphins exhibited this same association with dolphin fishing metrics, but with 

less strength. Sperm whales, Risso’s dolphins, and Bryde’s whales exhibited strong 

associations with school sets.    

The highest percent of variance explained for La Niña years was 28.3% for 1988. 

In this year, Axis 1 was defined by dolphin fishing metrics on the negative side and 

school and log fishing metrics on the positive side (Fig. 4). Axis 2 was defined by 

dolphin and log metrics in the negative direction and school metrics in the positive 

direction. There was relatively clear separation of the three types of fishing in the axis 

space. Nearly all taxa were in the top tier, exhibiting strong relationships with the tuna 

metrics (Fig. 4). Only striped dolphins, Risso’s dolphins, mixed offshore spotted with 

eastern spinner dolphins, and mixed offshore spotted with whitebelly spinner dolphins 

were in the middle tier, the latter two just missing the 0.5 cutoff for the top tier. Rough-

toothed dolphins, bottlenose dolphins, offshore spotted dolphins, and pure schools of 

whitebelly spinner dolphins were all tightly associated with dolphin sets and catch. 

Eastern spinner dolphins were now associated with school fishing metrics and log fishing 

CPUE. Short-finned pilot whales and sperm whales were strongly associated with log 

sets and catch. Killer whales were also associated with log fishing metrics here. Cuvier’s 

beaked whales were positioned between log and school fishing metrics. Offshore 
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common dolphins were tightly linked to school catch, while dwarf sperm whales were 

tightly linked to school fishing CPUE. Mesoplodont beaked whales, Bryde’s whales, and 

blue whales were mostly associated with school fishing, but with influence from the 

dolphin fishing metrics.  

Generalized Additive Models (GAMs) 

Climatological Analysis (All Data Aggregated Temporally) 

The panel plots in Appendix 3 depict the smoothed functions estimated by the 

models. These functions characterize the relationships between each tuna predictor 

variable and the response variable for the specified cetacean taxon. The response variable 

was always the number of sightings per hour of survey effort. The shapes of these 

smoothed functions were not overly complex, which facilitated a straightforward visual 

interpretation of the results. A flat line indicated that the predictor variable was probably 

not useful in explaining variation in the data for that taxon. A line that generally 

increased indicated a positive relationship between the predictor and the number of 

sightings of the taxon. Likewise, a line that generally decreased indicated a negative 

relationship between the two. Lines with inflection points indicated potentially more 

complex responses to increasing values of the predictor variables, but because the 

degrees of freedom were limited, these remained relatively straightforward to interpret.  

The results from the model for mixed schools of offshore spotted with eastern 

spinner dolphins serve as a good example of how these plots were interpreted (Appendix 

3). First, the smoothed response to the DolpSets predictor had a positive slope that was 

steeper at first and more gradual later, indicating that the number of sightings per hour of 

this taxon increased with the number of dolphin sets. The ETP purse-seine fishery does 
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indeed set its nets around this type of mixed school, so the positive relationship between 

DolpSets and number of sightings per hour makes intuitive sense. Second, the smoothed 

response for the DolpCPUE predictor was a downward sloping line, which indicates a 

negative relationship between DolpCPUE and the number of sightings per hour. This 

negative relationship could indicate that large, highly clumped schools of tuna are found 

in association with dolphin schools that are spread out over a large area. Next, the 

smoothed responses to the SchlSets and LogSets predictors had decreasing slopes, 

indicating negative relationships between those predictors and the number of sightings 

per hour. Because the data were aggregated temporally here, this indicates a spatial 

segregation between dolphin fishing and log and school fishing, a result corroborated by 

the CCA results. Lastly, the smoothed response lines for SchlCPUE and LogCPUE 

predictors were essentially flat and were not significant (Tbl. 2), indicating that they were 

not useful in explaining the variance in the data for this taxon.  

The deviance explained by the models ranged from 0% to 56% (mean: 29%) (Tbl. 

2). The models performed the worst for killer whales and Cuvier’s beaked whales, 

explaining less than 10% of the deviance. Models for Bryde’s whales, mesoplodont 

beaked whales, short-finned pilot whales, and sperm whales performed somewhat better 

(10-19%). For striped dolphins, Risso’s dolphins, and mixed schools of offshore spotted 

with whitebelly spinner dolphins, the models performed reasonably well (20-29%). They 

explained 30-39% of the variance for dwarf sperm whales, offshore spotted dolphins, 

blue whales, and offshore common dolphins. For rough-toothed dolphins, whitebelly 

spinner dolphins, coastal spotted dolphins, eastern spinner dolphins, and bottlenose 

dolphins, the models performed quite well with an explained variance of 40-49%. The 
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best model (56%) was for mixed schools of offshore spotted dolphins and eastern spinner 

dolphins.  

The importance of the 6 yellowfin tuna metrics varied across taxa (Tbl. 2). Taxa 

for which at least one dolphin fishing metric had the highest significance level (p < 

0.001) included eastern spinner dolphins, whitebelly spinner dolphins, offshore spotted 

dolphins, mixed offshore spotted with eastern spinner dolphins, mixed offshore spotted 

with whitebelly spinner dolphins, bottlenose dolphins, rough-toothed dolphins, dwarf 

sperm whales, mesoplodont beaked whales, and short-finned pilot whales. Using the 

same criterion, school fishing appeared to be potentially important in explaining variation 

in striped dolphins, offshore common dolphins, rough-toothed dolphins, sperm whales, 

and blue whales. Similarly, log fishing metrics explained variation in eastern spinner 

dolphins, offshore spotted dolphins, offshore spotted with eastern spinner dolphins 

(MIXE), offshore spotted with whitebelly spinner dolphins (MIXW), striped dolphins, 

short-finned pilot whales, and bottlenose dolphins.  

El Niño Southern Oscillation (ENSO) Analysis 

The overall pattern in the importance of the 6 yellowfin tuna metrics was 

generally similar to the pattern in the climatological analysis, but some differences 

occurred within taxa (Tbl. 3). For example, in the climatological view, SchlCPUE was 

not important for whitebelly spinners or mixed schools of offshore spotted with eastern 

spinner dolphins; however, it had the highest level of significance during La Niña periods 

for both of these groups in the ENSO analysis.  

The taxa for which the importance of dolphin metrics was robust across ENSO 

phases included: eastern spinner dolphins, whitebelly spinner dolphins, offshore spotted 
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dolphins, mixed schools offshore spotted and eastern spinner dolphins, mixed schools of 

offshore spotted and whitebelly spinner dolphins, rough-toothed dolphins, and dwarf 

sperm whales (Tbl. 3). Out of 6 possible combinations of ENSO phases and dolphin 

metrics (e.g., DolpCPUE for La Niña or DolpSets for Neutral conditions), these groups 

all had 5 or 6 that were significant. There were fewer taxa for which log fishing 

predictors were robust across ENSO phases, and these only had a maximum of 2 or 3 

significant combinations of ENSO phases and log fishing metrics. These included eastern 

spinner dolphins, whitebelly spinner dolphins, offshore spotted dolphins, mixed offshore 

spotted and eastern spinner dolphins, and blue whales, most of which were primarily 

explained by LogSets rather than LogCPUE. Similarly, school fishing metrics were not as 

robust across ENSO phases, and the taxa influenced by these only had a maximum of 3 

or 4 combinations of ENSO phases and school fishing metrics that were significant. 

These taxa included offshore spotted dolphins, coastal spotted dolphins, mixed schools of 

offshore spotted and eastern spinner dolphins, Risso’s dolphins, offshore common 

dolphins, rough-toothed dolphins, sperm whales, Bryde’s whales, blue whales, and 

mesoplodont beaked whales.  

Analysis of Individual Years 

When running the models on each year separately, most of the relationships 

between the cetaceans and the tuna predictors lost their consistency and robustness (Tbl. 

4). Even most of the strong relationships tended to break down. Out of 20 possible 

combinations of year and dolphin metrics for each taxon, only 4 taxa had 10 or more 

significant combinations. Those were eastern spinner dolphins, whitebelly spinner 

dolphins, mixed schools of offshore spotted and eastern spinner dolphins, and 
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mesoplodont beaked whales. Only bottlenose dolphins exceeded this threshold for log 

fishing metrics, and no taxa exceeded it for school fishing metrics.  

Model Predictions for 2003 

The deviance explained by the models built using all years except 2003 ranged 

from 4.1% for killer whales to 55.6% for whitebelly spinner dolphins (mean = 20.1%) 

(Tbl. 5). The adjusted R-squared values ranged from 0 for killer whales to 0.42 for 

whitebelly spinner dolphins (mean = 0.13). GCV scores ranged from 0.04 for whitebelly 

spinner dolphins to 2.01 for striped dolphins (mean = 0.75). Compared to the 

climatological models, each of the tuna predictors was significant for fewer of the taxa. 

Year, as a predictor variable, appeared to be potentially significant for about half the taxa, 

although it was only significant at the highest level (p<0.001) for four groups: offshore 

common dolphins, bottlenose dolphins, Bryde’s whales, and blue whales.  

The prediction maps for 2003 (Figs. 5-23) were divided into three qualitative 

categories (“good”, “fair”, and “poor”) based on how well the model prediction 

corresponded to the 2003 survey observations. The “good” category was characterized by 

maps with a relatively high coincidence of high model predictions (red to orange cells) 

with high observed sightings per hour for 2003 (black to dark gray dots), and/or low 

model predictions (yellow cells) with low observed sightings per hour (light gray dots). 

This category included 10 taxa: offshore spotted dolphins, eastern spinner dolphins, 

offshore spotted mixed with eastern spinner dolphins, whitebelly spinner dolphins, 

offshore spotted with whitebelly spinner dolphins, sperm whales, rough-toothed dolphins, 

striped dolphins, blue whales, and Bryde’s whales.     
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The “fair” category consisted of maps with intermediate coincidence of model 

predictions with observed sightings for 2003. This means that the model may have 

captured some obvious areas of high or low sightings, while missing others. This 

category included offshore common dolphins, short-finned pilot whales, Risso’s 

dolphins, dwarf sperm whales, killer whales, bottlenose dolphins, Cuvier’s beaked 

whales, and mesoplodont beaked whales. 

The “poor” category included only the coastal spotted dolphin. The prediction for 

coastal spotted dolphins was unrealistic; this subspecies is restricted to coastal waters, but 

the model predicted areas of high sightings per hour offshore. Adding geographic or 

bathymetric constraints (e.g., latitude and longitude, or depth) to the model could 

alleviate this problem.     

DISCUSSION 

Interpretation of Patterns 

Over-interpretation of results should be avoided for taxa that are challenging to 

survey in high sea states, particularly beaked whales and dwarf sperm whales. 

Additionally, caution should be taken when interpreting results from analyses in which 

data overlap is poor. For most of the models built with a single year of data, the tuna 

metrics failed to explain the cetacean data, which is attributable, at least in part, to the 

low degree of overlap between the two datasets at the annual level. For example, for 

many of the taxa, there are relatively few (less than 10) overlapping cells (i.e., cells that 

contain both fishery effort and cetacean survey effort) that contain observed sightings for 

these taxa in 2003. For all taxa, it is useful to compare the predicted maps to historical 

observations for additional context. 
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Yellowfin tuna purse-seine fishery metrics appear to have robust relationships 

with several cetacean taxa in the ETP. For example, the association between dolphin 

fishing metrics and mixed schools of offshore spotted and eastern spinner dolphins 

appears to remain stable across years and ENSO phases. Other less robust relationships 

exhibit inter-annual variability, potentially associated with ENSO phases. For example, 

model results showed that year was a significant predictor for some taxa (blue whales, 

offshore common dolphins, bottlenose dolphins, and Bryde’s whales), suggesting that 

inter-annual variability, potentially associated with ENSO phases, may be important to 

these species. These species all feed on schooling fish or krill and may be influenced by 

variations in the strength of upwelling. Their behavior (or the behavior of the fishery) 

may change in under certain conditions, causing their relationships with the 3 types of 

fishing to change.     

Comparison with Previous Research 

Investigations into general relationships through canonical correspondence 

analysis revealed positive associations between dolphin fishing metrics and 5 taxa (mixed 

schools of offshore spotted with eastern spinner dolphins, pure schools of eastern spinner 

dolphins, pure schools of offshore spotted dolphins, rough-toothed dolphins, and dwarf 

sperm whales). There were also negative associations between dolphin fishing metrics 

and 2 taxa (mixed schools of offshore spotted with whitebelly spinner dolphins and pure 

schools of whitebelly spinner dolphins) along one axis, and a negative relationship with 

offshore common dolphins along the other. These relationships reflect those found by 

Reilly and Fiedler (1994) in a similar analysis performed with oceanographic variables 

instead of fishery variables as predictors.  
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 Forney et al. (2012) constructed habitat-based spatial models for most of these 

ETP cetaceans using environmental variables, and used them to predict densities (Figs. 

24-28). Their suite of candidate predictor variables included bathymetry, distance to 

shore, sea surface temperature, salinity, chlorophyll, and mixed-layer depth. The 

deviance explained by these models ranged from 5.6% to 38.8% (mean= 15.0%), which 

is similar to our model results (mean = 20.0%, range = 4.1 - 55.6%). The predicted maps 

by Forney et al. (2012) are qualitatively very similar to the predicted maps in the present 

study. There is remarkable resemblance in the areas predicted to have high and low 

densities for each taxon. There are a few notable differences. The southern range of 

whitebelly spinner dolphins might be better represented by the map from this study (Fig. 

8 vs. Fig. 24). The maps for Risso’s (Fig. 13) and bottlenose dolphins (Fig. 22) extend 

further offshore than maps in Forney et al. (2012) (Fig. 26), perhaps capturing more areas 

of relatively high density. The map for blue whales in this study (Fig. 10) does not fully 

capture the importance of the Costa Rica Dome, which is known to be important habitat 

for blue whales. This feature is more apparent in the Forney et al. (2012) maps (Fig. 27). 

For offshore common dolphins, the map in this study (Fig. 11) captures the high sightings 

area along the 10°N thermocline ridge near 120°W, which is not pronounced in habitat 

maps (Fig. 25).   

Given that no geographic constraints (e.g., latitude, longitude, or grid cell 

number) or oceanographic variables were included as predictor variables in our models, 

they perform surprisingly well for most taxa. Comparing our prediction maps to the 

habitat-based maps produced by Forney et al. (2012) validates this. Additionally, 

comparing our prediction maps to maps of all historical sightings (Figs. 5-23, right panel) 
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shows that many of the models predict high sighting rates in areas that have historically 

had the highest observed sighting rates and low rates in areas where sightings have 

historically been low.  

While Forney et al. (2012) used environmental variables to produce maps of 

predicted cetacean densities, we found that we could use tuna fishery metrics to produce 

similar maps, from which we can infer some general habitat associations. Examining our 

prediction maps for 2003 (Figs. 5-23, left panel) alongside a map of major oceanographic 

features (Fig. 1), the taxa can be aggregated into 5 groups: 1) Eastern Pacific Warm Pool 

associated (“warm pool taxa”); 2) anti-Eastern Pacific Warm Pool associated (“anti-warm 

pool taxa”); 3) coastal associated (“coastal taxa”); 4) upwelling feature associated – in 

particular with areas surrounding Baja California, the Costa Rica Dome, the Equatorial 

Cold Tongue, and the 10°N thermocline ridge (“upwelling taxa”); 5) those with wide 

distributions and no apparent strong connections to the first four groups (“widespread 

taxa”).  

The “warm pool taxa” include offshore spotted dolphins, eastern spinner dolphins, 

dwarf sperm whales, mixed schools of offshore spotted with eastern spinner dolphins, 

and rough-toothed dolphins. “Anti-warm pool taxa” include pure schools of whitebelly 

spinner dolphins and mixed schools of offshore spotted with whitebelly spinner dolphins. 

“Coastal taxa” only includes the coastal spotted dolphin. “Upwelling taxa” includes 

Bryde’s whales, offshore common dolphins, short-finned pilot whales, Risso’s dolphins, 

bottlenose dolphins, blue whales, sperm whales (to some extent), striped dolphins (to 

some extent), and killer whales (to some extent). The “widespread taxa” group includes 

sperm whales (to some extent), striped dolphins (to some extent), killer whales, Cuvier’s 
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beaked whales, and mesoplodont beaked whales. These general habitat associations 

reflect those found in Forney et al. (2012).  

Relevance of this Approach to EBM 

In this study, we have used one set of biological metrics (tuna fishery metrics) to 

make predictions about other biological components of an oceanic ecosystem (cetacean 

community structure and relative abundance). This is different from the more common 

approach of using environmental variables (e.g., physical oceanographic variables) to 

make predictions about biological components of an ecosystem. Because we performed 

this analysis on an ecosystem for which there are multiple long-term datasets, we were 

able to validate our approach by comparing our results to previous studies that have 

related physical variables to the same taxa. Our approach did not use any physical 

variables to predict characteristics of cetacean populations (e.g., communities and 

sighting densities), but our results were qualitatively the same as previous studies that did 

use them. This exciting result provides incredible support for moving forward with our 

approach.  

This research has demonstrated that yellowfin tuna fishery metrics can be used as 

indicators of the broader biological ecosystem in the ETP. Based on our findings, we can 

be confident about the approach developed here and its extension to other taxa. 

Specifically, our next steps will include similar investigations relating yellowfin tuna 

fishery metrics to seabirds and larval fishes in the ETP, for which we have comparable 

long-term datasets. Ultimately, our goal is to use these metrics to make predictions in 

future years when we have no survey data on cetaceans, seabirds, and larval fishes. By 
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developing measurable indicators of upper trophic level communities, this approach 

provides great promise for EBM in the oceanic ETP.   
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TABLES 

 

Table 1. Taxonomic information for cetaceans used in this study. 

Common Name Codes Scientific Name 
Eastern spinner dolphin ESpin, 10 Stenella longirostris orientalis 
Whitebelly spinner dolphin WBSpin, 11 Stenella longirostris longirostris 
Offshore spotted dolphin OSpot, 2 Stenella attenuata 
Coastal spotted dolphin CSpot, 6 Stenella attenuata graffmani 
Offshore spotted +  
eastern spinner dolphins 

MIXE S. attenuata + S. longirostris orientalis 

Offshore spotted + 
whitebelly spinner dolphins 

MIXW S. attenuata + S. longirostris 

Striped dolphin STCO Stenella coeruleoalba 
Risso’s dolphin GRGR Grampus griseus 
Offshore common dolphin DEDE Delphinus delphis 
Short-finned pilot whale GLMA Globicephala macrorhynchus 
Bottlenose dolphin TUTR Tursiops truncatus 
Rough-toothed dolphin STBR Steno bredanensis 
Sperm whale PHMA Physeter macrocephalus 
Bryde’s whale BAED Balaenoptera edeni 
Cuvier’s beaked whale ZICA Ziphius cavirostris 
Blue whale BAMU Balaenoptera musculus 
Dwarf sperm whale KOSI Kogia sima 
Killer whale OROR Orcinus orca 
Mesoplodont beaked whales Mesop Mesoplon spp. 
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Table 2. Summary results from GAM models with all data aggregated temporally into 
one group (climatological analysis). Models explain the indicated percent of deviance in 
the cetacean data. P-values for smoothed functions of yellowfin tuna metrics indicate 
whether each metric is important in explaining each taxon. Darker shades of green 
indicate higher levels of significance (p<0.001 is darkest). “D”, “S”, and “L” signify 
dolphin, school, and log fishing, respectively. “CPUE” = metric tons of catch per day of 
fishing effort. “Sets” = number of times the purse-seine net was set in pursuit of tuna. 
Taxonomic information as in Table 1. 

Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 

Eastern spinner dolphin 47% 0.005 0.007 1.000 0.000 0.998 0.000 
Whitebelly spinner dolphin 40% 0.000 0.118 0.100 0.007 0.986 0.276 
Offshore spotted dolphin 32% 0.000 0.993 0.971 0.000 0.001 0.000 
Coastal spotted dolphin 47% 0.118 0.011 0.005 0.041 0.030 0.999 
Offsh. spot. + east. spinner 56% 0.000 0.183 1.000 0.000 0.005 0.000 
Offsh. spot. + wb. spinner 29% 0.001 0.132 0.996 0.001 0.124 0.000 
Striped dolphin 24% 0.011 0.000 0.205 0.104 0.989 0.001 
Risso's dolphin 26% 0.002 0.121 0.489 0.103 0.018 0.077 
Offshore common dolphin 34% 1.000 0.000 0.595 0.368 0.361 0.072 
Short-finned pilot whale 18% 0.004 0.995 0.244 0.082 0.320 0.000 
Bottlenose dolphin 46% 0.000 0.168 0.001 0.000 0.063 0.000 
Rough-toothed dolphin 40% 0.000 0.000 0.050 0.001 0.003 0.063 
Sperm whale 19% 0.993 0.204 0.077 0.998 0.001 0.037 
Bryde's whale 10% 0.502 0.994 0.011 1.000 0.002 0.003 
Cuvier's beaked whale 6% 0.178 0.998 1.000 0.992 0.592 0.083 
Blue whale 33% 0.998 0.000 0.987 0.047 0.600 0.003 
Dwarf sperm whale 30% 0.000 0.997 0.058 0.000 1.000 0.013 
Killer whale 0% 1.000 0.999 0.999 0.999 0.997 0.997 

Mesopl. beaked whales 14% 0.000 1.000 0.171 0.006 0.126 0.337 
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Table 3. Summary results from GAM models with data grouped by El Niño Southern 
Oscillation (ENSO) phase. Models explain the indicated percent of deviance in the 
cetacean data. P-values for smoothed functions of yellowfin tuna metrics indicate 
whether each metric is important in explaining each taxon. Darker shades of green 
indicate higher levels of significance (p<0.001 is darkest). “D”, “S”, and “L” signify 
dolphin, school, and log fishing, respectively. “CPUE” = metric tons of catch per day of 
fishing effort. “Sets” = number of times the purse-seine net was set in pursuit of tuna. 
Taxonomic information as in Table 1. 

ENSO Phase + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 

Niña: East. spinner dolphin 39% 0.001 0.001 0.185 0.000 0.000 0.018 
Niño: East. spinner dolphin 36% 1.000 0.995 1.000 0.015 0.404 0.015 

Neutral: East. spinner dolphin 32% 0.029 0.998 0.078 0.005 0.248 0.005 

Niña: Wb. spinner dolphin 60% 0.000 0.001 0.000 0.000 0.000 0.000 
Niño: Wb. spinner dolphin 61% 0.000 0.573 0.013 0.000 0.218 0.003 

Neutral: Wb. spin. dolphin 60% 0.000 0.777 0.001 0.000 0.158 0.000 

Niña: Offsh. spotted dolphin 19% 0.025 0.999 1.000 0.000 0.019 0.000 
Niño: Offsh. spotted dolphin 28% 0.097 0.065 0.428 0.054 0.992 0.000 

Neutral: Offsh. spot. dolphin 24% 0.000 0.006 1.000 0.000 0.990 0.023 

Niña: Coastal spotted dolphin 31% 0.161 0.005 0.135 0.999 0.026 0.072 
Niño: Coastal spotted dolphin 98% 0.943 0.954 0.974 0.978 0.962 0.917 

Neutral: Coastal spot. dolphin 56% 0.500 0.013 0.208 0.998 0.584 0.537 

Niña: Offsh. spot. + east. spin. 44% 0.004 0.001 0.013 0.000 0.000 0.011 
Niño: Offsh. spot. + east. spin. 44% 0.004 0.993 1.000 0.004 0.056 0.007 

Neutral: Off. spot. + east. spin. 55% 0.000 0.010 0.992 0.000 0.141 0.000 

Niña: Offsh. spot. + wb. spin. 30% 0.114 0.014 0.999 0.001 0.998 0.591 
Niño: Offsh. spot. + wb. spin. 37% 0.006 0.768 0.992 0.021 0.212 0.056 

Neutral: Off. spot. + wb. spin. 33% 0.002 0.446 0.998 0.002 0.014 0.034 

Niña: Striped dolphin 10% 0.996 0.280 0.988 0.000 1.000 0.526 
Niño: Striped dolphin 25% 0.996 0.225 0.007 0.000 0.065 0.991 

Neutral: Striped dolphin 25% 0.032 0.997 0.000 0.489 0.996 0.029 

Niña: Risso's dolphin 24% 0.047 0.076 0.037 0.998 0.157 0.998 
Niño:  Risso's dolphin 23% 0.999 0.108 0.010 0.300 0.001 0.999 

Neutral: Risso's dolphin 19% 0.975 0.000 0.827 0.177 0.999 0.065 

Niña: Offsh. common dolphin 36% 0.998 0.000 0.000 0.005 0.408 0.001 
Niño:  Offsh. common dolphin 31% 0.375 0.000 0.896 0.056 0.998 0.989 

Neutral: Off. common dolphin 36% 0.299 0.000 0.002 0.994 0.999 0.183 
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Table 3. Summary results from GAM models with data grouped by El Niño Southern 
Oscillation (ENSO) phase. Continued.  

ENSO Phase + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 

Niña: Short-finned pilot whale 11% 0.067 0.999 0.213 0.999 0.991 0.026 
Niño: Short-finned pilot whale 10% 0.998 0.037 1.000 0.315 0.999 0.087 

Neutral: Short-fin. pilot whale 29% 0.000 0.295 0.307 0.019 0.998 0.023 

Niña: Bottlenose dolphin 26% 0.059 0.347 0.390 0.999 0.150 0.374 
Niño: Bottlenose dolphin 22% 0.128 0.999 0.004 0.000 0.589 0.998 

Neutral: Bottlenose dolphin 32% 0.003 0.001 0.999 0.074 0.997 0.109 

Niña: Rough-toothed dolphin 37% 0.000 0.000 0.999 0.000 0.000 0.002 
Niño: Rough-toothed dolphin 19% 0.042 0.998 0.812 0.998 1.000 0.232 

Neutral: Rough-tooth. dolphin 21% 0.002 1.000 0.999 0.001 0.004 0.999 

Niña: Sperm whale 20% 1.000 0.536 0.989 0.179 0.002 0.182 
Niño: Sperm whale 30% 0.996 0.999 0.998 0.177 0.000 0.000 

Neutral : Sperm whale 32% 0.122 0.067 0.252 0.003 0.048 0.003 

Niña: Bryde's whale 12% 0.991 0.288 0.233 0.999 0.066 0.283 
Niño: Bryde's whale 22% 0.003 0.998 0.029 0.999 0.096 0.999 

Neutral: Bryde's whale 7% 0.999 0.253 0.999 0.998 0.008 0.050 

Niña: Cuvier's beaked whale 18% 0.561 0.099 0.994 0.999 0.115 0.469 
Niño: Cuvier's beaked whale 7% 0.996 0.071 0.989 0.744 0.109 0.119 

Neutral : Cuvier's beak. whale 15% 0.471 1.000 0.098 0.972 0.586 0.045 

Niña: Blue whale 43% 0.020 0.005 0.062 0.375 1.000 0.011 
Niño: Blue whale 46% 0.001 0.997 0.009 0.002 0.000 0.028 

Neutral: Blue whale 52% 0.678 0.045 0.071 0.290 0.191 0.179 

Niña: Dwarf sperm whale 27% 0.023 0.719 1.000 0.996 0.029 0.001 
Niño: Dwarf sperm whale 34% 0.026 0.998 0.209 0.013 0.999 0.329 

Neutral: Dwarf sperm whale  37% 0.006 0.997 0.644 0.079 0.997 0.743 

Niña: Killer whale 9% 0.306 0.529 0.309 0.998 0.632 0.999 
Niño: Killer whale 18% 0.094 0.000 0.999 0.603 0.999 0.522 

Neutral: Killer whale 9% 0.993 0.989 0.331 0.024 0.899 0.115 
Niña: Mesopl. beaked whales 9% 0.371 1.000 0.992 0.999 0.003 0.804 
Niño: Mesopl. beaked whales 18% 0.313 0.019 0.121 0.111 0.042 0.006 

Neutral: Mesopl. beak. whales 24% 0.004 1.000 0.239 0.047 0.995 0.001 
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Table 4. Summary results from GAM models with data separated by individual years. 
Models explain the indicated percent of deviance in the cetacean data. P-values for 
smoothed functions of yellowfin tuna metrics indicate whether each metric is important 
in explaining each taxon. Darker shades of green indicate higher levels of significance 
(p<0.001 is darkest). “D”, “S”, and “L” signify dolphin, school, and log fishing, 
respectively. “CPUE” = metric tons of catch per day of fishing effort. “Sets” = number of 
times the purse-seine net was set in pursuit of tuna. Taxonomic information as in Table 1. 

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets  L_Sets 

1986 East. spin. dolphin 59% 0.998 0.144 0.009 0.011 0.003 0.321 
1987 East. spin. dolphin 97% 0.652 0.641 0.902 0.973 0.768 1.000 
1988 East. spin. dolphin 100% 0.000 1.000 1.000 0.000 1.000 0.000 
1989 East. spin. dolphin 45% 0.094 0.999 0.244 0.999 0.080 1.000 
1990 East. spin. dolphin 57% 0.344 0.999 0.259 0.058 1.000 0.999 
1998 East. spin. dolphin 47% 0.016 0.368 0.098 0.047 0.996 0.020 
1999 East. spin. dolphin 45% 0.291 0.575 0.999 0.577 0.101 0.383 
2000 East. spin. dolphin 68% 0.005 0.074 0.992 0.000 0.998 0.998 
2003 East. spin. dolphin 82% 0.901 0.974 1.000 0.919 1.000 0.845 

2006 East. spin. dolphin 84% 0.996 0.209 0.163 0.045 0.281 1.000 

1986 Wb. spin. dolphin 100% 0.000 1.000 1.000 0.000 1.000 1.000 
1987 Wb. spin. dolphin 100% 1.000 1.000 1.000 1.000 1.000 1.000 
1988 Wb. spin. dolphin 62% 0.075 1.000 0.999 0.546 1.000 0.996 
1989 Wb. spin. dolphin 100% 0.000 1.000 0.852 0.000 1.000 1.000 
1990 Wb. spin. dolphin 100% 0.000 0.000 1.000 0.000 1.000 0.000 
1998 Wb. spin. dolphin 82% 0.769 1.000 0.869 0.867 1.000 1.000 
1999 Wb. spin. dolphin 93% 0.578 0.228 0.259 0.775 0.999 0.999 
2000 Wb. spin. dolphin 100% 0.000 0.999 1.000 0.000 1.000 1.000 
2003 Wb. spin. dolphin 100% 1.000 1.000 1.000 1.000 1.000 1.000 

2006 Wb. spin. dolphin 100% 0.000 0.000 1.000 0.000 1.000 0.000 

1986 Off. spot. dolphin 33% 0.007 0.999 0.999 0.307 0.751 1.000 
1987 Off. spot. dolphin 36% 0.193 0.999 0.002 0.040 1.000 0.993 
1988 Off. spot. dolphin 62% 0.004 0.998 0.999 0.000 0.998 0.002 
1989 Off. spot. dolphin 53% 0.000 0.217 0.377 0.999 0.006 0.249 
1990 Off. spot. dolphin 36% 0.275 0.320 0.163 0.999 0.044 0.987 
1998 Off. spot. dolphin 20% 0.007 0.037 1.000 0.002 1.000 0.998 
1999 Off. spot. dolphin 0% 0.999 1.000 0.999 1.000 1.000 0.998 
2000 Off. spot. dolphin 28% 0.267 0.998 0.156 0.287 0.088 0.999 
2003 Off. spot. dolphin 55% 1.000 0.999 1.000 0.996 0.001 0.009 

2006 Off. spot. dolphin 16% 0.205 0.999 1.000 1.000 0.575 1.000 
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Table 4. Summary results from GAM models with data separated by individual years. 
Continued.  

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 
1986 Coast. spot. dolph. 96% 0.996 1.000 1.000 1.000 0.999 1.000 
1987 Coast. spot. dolph. 100% 1.000 0.000 1.000 0.000 0.000 1.000 
1988 Coast. spot. dolph. 100% 1.000 1.000 1.000 1.000 1.000 1.000 
1989 Coast. spot. dolph. 100% 1.000 1.000 1.000 1.000 1.000 1.000 
1990 Coast. spot. dolph. 85% 0.199 1.000 1.000 1.000 0.972 1.000 
1998 Coast. spot. dolph. 43% 0.011 0.053 0.632 0.046 0.999 0.997 
1999 Coast. spot. dolph. 49% 0.999 0.279 0.234 0.295 1.000 0.999 
2000 Coast. spot. dolph. 90% 1.000 0.999 0.017 0.005 0.315 0.335 
2003 Coast. spot. dolph. 61% 0.053 0.863 0.594 0.013 0.790 0.131 

2006 Coast. spot. dolph. 97% 0.266 1.000 0.999 0.324 1.000 0.440 

1986 Off. spot. + e. spin. 59% 0.099 0.009 0.001 0.001 0.995 1.000 
1987 Off. spot. + e. spin. 36% 0.141 0.999 1.000 1.000 0.033 1.000 
1988 Off. spot. + e. spin. 100% 0.000 0.000 0.000 0.000 0.000 0.000 
1989 Off. spot. + e. spin. 58% 0.000 0.008 0.104 0.001 0.997 0.172 
1990 Off. spot. + e. spin. 55% 0.018 0.082 0.999 0.032 0.027 0.152 
1998 Off. spot. + e. spin. 45% 0.998 0.998 0.241 0.066 0.002 0.497 
1999 Off. spot. + e. spin. 46% 0.015 0.087 0.166 0.004 0.024 0.183 
2000 Off. spot. + e. spin. 47% 0.005 0.999 0.020 0.004 0.003 0.996 
2003 Off. spot. + e. spin. 66% 0.000 0.995 0.025 0.000 0.025 0.224 

2006 Off. spot. + e. spin. 57% 0.044 0.665 0.077 0.025 0.388 0.997 

1986 Off. spot + wb. spin. 90% 0.610 0.804 0.319 0.517 1.000 0.630 
1987 Off. spot + wb. spin. 100% 0.000 0.000 1.000 0.000 0.000 0.000 
1988 Off. spot + wb. spin. 74% 0.869 1.000 0.930 0.869 0.931 0.999 
1989 Off. spot + wb. spin. 100% 0.000 1.000 0.000 0.000 0.999 0.000 
1990 Off. spot + wb. spin. 92% 1.000 0.989 1.000 0.999 1.000 0.927 
1998 Off. spot + wb. spin. 100% 0.000 1.000 1.000 1.000 0.000 0.000 
1999 Off. spot + wb. spin. 43% 0.343 1.000 0.243 0.999 0.695 0.496 
2000 Off. spot + wb. spin. 96% 0.937 0.935 1.000 0.854 0.906 0.967 
2003 Off. spot + wb. spin. 100% 0.000 0.000 0.000 0.000 1.000 1.000 

2006 Off. spot + wb. spin. 100% 0.000 0.000 0.000 0.000 0.000 0.000 

1986 Striped dolphin 51% 0.020 0.998 0.001 0.060 0.823 0.021 
1987 Striped dolphin 18% 1.000 0.999 0.012 0.117 0.556 0.586 
1988 Striped dolphin 24% 0.999 0.999 0.999 0.999 1.000 0.014 
1989 Striped dolphin 24% 0.119 0.615 0.101 0.364 0.999 1.000 
1990 Striped dolphin 8% 1.000 0.998 0.046 0.999 1.000 0.999 
1998 Striped dolphin 7% 0.999 0.999 0.997 0.999 1.000 0.115 
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Table 4. Summary results from GAM models with data separated by individual years. 
Continued. 

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 
1999 Striped dolphin 25% 0.999 0.002 0.999 0.022 0.998 1.000 
2000 Striped dolphin 18% 1.000 0.344 1.000 0.002 0.988 0.063 
2003 Striped dolphin 29% 1.000 0.075 0.996 0.207 1.000 0.022 

2006 Striped dolphin 24% 0.064 0.431 0.009 0.999 0.999 1.000 

1986 Risso's dolphin 3% 1.000 1.000 0.996 0.999 0.496 1.000 
1987 Risso's dolphin 56% 0.860 0.088 0.229 0.018 0.998 0.143 
1988 Risso's dolphin 31% 0.029 0.999 0.999 0.999 0.061 0.999 
1989 Risso's dolphin 84% 0.002 0.019 0.058 0.002 1.000 0.843 
1990 Risso's dolphin 80% 0.404 0.996 0.980 0.999 0.998 0.998 
1998 Risso's dolphin 25% 1.000 0.250 0.270 0.417 0.559 0.999 
1999 Risso's dolphin 60% 0.060 0.034 1.000 0.012 0.999 0.221 
2000 Risso's dolphin 19% 0.999 1.000 1.000 0.999 0.025 0.127 
2003 Risso's dolphin 48% 1.000 0.022 0.998 0.067 0.999 0.168 

2006 Risso's dolphin 64% 1.000 0.161 0.316 0.052 0.000 0.295 
1986 Off. comm. dolph. 95% 1.000 1.000 0.999 1.000 1.000 1.000 
1987 Off. comm. dolph. 53% 1.000 0.060 0.028 0.256 0.001 0.207 
1988 Off. comm. dolph. 93% 1.000 1.000 1.000 1.000 1.000 1.000 
1989 Off. comm. dolph. 39% 0.999 0.648 0.047 0.023 0.352 1.000 
1990 Off. comm. dolph. 83% 0.999 0.427 0.469 0.513 0.478 0.436 
1998 Off. comm. dolph. 24% 0.131 0.999 0.105 0.999 0.999 1.000 
1999 Off. comm. dolph. 45% 0.005 0.000 0.045 1.000 1.000 0.234 
2000 Off. comm. dolph. 49% 1.000 0.003 0.292 0.137 0.091 0.996 
2003 Off. comm. dolph. 23% 0.993 1.000 0.998 0.042 0.997 0.298 

2006 Off. comm. dolph. 74% 0.047 0.395 0.079 0.078 0.741 0.124 

1986 Short-fin. pilot wh. 79% 0.515 0.877 0.883 1.000 0.929 0.997 
1987 Short-fin. pilot wh. 62% 0.085 0.316 0.162 1.000 1.000 0.540 
1988 Short-fin. pilot wh. 93% 1.000 1.000 0.999 0.788 0.750 0.546 
1989 Short-fin. pilot wh. 95% 0.948 0.964 0.851 0.911 0.944 1.000 
1990 Short-fin. pilot wh. 90% 0.925 0.808 0.904 0.916 0.925 0.962 
1998 Short-fin. pilot wh. 44% 0.183 0.999 0.999 0.226 0.410 0.603 
1999 Short-fin. pilot wh. 58% 0.995 1.000 0.073 0.408 0.055 0.014 
2000 Short-fin. pilot wh. 96% 0.813 0.797 0.902 0.888 0.722 0.960 
2003 Short-fin. pilot wh. 92% 1.000 0.999 0.997 0.801 0.956 0.989 

2006 Short-fin. pilot wh. 94% 1.000 1.000 1.000 1.000 1.000 0.998 
1986 Bottlenose dolph. 36% 0.999 0.999 0.093 0.237 0.055 0.037 
1987 Bottlenose dolph. 48% 0.085 0.999 0.169 0.116 0.008 0.041 
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Table 4. Summary results from GAM models with data separated by individual years. 
Continued. 

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 
1988 Bottlenose dolph. 78% 0.909 1.000 0.741 0.988 1.000 0.918 
1989 Bottlenose dolph. 50% 0.990 1.000 0.002 0.025 1.000 0.005 
1990 Bottlenose dolph.  88% 0.802 0.817 0.866 0.810 0.976 0.814 
1998 Bottlenose dolph. 64% 0.001 1.000 0.000 0.129 0.000 0.000 
1999 Bottlenose dolph. 50% 0.316 0.592 0.007 0.993 0.999 0.003 
2000 Bottlenose dolph. 31% 0.996 0.162 0.041 0.999 0.525 0.103 
2003 Bottlenose dolph. 51% 0.010 0.492 0.997 0.121 0.004 0.412 

2006 Bottlenose dolph. 68% 0.006 0.009 0.101 0.448 0.004 0.020 

1986 Roug.-tooth. dolp. 51% 0.005 0.028 0.998 0.461 0.081 0.151 
1987 Roug.-tooth. dolp. 60% 0.997 0.037 0.167 0.999 0.115 0.096 
1988 Roug.-tooth. dolp. 100% 0.000 0.000 0.000 1.000 1.000 0.000 
1989 Roug.-tooth. dolp. 13% 0.993 0.997 0.999 0.298 0.268 0.999 
1990 Roug.-tooth. dolp. 39% 0.163 0.447 0.208 0.130 0.184 0.998 
1998 Roug.-tooth. dolp. 37% 0.000 0.999 0.003 0.995 0.999 0.245 
1999 Roug.-tooth. dolp. 45% 0.130 0.648 0.228 0.999 0.183 0.222 
2000 Roug.-tooth. dolp. 85% 0.496 0.965 0.954 0.826 0.832 1.000 
2003 Roug.-tooth. dolp. 33% 0.999 0.999 1.000 0.242 0.204 0.081 

2006 Roug.-tooth. dolp. 92% 0.000 0.764 0.002 0.249 0.947 0.003 

1986 Sperm whale 41% 0.321 1.000 0.018 0.006 0.022 0.997 
1987 Sperm whale 45% 0.066 1.000 0.184 0.996 0.021 1.000 
1988 Sperm whale 73% 0.039 0.027 0.998 1.000 0.004 0.024 
1989 Sperm whale 81% 0.139 0.169 0.154 0.124 1.000 0.183 
1990 Sperm whale 38% 0.016 0.379 0.317 0.999 0.999 0.031 
1998 Sperm whale 99% 0.909 0.722 0.264 0.647 0.891 0.789 
1999 Sperm whale 93% 0.804 0.995 0.963 0.896 0.877 0.994 
2000 Sperm whale 100% 0.000 1.000 0.000 0.000 0.999 1.000 
2003 Sperm whale 85% 1.000 0.365 0.969 0.654 0.809 0.915 

2006 Sperm whale 100% 1.000 1.000 0.999 1.000 0.000 1.000 

1986 Bryde's whale 75% 0.751 0.775 0.926 0.999 0.775 1.000 
1987 Bryde's whale 58% 1.000 1.000 0.000 0.001 0.999 0.000 
1988 Bryde's whale 95% 0.386 0.894 1.000 0.994 0.954 0.975 
1989 Bryde's whale 60% 1.000 0.193 0.805 0.999 1.000 0.481 
1990 Bryde's whale 15% 0.999 0.999 0.103 0.999 0.407 0.122 
1998 Bryde's whale 0% 1.000 0.999 1.000 0.999 1.000 0.999 
1999 Bryde's whale 59% 0.097 0.000 0.098 0.046 0.000 0.002 
2000 Bryde's whale 43% 0.999 1.000 0.070 0.205 0.008 0.127 
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Table 4. Summary results from GAM models with data separated by individual years. 
Continued. 

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 
2003 Bryde's whale 64% 1.000 0.149 1.000 0.533 0.088 0.573 

2006 Bryde's whale 32% 0.999 0.463 0.110 0.999 0.027 0.998 

1986 Cuvier's beak. wh. 30% 0.999 0.999 1.000 0.999 0.064 0.039 
1987 Cuvier's beak. wh. 97% 0.888 0.989 0.940 0.907 1.000 1.000 
1988 Cuvier's beak. wh. 100% 0.000 1.000 1.000 1.000 0.000 1.000 
1989 Cuvier's beak. wh. 47% 0.293 0.758 0.999 0.999 0.999 0.384 
1990 Cuvier's beak. wh. 0% 1.000 1.000 0.999 0.999 1.000 0.999 
1998 Cuvier's beak. wh. 63% 0.001 0.516 0.033 0.000 0.083 0.998 
1999 Cuvier's beak. wh. 86% 0.999 0.772 0.691 0.859 0.999 0.824 
2000 Cuvier's beak. wh. 100% 0.000 0.000 0.000 0.000 0.000 0.999 
2003 Cuvier's beak. wh. 100% 1.000 1.000 0.000 0.000 0.000 0.000 

2006 Cuvier's beak. wh. 100% 0.000 0.000 0.000 1.000 0.000 0.000 

1986 Blue whale 100% 1.000 0.000 0.000 1.000 1.000 1.000 
1987 Blue whale 85% 1.000 0.949 0.997 0.973 0.706 0.919 
1988 Blue whale 100% 1.000 0.000 0.000 0.999 0.000 1.000 
1989 Blue whale 95% 0.820 0.820 0.985 0.999 0.886 0.893 
1990 Blue whale 100% 1.000 1.000 1.000 1.000 1.000 1.000 
1998 Blue whale 77% 0.999 0.323 0.707 0.348 0.993 0.995 
1999 Blue whale 56% 1.000 0.998 0.365 0.015 0.148 0.348 
2000 Blue whale 100% 0.000 1.000 1.000 1.000 0.000 0.000 
2003 Blue whale 99% 1.000 0.358 0.438 1.000 0.548 0.397 

2006 Blue whale 47% 1.000 0.379 0.418 0.657 0.002 0.999 

1986 Dwarf sperm wh. 71% 0.296 0.998 0.994 0.639 0.068 0.136 
1987 Dwarf sperm wh. 97% 0.132 0.329 1.000 0.126 0.311 1.000 
1988 Dwarf sperm wh. 81% 1.000 1.000 1.000 1.000 1.000 1.000 
1989 Dwarf sperm wh. 80% 0.001 0.004 1.000 0.003 0.006 0.004 
1990 Dwarf sperm wh. 74% 1.000 1.000 0.943 0.998 0.987 1.000 
1998 Dwarf sperm wh. 54% 0.012 0.998 0.997 0.999 0.001 0.827 
1999 Dwarf sperm wh. 64% 0.073 0.030 0.030 1.000 0.119 0.999 
2000 Dwarf sperm wh. 90% 0.000 0.999 0.666 0.000 0.000 0.014 
2003 Dwarf sperm wh. 85% 0.980 0.596 0.999 0.589 0.016 1.000 

2006 Dwarf sperm wh. 92% 0.383 0.918 1.000 0.631 0.856 0.618 
1986 Killer whale 71% 0.994 0.538 0.986 0.983 0.490 0.990 
1987 Killer whale 78% 0.000 0.222 0.649 0.000 0.292 0.780 
1988 Killer whale 71% 0.999 0.999 0.536 0.998 0.998 0.998 
1989 Killer whale 61% 0.061 0.137 0.439 0.999 0.007 0.999 
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Table 4. Summary results from GAM models with data separated by individual years. 
Continued. 

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets 
1990 Killer whale 81% 1.000 1.000 1.000 1.000 1.000 1.000 
1998 Killer whale 27% 0.211 0.999 0.980 0.396 0.159 0.300 
1999 Killer whale  91% 0.985 0.871 0.993 0.995 0.793 0.973 
2000 Killer whale 59% 0.216 0.997 0.098 1.000 0.997 0.053 
2003 Killer whale 95% 1.000 0.998 0.995 0.987 1.000 1.000 

2006 Killer whale 7% 0.999 0.800 1.000 1.000 0.999 0.771 

1986 Mesop. beak. wh. 53% 0.071 1.000 0.010 0.097 0.189 0.009 
1987 Mesop. beak. wh. 41% 0.999 0.001 1.000 0.027 0.043 0.005 
1988 Mesop. beak. wh. 83% 0.682 1.000 0.839 0.875 0.818 0.814 
1989 Mesop. beak. wh. 76% 0.000 0.025 0.011 0.000 0.019 0.000 
1990 Mesop. beak. wh. 9% 0.091 0.999 0.994 1.000 1.000 1.000 
1998 Mesop. beak. wh. 28% 0.266 0.253 0.997 0.084 0.999 0.453 
1999 Mesop. beak. wh. 39% 0.081 0.137 0.999 0.471 0.061 0.225 
2000 Mesop. beak. wh. 4% 1.000 0.999 0.998 0.999 1.000 0.316 
2003 Mesop. beak. wh. 41% 1.000 0.027 0.501 0.084 0.999 0.999 

2006 Mesop. beak. wh. 78% 0.999 0.192 0.042 0.001 0.343 1.000 
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FIGURES 
 
 

 
 

 
 
Figure 1. Schematic diagram of surface water masses and currents in the ETP. STSW = 
Subtropical Surface Water. TSW = Tropical Surface Water. ESW = Equatorial Surface 
Water. Shading represents mean sea surface temperature (darker = colder). The blue 
dotted line is the boundary that applies to the ETP Regional Fisheries Management 
Organization (the Inter-American Tropical Tuna Commission), which is responsible for 
the conservation and management of marine resources in the region bounded by 150°W, 
40°N, 40°S, and the coasts of the Americas. Adapted from Figure 2 in Fiedler and Talley 
(2006). 
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Figure 2. Relationships between tuna fishery metrics and sightings per hour for cetacean 
taxa as revealed by canonical correspondence analysis (CCA) with all data aggregated 
temporally into one group (climatological view). The CCA biplot contains grid cells as 
black points, yellowfin tuna fishery metrics as predictors in blue, and cetacean taxa in 
red. Predictors include – for dolphin, school, and log fishing methods – “Catch” (metric 
tons of catch), “Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit 
of effort, where effort is number of days fished). The predictors explain 13.2% of the 
variance in the cetacean data. The horizontal axis is canonical axis 1; the vertical axis is 
canonical axis 2. Values along the bottom and left sides correspond to cetacean axis 
scores. Taxonomic abbreviations as in Table 1. 
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Figure 24. Modeled species densities for pantropical spotted dolphin (offshore spotted 
dolphin + coastal spotted dolphin), whitebelly spinner dolphin, and eastern spinner 
dolphin. Models were built with environmental predictor variables. Panels show 3 sample 
years, the multi-year average, and 90% confidence limits. Dots are observed sighting 
locations for each time period. Figure from Forney et al. 2012.  
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Figure 25. Modeled species densities for striped dolphin, rough-toothed dolphin, and 
short-beaked common dolphin (offshore common dolphin). Models were built with 
environmental predictor variables. Panels show 3 sample years, the multi-year average, 
and 90% confidence limits. Dots are observed sighting locations for each time period. 
Figure from Forney et al. 2012.  
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Figure 26. Modeled species densities for bottlenose dolphin, Risso’s dolphin, and 
Cuvier’s beaked whale. Models were built with environmental predictor variables. Panels 
show 3 sample years, the multi-year average, and 90% confidence limits. Dots are 
observed sighting locations for each time period. Figure from Forney et al. 2012. 
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Figure 27. Modeled species densities for blue whale, Bryde’s whale, and short-finned 
pilot whale. Models were built with environmental predictor variables. Panels show 3 
sample years, the multi-year average, and 90% confidence limits. Dots are observed 
sighting locations for each time period. Figure from Forney et al. 2012.  
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Figure 28. Modeled species densities for dwarf sperm whale and mesoplodont beaked 
whales. Models were built with environmental predictor variables. Panels show 3 sample 
years, the multi-year average, and 90% confidence limits. Dots are observed sighting 
locations for each time period. Figure from Forney et al. 2012.  
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APPENDIX 1 

Canonical Correspondence Analysis Histograms 

Results from canonical correspondence analysis (CCA) using all data aggregated 

temporally into one group (climatological view). Predictor variables are yellowfin tuna 

fishery metrics; the response is the number of sightings per hour for each of 19 cetacean 

taxa. Frequency histograms (transformed to percentages) of Axis 1 and 2 scores for each 

taxon mostly reveal unimodal relationships, thus validating a primary assumption of 

CCA. Taxonomic abbreviations as in Table 1.   
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Figure A1.1. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for offshore spotted dolphins (“OSpot”; top) and coastal spotted dolphins 
(“CSpot”; bottom). Results from canonical correspondence analysis relating cetacean 
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into 
one group (climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.2. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for eastern spinner dolphins (“ESpin”; top) and whitebelly spinner dolphins 
(“WBSpin”; bottom). Results from canonical correspondence analysis relating cetacean 
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into 
one group (climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.3. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for mixed schools of offshore spotted and eastern spinner dolphins (“MIXE”; 
top) and mixed schools of offshore spotted and whitebelly spinner dolphins (“MIXW”; 
bottom). Results from canonical correspondence analysis relating cetacean sightings per 
hour to yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 

 
 



129 
 

 

Figure A1.4. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for striped dolphins (“STCO”; top) and Risso’s dolphins (“GRGR”; bottom). 
Results from canonical correspondence analysis relating cetacean sightings per hour to 
yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.5. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for offshore common dolphins (“DEDE”; top) and short-finned pilot whales 
(“GLMA”; bottom). Results from canonical correspondence analysis relating cetacean 
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into 
one group (climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.6. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for bottlenose dolphins (“TUTR”; top) and rough-toothed dolphins (“STBR”; 
bottom). Results from canonical correspondence analysis relating cetacean sightings per 
hour to yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.7. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for sperm whales (“PHMA”; top) and Bryde’s whales (“BAED”; bottom). 
Results from canonical correspondence analysis relating cetacean sightings per hour to 
yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.8. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for Cuvier’s beaked whales (“ZICA”; top) and blue whales (“BAMU”; bottom). 
Results from canonical correspondence analysis relating cetacean sightings per hour to 
yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.9. Frequency histograms (transformed to percentages) of canonical Axis 1 and 
2 scores for dwarf sperm whales (“KOSI”; top) and killer whales (“OROR”; bottom). 
Results from canonical correspondence analysis relating cetacean sightings per hour to 
yellowfin tuna fishery metrics, with data aggregated temporally into one group 
(climatological view). Taxonomic abbreviations as in Table 1. 
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Figure A1.10. Frequency histograms (transformed to percentages) of canonical Axis 1 
and 2 scores for mesoplodont beaked whales (“Mesop”). Results from canonical 
correspondence analysis relating cetacean sightings per hour to yellowfin tuna fishery 
metrics, with data aggregated temporally into one group (climatological view). 
Taxonomic abbreviations as in Table 1. 
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APPENDIX 2 

Canonical Correspondence Analysis Variance Explained Plots 

Results from canonical correspondence analysis (CCA) using all data aggregated 

temporally into one group (climatological view). Predictor variables are yellowfin tuna 

fishery metrics; the response is the number of sightings per hour for each of 19 cetacean 

taxa. Plots show the percent of variance in a given taxon’s data explained by each of the 

first four canonical axes. Blue = Axis 1; Yellow = Axis 2; Green = Axis 3; Brown = Axis 

4. Bar height indicates total variance explained by these axes.  
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APPENDIX 3 
 

Generalized Additive Model Plots 

Results from generalized additive models using yellowfin tuna fishery metrics as 

predictors and the number of sightings per hour for a given cetacean taxon as the 

response. Predictors include – for dolphin, school, and log fishing methods – “Sets” 

(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort, metric tons 

of catch per day of fishing). 
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Figure A3.1 Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for offshore spotted dolphins as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1. 
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Figure A3.2. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for coastal spotted dolphins as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1. 
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Figure A3.3. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for eastern spinner dolphins as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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Figure A3.4. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for whitebelly spinner dolphins as the 
response variable. Predictors include – for dolphin, school, and log fishing methods – 
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = 
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated 
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the 
distribution of data. Taxonomic information as in Table 1.  
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Figure A3.5. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for Bryde’s whales as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.6. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for blue whales as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.7. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for offshore common dolphins as the 
response variable. Predictors include – for dolphin, school, and log fishing methods – 
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = 
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated 
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the 
distribution of data. Taxonomic information as in Table 1.  
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Figure A3.8. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for short-finned pilot whales as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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Figure A3.9. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for Risso’s dolphins as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.10. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for dwarf sperm whales as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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Figure A3.11. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for mesoplodont beaked whales as the 
response variable. Predictors include – for dolphin, school, and log fishing methods – 
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = 
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated 
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the 
distribution of data. Taxonomic information as in Table 1.  
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Figure A3.12. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for mixed schools of offshore spotted and 
eastern spinner dolphins as the response variable. Predictors include – for dolphin, 
school, and log fishing methods – “Sets” (number of sets of the purse-seine net), and 
“CPUE” (catch per unit of effort = metric tons of catch per day of fishing). Points are 
residuals; gray shading is the estimated 95% confidence interval; the rug plot (vertical 
lines along the x-axis) shows the distribution of data. Taxonomic information as in Table 
1.  
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Figure A3.13. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for mixed schools of offshore spotted and 
whitebelly spinner dolphins as the response variable. Predictors include – for dolphin, 
school, and log fishing methods – “Sets” (number of sets of the purse-seine net), and 
“CPUE” (catch per unit of effort = metric tons of catch per day of fishing). Points are 
residuals; gray shading is the estimated 95% confidence interval; the rug plot (vertical 
lines along the x-axis) shows the distribution of data. Taxonomic information as in Table 
1.  
 
 
 
 
 
 
 

 
 



154 
 

 
 
 
 

 
 
Figure A3.14. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for killer whales as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.15. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for sperm whales as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.16. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for rough-toothed dolphins as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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Figure A3.17. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for striped dolphins as the response variable. 
Predictors include – for dolphin, school, and log fishing methods – “Sets” (number of sets 
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per 
day of fishing). Points are residuals; gray shading is the estimated 95% confidence 
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data. 
Taxonomic information as in Table 1.  
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Figure A3.18. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for bottlenose dolphins as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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Figure A3.19. Results from generalized additive models with yellowfin tuna fishery 
metrics as predictors and sightings per hour for Cuvier’s beaked whales as the response 
variable. Predictors include – for dolphin, school, and log fishing methods – “Sets” 
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric 
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95% 
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of 
data. Taxonomic information as in Table 1.  
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CHAPTER 3 

 

Bayesian inference and assessment for rare-event bycatch in marine fisheries: a 

drift gillnet fishery case study 
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ABSTRACT 

Fisheries bycatch is a global threat to marine megafauna. Environmental laws 

require bycatch assessment for protected species, but this is difficult when bycatch is 

rare. Low bycatch rates combined with low observer coverage may lead to biased, 

imprecise estimates when using standard ratio estimators. Bayesian model-based 

approaches incorporate uncertainty, produce less volatile estimates, and enable 

probabilistic evaluation of estimates relative to management thresholds. Here, we 

demonstrate a pragmatic decision-making process that uses Bayesian model-based 

inferences to estimate the probability of exceeding management thresholds for bycatch in 

fisheries with <100% observer coverage. Using the California drift gillnet fishery as a 

case study, we: 1) model rates of rare-event bycatch and mortality using Bayesian 

Markov chain Monte Carlo estimation methods and 20 years of observer data, 2) predict 

unobserved counts of bycatch and mortality, 3) infer expected annual mortality, 4) 

determine probabilities of mortality exceeding regulatory thresholds, and 5) classify the 

fishery as having low, medium, or high bycatch impact using those probabilities. We 

focus on leatherback sea turtles (Dermochelys coriacea) and humpback whales 

(Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson 

likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory 

regime. Regulatory regime had the strongest effect on leatherback bycatch, with the 

highest levels occurring prior to a regulatory change. Area had the strongest effect on 

humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242 

leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of 

exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act 
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(Potential Biological Removal) of 0.113 humpback deaths was 0.58, warranting a 

“medium bycatch impact” classification of the fishery. No PBR thresholds exist for 

leatherbacks, but the probability of exceeding an anticipated level of 2 deaths per year, 

stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The 

approach demonstrated here would allow managers to objectively and probabilistically 

classify fisheries with respect to bycatch impacts on species that have population-relevant 

mortality reference points, and declare with a stipulated level of certainty that bycatch did 

or did not exceed estimated upper bounds. 

INTRODUCTION 

Rare Events in Ecology and Management 

Rare events can be ecologically important when they have high impacts (e.g., 

dispersal events, catastrophic weather, or disease) or accumulate to levels that affect 

wildlife populations or human decision-making (e.g., ship strikes of whales, shark attacks 

on humans, or sightings of endangered species). However, inferring ecological 

parameters from rare-event data is challenging. The sample sizes typically required to 

estimate them with reasonable precision are quite large (Dixon et al. 2005, Amande et al. 

2012). The data are commonly, though not always, overdispersed, often with more zeros 

than expected for conventional statistical distributions, and thus violate model 

assumptions (Cunningham and Lindenmayer 2005, Lewin et al. 2010, Webley et al. 

2011). For instance, the Poisson distribution is useful for modeling count data, but its 

requirement for equal mean and variance is often violated by rare-event data. Despite 

these challenges, natural resource managers often must make inferences about rare events 

to inform their decisions (e.g., Rojas-Bracho et al. 2006).   
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Numerous approaches have been developed to deal with the analytical challenges 

posed by rare-event data. Most fall into the category of using mixture models consisting 

of one or more count and binomial processes (e.g., zero-inflated or hurdle models) to 

cope with the many-zeros problem (e.g., Ver Hoef and Jansen 2007, Lewin et al. 2010, 

Barlow and Berkson 2012, Okamura et al. 2012). Precision can sometimes be improved 

by utilizing ancillary information in the form of informative Bayesian priors, modified 

sampling designs (e.g., stratification), covariate-based prediction models, or additional 

data sets that inform the same process of interest (e.g., Dixon et al. 2005). All of these 

strategies can be accommodated by a Bayesian approach. 

Bayesian methods emphasize probabilistic inference and posterior distribution 

summaries, which facilitate full and transparent communication of uncertainty (Ellison 

1996, Wade 2000). Because of these features, Bayesian methods have a substantial 

history of application in the life sciences, ranging from human health and biomedical 

research (Manton et al. 1989, Richardson and Gilks 1993, Cai et al. 2010) to wildlife 

population dynamics and stock assessments (McAllister et al. 1994, Punt and Hilborn 

1997, McAllister and Kirkwood 1998, Maunder et al. 2000, Maunder and Starr 2001, 

Hoyle and Maunder 2004, Amstrup et al. 2010, Jay et al. 2011). Given the high levels of 

uncertainty associated with rare-event problems and the importance of quantifying 

management error, Bayesian statistics provide a transparent method for estimating the 

probability of Type I (falsely inferring an effect) and Type II (failing to identify an 

important effect) error (Maunder et al. 2000, Ludwig et al. 2001, Hoyle and Maunder 

2004).  
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Fisheries Bycatch 

Bycatch (the incidental capture of non-target species in fisheries operations) 

remains a major global threat to marine megafauna, including sea turtles, marine 

mammals, and seabirds (Dayton et al. 1995, Lewison et al. 2004, Read et al. 2006, 

Wallace et al. 2010, Croxall et al. 2012). The U.S. has enacted a series of laws, including 

the Endangered Species Act (ESA) and the Marine Mammal Protection Act (MMPA), 

which require assessment of bycatch impacts on legally protected species (Moore et al. 

2009). Assessment is more difficult in practice than in principle because bycatch of some 

species is such a rare event (McCracken 2004, Amande et al. 2012).  

The characteristics of rare-event bycatch pose estimation challenges. First, 

protected megafauna are typically not targeted; in fact, fishers in many countries have 

incentives not to catch these species (e.g., avoidance of damaged gear, legal fines, and 

increased fishery regulation). Thus, the number of animals caught is relatively low. 

Second, bycatch is recorded by scientific observers on board fishing vessels, but 

deploying observers on every fishing trip is typically cost-prohibitive. Thus, in most U.S. 

fisheries, observer coverage is less than 20%; in many it is less than 5% (Moore et al. 

2009). Low bycatch rates combined with sparse observer coverage may lead to 

unacceptably low precision and severe bias in bycatch estimates (McCracken 2004, 

Amande et al. 2012, Carretta and Moore 2014).  

Ratio estimators are commonly used to extrapolate bycatch estimates as the 

product of an observed bycatch rate (e.g., number of catches per observed fishing set or 

trip) and total effort in a fishery (e.g., number of sets or trips); however, they are not 

suitable when observer coverage or bycatch rates are relatively low. When applied in 
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such cases, commonly observed zeros result in under-estimates of zero bycatch, while 

those events observed by chance result in implausibly high estimates. For example, in the 

California drift gill net fishery (DGN fishery) off the west coast of the U.S., after 11 

years (1999-2009) without a single observed sperm whale (Physeter macrocephalus) 

interaction (observer coverage ranging from 13.0% to 22.7% annually), two sperm 

whales were observed entangled in 2010 (Carretta et al. 2010), resulting in a ratio-based 

estimate of 16 deaths or serious injuries for the year. In reality, total bycatch probably 

was not as high as 16 in 2010 and not zero for all 11 of the previous years.  

The issues with rare-event bycatch, including chance volatility in single-year 

estimates, are not just a statistical abstraction; they present managers with real problems 

related to MMPA and ESA regulations. To reduce the bias associated with single-year 

estimates, NMFS typically uses 5-year means in its assessments. This approach offers 

some improvement, but it is ad hoc and does not necessarily provide an adequate solution 

(Carretta and Moore 2014). In particular, it does not transparently communicate the 

uncertainty in single-year estimates, which may still be taken at face value by 

stakeholders. This problem arose recently when the 2010 sperm whale estimate was cited 

in a lawsuit against the U.S. National Marine Fisheries Service (NMFS) as evidence that 

regulatory thresholds were being exceeded (Center for Biological Diversity 2012). Such 

conclusions could have considerable, unnecessary impacts on the fishery, and they could 

be avoided with less volatile estimates.  

Model-based approaches can reduce the volatility of bycatch estimates. There are 

several recent examples of using GLM-based mixture (e.g., zero-inflated) models to 

improve bycatch estimates (Pradhan and Leung 2006, Minami et al. 2007, Cambie 2011, 
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Winter et al. 2011). Bayesian methods are also particularly well suited for these problems 

(e.g., Gardner et al. 2008, Sims et al. 2008) and have been used to estimate bycatch of 

some protected species, including the vaquita (Phocoena sinus) (Gerrodette and Rojas-

Bracho 2011), Hector's dolphins (Cephalorhynchus hectori) (Davies et al. 2008), and 

New Zealand fur seals (Arctocephalus forsteri) (Thompson et al. 2013). These methods 

more fully integrate uncertainty and are quite useful for producing less volatile bycatch 

estimates; however, they could be taken a step further to inform decision-making. Here, 

we propose a pragmatic decision-making process that uses Bayesian model-based 

inferences to classify the probability of protected species bycatch exceeding regulatory 

thresholds or other reference points in fisheries with less than 100% observer coverage.  

In this paper, we use fisheries observer data to: 1) model rates (per unit of fishing 

effort) of rare-event bycatch and mortality (some animals are released alive but others 

die) for protected species; our models view observed bycatch counts as random variables, 

accounting for both observation error (imperfect detection of bycatch given incomplete 

observer coverage) and biological process error (true annual variation), 2) use those 

inferred rates to predict unobserved counts of bycatch and mortality, given a specified 

level of fishing effort, 3) infer expected annual mortality, given the data and a specified 

level of fishing effort, 4) determine probabilities of expected annual mortality falling 

within certain ranges defined by regulatory thresholds, and 5) classify a fishery into a 

category of low, medium, or high bycatch impact using the above probabilities. In this 

classification system, placing a fishery into a higher impact category when in fact the 

level of impact is low would be analogous to a Type I error. Assigning a lower impact 

category when in fact bycatch impacts are high would be analogous to a Type II error.  
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We demonstrate our approach using the DGN fishery as a case study. Rare-event bycatch 

has been observed in this fishery for numerous protected species, including leatherback 

sea turtles (Dermochelys coriacea), loggerhead sea turtles (Caretta caretta), short-finned 

pilot whales (Globicephala macrorhynchus), humpback whales (Megaptera 

novaeangliae), sperm whales, and beaked whales (Family Ziphiidae) (HMSMT 2012). 

We analyze data for leatherback sea turtles and humpback whales as representative 

examples of endangered species regulated under the ESA and MMPA, respectively.  

METHODS 

California Drift Gillnet Fishery History and Data 

The DGN fishery has existed since the late 1970s, operating primarily from 

August through December and targeting large pelagic species such as thresher shark 

(Alopias vulpinus) and swordfish (Xiphias gladius). Effort in the fishery has declined 

over time according to California Department of Fish and Game (CDFG) vessel logbook 

data (Table 1, Figure 1) (Hanan et al. 1993). NMFS has maintained an observer program 

since 1990 to monitor marine mammal bycatch pursuant to the MMPA (Barlow 1989). 

The observer data provide details of fishing effort including the date, latitude and 

longitude coordinates, target and bycatch species caught, and condition of bycatch. From 

1990 through 2009, there were 8,152 observations, with mean observer coverage of 

15.6% per year (Table 1). There were 24 observed leatherback takes (a “take” is a single 

bycatch event), 13 of which resulted in mortality and one (“unknown”) that we 

conservatively assumed to also be fatal (Table 2). There were 0-5 observed leatherback 

takes per year in 1990-1999, none in 2000-2008, and 1 in 2009 (Table 2). There were 3 
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observed humpback takes, none of which resulted in death. The maximum number of 

leatherbacks or humpbacks ever observed entangled at one time was 1.  

The gear type used in this fishery is a long, large-mesh net (approximately 1800 

m length with 35.6 cm mesh), which fishers deploy offshore at dusk and retrieve at dawn 

(PFMC 2011). One iteration of this process is referred to as a “set.” Based on similarity 

among DGN sets in gear, technology, methods, and soak time, we treat the set as the 

basic unit of fishing effort (a conventional unit in bycatch analyses). Some physical 

variability in net characteristics (length, mesh size, depth) exists but has not been found 

to be a significant driver of bycatch variation (Julian and Beeson 1998). Since 1997, all 

nets have been equipped with acoustic pingers (to deter odontocetes) and 36-foot net 

extenders to reduce marine mammal bycatch. 

Previous studies suggest that the amount, location, and timing of fishing effort are 

the most significant drivers of bycatch variation in this fishery, at least for leatherbacks 

(Julian and Beeson 1998, NMFS 2000, Benson et al. 2007). In 2001, NMFS implemented 

a time-area fishery closure (NMFS 2001) with an objective to limit leatherback bycatch 

to 9 takes and 6 deaths over a 3-year period (NMFS 2000). Annually, from August 15 

through November 15 (“closure period” or “closure months”), the DGN fishery is 

prohibited from operating in the Pacific leatherback conservation area (“closure area”), 

comprised of state and federal waters from Point Conception (near Monterey Bay, 

California) north to 45 degrees latitude in Oregon (Figure 1) (NMFS 2001). This 

regulation targeted a time-area combination where most historical leatherback bycatch 

(18 takes) was observed (Figure 1). For our analysis, we classified all sets and takes as to 

whether they occurred inside or outside of the area or months delimited by the seasonal 
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closure (Table 1, Figure 1). For the unobserved sets, we used the CDFG logbook data 

(1990-2009) which contain dates and locations of fishing effort at the CDFG block level 

(typically 10-arcminute square blocks on a latitude-longitude grid). 

Modeling Rare-Event Bycatch in the DGN Fishery with a Bayesian Approach 

We explored models that could account for potential time-area differences in 

bycatch rates. Models varied with respect to available spatial and temporal covariates, 

functional form, and number of estimated parameters (Tables 3, 4).  

For a single species (e.g., leatherbacks), we used a Poisson likelihood function to 

model the stochastic dependence of xi, the number of observed takes in year i, on 𝜃𝜃, the 

per-set take rate parameter, and ni, the number of observed sets in year i:  

𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃,𝑛𝑛𝑖𝑖) =  𝑒𝑒−𝜃𝜃𝑛𝑛𝑖𝑖 (𝜃𝜃𝑛𝑛𝑖𝑖)𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖!

,                   (1) 

where 𝜃𝜃ni = λi is the Poisson rate (mean) parameter. Previous studies have also used the 

Poisson distribution to model bycatch (NMFS 2004, Pradhan and Leung 2006, Gardner et 

al. 2008, Murray 2009, 2011) because it can characterize data in which each observation 

has a high probability for a zero count, a small probability for a count of one, and an 

infinitesimal probability for a count of two or more. The DGN fishery data have these 

Poisson characteristics plus one more: a mean per-set take rate (2.944 x 10-3) roughly 

equal to the variance (2.936 x 10-3). A strong positive correlation between the numbers of 

observed takes and sets per year (Pearson's r=0.672; p=0.001; Figures 1, 2) supports 

including the number of sets in the model. We assume statistical independence of all sets 

and takes.  
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We modeled the number of observed deaths, wi, with a binomial likelihood 

function which quantifies the stochastic dependence of wi on xi and a conditional 

mortality parameter, q (i.e., given a take of this species occurs, the probability that the 

animal dies):  

𝑓𝑓(𝑤𝑤𝑖𝑖| 𝑥𝑥𝑖𝑖 ,  𝑞𝑞𝑠𝑠) = 𝑥𝑥𝑖𝑖!
𝑤𝑤𝑖𝑖!(𝑥𝑥𝑖𝑖−𝑤𝑤𝑖𝑖)!

𝑞𝑞𝑤𝑤𝑖𝑖(1 − 𝑞𝑞)𝑥𝑥𝑖𝑖−𝑤𝑤𝑖𝑖.       (2)  

To estimate q for each species, we followed Chapter 2 in (Gelman et al. 2004) in 

specifying a flat prior of Beta(1,1) which yields a posterior distribution of the form 

Beta(1 + wall, 1 + xall – wall), where wall and xall are the respective numbers of deaths and 

takes in all years of the data. For leatherbacks, wall  = 14 deaths and xall = 24 takes; for 

humpbacks, wall = 1 death and xall = 4 takes (the fisher-reported mortality is 

conservatively treated as a take for purposes of estimating the conditional mortality rate 

for humpbacks). Thus, for the posterior of q in our analyses, we used Beta(15, 11) for 

leatherbacks and Beta(2, 4) for humpbacks. Appendix A contains more theoretical 

background on our Bayesian modeling approach for interested readers.  

Candidate models are outlined in Table 3. In M1 (simple model), the bycatch rate 

𝜃𝜃 is constant across all locations and times, such that expected annual observed bycatch 

(λi) varies simply with the number of observed fishing sets (ni). For M1r (regulation 

model), 𝜃𝜃 differs for pre- and post-regulation periods (i.e., 1990-2000 and 2001-2009). In 

M2 (area model), M3 (time model), M4 (area-time interaction model), and M5 (area and 

time model), 𝜃𝜃 varies across different time-area combinations defined by the closure 

limits (Table 1). The binary area variable, a, indicates whether effort occurred inside or 

outside the area defined by the closure (whether or not the closure was in effect that year) 

 
 



173 
 

(in M2, M4, M5). The binary time variable, t, indicates whether or not effort occurred 

during the closure months of August 15 through November 15 (again, irrespective of 

whether it was a closure year) (in M3, M4, M5). Model M2 describes area-only 

differences in 𝜃𝜃. Model M3 describes season-only differences in 𝜃𝜃. For model M4, 𝜃𝜃 

differs for sets inside the closure area and season from those conducted either outside the 

closure area or season. Finally, M5 allows for a unique 𝜃𝜃 for each combination of being 

in or out of the closure area or season. Regulation versions of M2-M5 (e.g., M2r) were 

not tested because the binary regulation variable r would be confounded with a and/or t, 

and there are not enough observed takes in post-regulation years (takes = 1) to fit overly 

complex models. 

We included zero-inflated Poisson (ZIP) versions of each model to allow for the 

possibility that some effort may occur in time periods (e.g., post-regulation) or time-area 

combinations with no exposure to bycatch risk. A mixture of effort where a portion (p) is 

exposed to bycatch risk at Poisson rates (i.e., animals are present) and the other portion (1 

– p) has no exposure to the risk (i.e., animals are not present) will result in more zeros 

and higher variance than predicted by the Poisson distribution. The ZIP likelihood 

function,  

𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃,𝑛𝑛𝑖𝑖) = 𝑝𝑝𝑒𝑒−𝜃𝜃𝑛𝑛𝑖𝑖 (𝜃𝜃𝑛𝑛𝑖𝑖)𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖!

+ (1 − 𝑝𝑝)0,   (3) 

is simply an extension of the Poisson likelihood function (Eqn. 1). M1z, M2z, M3z, M4z, 

and M5z add ZIP parameters (p0 – p3) to their parent models to allow the degree of zero-

inflation to vary across time-area categories (Table 3). For example, we hypothesize a 
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higher probability of zero bycatch for effort occurring outside the closure area than 

inside. 

We used WinBUGS to implement Bayesian Markov chain Monte Carlo (MCMC) 

methods for model estimation (Lunn et al. 2000). WinBUGS uses the Gibbs sampling 

algorithm to sample from the posterior distributions of parameters. We used the R 

statistical environment with packages R2WinBUGS and Coda to interface with 

WinBUGS (Lunn et al. 2000, R Core Team 2013). Flat priors were specified for all 

parameters (Table 3). All 20 years of NMFS observer data were included in the 

estimation process. MCMC runs consisted of 200,000 iterations, including a burn-in of 

50,000, and 3 chains. Convergence of chains onto stable estimates was confirmed using 

the diagnostic statistic 𝑅𝑅� and trace plots of parameter estimates over MCMC iterations.  

To select the best model, we used the Deviance Information Criterion (DIC), a 

Bayesian measure of model fit that includes a penalty factor for the number of parameters 

(Spiegelhalter et al. 2002). Low DIC values are preferred to high DIC values. Models 

with DIC values within 1-2 points of the lowest value deserve consideration 

(Spiegelhalter et al. 2002). We selected models M1r and M2 as the best models for 

leatherbacks and humpbacks, respectively (see Results).  

Predicting Total Takes, Total Mortality and Expected Annual Mortality 

The Poisson rate parameters λi = 𝜃𝜃ni and mi = λiq are the expected annual takes 

and deaths, respectively, given fishing effort ni, and where q is the conditional mortality 

rate for takes.  

For each species, we generated posterior distributions for mi and posterior 

predictive distributions (PPDs, estimated distributions of unobserved bycatch or mortality 
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counts given the estimated posterior for 𝜃𝜃 and a specified level a fishing effort; see 

Appendix A) for xi (observed takes), yi – xi (unobserved takes), yi (total takes), wi 

(observed deaths), zi – wi (unobserved deaths), and zi (total deaths), using the following 

simulation steps (model details in Table 3; parameter estimates in Table 4): (1) Calculate 

𝜃𝜃Rpre-reg. and 𝜃𝜃Rpost-reg. for leatherbacks (M1r was the best leatherback model; see Results), 

and 𝜃𝜃Routside and 𝜃𝜃Rinside for humpbacks (M2 was the best humpback model), using random 

draws from the posteriors for β0 and β1. (2) For year i, calculate a mean λi,e, where e = 

observed, unobserved, or total sets in year i, i.e., 𝜆𝜆𝑖𝑖,𝑒𝑒 = ∑ 𝜃𝜃𝑟𝑟1
𝑟𝑟=0 𝑛𝑛𝑖𝑖,𝑟𝑟,𝑒𝑒𝑓𝑓𝑖𝑖,𝑟𝑟,𝑒𝑒 for 

leatherbacks and 𝜆𝜆𝑖𝑖,𝑒𝑒 = ∑ 𝜃𝜃𝑎𝑎1
𝑎𝑎=0 𝑛𝑛𝑖𝑖,𝑎𝑎,𝑒𝑒𝑓𝑓𝑖𝑖,𝑎𝑎,𝑒𝑒 for humpbacks, where f is the fraction of sets 

in a data classification. (3) Calculate mi = 𝑞𝑞�λi,e for each level of effort, where the value 𝑞𝑞� 

is drawn from the posterior of q. (4) Draw a value of yi – xi from Poisson(λi,e=unobs.). (5) 

Calculate yi by adding the true value of xi to yi – xi. (6) Draw a value of zi – wi from 

Binomial(yi – xi, 𝑞𝑞�). (7) Calculate zi by adding the true value of wi to zi – wi. (8) Draw a 

value of xi and wi, from Poisson(λi,e=obs.) and Binomial(xi, 𝑞𝑞�), respectively (for 

comparison of model predictions with real data). (9) Repeat previous steps 10,000 times 

for year i to generate the PPDs. (10) Repeat previous steps for each year, 1990-2009. (11) 

Repeat steps 1-3 to calculate mfuture for a hypothetical future year. For this, we use the 

average number of sets from the most recent 5-year period in the data (2005-2009), 

assuming this reasonably estimates the level of effort that would probably occur in near 

future years given the capacity (boats, permits, gear, etc.) and recent activity in the 

fishery. This simulation allowed us to recreate the 20-year history of the fishery in terms 

of observed, unobserved, and total bycatch and mortality (Figures 3, 4). 
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Comparison to Ratio Estimators 

For fisheries with <100% observer coverage, ratio estimators are commonly used 

to estimate total bycatch and mortality (e.g., Julian and Beeson 1998, Carretta et al. 2004, 

Amande et al. 2012). The annual set-level bycatch rate for species s, rs, is estimated as 

total observed bycatch divided by the total number of observed sets for the year. 

Multiplying this by the total number of sets fished for the year, 𝐷𝐷�, generates the estimate 

of total bycatch (Carretta et al. 2004). The variance for total bycatch is 𝜎𝜎𝑚𝑚2 = 𝐷𝐷�2𝜎𝜎𝑟𝑟2, 

where 𝜎𝜎𝑟𝑟2 is the variance estimate for the set-level bycatch rate. Following (Carretta et al. 

2004), this may be obtained by resampling individual fishing trips (each containing one 

or more sets) from the dataset to construct a nonparametric bootstrap distribution for rs 

from which the variance is calculated. For comparison to the Bayesian model-based 

approach presented here, we calculated ratio estimates for total takes and total mortality 

for both leatherbacks and humpbacks (Table 5, Figures 3, 4). Our calculations vary 

slightly from those reported by Julian and Beeson (1998) and Carretta et al. (2004) due to 

slight differences in our estimates of total fishing effort. 

Comparing Expected Annual Mortality to Policy Thresholds 

We compared the posterior distributions of mfuture for each species to relevant 

policy thresholds. For humpbacks, the thresholds are prescribed by the MMPA. For the 

stock affected by the DGN fishery (California/Oregon/Washington stock), the maximum 

cumulative number of allowable deaths or serious injuries each year from all 

anthropogenic sources, or Potential Biological Removal (PBR), is 11.3 (this estimate 

applies to 2010-2012) (Carretta et al. 2010). Based on its annual interactions with a stock 

of marine mammals, a fishery can be classified as Category I (mortality ≥ 50% of the 
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PBR level, i.e., frequent incidental mortality, or “high bycatch impact”), Category II (1% 

of the PBR level < mortality < 50% of the PBR level, i.e., occasional incidental mortality, 

or “medium bycatch impact”), or Category III (mortality ≤ 1% of the PBR level, i.e., rare 

or no known incidental mortality, or “low bycatch impact”). We superimposed these 

classification thresholds (1% of PBR or 0.113 humpbacks per year and 50% of PBR or 

5.65 humpbacks per year) onto the posterior distribution of mfuture and calculated the 

probability that the DGN fishery would fall into each of the categories in future years. 

PBR is not used to manage sea turtles; however, Incidental Take Statements contained 

within Biological Opinions pursuant to the ESA essentially serve as de facto take limits 

(provided the stated take levels are associated with a no-jeopardy finding in the 

Biological Opinion). In this sense, NMFS “authorized” a maximum of 6 leatherback 

deaths in a 3-year period in 2000 (NMFS 2000). We evaluated the probability of mfuture 

for leatherbacks exceeding 2 deaths per year.  

RESULTS 

Model Selection 

Models M1r (simple model with regulation variable) and M1z (simple model with 

ZIP parameters corresponding to pre- and post-regulation) had the lowest DIC values for 

leatherbacks (Table 4); we favored M1r because of its simpler model structure (no zero-

inflation) and its better fit to the data (M1z underestimated observed takes for pre-2001 

years). There was little support for the next best models (M1, M2z, and M2), for which 

DIC values were 6-10 points higher. Model choice for humpback whales was less clear, 

owing to limited information in the dataset (only 3 observed takes). Models M2, M2z, 

M4, and M4z had the lowest DIC values, followed within 1-3 DIC points by M1, M1z 
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and M1r. We favored M2 (area model) for its simpler structure and because it captured 

the effect of area suggested by the observer data (all 3 humpback takes occurred outside 

the closure area).  

In most cases, the addition of ZIP parameters did not substantially decrease the 

DIC value; ZIP models typically had DIC values within 0-2 points of their non-ZIP 

counterparts (Table 4). One exception was M1z for leatherbacks, which yielded a 6 point 

improvement over M1. However, the same decrease was achieved by M1r, which 

separated pre- and post-regulation periods without the addition of ZIP parameters. For 

most ZIP models, the ZIP parameter estimates were roughly equal across data 

classifications, suggesting a simpler model could have been specified with a 𝜃𝜃 parameter 

that varies and ZIP parameter p that remains constant. We specified and tested such 

models, but they were not well-supported (i.e., DIC values were too high) and they did 

not change results. Similarly, we tested models that held 𝜃𝜃 constant and let p vary across 

data classifications; again, we observed no improvements.  

Based on model M1r for leatherbacks, the estimate of β0 = -5.6 (Table 4, posterior 

mean) corresponds to a pre-regulation bycatch rate of 𝜃𝜃 = eβ
0 = 0.0037 takes per set. The 

estimate of β1 = -2.6 corresponds to a post-regulation bycatch rate of 𝜃𝜃 = e β
0 + β1 = 

0.0003, which suggests the per-set bycatch rate was more than ten times higher before the 

2001 regulation was implemented. Based on model M2 for humpback whales, β0 = -7.8 

corresponds to 𝜃𝜃 = 0.0004 for effort outside the closure area, while β1 = -800 corresponds 

to 𝜃𝜃 being effectively zero for effort inside the closure area.  
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Predictions for Leatherback Turtles 

Data and predictions for observed leatherback takes from model M1r show a 

distinct drop in takes after 2000 (Figure 3a). The upper limit of the 99% prediction 

interval (the prediction and credible intervals we describe are one-tailed) had a maximum 

of 8 takes in pre-regulation years and 2 takes in post-regulation years (Figure 3a). It was 

higher than the actual number of observed takes for all but one year. The median 

predictions ranged from 0 to 3 takes per year and appeared to fit the data well. 

M1r predictions for total takes, total mortality, and expected annual mortality 

generally decreased from 1990 to 2000 (Figures 3b, 3c, 5a) -- reflecting a steady decline 

in fishing effort over that time period (Table 1). The upper limit of the 99% prediction 

interval during this time ranged annually from 13 to 36 for takes and from 9 to 25 for 

mortality; the upper limit of the 99% credible interval ranged from 7.4 to 21.6 for 

expected annual mortality. After 2000, predictions for all three quantities were close to 

zero. Pre-regulatory ratio estimates (Table 5) were much more volatile than our model-

based estimates, ranging from zero in years when no bycatch was observed (even though 

some may well have occurred) to values considered rather unlikely by our model 

estimates (e.g., in 1992, 1995) (Figures 3b, 3c). 

Based on the predicted mode across 20 years, the most probable cumulative 

number of leatherback takes in this fishery was 141 (�̅�𝑥 = 163; 95% prediction interval 

[PI] = 104-242), with 88 of those resulting in mortality (�̅�𝑥 = 94; 95% PI = 52-153).  

Predictions for Humpback Whales 

Data and predictions for observed humpback whale takes from model M2 

remained relatively steady through time (Figure 4a). The upper limit of the 99% 
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prediction interval had a maximum of 2 takes in both pre- and post-regulation periods. It 

was higher than the true number of observed takes in all but 1 year (Figure 4a). The 

median prediction was zero for all years.  

M2 predictions for total takes, total mortality, and expected annual mortality 

decreased slightly from 1990 to 2000 (Figures 4b, 4c, 5c). The upper limit of the 99% 

prediction interval over this time ranged annually from 4 to 6 for takes and from 2 to 3 

for mortality; the upper limit of the 99% credible interval ranged from 1.1 to 2.0 for 

expected annual mortality. After 2000, predictions for all three quantities were similar but 

slightly closer to zero. The 3 years with observed takes had positive ratio estimates for 

takes; all other ratio estimates were zero (Figures 4b, 4c). There are no previously 

reported ratio estimates for humpback mortality, but (Julian and Beeson 1998) provided 

an estimate of total takes for 1994 (6 takes, CV=0.91).  

The most probable cumulative number (the predicted mode) of humpback whale 

takes in this fishery over 20 years was 17 (�̅�𝑥 = 21; 95% PI = 6-50), with 1 of those 

resulting in mortality (�̅�𝑥 = 6; 95% PI = 0-21). 

Comparing Expected Annual Mortality to Policy Thresholds 

Posterior distributions for mfuture are shown in Figures 5b and 5d. For leatherback 

turtles, the probability of mfuture exceeding 2 deaths per year was 7.0x10-4. For humpback 

whales, the probability that mfuture was ≤ 1% of the 2010-2012 PBR level (Category III) 

was 0.4198; the probability that it was between 1% and 50% of the PBR level (Category 

II) was 0.5802; the probability that it was ≥ 50% of the PBR level (Category I) was 0. 

The cutoff threshold between Categories I and II (50% of PBR level, or 5.65 whales per 
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year) did not overlap with the posterior distribution and is therefore not shown in Figure 

5d.  

DISCUSSION 

Estimating Rare-Event Fisheries Bycatch 

When applied to fisheries with rare-event bycatch and low observer coverage, 

ratio estimators may provide misleading inference, with high levels of sampling variance 

generating a false appearance of catches ranging from zero in some years to alarmingly 

high values in others. Fisheries managers have recognized these issues and have 

sometimes used multi-year averages when assessing fisheries interactions for policy 

purposes. Pooling observer data from multiple years effectively reduces the volatility 

(sampling variance) of estimates associated with small numbers of observed takes, but 

pooling is an ad hoc strategy that leaves open questions as to how many of years of 

information should be pooled under different circumstances and may fail to address 

stakeholders' perceptions of low or high catches in individual years. The model-based 

Bayesian approach presented here achieves the same objective of reducing volatility 

through its formal use of all information contained in the time series, but it carries the 

added benefits of obviating arbitrary decisions about how many years of data to combine 

and enabling probabilistic inference for bycatch and mortality within a single year, 

conditional on the amount and known characteristics of fishing effort. 

Modeling Conclusions 

The purpose of this paper was to demonstrate a Bayesian model-based approach 

that uses rare-event bycatch data and minimal supporting detail on fishing effort to 

estimate bycatch, infer expected annual mortality, and evaluate the probability of 

 
 



182 
 

exceeding regulatory thresholds. We explored the importance of relevant covariates to 

account for broad scale differences in bycatch rates across regulatory regimes and time-

area combinations, but causal inference was not our focus. Fully explaining variation in 

bycatch rates is important, but would require a richer dataset, including for example 

fishery-independent data on the habitat, range, migration, population structure, status, etc. 

for bycatch species (Eguchi et al. (in prep.)). In reality, the rare-event nature of bycatch 

typically limits evaluation of causal factors to simple models, since the associated small 

number of observed takes is difficult to fit to models with a large number of parameters. 

Our analysis suggested that the highest levels of leatherback bycatch occurred in years 

with higher levels of effort, and in years prior to regulatory implementation of the 

leatherback closure (decreased by an order of magnitude after the closure). For 

humpbacks whales, area was the strongest effect.  

Management and Policy Applications 

In our case study analysis of the DGN fishery, we expressed estimates of total 

bycatch and mortality for leatherbacks and humpbacks as PPDs (Figures 3b, 3c, 4b, 4c), 

which allowed us to quantify upper limits of the 99% prediction intervals for the 

estimates. These limits can be interpreted as upper bounds on the number of leatherbacks 

or humpbacks that are predicted to be incidentally caught or killed in a given year, and 

managers can declare with 99% certainty that total bycatch or mortality did not exceed 

that upper bound. It would be straightforward to evaluate other limits as well (e.g., obtain 

minimum estimates, or upper or lower limits for multi-year sums). We also presented 

median model predictions, which can be interpreted as point estimates of total bycatch or 

mortality and compared to ratio estimates (Figures 3b, 3c, 4b, 4c). Median model 
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predictions fluctuated with annual variations in fishing effort but otherwise varied over a 

narrower range than ratio estimates. This is due to the assumed model structure (i.e., 

bycatch rates that vary with regulatory regime or area, but not year) and our use of 20 

years of data to estimate model parameters.  

While estimates of total bycatch and mortality are important, regulatory reference 

points are based on limits to annual rates of mortality. The use of posterior distributions 

allows straightforward assessment of the probability that such limits (for a single year, or 

for multiple years combined) are exceeded. For humpbacks, we were able to make 

probability statements with respect to PBR-based thresholds used for MMPA fishery 

classification (Figure 5d). Using this approach, the DGN fishery might best be classified 

as a Category II fishery, since this is the most likely scenario given the data. If the model 

used for inference accurately represents the true data-generating process and parameter 

estimation is unbiased, the probability that the fishery should actually be classified in the 

low impact Category III (0.42) can be thought of as the probability of committing a Type 

I error (falsely inferring that bycatch impact is medium rather than low). Alternatively, if 

managers chose to classify the fishery as Category III, there would be a 0.58 probability 

of committing a Type II error (failing to recognize that bycatch impact is medium rather 

than low). A similar management model could potentially be implemented for sea turtles, 

though suitable population-relevant reference points for fisheries mortality would be 

needed to support this approach (Curtis and Moore 2013). This pragmatic approach for 

classifying fisheries bycatch impact would be novel for sea turtles.  
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Concluding Remarks 

Bayesian model-based methods are well suited to analyze rare-event bycatch data 

for fisheries with <100% observer coverage. We have shown how inference of expected 

annual mortality could be used to evaluate the probability that regulatory thresholds are 

exceeded for a single protected species, providing examples for leatherback sea turtles 

and humpback whales. Future efforts should focus on generalizing the approach to 

inform multi-species or multi-fisheries bycatch management strategies. For example, one 

could use this approach to estimate the probability that bycatch exceeds a policy 

reference point for multiple species subject to bycatch. Given budgetary constraints for 

monitoring, approaches such as those employed here could help maximize the benefit of 

observer data for the protection of vulnerable marine species, while minimizing the cost 

of observer programs and the regulatory burden placed on fisheries.  
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Table 2. Summary of observed takes of leatherback sea turtles (DC) and humpback 
whales (MN) in the California drift gillnet fishery, 1990-2009. Time-area categories 
related to the leatherback sea turtle closure implemented in 2001 are shown (see Table 1 
for definitions). 
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Figure 2. Scatterplot showing the relationship between the numbers of observed sets and 
leatherback sea turtle takes per year (Pearson's r=0.672; p=0.001). Observer data are 
indicated by closed symbols and model predictions by open symbols, with triangles and 
circles for pre- and post-2001 regulation time periods, respectively. Upper limits of the 
99\% prediction intervals were produced by model M1r (see Methods). Predictions were 
made for observed data only as a means of checking the model. 
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Figure 3. Model M1r predictions for the number of leatherback sea turtle takes in (a) the 
observed portion of fishing for each year, and (b) total fishing effort for each year. The 
upper limits of the 99% prediction intervals are indicated with circles and solid lines, the 
median predictions with triangles and dashed lines. The actual number of observed takes 
for each year is shown in (a), and ratio estimates are shown for comparison in (b). Model 
predictions and ratio estimates for total mortality are shown in (c). 
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Figure 4. Model M2 predictions for the number of humpback whale takes in (a) the 
observed portion of fishing for each year, and (b) total fishing effort for each year. The 
upper limits of the 99% prediction intervals are indicated with circles and solid lines, the 
median predictions with triangles and dashed lines. The actual number of observed takes 
for each year is shown in (a), and ratio estimates are shown for comparison in (b). Model 
predictions and ratio estimates for total mortality are shown in (c). 
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Figure 5. Model predictions for expected annual mortality (mi, where i is year) for 
leatherback sea turtles (a; model M1r) and humpback whales (c; model M2). Observed 
and fisher-reported mortality are shown in (a) and (c) as benchmarks (note: observed data 
only represent 15.6% of fishing effort on average). In (b) and (d), expected annual 
mortality (mfuture) is based on fishing effort for a hypothetical future year (1064 sets, the 
2005-2009 average). In (d), a cutoff of 1% of the Potential Biological Removal (PBR) 
policy threshold for this population of humpback whales (0.113 whales per year) 
represents a decision point for classification of the fishery into either Category III 
(mortality ≤ 1% of PBR) or Category II (1% of PBR < mortality < 50% of PBR). The de 
facto limit based on NMFS-authorized incidental mortality of leatherbacks is shown in 
(b). 
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APPENDIX A 

Theoretical Basis for Estimating Rare-Event Bycatch Using a Bayesian Approach 

For a single species (e.g., leatherbacks), we used a Poisson likelihood function to 

model the stochastic dependence of xi, the number of observed takes in year i, on 𝜃𝜃, the 

per-set take rate parameter, and ni, the number of observed sets in year i:  

𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃,𝑛𝑛𝑖𝑖) =  𝑒𝑒−𝜃𝜃𝑛𝑛𝑖𝑖 (𝜃𝜃𝑛𝑛𝑖𝑖)𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖!

,    (A.1) 

where 𝜃𝜃ni = λi is the Poisson rate (mean) parameter. Previous studies have also used the 

Poisson distribution to model bycatch (NMFS 2004, Pradhan and Leung 2006, Gardner et 

al. 2008, Murray 2009, 2011) because it can characterize data in which each observation 

has a high probability for a zero count, a small probability for a count of one, and an 

infinitesimal probability for a count of two or more. The DGN fishery data have these 

Poisson characteristics plus one more: a mean per-set take rate (2.944 x 10-3) roughly 

equal to the variance (2.936 x 10-3). A strong positive correlation between the numbers of 

observed takes and sets per year (Pearson's r = 0.672; p = 0.001; Figures 1 and 2) 

supports including the number of sets in the model. We assume statistical independence 

of all sets and takes.  

We used a conjugate gamma prior distribution for 𝜃𝜃:  

𝑝𝑝(𝜃𝜃)  ∝ 𝑒𝑒−𝛽𝛽𝜃𝜃𝜃𝜃𝛼𝛼−1,    (A.2) 

which constrains 𝜃𝜃 to be positive. After applying Bayes' rule, the posterior density,   

𝑝𝑝(𝜃𝜃|𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖)  ∝ 𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃,𝑛𝑛𝑖𝑖)𝑝𝑝(𝜃𝜃)   (A.3) 

∝ 𝑒𝑒−(𝛽𝛽+𝑛𝑛𝑖𝑖)𝜃𝜃𝜃𝜃∝+𝑥𝑥𝑖𝑖−1,     (A.4) 
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is also a gamma distribution, Gamma(α+xi, β+ni), with a form that suggests interpreting 

α and β as the prior numbers of observed takes and sets from previous years, respectively, 

before observing the current year's sample of xi takes in ni sets.  

Following this interpretation, a noninformative prior could be specified by 

assigning α = 0 and β = 0, yielding 

𝑝𝑝(𝜃𝜃) =  𝜃𝜃−1, 0 < 𝜃𝜃 < ∞,   (A.5) 

which is diffuse and improper (does not integrate over the support). This prior reflects 

ignorance about 𝜃𝜃 before observing the data, and places the greatest weight on values 

near zero. The resulting posterior,   

𝑝𝑝(𝜃𝜃|𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖)  ∝ 𝑒𝑒−𝜃𝜃𝑛𝑛𝑖𝑖𝜃𝜃𝑥𝑥𝑖𝑖−1,    (A.6) 

bears formal similarity to the likelihood function, but now summarizes reasonable beliefs 

about 𝜃𝜃 in light of the current observation of xi. The posterior mean, 𝜇𝜇𝜃𝜃= 
𝑥𝑥𝑖𝑖
𝑛𝑛𝑖𝑖

, and variance, 

𝜎𝜎𝜃𝜃2 =  𝑥𝑥𝑖𝑖
𝑛𝑛𝑖𝑖2

, are formally identical to the maximum likelihood estimator and variance of 

the maximum likelihood estimator of 𝜃𝜃 in the  classical Poisson model, but are subject to 

a different interpretation under the Bayesian paradigm. 

To specify an informative prior, we could assign α = xp and β = np, where xp and 

np are the respective numbers of observed takes and sets in all previous years p: 

𝑝𝑝(𝜃𝜃) ∝ 𝑒𝑒−𝜃𝜃𝑛𝑛𝑝𝑝𝜃𝜃𝑥𝑥𝑝𝑝−1.        (A.7) 

The corresponding posterior,  

𝑝𝑝(𝜃𝜃|𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖) ∝ 𝑒𝑒−𝜃𝜃�𝑛𝑛𝑝𝑝+𝑛𝑛𝑖𝑖�𝜃𝜃𝑥𝑥𝑝𝑝+𝑥𝑥𝑖𝑖−1,     (A.8) 

has a mean  𝜇𝜇
𝜃𝜃= 

𝑥𝑥𝑝𝑝+𝑥𝑥𝑖𝑖
𝑛𝑛𝑝𝑝+𝑛𝑛𝑖𝑖

 and variance 𝜎𝜎𝜃𝜃2 =  𝑥𝑥𝑝𝑝+𝑥𝑥𝑖𝑖
(𝑛𝑛𝑝𝑝+𝑛𝑛𝑖𝑖)2

. 
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The posterior predictive distribution (PPD) for the number of unobserved takes, yi 

– xi, is derived from the Poisson likelihood function and the posterior for 𝜃𝜃:   

𝑝𝑝(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝑁𝑁𝑖𝑖 ,𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖) =  ∫ 𝑝𝑝(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝜃𝜃,𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑖𝑖)𝑝𝑝(𝜃𝜃|𝑛𝑛𝑖𝑖 , 𝑥𝑥𝑖𝑖)𝑑𝑑𝜃𝜃
 
𝜃𝜃 ,  (A.9) 

where yi and Ni are the total (observed + unobserved) numbers of takes and sets in year i, 

respectively. This is a negative binomial distribution, 𝑁𝑁𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛(𝛼𝛼 + 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖 ,
𝛽𝛽+𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖−𝑛𝑛𝑖𝑖

 ), where 

𝛼𝛼 and β are again the numbers of observed takes and sets from all previous years 

(Gelman et al. 2004). This PPD reflects posterior uncertainty in 𝜃𝜃 and in unobserved 

experience. Adding 𝑥𝑥𝑖𝑖 produces a PPD for 𝑦𝑦𝑖𝑖. Whereas a posterior distribution supports 

inference about a parameter in the likelihood function (in our case, 𝜃𝜃, a bycatch rate), a 

posterior predictive distribution supports predictive statements about the output of the 

likelihood function (in our case, yi – xi, the unobserved bycatch count). A PPD may be 

specified for any amount of fishing effort based on past numbers of observed sets and 

takes, regardless of whether the effort occurred in the past or has yet to occur in the 

future.  This assumes that the same probability model holds under different years and 

conditions, which seems reasonable given that the distribution of these rare-event takes 

over 20 years appears to follow a Poisson distribution. The PPD can be used to produce 

range or point estimates of bycatch for the specified level of effort. 

To model the number of observed deaths, wi, we specify a binomial likelihood 

function which quantifies the stochastic dependence of wi on xi and a conditional 

mortality parameter, q (i.e., given a take of this species occurs, the probability that the 

animal dies):  
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𝑓𝑓(𝑤𝑤𝑖𝑖|𝑥𝑥𝑖𝑖 , 𝑞𝑞𝑠𝑠) =  𝑥𝑥𝑖𝑖!
𝑤𝑤𝑖𝑖!(𝑥𝑥𝑖𝑖−𝑤𝑤𝑖𝑖)!

𝑞𝑞𝑤𝑤𝑖𝑖(1 − 𝑞𝑞)𝑥𝑥𝑖𝑖−𝑤𝑤𝑖𝑖 .    (A.10) 

A noninformative, conjugate prior of Beta(1,1) for q results in a posterior 

distribution of the form Beta(1+wp, 1+xp-wp) (Chapter 2 in (Gelman et al. 2004)). Over 

20 years, wp = 14 deaths and xp = 24 takes for leatherbacks, and wp = 1 death and xp = 4 

takes for humpbacks (the fisher-reported mortality is conservatively treated as a take for 

purposes of estimating the conditional mortality rate for humpbacks). Throughout our 

analyses, we use the posteriors Beta(15, 11) for leatherbacks and Beta(2, 4) for 

humpbacks.  

The PPD for the number of unobserved deaths, zi – wi, can be constructed using 

Binomial(PPD for yi – xi, q). Adding wi to this distribution produces a PPD for zi, the 

total number of deaths for that species in year i. 
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CONCLUSION 

 The goal of this dissertation was to apply theoretical concepts (ecosystem 

services, indicators, and trade-offs) of ecosystem-based management (EBM) to oceanic 

ecosystems. These ecosystems are incredibly important for supporting people around the 

world, and they need more holistic management if we expect them to provide services for 

a growing global population. The work accomplished in this dissertation has provided 

new insights related to ecosystem services, indicators, and trade-offs. All of these are 

important to the EBM goals of implementing management strategies that incorporate the 

needs of humans, manage anthropogenic influences, and are adaptive over time with 

continued scientific input. The findings show promise for EBM in oceanic ecosystems, 

and particularly for the eastern tropical Pacific (ETP). 

 This research has laid the foundation for several future studies that will continue 

to push EBM forward in the oceanic commons. Related to ecosystem services in the ETP, 

the importance of sport fishing (mostly for billfishes and tunas) to local economies 

should be further studied. There were only a few recent reports available on the economic 

impacts of this activity in a few of the major Latin American locations known for 

attracting anglers. The estimated value for the three major locations combined was $1.2 

billion per year, which was almost half of our estimated value for the commercial fishery. 

There is a perception among anglers that commercial fishing negatively impacts their 

experience, and this would be an interesting idea to test. This is part of a broader question 

– how does the use of one ecosystem service (e.g., commercial fisheries) impact the 

availability of another (e.g., recreational fishing)? A starting point might be to determine 

the degree of overlap in the fished populations. Similarly, a rich but complex area of 
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research would be to investigate how each unit of fishing impacts biodiversity and carbon 

storage in the ocean. With respect to the value of biodiversity in the ETP, it would be 

interesting and important to study both the existence value of cetaceans, seabirds, and 

marine turtles through surveys (e.g., contingent valuation surveys), and also the direct use 

value through surveys of eco-tourists throughout the region. The reason for doing this 

type of research would be to better understand the users and stakeholders of the ETP, 

other than commercial fisheries. Ideally, all of the stakeholders would be involved in 

setting overarching goals for the region. 

 The research on indicators in this dissertation demonstrated that tuna fishery 

metrics can be used to predict cetacean densities in the ETP. This was an exciting result 

in itself, and it also gives us confidence that we can apply the approach to seabirds and 

larval fishes, for which we have similar long-term datasets. The ability to predict 

densities of these three taxa using fishery metrics in future years would facilitate 

monitoring of upper trophic levels, which would be a powerful tool for EBM.  

 The chapter on informing protected species bycatch management is currently in 

press with Ecological Applications. There is potential to apply the approach to other 

species and fisheries, and the general methods are applicable to other natural resource 

problems.  

This research has relied upon the use of long-term datasets that have been 

maintained over decades. These datasets are invaluable and will continue to be 

instrumental in understanding linkages among species, oceanographic habitats, and 

human activities as we examine them with new perspectives that are relevant to EBM for 

the oceans.  
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