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“The juggernaut of technology-based capitalism will not be stopped. Its momentum is
reinforced by the billions of poor people in developing countries anxious to participate in
order to share the material wealth of the industrialized nations. But its direction can be
changed by mandate of a generally shared long-term environmental ethic. The choice is
clear: the juggernaut will very soon either chew up what remains of the living world, or it
will be redirected to save it.”

Edward O. Wilson
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ABSTRACT OF THE DISSERTATION

Ecosystem-based management for the oceanic commons: Applying the concepts of
ecosystem services, indicators, and trade-offs to make informed decisions

by

Summer Lynn Martin

Doctor of Philosophy in Oceanography
University of California, San Diego, 2014
Professor Lisa Ballance, Chair
Professor Paul Dayton, Co-Chair

The ocean provides numerous ecosystem services, or natural benefits, which are
critical to the well-being of humanity. Over the last century, however, humans have had
tremendous impacts on the ocean. Overexploitation of resources, habitat destruction,
pollution and anthropogenic climate change jeopardize the ocean’s ability to support a
growing population.

The ocean will provide essential ecosystem services if human activities are
managed sustainably. Traditional management, with its focus on single sectors or species,

has often failed to conserve natural resources. Ecosystem-based management (EBM) has
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been proposed as an alternative, holistic approach which considers the entire social-
ecological system, including humans. It calls for maintaining healthy, productive and
resilient ecosystems.

Implementation of marine EBM has largely focused on coastal areas. There has
been much less emphasis on oceanic ecosystems. These systems represent a large
proportion of the earth’s surface and face complex challenges — they include oceanic
commons, multiple jurisdictions, trans-boundary resources, and global services. For these
reasons, a more holistic approach is needed.

This dissertation applies theoretical concepts of EBM to oceanic ecosystems in
the eastern Pacific Ocean. Through analysis of long-term datasets containing biological,
fisheries, oceanographic, and economic information, this research offers new perspectives
to support oceanic EBM. The first two chapters focus on the eastern tropical Pacific
(ETP), and the last chapter on the California Current Ecosystem. The chapters follow a
progression from broad-scale, big-picture challenges to fine-scale, specific problems.

The first chapter provides an ecosystem-level perspective, focusing on broad-
scale benefits provided by oceanic systems. It highlights and quantifies the variety of
services in the ETP and sets the stage for further analysis of trade-offs. The second
chapter focuses on the use of indicators to predict ecosystem characteristics that are
associated with desired services. It demonstrates that tuna fishery metrics can be used as
biological indicators for cetacean densities in the ETP. The third chapter focuses on fine-
scale problems that arise when EBM goals conflict and decisions must be made. It

provides a quantitative tool for assessing bycatch of protected species in fisheries.
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Together, the results from the three chapters show promise for the implementation of

EBM in oceanic ecosystems.
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INTRODUCTION

Anthropogenic impacts on ocean ecosystems remain intense and global, despite a
growing awareness that marine ecosystems are degraded (Worm et al. 2006, Halpern et
al. 2008). Social, economic, and political pressures interact to impact marine ecosystems
in complex ways. Traditional management of living marine resources has focused on
single species or stocks of interest and has relied on single disciplines of expertise. This
has resulted in a piece-meal understanding of marine ecosystems and, by failing to
address the complex interaction of factors that impact living resources, it has often failed
to conserve them. Ecosystem-based management (EBM) offers an alternative, holistic
approach that considers humans as integral components of social-ecological systems, and
not only in negative ways. EBM does not focus on a single species, sector, activity, or
concern, but rather considers all of the benefits provided by an ecosystem and all of the
impacts that humans have on that system. The primary goal of EBM is to maintain an
ecosystem in a healthy, productive, and resilient condition so that it will continue to
provide humans with the goods and services they want and need (McLeod et al. 2005).

A successful EBM approach requires implementation of several key concepts
(McLeod and Leslie 2009). Humans should be viewed as inextricably linked to the
natural world, thus forming social-ecological systems that are the focus of EBM.
Resilience — the extent to which a system can absorb perturbations and still maintain its
structure, function, and identity — should be investigated and understood. Management

strategies should be: 1) based on input from monitoring, research, and



modeling, 2) adaptive over time, 3) focused on maintaining resilience of social-ecological
systems in desirable states and eroding resilience of undesirable states, and 4) aimed at
managing anthropogenic influences, rather than ecosystems themselves. The cumulative
effects of different anthropogenic activities on the system should be assessed and the
trade-offs associated with those different activities evaluated. To evaluate such trade-offs,
economic valuation of ecosystem services (i.e., benefits humans obtain from ecosystems)
can be used as a tool. And finally, prior to implementing an EBM approach, the legal and
political landscape should be considered.

EBM has been embraced by government institutions, academics, and conservation
entities around the world, but practical implementation has been difficult to achieve,
particularly for oceanic systems (Ballance and Whitty 2010). Oceanic ecosystems, those
seaward of the continental shelf, face a complex set of challenges. They include waters
under the jurisdiction of multiple nations, as well as the oceanic commons; the living
marine resources they include are often trans-boundary; enforcement of international
agreements is extremely difficult; and the ecosystem goods and services they provide are
truly global. Yet it is precisely because of these complicating factors, and because these
oceanic ecosystems represent such a large proportion of the world’s surface that is
heavily utilized, that a more holistic approach needs to be developed.

The goal of this dissertation is to apply theoretical concepts of EBM to oceanic
ecosystems in the eastern Pacific Ocean. Through the integration and analysis of several
long-term datasets containing biological, fisheries, oceanographic, and economic
information, this research presents new perspectives that are intended to support practical

implementation of EBM for oceanic ecosystems. The first two-thirds of the research



focus on the eastern tropical Pacific (ETP) ecosystem as a case study, and the final third
on a case study from the California Current Ecosystem (CCE). The chapters follow a
progression from broad-scale, big-picture challenges to fine-scale, specific problems

associated with EBM for oceanic ecosystems.
Chapter 1

An Ecosystem Perspective: Oceanic Ecosystem Services

The first chapter provides an ecosystem-level (in fact, a social-ecological system
level) perspective, which focuses on understanding the broad-scale benefits that oceanic
systems provide to humans. This perspective provides the foundation for an EBM
framework. Understanding the full range of ecosystem services, and assigning monetary
values where appropriate, offers an economic approach to evaluating trade-offs and
informing decisions about natural resource use. This approach has been applied to coastal
systems rather extensively (de Groot et al. 2012), but its application to oceanic systems is
lacking. This chapter presents a case study application of the ecosystem services concept
to the oceanic ETP. It integrates long-term datasets from the ETP that span nearly 100
years of commercial fishing (data from the Inter-American Tropical Tuna Commission),
35 years of market information on U.S. fish imports (data from National Marine Fisheries
Service, NMFS), and 20 years of ship-based biological observations (data from NMFS).
These rich data sources, along with other sources from the literature, markets, and
recreational organizations, are used to quantify the major ecosystem services provided by
the ETP — commercial fisheries, biodiversity, carbon storage, and recreational fishing —
and provide a sense of the magnitude of economic value associated with each. The results

indicate that ETP commercial fisheries may be worth an estimated $2.7 billion annually;



sport fishing is likely worth at least $1.2 billion annually; the potential value of natural
carbon storage in the deep ocean and in large vertebrates is on the order of $10 billion;
and values associated with biodiversity in the region, while not quantified here, are likely
on the order of $1 billion based solely on ecotourism opportunities and conservation
investments in the region. Our results illuminate the biological and commercial
importance of the ETP in a global context, provide insights into the quantities and
relative economic values of the major services, and contribute an initial assessment of
ecosystem services that is important for future research and for implementation of EBM
in the region.

Chapter 2

An Upper Trophic Level Perspective: Biological Indicators as Predictors

The second chapter focuses on the use of indicators that can be measured and
monitored through time to predict other characteristics of an ecosystem that are
associated with desired ecosystem services. Characteristics of ideal indicators include
ease of measurement and accessibility of information. Some ecosystem services (e.g.,
fisheries productivity) may be relatively easy to measure and monitor, particularly for
cases in which observer programs have already been implemented. In contrast,
monitoring biodiversity or the status of top predator populations that are not the target of
fisheries can be challenging and expensive, particularly for oceanic ecosystems.
Identification and use of indicators based on linkages within the ecosystem is critical. The
research in this chapter is also focused on the ETP and is aimed at understanding linkages
among upper trophic level animals, specifically a heavily-fished tuna species and

communities of oceanic cetaceans (whales and dolphins). By linking long-term datasets



that capture 20 years of biological observation (data from NMFS) and commercial fishing
activity (data from IATTC), this research uses fishery metrics associated with yellowfin
tuna (Thunnus albacares) as biological indicators for cetacean densities in the ETP. Key
results include maps of predicted cetacean densities that are qualitatively similar to (and
validated by) maps produced by models that include environmental variables. The
approach used here can now be extended to develop similar indicators for seabirds and
larval fishes. By providing measurable indicators of upper trophic level communities, this

approach provides great promise for EBM in the oceanic ETP.
Chapter 3

A Protected Species Perspective: Making Informed Management Choices

The third chapter focuses on relatively fine-scale problems that arise when high-
level EBM goals come into conflict and informed decisions must be made. For example,
marine fisheries provide an important source of protein for billions of people globally,
but they can also negatively impact populations of long-lived, slow-growing megafauna
(e.g., marine mammals, sea turtles, seabirds, and sharks) through incidental bycatch. If
EBM goals for a system include maintaining productive fisheries and healthy populations
of megafauna, then conflicts in which a fishery threatens an endangered species require
difficult decisions. These decisions should be informed by the best available science
regarding the impact of one ecosystem service (the fishery, in this case) on the other (the
endangered species, in this case). This chapter is focused on the CCE and uses a 20-year
fisheries observer dataset (data from NMFS) to model and predict rare-event bycatch of
endangered leatherback sea turtles (Dermochelys coriacea) and humpback whales

(Megaptera novaeangliae) in the drift gillnet fishery off California. Bayesian model-



based methods are used to produce bycatch estimates with associated probabilities to
characterize uncertainty. Results indicate that 50 to 153 leatherback turtles and 0 to 21
humpback whales were killed by the fishery from 1990 to 2009. Comparison of bycatch
predictions to a regulatory threshold for humpback whales (0.113 deaths per year)
suggests that the fishery warrants a “medium bycatch risk” classification; a threshold
does not exist for leatherback turtles, but the probability of exceeding 2 deaths per year (a
de facto expectation) is extremely low. The approach presented in this chapter can be
used by managers to objectively and probabilistically classify fisheries with respect to
bycatch impacts on species, and declare with a stipulated level of certainty that the
fishery did or did not exceed estimated upper bounds. Making informed management
choices related to trade-offs between fisheries and protected species is an important

component of the EBM goal to employ adaptive management strategies.
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CHAPTER 1

An ecosystem services perspective for the oceanic eastern tropical Pacific:

commercial fisheries, biodiversity, carbon storage and cultural services



ABSTRACT

Degradation of marine ecosystems and loss of biodiversity through
overexploitation of natural resources, habitat destruction, pollution, and
anthropogenically-induced climate change have been well documented. The drivers these
problems are economic in nature; until recently, ecosystem services have been assumed
to hold value only if traditionally traded in markets. This has historically made decision-
making for the marine environment simple. Society has extracted commaodities that hold
market value (e.g., fish) at the expense of ecosystem services that lack market value (e.g.,
biodiversity). Understanding the full range of ecosystem services, and assigning
monetary values where appropriate, offers an economic approach to evaluating trade-offs
and informing decisions about natural resource use. This approach has been applied to
coastal systems, but its application to open ocean systems is lacking. Our research
provides a case study application of the ecosystem services concept to an open ocean
ecosystem, with a focus on the oceanic eastern tropical Pacific (ETP), an area of 21
million km? that includes waters of 12 nations and the oceanic commons. We analyzed
the ETP in terms of production, distribution, and consumption of its major ecosystem
services. We examined commercial fisheries as a key provisioning service, biodiversity
(a measure of ecosystem resilience) as a key supporting service, carbon storage as a key
regulating service, and examples of recreational uses (including recreational fishing) as
cultural services. Using 35 years (1975-2010) of historical fisheries and economic data,
we estimated a recent average market value of $2.7 billion for the 10 most abundant
commercially-fished species. We linked total catch and landings to specific countries,

identifying Ecuador, Mexico, and Panama as key fishing nations, with the first 2 also
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receiving 3/4 of total landings. Using a 20-year (1986-2006) dataset, we quantified
species richness patterns and geographic extent for cetaceans, seabirds, marine turtles,
and larval fishes, showing that the ETP contains over 1/3 of the world’s species for the
first 3 taxa, and that hotspots of diversity for cetaceans and seabirds exist hundreds of
kilometers offshore. We estimated the value of carbon export to the deep ocean at $12.9
billion per year, the lost value of carbon storage in two depleted dolphin populations at
$1.6 million, and the annual carbon storage value for total fishery removals (544,000 mt)
at $1.6 million. Finally, we highlighted the case of sport fishing from recent studies
which suggest it is worth at least $1.2 billion. Our results illuminate the biological and
commercial importance of the ETP in a global context, offer insights into the relative
magnitudes of economic value associated with its major ecosystem services, and
contribute to the challenging but critical movement toward ecosystem-based management
for the open ocean.
INTRODUCTION

Ecosystem services are the material and non-material benefits (i.e., goods and
services) that people derive from the ecological processes of the planet’s biosphere
(Ehrlich and Ehrlich 1981, Costanza et al. 1997, Daily et al. 1997, Fisher et al. 2009).
The oceans provide a wealth of ecosystem services that play a critical role in the survival
and well-being of humanity (Ehrlich and Ehrlich 1981, Costanza et al. 1997, Daily et al.
1997, Costanza 1999). These services range in nature and scale, from provisioning (e.g.,
production of food, fuel or water) and regulating (e.g., regulation of climate, floods or
disease) to supporting (e.g., nutrient cycling, oxygen production or habitat creation) and

cultural (e.g., recreational, spiritual or aesthetic uses) (Millenium Ecosystem Assessment
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2003). Key examples highlight the magnitude of their importance. First, the oceans
provision a major food source — nearly 4.3 billion people obtain 15% of their animal
protein from fish (UNFAO 2014). Two-thirds of total (freshwater and marine) annual fish
production comes from the ocean, with 80 million tonnes captured in wild fisheries and
25 million tonnes produced through aquaculture (UNFAO 2014). Second, the oceans
regulate climate by serving as a major carbon sink, absorbing nearly 50% of all
anthropogenic carbon emissions (Sabine et al. 2004). This has dampened the immediate
warming effects of greenhouse gases on the terrestrial biosphere. Third, marine
organisms, most notably phytoplankton, account for nearly 50% of global primary
production (Field et al. 1998). These primary producers support marine ecosystems by
converting carbon dioxide into oxygen and particulate organic carbon (POC) for animals
to consume. This process also starts the biological carbon pump, which transports a
portion of POC from the surface layer to the deep ocean, where it is sequestered on
timescales of hundreds to thousands of years (Henson et al. 2012). Fourth, the oceans
provide a multitude of cultural services, including recreational opportunities (e.g.,
boating, diving, fishing and surfing) and spiritual, artistic, historical, and educational
information (de Groot et al. 2002). These services have been historically important in
human societies and in recent decades made marine tourism the fastest growing tourism
sector in the world (Hall 2001). Globally, the economic value of all marine ecosystem
services combined is estimated at $50 trillion in 2011 $US (Costanza et al. 2014).

In the last century, humans have had a tremendous impact on the ocean.
Degradation of marine ecosystems and loss of biodiversity through the overexploitation

of resources, habitat destruction, pollution and anthropogenically-driven climate change
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has been well documented (Jackson et al. 2001, Dulvy et al. 2003, Pandolfi et al. 2003,
Worm et al. 2005, Lotze et al. 2006, Worm et al. 2006, Halpern et al. 2008). The drivers
of these problems are economic in nature; modern industrial society has largely made
decisions about resource use without considering the negative impacts of its actions on
the environment. Until recently, ecosystem services have been assumed to hold value
only if traditionally traded in markets. This has historically made decision-making for the
marine environment simple. Society has chosen to extract commodities that hold market
value (e.g., fish) potentially at the expense of ecosystem services that lack market value
(e.g., biodiversity). Adding to this problem is the fact that nature’s benefits are often
public goods to which individuals do not hold property rights. In many cases, including
the case of commercial fishing, this has caused a race to exploit the resource without
regard to its future or the impacts on the supporting ecosystem, resulting in the “tragedy
of the commons” (Hardin 1968) and the current jeopardized state of many ecosystems.
These impacts have diminished the ability of natural marine ecosystems to meet the
demands of a growing human population (Worm et al. 2006).

The oceans will provide essential ecosystem services if human activities are
managed sustainably into the future. Traditional marine management has focused on
single sectors, species, or activities, and has relied on single disciplines of expertise. This
approach has resulted in a piece-meal understanding of marine ecosystems and has often
failed to manage or protect natural resources because it does not consider the complex
interaction of social, economic, and political factors impacting those resources.
Ecosystem-based management (EBM) offers an alternative, holistic approach that

considers the entire system, rather than single sectors or species, and explicitly factors
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humans into the equation (McLeod et al. 2005). It emphasizes managing anthropogenic
activities to maintain healthy, productive and resilient ecosystems that provide the
services that humans want and need.

An important step in implementing EBM is to employ an ecosystem services
approach to understand the social-ecological system of interest. This involves
identification and quantification of the natural benefits, human uses and impacts, relevant
stakeholders, and monetary or cultural values associated with the various benefits.
Application of this ecosystem services concept to marine environments has largely
focused on coastal systems, including coral reefs, mangrove forests, salt marshes,
seagrass beds, sand dunes, and beaches. This is apparent in the number of monetary value
estimates that are available for coastal systems. Out of 275 estimates, 95% were relevant
to coastal systems and only 5% pertained to the open ocean (de Groot et al. 2012). There
has been much less emphasis on the open ocean because it is further offshore, more
remote, and more difficult to study and manage. However, as management for open
ocean ecosystems moves toward more holistic approaches, efforts to assess the ecosystem
services they provide will need to progress.

The goals of this paper are to apply the concept of ecosystem services to an open
ocean (e.g., seaward of the continental shelf, which we will refer to as “oceanic”) system,
identify potential trade-offs in alternative uses of the system, and estimate monetary
values where appropriate to facilitate this process. We use the eastern tropical Pacific
(ETP) as a case study and target commercial fisheries as a key provisioning service,
biodiversity as a key supporting service, Carbon dynamics as a key regulating service,

and direct and indirect use by recreational fishers, ecotourists, and conservationists as
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examples of key cultural services. Our results illuminate the importance of the ETP in a
global context and contribute to the challenging but critical movement toward ecosystem-
based management for the open ocean.
METHODS
Study Area

The oceanic eastern tropical Pacific (ETP) as used here is defined as the area
seaward of the continental shelf, from the Americas west to approximately 150°
longitude, and from the U.S.-Mexico border south to central Peru (Fig. 1). This area is
roughly 21 million km?, includes waters of 12 nations and the oceanic commons, and
roughly corresponds to the area managed by two regional fishery management bodies: the
Inter-American Tropical Tuna Commission (IATTC) and the Agreement on the
International Dolphin Conservation Program. It has been used for more than 50 years as
productive fishing grounds for yellowfin, bigeye, and skipjack tuna (Thunnus albacares,
T. obesus, and Katsuwanus pelamis, respectively), and there has been a long history of
interaction between the commercial tuna purse-seine fishery and pantropical spotted and
spinner dolphins (Stenella attenuata and S. longirostris, respectively) (Wade et al. 2007).
The ETP, as defined here, encompasses the entire range of the dolphin stocks impacted
by the fishery. Because of the magnitude of the commercial fishery and the historical
impacts on dolphin populations, the ETP has been well-studied and is relatively data rich
compared to most other oceanic systems (Ballance et al. 2006 and references therein,

Wade et al. 2007, Gerrodette et al. 2012).
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Provisioning Services: Commercial Fisheries

The IATTC maintains an online source of publicly available data on commercial
fisheries catches in the IATTC Convention area. Time series data range from 1918
through 2011, with data beginning in different years for different species groups. Metric
tons (mt) of catch are aggregated by year, species group, vessel flag (country), and gear
type. Combining all gear types and vessel flags, we calculated the mean, standard
deviation, minimum, and maximum annual catch for each species group and for all
species combined. Combining all species groups and gear types, we analyzed the
distribution of total annual catch among vessel flags. Combining all species groups and
vessel flags, we determined the percentage of cumulative total catch obtained by different
gear types. We will refer to the fished species using their common names; Latin names
are provided in Table 1.

The National Marine Fisheries Service (NMFS) Office of Science and
Technology maintains an online database of foreign trade fisheries statistics. For fish
imported to the U.S., data on total weight imported (in kilograms) and price paid (in U.S.
dollars) are aggregated by year, taxon (species group), and export country. We focused
on data corresponding to the top 10 species groups in terms of maximum annual catch
(from the IATTC dataset as described above). Data were available from 1975 to 2010 on
imports from IATTC member countries in Latin America (Colombia, Costa Rica,
Ecuador, El Salvador, Guatemala, Mexico, Nicaragua, Panama, Peru, and VVenezuela).
We excluded IATTC member countries that are not located in Latin America (France,
Japan, South Korea, Spain, and Vanuatu) because the NMFS data include all fish

imported from a country, regardless of where the fish were caught. For Latin American
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countries, we examined fishery profiles from the Food and Agriculture Organization of
the United Nations to confirm that the large majority of fish are caught in the Pacific
rather than the Atlantic; thus, we assumed that all U.S. imports from those countries were
caught in the ETP.

For each of the 10 species groups, we calculated the annual price per metric ton
using the U.S. imports data. We applied these annual prices to total annual catches to
estimate the total market value for each year. Total market values were adjusted for
inflation using the U.S. Inflation Calculator available online, which is based on U.S.
government consumer price index data. All values are presented in 2010 U.S. dollars,
thereby allowing for comparisons across years. Combining the 10 species groups, we
produced a plot of cumulative annual catch and estimated market value (Fig. 4). We used
linear regressions to analyze general temporal trends in catch and market value.

Focusing on yellowfin tuna as the top species in terms of cumulative catch over
the years, we mapped total effort and catch by the purse-seine fishery over a 20 year
period (1986-2006). Effort was measured as the number of purse-seine sets of 3 different
types (on dolphin schools, floating objects, or schools of tuna unassociated with objects
or dolphins); catch was measured in metric tons (mt) of fish caught. The data used in this
analysis were provided by IATTC through a special agreement. The spatial resolution
was 2° latitude by 2° longitude for most of the data; however, when effort in a grid cell
was comprised of fewer than 3 vessels or was solely within one country’s exclusive
economic zone, the data were provided at a resolution of 5° to maintain confidentiality.

For 5° by 5° cells, we divided the catch and effort by 6.25 (the number of 2° by 2° cells
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in one 5° by 5° cell) to standardize values to the 2° by 2° cells. We binned the catch and
effort data into 5 quantitative categories each to map them.

Data on the distribution of purse-seine fishery landings among different ETP ports
in 2010-2011 were provided by IATTC for this study. Species groups represented by
these landings data include albacore tuna, eastern Pacific bonito, bigeye tuna, black
skipjack tuna, eastern Pacific and striped bonito, dolphinfishes, bullet and frigate tunas,
Pacific Bluefin tuna, skipjack tuna, tunas not elsewhere included, and yellowfin tuna. We
plotted the 2010-2011 mean annual percent of landings for each port. For each country,
the data also included the percentage of landings brought to shore by vessels carrying the
flag of that country. From this, we determined the proportion of landings in each country
that is supplied by foreign vessels.

Supporting Services: Biodiversity

Data on cetaceans (whales, dolphins, and porpoises), seabirds, marine turtles, and
ichthyoplankton (includes larval fishes, squids, and octopuses) were collected during
vessel-based surveys of the ETP conducted by the Southwest Fisheries Science Center
(SWFSC) of the National Oceanic and Atmospheric Administration’s National Marine
Fisheries Service between 1986 and 2006. Surveys took place between July and
December, with most effort occurring between August and November. Cetacean data
were collected using standard visual line-transect survey methods (Gerrodette and
Forcada 2005). For this analysis, we used data from 1986-1990, 1998-2000, 2003, and
2006. Seabird data were collected using standard visual strip-transect survey methods
(Ballance 2007). Our analysis includes seabird data from 1988-1990, 1998-2000, 2003,

and 2006. Marine turtle data were collected during the cetacean line-transect surveys, and
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data from 1998-2000, 2003, and 2006 were included here. Ichthyoplankton samples were
collected daily using manta net tows (Vilchis et al. 2009). We included data from 1987-
1990, 1998-2000, 2003, and 2006.

We used a spatial grid of 2° (roughly the distance the ship traverses in one day
while conducting a survey) to investigate biodiversity patterns for cetaceans, seabirds,
and larval fishes. Our metric of biodiversity was species richness, calculated for each 2°
by 2° degree grid cell as the number of species observed over all data years. Sightings or
specimens identified to order, family, or genus only counted toward the species tally if a
species within that higher taxon had not already been observed in that cell. We used the
same spatial grid for turtles, but we calculated sightings density instead of species
richness because nearly all sightings were of olive ridley turtles (Lepidochelys olivacea).
Survey effort (the number of hours the ship spent on survey effort for cetaceans, seabirds,
and turtles, and total volume of water filtered by net tows) was also calculated per grid
cell.

Regulating Services: Carbon export and storage

We estimated the amount of carbon (C) exported annually from the surface to the
deep ocean in the ETP, and the potential market value of this carbon. The ETP as we
have defined it has an area of approximately 2.1 x 10> m2. Emerson et al. (1997)
estimated that 24 grams of C m™ yr are exported from the surface to the deep ocean in
an oligotrophic (nutrient poor) area in the Pacific Ocean. Portions of the ETP, notably,
the Equatorial Cold Tongue and the Costa Rica Dome, are characterized by high nutrient
concentrations relative to oligotrophic waters (Fiedler and Talley 2006), but we used this

value as a conservative estimate for our calculations. The product of these quantities
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estimates the amount of C exported annually in the ETP. After converting this quantity to
metric tons (mt), we divided by 0.2729 mt, the amount of C in 1 mt of CO, (1 trading
unit =1 mt of CO, = 0.2729 mt of C + 0.7271 mt of O,) to estimate the equivalent
number of CO;, trading units. To estimate the potential market value, we multiplied the
CO; units by a range of prices from the European Union Allowances Emissions Trading
System, currently the largest carbon market in the world (USIWG 2013, World Bank
2014). We used the recent average of $7 per mt (with $5 and $9 as lower and upper
limits) to estimate current potential value. For a potential future scenario, we used a much
higher price of $35 per mt, a recent estimate of the price required to achieve climate
stabilization goals and pay for climate-change related damages. This price was also
observed in an early phase of the market before the major economic downturn in 2008.
The tuna purse-seine fishery has potentially impacted the amount of carbon stored
in populations of large vertebrates, specifically populations of fish that are targeted either
directly or indirectly (Gerrodette et al. 2012) and populations of dolphins that were
incidentally depleted as bycatch in the past (Wade et al. 2007). For the fish populations,
we estimated the amount of C that is removed annually by applying a total body carbon
content of 11.5% (Czamanski et al. 2011) to the annual purse-seine fishery biomass
removals of 543,533 mt (Gerrodette et al. 2012). After converting from mt of C to
equivalent CO, trading units, we applied the same range of market prices as above. For
the depleted dolphin populations, we determined the decrease in standing stock biomass
(mt) by taking the difference between the estimated pre-exploitation and current
population sizes (Wade et al. 2007, Gerrodette et al. 2008) and applying a mean body

mass of 65.4 kg and 52.5 kg for northeastern offshore spotted and eastern spinner
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dolphins, respectively (Trites and Pauly 1998, Perrin et al. 2005). We applied a total body
carbon content of 25% (based on an estimate for humans by Wang and Pierson (2010)) to
that biomass, converted it to equivalent CO, trading units, and applied a market price of
CO; to estimate the potential market value of the lost carbon.
Cultural Services: Recreational Fishing

The Billfish Foundation (TBF) exists to promote the conservation of billfish
(marlins, sailfish, and swordfish) and associated species (e.g., tunas), healthy oceans, and
a sustainable recreational fishing industry that targets these species. TBF lobbies for
conservation-based management of both commercial fisheries and recreational fisheries
as part of its strategy. Recently, TBF released a series of sport fishing socio-economic
studies for 3 locations in Latin America: Los Cabos (Baja California Sur, Mexico), Costa
Rica, and Panama (Southwick et al. 2008, Jimenez et al. 2010, Southwick et al. 2013).
The purpose of these studies was to demonstrate the economic value of sport fishing to
local economies. This effort, which included surveys of tourists at airports, anglers,
hotels, restaurants, and local businesses, appears to be the first major attempt to quantify
the economic impact of sport fishing in Latin America. The reports also aim to
understand the factors appealing to international anglers traveling to those locations
(mostly from the U.S.). We believe these reports, with their focus on highly migratory
pelagic species, contain uniquely relevant information for understanding different uses of
ETP ecosystem services. We summarize the important findings across the 3 reports as an

example of key cultural services provided by this region.
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RESULTS
Provisioning Services: Commercial Fisheries
Commercial fisheries operating in the ETP from 1918 to 2011 caught an
estimated total of 28,281,645 mt (Thl. 1). Of this estimated cumulative catch, 65% was
captured using purse-seines, 18% by longlines, 9% with pole-and-line methods, and the
remaining 8% with trolls, harpoons, gillnets, and hook-and-line methods. Annual catch
ranged from 1,089 to 906,250 mt (mean = 300,869 mt, CV = 82%) across all years, with
an increasing trend over time and high values in recent years that are often double the
mean (e.g., 585,226 mt in 2011). Yellowfin tuna was by far the top species in terms of
cumulative catch over time, mean annual catch, and maximum annual catch (Thl. 1). It
also had the largest range of annual catch amounts, with a minimum of 136 mt in 1919
and a maximum of 439,317 mt in 2002. Skipjack tuna had the next highest cumulative
catch and mean annual catch, both of which were roughly 60% of those amounts for
yellowfin tuna. In 2011, the skipjack catch exceeded that of all other species. Bigeye tuna
was the third most important species, with cumulative and mean annual catches 33% and
52% of the yellowfin tuna amounts. Catch data for skipjack and yellowfin tuna began in
1918-1919, while data for bigeye tuna only date back to 1954. Together, these 3 species
comprise 86% of the cumulative catch.
Twenty-seven different countries fished (legally, based on IATTC data) in the
ETP from 1918-2011, each with a unique temporal trend in its annual catch (Fig. 2).
Countries with the highest percentage of cumulative catch across all years included the
U.S. (23%), Mexico (14%), Japan (13%), Ecuador (13%), Venezuela (6%), and Panama

(4%). U.S. catch ramped up from the 1950s (Fig. 2a), peaked in the late 1970s when the
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U.S. captured 60% of the total catch (Fig. 2b), and tapered to nearly zero in 2011.
Mexico’s catch gradually increased from the 1960s to the 1980s and remained relatively
steady thereafter (Fig. 2a); it was 22% of total catch in 2011 (Fig. 2b). Japan’s catch was
fairly consistent from the late 1950s through the early 1990s (Fig. 2a), but it decreased in
the 2000s and only represented 2% of the total in 2011 (Fig. 2b). Ecuador’s catch slowly
increased from the 1960s onward (Fig. 2a); in 2011, it captured the largest portion of total
catch (37%) (Fig. 2b). Venezuela began fishing in the early 1980s, increased its catch
into the 1990s (Fig. 2a), and acquired an 8% share of total catch in 2011 (Fig. 2b).
Panama’s relatively small fleet appeared in the 1970s, grew in the 2000s (Fig. 2a), and
claimed 10% of total catch in 2011 (Fig. 2b). Colombia is represented in the “Other”
categories in Fig. 2 because it only caught 1% of the cumulative catch; however, in 2011,
its portion of total catch was 8%. Spain, Vanuatu, Korea, Peru, Taiwan, and Chile each
caught 1-2% of the cumulative total. Spain, Korea, Nicaragua, and Taiwan each caught 1-
2% of the 2011 total.

Increasing trends (p < 0.01) were observed in annual catch and market value from
1975 to 2010 for yellowfin, albacore, dolphinfish, swordfish, and the “all species” group
that combined 10 species groups (Fig. 3, 4). Increases in catch and value were notably
disproportionate for yellowfin tuna (only a 30% increase in mean annual catch but a
239% increase in mean annual value after 1990, when the dolphin-safe label was
introduced in the U.S. (see Wade et al. (2007) for a brief review of the dolphin-safe label)
and for “all species” (46% increase in catch and 226% increase in value after 1990).
There was a significant increase (p < 0.001) in the price per ton for yellowfin tuna over

time, which was $2,222 (mean annual price per ton) for 1975-1990 and $5,492 for 1991-
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2010. For “all species,” mean annual price per ton was $3,111 across all years (range:
$1,431 - $6,339, CV = 53%), but increased from $1,932 for 1975-1990 to $4,055 for
1991-2010. Mean annual market value increased from $830 million for 1975-1990 to
$2.7 billion for 1991-2010, and was $1.9 billion for the entire period (range: $487 million
- $4.7 billion, CV = 76%). Trends for “all species” largely reflect trends for yellowfin
tuna, as it comprises 46% of the cumulative catch in this period (Fig. 4).

Trends in annual catch and market value for the remaining species groups varied.
Bonitos were the only group with significant decreases (p < 0.01) in both annual catch
and market value (Fig. 3). There was no significant trend in catch for bluefin tuna, but
value significantly increased (p < 0.001) (Fig. 3) due to an increase (p < 0.10) in the price
per metric ton (mean of $5,424 for 1989-1990 and $10,853 for 1991-2010). For skipjack,
bigeye, and elasmobranchs, annual catch increased significantly (p < 0.001), but there
was no significant trend in value (Fig. 3), due to significant decreases (p < 0.01) in the
price per ton for skipjack tuna (mean of $1,836 for 1975-1990 and $1,355 for 1991-2010)
and elasmobranchs (mean of $33,026 for 1975-1990 and $3,820 for 1991-2010). The
price per ton for bigeye tuna did significantly increase (p < 0.01), but a decreasing trend
in catch over the years for which we had price data (2001-2010) probably canceled this
effect, leading to the absence of significant change in the total value. There were no
significant trends for the “tunas — other” group.

Typical supply and demand dynamics, in which the price per ton decreases with
an increased supply of fish, were not apparent in all species groups. Skipjack tuna and
elasmobranchs did follow these dynamics; however, the dynamics were reversed for

yellowfin, bigeye, albacore, and dolphinfish. For these groups, the price per ton increased
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as catch increased over time. For swordfish and bonitos, the price per ton did not change
significantly through time, indicating an elastic demand that was not influenced by
supply.

Spatial patterns in purse-seine fishery effort and yellowfin tuna catch were
slightly different (Fig. 5). The highest concentrations of catch occurred between the
southern tip of Baja California and Mazatlan, near the Costa Rica dome, and along the
10°N thermocline ridge. Concentrations of effort are also highest in those regions but
have a broader geographic extent surrounding them and a clearer gradient of high values
in the east and low values in the west.

ETP fishery landings in 2010-2011 were distributed across ports in the following
countries (Fig. 5): Ecuador (51%), Mexico (25%), Colombia (9%), El Salvador (5%),
Guatemala (3%), Costa Rica (3%), Venezuela (3%), and Peru (2%). Differences between
2010 and 2011 percentages were 0-2% for all port locations except Manta, Ecuador,
where the percentage of total landings increased from 36% to 44%. The 2010-2011 mean
percentages of landings that were brought to shore by vessels with the port’s national flag
were: Venezuela (100%), U.S. (100%), Mexico (96%), Colombia (75%), El Salvador
(68%), Ecuador (62%), Guatemala (6%), Costa Rica (0%), and Peru (0%). The reverse
order of this ranked list indicates how commonly foreign vessels land fish in these ports
(i.e., landings in Peru were all from foreign vessels, whereas landings in VVenezuela were
all from domestic vessels). These percentages for each country varied 0-6% between
years, with the exception of a 14% decrease for Ecuador. For the U.S., there were only

data for 2011.
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Supporting Services: Biodiversity

Cetacean species richness ranged from 1 to 16 species per grid cell (mean = 6.6,
CV =49%), excluding cells with no cetacean sightings (Fig. 6). Regions of high richness
(12-16 species per cell) occurred off the southern of the tip of Baja California (near
109°W, 23°N), around the Costa Rica Dome (near 90°W, 9°N), and in the Panama Bight
(near 81°W, 8°N). Intermediate richness (4-11 species per cell) was observed in the
majority of remaining cells throughout the ETP. Survey effort ranged from 0.2 to 109.2
hours (0 — 9 survey days) per grid cell (mean = 31.7, C= 69%), with (by design) the
highest levels of effort in the core of the ETP and the lowest levels near the western
perimeter (Fig. 6). Nevertheless, qualitatively, patterns of richness do not simply reflect
patterns of effort.

Seabird species richness ranged from 1 to 38 species per grid cell (mean = 15.8,
CV = 48%), excluding cells with no seabird sightings (Fig. 7). Richness was generally
highest within the Exclusive Economic Zones (EEZS) of the bordering countries (i.e.,
within 200 nm, or within 2 cells, from the shoreline), and along the 10°N thermocline
ridge. Survey effort ranged from 0.04 to 103.5 hours (0 — 8.6 survey days) per grid cell
(mean = 27.5, CV = 71%), with patterns nearly identical to those for cetacean effort.

Ichthyoplankton species richness ranged from 1 to 50 species per grid cell (mean
= 8.5, CV = 94%), excluding cells with no larval specimens collected (Fig. 8). Sampling
effort ranged from 52 to 13,283 m® per grid cell (mean = 1,449, CV = 124%), and
followed a similar east-west gradient with higher effort near the coasts.

Marine turtle sightings density ranged from 1 to 158 sightings per grid cell (mean

= 14.6, CV = 189%), excluding cells with no turtle sightings. The highest density of



26

sightings occurred in EEZ waters off southern Mexico (Guerrero and Oaxaca),
Guatemala, and Costa Rica (Fig. 9). Survey effort ranged from 0.2 to 72.2 hours (0 - 6.0
survey days) per grid cell (mean = 16.6, CV = 81%), with similar patterns to those for
cetacean and seabird effort but with fewer areas of high and intermediate effort due to
fewer years of data.

Regulating Services: Carbon Storage

Our conservative estimate for the amount of C exported from the surface to the
deep ocean in the ETP was 5.0 x 10'* g or 5.0 x 10® mt of C per year (Tbl. 3). This was
equivalent to 1.8 x 10° trading units of CO», which had a total value of $12.9 billion per
year (range: $9.2 - $16.6 billion per year) using an average carbon price (Tbl. 3). If the
carbon price reaches $35 per mt, as experts suggest it should in order to capture the social
cost of carbon, then the ETP’s export service would be worth $64.7 billion per year.

The population of northeastern offshore spotted dolphins is estimated to have
decreased by 76% from 3.6 million individuals in pre-exploitation years to 857,884
individuals in 2006. With an average body mass of 65.4 kg, the 2.74 million dolphins lost
from the population represent a total biomass of 179,334 mt, of which roughly 44,834 mt
was carbon. This carbon amount was equivalent to 164,286 mt of CO, trading units, with
a total value of $1,398,161 (range: $998,687 - $1,797,636). Spreading this value across
the 2.74 million dolphins yields a potential carbon storage value per dolphin of $0.42
(range: $0.30 - $0.54). At a carbon price of $35 per mt, the value of the lost portion of the
population would be $5,750,003, or $2.10 per dolphin.

The population of eastern spinner dolphins is estimated to have decreased by 41%

from 1.8 million individuals prior to exploitation and 1,062,879 individuals in 2006. The
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reduction of the population by 737,121 dolphins, with an average body mass of 52.5 kg,
represented a loss of 38,699 mt total and 9,675 mt of carbon from the system. This was
equivalent to 35,451 mt of CO, trading units worth a total of $248,160 (range: $177,257 -
$319,063) or $0.34 per dolphin (range: $0.24 - $0.43). The value would be $1,240,802, or
$1.68 per dolphin, if the carbon price were $35 per mt.

Total fishery removals of 543,533 mt per year contained 62,506 mt of carbon.
This was equivalent to 229,045 mt of CO, trading units with a potential value of
$1,603,313 per year (range: $1,145,223 - $2,061,402). Spreading this value across the
543,533 mt of fish caught yields a value of $2.95 per mt of fish (range: $2.11 - $3.79). At
$35 per mt for CO,, the potential carbon value for the fishery removals would be
$8,016,564, or $14.75 per mt.

Cultural Services: Recreational Fishing

Sport fishing was estimated to bring $634 million in expenditures to Los Cabos in
2007, $467 million to Costa Rica in 2008, and $97 million to Panama in 2011. This total
of $1.2 billion in expenditures in these 3 locations covered the cost of charter boats,
lodging, food, transportation, tackle, fuel, and other fishing needs. The costs were
incurred by an estimated 354,013 visitors who fished in Los Cabos, 283,790 who fished
in Costa Rica, and 86,250 who fished in Panama. In Los Cabos, anglers paid an estimated
$1,785 per person during a trip. Of visitors who flew to these destinations, anglers
represented 25% in Los Cabos (mostly American), 22% in Costa Rica (Americans and
Canadians were surveyed), and 9% in Panama. In Los Cabos, visitors who fished were
estimated to provide 24.1% of the total dollars injected into the local economy by

tourism. Given the choice of 4 locations in the Atlantic (Bahamas and South Florida) and
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Pacific (Cabo San Lucas in Mexico and Golfo de Papagayo in Costa Rica), 46% of
anglers stated a preference for fishing in the Pacific locations if given the choice (35%
preferred the Atlantic locations and 19% had no preference) (Southwick et al. 2008).
Anglers who had fished in Los Cabos revealed their perception that commercial fishing is
detrimental to the quality of their experience. A large majority (88%) said they would be
less likely to return to Los Cabos if commercial fishing for billfish increased, and more
likely to return if commercial restrictions or bans were implemented.
DISCUSSION
Provisioning Service — Commercial Fisheries
For nearly 100 years, humans have commercially harvested fish from the ETP.
This remote region of the ocean has provided at least 28 million mt of large pelagic fish
as a food source to the world. To put this large amount of biomass into more familiar
units, it is equal to 5.7 million African elephants (Loxodonta africana) — these are the
largest extant terrestrial animals, weighing 5 mt on average. These elephants could stand
in a single-file line at the equator and wrap around the earth nearly 10 times. Annually,
the current production in the ETP is equal to 117,045 African elephants, which could
form a single-file line about half as long as the Baja California peninsula. As a
provisioning service, commercial fisheries production in the ETP has made a significant
contribution to feeding the world, and it currently accounts for 1% of global marine
capture fisheries production (80 million mt per year).
Numerous countries have benefited from commercial fishing in the ETP,
particularly those with fishing fleets and processing ports that earn profits and create jobs.

At least 27 countries have legally fished in the area over time. Historically, the key
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players were the U.S. (which accounted for nearly a quarter of the historical biomass
removals), Mexico, Japan, and Ecuador. In the last two decades, the U.S. and Japan have
dropped from this list, and Panama, Venezuela, and Colombia have replaced them.
Fishing fleets from Europe, Asia, the south and southwest Pacific, the Caribbean, and
Africa have had a small presence. In terms of where the fish is landed after it is caught,
Ecuador is by far the largest stakeholder with over half the annual landings coming into
its ports. Mexico is also important in this regard, as its ports receive a quarter of annual
landings. Panama is the only major fishing nation that does not also have ports with
sufficient infrastructure to process landings. Now that all key fishing nations and ports
are Latin American, perhaps the cooperation required for place-based management of the
region is more feasible.

Our estimated market values for commercial fisheries are only intended to
provide some perspective on the magnitude of value associated with this sector. The
values are not precise — they are only based on market prices from imports to the U.S.,
thus they do not capture the full picture. Because the processing plants are private
business entities, obtaining data on where they distribute the fish is difficult, but we know
the fish are exported to many countries other than the U.S. Similarly, obtaining data on
the price paid for fish is difficult. Therefore, we made use of the information available
through NMFS on historical U.S. import prices of fish from the ETP (1975-2010) and
extrapolated an estimated value for the whole fishery. From our synthesis of these data
with the IATTC catch data, we estimated that the U.S. imports roughly 15% of the total
ETP catch, across all species, which means that we used the price paid in the U.S. to

extrapolate a value for the remaining 85% of the catch. As an additional caveat, the price
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of yellowfin tuna increased dramatically in the U.S. after the implementation of dolphin-
safe tuna labeling in 1990. Given these two issues, plus the fact that yellowfin tuna
comprises nearly half the catch, we may have overestimated total market value across the
10 species groups (mean of $2.7 billion per year after 1990). However, our goal was to
understand the magnitude of market value for ETP commercial fisheries, not to provide
the most accurate or precise estimate.

Temporal dynamics in annual catch and market value for the 10 individual species
groups for 1975-2010 were complex. The species groups all impact one another and are
also part of a global market. Not all species groups followed typical supply and demand
dynamics; the ones with inelastic demand (e.g., swordfish) likely indicate that they are
part of a much larger global market in which demand for the fish had not yet been
saturated. Those with reversed dynamics, where the price per ton increased with
increasing supply (e.g., yellowfin tuna), might reflect a change in the product or increase
in the cost of fishing. For example, the U.S. label for dolphin-safe tuna essentially created
a new product that potentially cost fishers more to catch due to increased time to locate
schools of tuna unassociated with dolphins. Trends for all 10 species groups combined
essentially reflect trends of the species with largest portions of catch from 1975 to 2010 —
those were yellowfin (46%), skipjack (27%) and bigeye (17%).

Supporting Service — Biodiversity

The ETP contains high species richness of oceanic megafauna. Over 1/3 of the
world’s cetacean and seabird species and over 2/3 of marine turtle species occur in the
region (Tbl. 2). Based on IUCN red list criteria, 17% of these cetacean species, 26% of

the seabird species, and 100% of the marine turtle species are threatened to some degree
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(critically endangered, endangered, or vulnerable) (Tbl. 2). Whereas seabirds and turtles
spend a portion of their life cycle on land and are relatively easy to monitor, cetaceans
reside completely in water, making it more difficult to assess their populations. Thus,
nearly half (43%) of the ETP cetacean species lack sufficient data for assessing their
conservation status. On a positive note, 59% of seabird species and 40% of cetacean
species are designated as species of least concern (Tbl. 2).

The diversity of these taxa is spread throughout the entire region, from the EEZ
waters of bordering nations westward to 150° W (nearly as far west as Hawaii). While the
highest concentrations of turtle sightings and ichthyoplankton richness occurred near the
coasts, some richness hotspots for cetaceans and seabirds were located hundreds of
kilometers offshore (e.g., off Baja California, near the Costa Rica Dome, and near the
10°N thermocline ridge) (Figs. 5, 6). Regions of high diversity of cetaceans and seabirds
overlapped with high and intermediate effort and catch by the yellowfin tuna purse-seine
fishery. This is likely because productive fishing grounds are also productive feeding
grounds for these apex predators. In many cases, this overlap leads to bycatch of these
oceanic megafauna in commercial fisheries. This human threat is one of the reasons that
Y, of the cetacean, seabird, and turtle species in the ETP are classified with a “threatened”
status on the IUCN’s Red List. Spatial patterns in diversity almost certainly change over
seasons and years, but we did not investigate temporal dynamics here. Rather, our
intention was to provide a baseline understanding of the magnitude, extent, and
conservation status of the existing diversity.

Biodiversity is important in an EBM context because of its link ecosystem

resilience. Resilience is defined as “the extent to which ecosystems can absorb recurrent
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natural and human perturbations and continue to regenerate without slowly degrading or
unexpectedly flipping into alternate states” (Hughes et al. 2005). The role of biodiversity
in ecosystem resilience has been a long-standing theme in ecology — one that has
captured the interest of those concerned with recent environmental degradation and
associated biodiversity loss (Holling 1973, Levin and Lubchenco 2008). The concept that
biodiversity is linked to ecosystem resilience was first explored theoretically and later
tested experimentally. Walker (1995) argued that ecosystem resilience is enhanced when
each functional group of organisms consists of several ecologically redundant species,
each of which responds differently to changes in the environment. This ecological
redundancy provides a measure of safety in the face of disturbance, such that if one
species is depleted, another will assume the same functional role. This is referred to as
the “insurance hypothesis” because a higher number of species insures against the
collapse of the system in the face of environmental fluctuation (Yachi 1999, Loreau et al.
2001). Indeed, marine ecosystems with fewer species are often functionally
compromised, and those with more species are more likely to have functional redundancy
(Steneck et al. 2002, 2004, Bellwood et al. 2004, Hughes et al. 2005). For example,
studies have found species-rich kelp forests off the west coast of North America to be
more resilient than the naturally species-poor kelp forests off the east coast (Steneck et al.
2002, 2004). However, it is important to recognize that a higher number of species
theoretically would not confer resilience on the ecosystem if the species have similar
responses to external pressures, such as overfishing and pollution (Chapin et al. 1997,
Folke et al. 2004, Hughes et al. 2005). Thus, the diversity of functional groups, diversity

of species in functional groups, and diversity within species and populations all appear to
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be critical for generation and resilience of ecosystem services (Chapin et al. 1997, Luck
et al. 2003, Folke et al. 2004).

Resilience of ecosystems is crucial for maintaining the continued flow of
desirable services. While stakeholders of biodiversity in the ETP may not be as apparent
as those associated with commercial fishing, there are indeed many of them. Those who
benefit from a resilient ecosystem also benefit from biodiversity. For example, all of the
countries with fishing fleets or major ports with processing facilities in the ETP benefit
from a resilient ecosystem that continuously produces fish. Similarly, countries that
import and consume the fish benefit from biodiversity. Additionally, benefits from non-
use values (existence, option, and bequest) and passive use values (e.g., viewing and
photographing) associated with ETP species are distributed to people around the world.
There are also several conservation organizations (e.g., Conservation International,
World Wildlife Fund, United Nations Environment Programme, MarViva, Migramar, and
the Galapagos Conservancy) focused on the protection of biodiversity and vulnerable
megafauna species in the ETP. These organizations have invested considerable sums of
money (on the order of $ millions) to support protected areas containing high diversity of
species.

Regulating Service — Carbon Storage

Our estimates of carbon export from the surface to the deep ocean and the
potential market value of that carbon are rough conservative estimates for a static system.
The dynamics of this system are complex; however, we know that more productive ocean
ecosystems are generally home to larger animals, starting with phytoplankton at the base

of the food web, and relatively high abundance of top predators. These systems are
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believed to be more efficient at exporting carbon out of the photic zone and into the deep
ocean (Eppley and Peterson 1979). Thus, we can hypothesize that if fishing reduces the
number of large animals present, we might expect less efficient transport of carbon to the
deep and more recycling of nutrients in the surface layer, which would allow carbon to
more easily transfer back to the atmosphere. What we do know is that if we had to pay
for the ETP’s natural service of transporting carbon from the surface layer to the deep
ocean, where it is essentially locked up for relevant timescales, then we might have to
pay $16.2 billion. So if a human activity, such as fishing, disrupts that service or makes it
less efficient, then society may want to pay to reduce the disruptive activity.

The dynamics associated with carbon storage in dolphins, tunas, or other large
vertebrates are similarly complex. How the system changes in response to the removal of
top predators is unknown. In our static example of dolphin and fish biomass extraction,
removing these animals from the ocean means that the carbon is no longer stored there.
Payments for Ecosystem Services (PES) schemes exist in which carbon polluters pay for
the maintenance of ecosystems that naturally store carbon but might be degraded without
compensation (e.g., payments to prevent rainforest destruction). Hypothetically, there
could be a PES scheme in which polluters would receive a carbon credit by paying
fishers in the ETP not to fish. In order for this type of scheme to function, we would need
to know the marginal (per-unit) impacts of fishing on carbon storage. For example, if
fishers left 200 mt of fish in the water (roughly 20% of current annual catch), this would
be approximately 11.5 mt of carbon, which is equivalent to 42 mt of CO,. We would
want to know whether that 42 mt of CO;, left in the water is worth the 42 mt of carbon

released to the atmosphere if those fish were caught and consumed on land. At the current
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average price of carbon, we calculated a potential marginal value of leaving the fish in
the water as a carbon store to be $2.95 per mt. The current mean annual market value of
$4,055 per mt (1991-2010, all species) is 3 orders of magnitude higher than this. To make
it more valuable to leave all of the fish in the water when the mean market value of
catching the fish is $2.71 billion (1991-2010), the price of CO, would need to exceed
$11,820 per mt. This is a huge increase over the 2012 price of $9 per mt used in our
analyses.
Cultural Services — Recreational Fishing

Our treatment of recreational fishing focused on existing economic analyses of
three major locations to highlight the magnitude of the industry and the potential for
growth in the region. Combined, the economic value of sport fishing in these three
locations (Los Cabos, Costa Rica, and Panama) was estimated at $1.2 billion. This is
nearly half the recent mean annual market value of the commercial fisheries ($2.7
billion), and it does not include all known fishing locations. In Mexico, for example,
there are other hotspots of sport fishing for billfish and tunas, including La Paz,
Mazatlan, Puerto Vallarta, Manzanillo, and Acapulco. Opportunities also exist and may
be growing in Ecuador (in Manta and the Galapagos). Sport fishing for billfish and tuna
represents a major ecosystem service that should be quantified and valued in further
detail.

We focused on sport fishing as the major cultural service provided by the ETP,
but there are others that also deserve more detailed investigation in future studies.
Ecotourism involving viewing and photographing of charismatic megafauna, such as

whales, turtles, and seabirds is growing in the region. On a global scale, whale watching
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is already estimated worth over $2 billion and is expected to grow as an industry
(Cisneros-Montemayor et al. 2010). Endangered and threatened species have been shown
to hold significant value through different economic surveys (Richardson and Loomis
2009 and references therein), but these are not specific to the ETP. As one example of a
hotspot for ecotourism involving ETP species, tourism in the Galapagos Islands brings
more than 145,000 people and generates $418 million annually, according to the
Galapagos Conservancy. Given that the ETP contains 1/3 of the world’s cetacean,
seabird, and marine turtle species, we can speculate that the value of ecotourism
opportunities alone might on the order of $1 billion in the near future.
Trade-offs Among Ecosystem Services

Our analysis of the major ecosystem services provided by the oceanic ETP
provides a new perspective for this large marine ecosystem and a baseline understanding
for future research. We view this study as a first step toward answering important
questions about trade-offs among the different services. An important next step is to
improve our grasp on the linkages between each of the services and understand how
marginal changes in one service might impact another (Fig. 10). For example, if
commercial fisheries production decreased by one unit (e.g., 1 mt), how would this
impact recreational fishing? Biodiversity? Carbon storage? Would these other services
increase or decrease? Would the changes be linear or non-linear? For any change that
occurs in another service, how much value is that change worth (in monetary or other
terms)?

Commercial fishing has had a long history in the ETP — it is a big industry and its

stakeholders have been important in making decisions about ETP resources. What we
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hope we have demonstrated here is that commercial fisheries production is not the only
major ecosystem service in the ETP. On the contrary, biodiversity, carbon storage, and
recreational fishing are major services that also have significant values associated with
them. These should be more fully understood and considered in management schemes for
this region. The analysis presented here is intended to support a movement toward true
ecosystem-based management, in which all ecosystem services, activities, and users are
considered. Oceanic ecosystems have historically only been recognized for their

contribution to commercial fishing, but they provide much more for the world.
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Table 2. Number of species in three taxa (cetaceans, seabirds, and marine turtles) that
occur in the eastern tropical Pacific (ETP), with a comparison to the global number of
species per taxon and the IUCN conservation status for ETP species.

-

Global spp.

ETP spp. 30 (35%) 123 (35%) 5 (71%)

Critically (0%) (3%) |2 (40%)
Endangered

Endangered (10%) 2 (40%)

Near Threatened 0 (0%) 14 (11%) 0 (0%)

Data Deficient 13 (43%) 3 (2%) 0 (0%)

Least Concern 12 (40%) 73 (59%) 0 (0%)

40
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Table 3. Estimates of the quantity and potential market value of carbon that is exported
from the surface to the deep ocean in the ETP (Emerson et al. 1997, USIWG2013, World

Bank 2014).

T

13 2
21x10 m

24 gramsof C m yr

14

50x10 gramsC yr

8

5.0x 10 metric tons C yr

9

1.8 x 10 trade units CO2 yr

$16.6 Billion yr

1

2

1

1

1

1

Area of ETP

Oligotrophic C export estimate
Conservative C export estimate for ETP
ETP estimate in metric tons per year

CO2 trade units (CO2 =27.29% C)

Annual value (using $9 price/mt)
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Figure 1. The oceanic eastern tropical Pacific (ETP) is defined as the area seaward of the
continental shelf, from the Americas west to approximately 150° longitude, and from the
U.S.-Mexico border south to central Peru. This area is roughly 21 million km?, includes
waters of 12 nations and the oceanic commons, and roughly corresponds to the area
managed by two regional fishery management bodies: the Inter-American Tropical Tuna
Commission (IATTC) and the Agreement on the International Dolphin Conservation
Program (AIDCP). The area managed by the IATTC is outlined in blue; this is also the
relevant area for AIDCP. National Marine Fisheries Service survey effort for assessing
dolphin populations historically impacted by the tuna purse-seine fishery is shown by the
ship tracklines in black.
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Figure 2. Distribution of annual commercial fisheries catch (mt) by vessel flags, for all
species groups and gear types combined (1918-2011). The top 10 vessel flags by
cumulative total catch are shown (USA=United States, MEX=Mexico, JPN=Japan,
ECU=Ecuador, VEN=Venezuela, PAN=Panama, ESP=Spain, VUT=Vanuatu,
KOR=Korea, PER=Peru). OTR pools data from various countries to protect the identity
of individual vessels or companies (different groupings each year). OTR2 groups 17
countries not included in the top 10 list (Colombia, Taiwan, Chile, Canada, Costa Rica,
Nicaragua, French Polynesia, China, Netherlands, Belize, Bermuda, El Salvador,
Honduras, Guatemala, Cayman Islands, Senegal, Portugal). Data source: IATTC public
data.
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Figure 4. Cumulative totals for annual catch (black lines) and estimated market value
(green lines) for the 10 commercially fished species groups from Figure 3 combined.
Cumulative totals across all years were 19.6 million metric tons (mt) for catch and $67.4
billion for market value. Mean annual catch was 544,247 metric tons (range: 268,796 -
891,019 mt; sd: 144,698 mt). Mean annual market value was $1.9 billion (range: $487
million - $4.7 billion; sd: $1.4 billion).
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ABSTRACT

A critical component of ecosystem-based management (EBM) for oceanic
systems is the development and use of a comprehensive suite of indicators. Indicators can
be ecological, economic or social in nature. Ideally, they use continuously measured,
readily available data to provide insights into harder-to-measure ecosystem attributes. In
this study, we used one set of biological metrics (fishery effort and catch metrics for
yellowfin tuna, Thunnus albacares) to make predictions about other biological
components (cetacean community structure and density) of the oceanic eastern tropical
Pacific (ETP). This is different from the more common approach of using environmental
variables (e.g., physical oceanographic variables) to make predictions about biological
components of an ecosystem. We validated our approach with comparisons to previous
studies that related physical variables to cetaceans in the ETP. Relationships between
cetacean taxa and three types of purse-seine fishing methods (“dolphin”, “log,” and
“school” fishing, based on what the net is set upon) were revealed through canonical
correspondence analysis. Dolphin fishing metrics were mostly associated with offshore
spotted and eastern spinner dolphins (Stenella attenuata and S. longirostris orientalis),
rough-toothed dolphins (Steno bredanensis), and dwarf sperm whales (Kogia sima). Log
fishing metrics were associated with sperm whales (Physeter macrocephalus), Bryde’s
whales (Balaenoptera edeni), and short-finned pilot whales (Globicephala
macrorhynchus). School fishing metrics were associated with blue whales (Balaenoptera
musculus), bottlenose dolphins (Tursiops truncatus), Risso’s dolphins (Grampus griseus),
and offshore common dolphins (Delphinus delphis). Predicted maps of cetacean densities

are qualitatively similar to those developed using environmental variables, including sea
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surface temperature and salinity, chlorophyll, mixed-layer depth, bathymetry, and
distance to shore. Many of them capture historically observed ranges and sighting rates
remarkably well. Our results provide incredible support for moving forward with this
approach and applying it to other taxa (e.g., seabirds and larval fishes) for which long-
term data exist in the ETP. This suite of indicators would facilitate predictions of
communities and densities for these taxa in future years, demonstrating promise for EBM
in this region.
INTRODUCTION

Management of living marine resources has traditionally focused on single
species or stocks of interest and has relied on single disciplines of expertise. This
approach has often failed to manage or protect marine resources because it does not
consider the complex interaction of social, economic, and political pressures impacting
those resources. Ecosystem-based management (EBM) has been proposed as an
alternative, holistic approach to this traditional management style. EBM integrates
principles from multiple disciplines in an approach that considers the entire ecosystem,
including humans, and the cumulative impacts of different sectors and anthropogenic
activities (McLeod et al. 2005). The primary goal of EBM is to maintain healthy,
productive, and resilient social-ecological systems that continue to support humans by
providing the services they want and need.

EBM has been embraced by government institutions, academics, and conservation
entities around the world, but practical implementation has been difficult to achieve,
particularly for oceanic ecosystems (McLeod and Leslie 2009, Ballance and Whitty

2010). Oceanic ecosystems, those seaward of the continental shelf, face a complex set of
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challenges. They include waters under the jurisdiction of multiple nations, as well as the
oceanic commons; the living marine resources they include are often transboundary;
enforcement of international agreements is extremely difficult; and the ecosystem goods
and services they provide are truly global. Yet it is precisely because of these
complicating factors, and because these oceanic ecosystems represent such a large
proportion of the world’s surface that is heavily utilized, that a more holistic approach
needs to be developed.

Resilience — the extent to which a system can absorb perturbations and still
maintain its structure, function, and identity — is a guiding principle of EBM. Resilience-
based EBM strategies should rely on input from scientific monitoring, research, and
modeling, and should include regular evaluation to ensure that they are adaptive over
time (McLeod and Leslie 2009). Evaluation allows managers to document, anticipate,
and respond when the system is approaching a threshold that, if crossed, will tip it into an
undesirable state. Determining what to evaluate is challenging. Theoretically, resilience
can be measured mathematically by fitting a dynamic model to a time series, calculating
equilibria and size of basins of attraction; however, this would require extraordinary data
and is typically not feasible (Carpenter et al. 2001). Instead, it is more effective and
feasible to develop indicators, or proxies, of ecosystem resilience which can be
implemented in an EBM approach. The benefit of indicators is that they reflect changes
in harder-to-measure ecosystem attributes (Niemeijer and de Groot 2008, Samhouri et al.
2009), one of these attributes being resilience. Thus, indicators only require one type of

data to learn something about the ecosystem as a whole.
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Indicators can be ecological, economic or social in nature, and they are critical to
the implementation of EBM. A comprehensive suite of ecological indicators should: 1)
include traditional indicators of physical and chemical processes, community structure,
and biomass and relative abundance of ecologically and commercially important species,
2) incorporate information about the ecological processes that sustain biodiversity
patterns (e.g., recruitment, dispersal, and cross-scale interactions), and 3) incorporate
information on the relative abundances and composition of functional groups that have
strong effects on ecosystem functioning (Leslie and Kinzig 2009). Indicators that are
clearly defined and are relevant to key processes or drivers in the system are a powerful
tool for EBM (Carpenter et al. 2001, Carpenter et al. 2005).

In the context of EBM, indicators have two important purposes. First, they
provide something measurable that will reflect changes in the general state of the
ecosystem. This requires that the indicators be concrete and measurable in practice (i.e.,
relatively easy to obtain, cost-effective, or widely available) (Samhouri et al. 2009). For
an indicator to be effective, it has to be continuously measured, even when more
thorough assessments of the ecosystem are prohibitively expensive. Second, indicators
have the potential to predict changes in the economic value of the system. For example, if
the yields of a fishery are related to another ecosystem component, then an indicator of
the other component could provide insight into the yields of the fishery. The development
of indicators, especially those that are process-related (i.e., reveal mechanisms of
change), is the first step that scientists can take toward the implementation of EBM for

oceanic systems (Levin et al. 2009, Samhouri et al. 2009).
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The eastern tropical Pacific (ETP) is a model oceanic ecosystem on which to
apply the concepts of EBM. It has a rich modern history of anthropogenic influence,
particularly through industrial-scale commercial fishing. Interest in the productivity of
the fishery and its impacts on the supporting ecosystem have led to the development of
long-term data collection programs. Consequently, the ETP is well-studied relative to
other large oceanic systems, and there are multiple long-term datasets available for the
exploration of potential indicators. There are stakeholders invested in the future
productivity of fisheries in the region (e.g., the Inter-American Tropical Tuna
Commission (IATTC), which manages fisheries in the region) and stakeholders invested
in the protection of the region’s biodiversity and endangered species (e.g., the National
Marine Fisheries Service, NMFS). The development of indicators to facilitate an EBM
approach could help inform future management strategies for the ETP.

Yellowfin tuna (Thunnus albacares) have been hypothesized to be a keystone
species in the ETP. Therefore, we explore the potential use of effort and catch metrics
from the purse-seine fishery for this species as indicators of the broader biological
ecosystem in the ETP. The fishery catches yellowfin tuna using one of three methods —
by setting a massive purse-seine net around: 1) dolphins that have large-bodied yellowfin
tuna swimming below them (“dolphin sets™), 2) floating objects, such as logs or man-
made fish aggregating devices (“log sets™), or 3) schools of tunas unassociated with
dolphins or floating objects (“school sets”). It is possible, and perhaps likely, that these
methods of fishing occur in different oceanographic conditions or habitats, and attract
different suites of species. The objectives of the present study are to investigate

relationships between the three types of purse-seine fishing and the broader biological
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ecosystem. We focus on cetaceans, some of which are known to have strong ecological
linkages to yellowfin tuna (Ballance et al. 2006 and references therein), as representatives
of top predators in the system.

METHODS

Study area

The ETP is defined here as the oceanic area seaward of the continental shelf, from
the Americas west to approximately 150°W longitude, and from the U.S.-Mexico border
south to central Peru (Fig. 1). This roughly corresponds to the region bounded by 150°W,
40°S, and 40°N, and the coasts of the Americas, in which living marine resources are
managed by the IATTC, the Regional Fisheries Management Organization for the ETP
(Fig. 1).

The ETP is characterized by several major oceanographic features that make it
spatially heterogeneous (Fig. 1). It is located at the southern end of the California Current
and the northern end of the Peru Current. These two eastern boundary currents feed into
the westward flowing North Equatorial Current (10-15°N) and South Equatorial Current
(near the equator), respectively. The North Equatorial Countercurrent (5-10°N) flows
eastward between these two currents toward the Eastern Pacific Warm Pool, which has its
western edge near 110°W and widens toward southern Mexico and Costa Rica in the east.
There is a thermocline ridge near 10°N due to divergence along the boundary of the
North Equatorial Countercurrent and the North Equatorial Current. To the southeast of
the Eastern Pacific Warm Pool is the Costa Rica Dome, an upwelling feature centered
near 89°W and 9°N (Fiedler and Talley 2006). Extending west along the equator from

South America is the Equatorial Cold Tongue, characterized by Equatorial Surface Water
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that is colder and saltier than the warm, low salinity Tropical Surface Water associated
with the Eastern Warm Pool. The ETP is uniquely characterized by a sharp, shallow
thermocline and a strongly depleted, shallow, and extensive oxygen minimum layer
(Fiedler and Talley 2006).

Conditions in the ETP vary seasonally, inter-annually, and with EI-Nifio South
Oscillation (ENSO) phases. There are three ENSO phases: El Nifio, La Nifia, and
Neutral. During El Nifio conditions, surface water temperatures increase and the typically
shallow thermocline deepens as warm water from the west piles up in the east. During La
Nifa conditions, temperatures are cooler. The Eastern Pacific Warm Pool experiences
relatively low seasonal and ENSO variability, while the Equatorial Cold Tongue
experiences relatively high variability (Fiedler and Talley 2006).

Data sources

Data on purse-seine fishery effort and yellowfin tuna catch were collected by
fisheries observers onboard fishing vessels. These data were provided by IATTC at a
spatial scale of 2° latitude by 2° longitude and a monthly temporal scale for 1986 through
2006 through special agreement. Only data corresponding to NMFS survey years and
months (see below) were used in this study. For each 2° x 2° grid cell and month, there
are several effort and catch metrics. Effort metrics include: 1) the number of purse-seine
vessel days spent in the area during the month, which includes all time spent transiting,
searching, and conducting fishing operations, 2) the number of sets on yellowfin tuna
associated with dolphins (“dolphin sets”), 3) the number of sets on yellowfin tuna
associated with floating objects, including logs and man-made fish aggregating devices

(“log sets™), and 4) the number of sets on yellowfin tuna schools that are unassociated
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with dolphins or floating objects (“school sets”). Catch metrics include metric tons of
yellowfin tuna caught on: 1) dolphin sets, 2) log sets, and 3) school sets. Catch-per-unit-
effort (“CPUE”) was calculated as metric tons of catch per day of fishing effort. Using
days rather than sets as the unit of effort here avoids dividing by zero sets. Instances of
zero sets of one or two types of sets occur frequently in the data, as certain time/location
combinations often favor only one type of set. The average number of sets per day is less
than one, and the maximum is three.

Data on cetaceans were collected during shipboard research surveys conducted by
NMFS from August through November between 1986 and 2006. The primary purpose of
these surveys was to monitor the status and trends of dolphin populations historically
impacted by the tuna purse-seine fishery. Surveys were planned and executed to
systematically cover the entire range of the impacted dolphin populations. Visual
observations of cetacean species and group sizes were made by rotating observers
following standard line-transect methods (Gerrodette and Forcada 2005). Cetacean data
were available for 10 years: 1986-1990, 1998-2000, 2003, and 2006. We limit this study
to 19 cetacean taxa, all with at least 100 sightings over the 10 years. Latin and common
names for these taxa are provided in Table 1; we will use common names throughout the
paper.

This study overlays a spatial grid of 2° latitude by 2° longitude over the entire
ETP. This grid cell size was selected for two reasons. First, this was the lowest level of
spatial resolution that IATTC could release without compromising confidentiality of

vessels and nations. Second, previous research suggests an absence of scale-dependence
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in the response of some dolphin species to spatial variability of oceanographic habitat in
the ETP at this and smaller scales (Redfern et al. 2008).

Depending on the analysis, data were aggregated temporally at one of three
levels: 1) all data aggregated into one group, eliminating the temporal component and
providing an average, or “climatological,” view, 2) by ENSO phase, aggregating data into
three groups based on assignment of years into La Nifia, El Nifio, and Neutral categories,
and 3) by individual year, grouping all data for each individual year together. ENSO
phase assignment was based on the Oceanic Nifio Index seasonal values for August to
November (NOAA 2014) and confirmed with oceanographer P. Fiedler. Nifia years
include 1988, 1998, 1999, and 2000; Nifio years include 1986, 1987, and 2006; Neutral
years include 1989, 1990, and 2003.

Analytical approaches

A goal of EBM is to identify and utilize a comprehensive suite of ecological
indicators; identifying indicators of community structure for ecologically and
commercially important species is one element of that goal. To investigate general
relationships between yellowfin tuna fishery metrics and the cetacean community in the
ETP, we used canonical correspondence analysis (CCA). CCA is a multivariate statistical
method that uses direct gradient analysis to relate a set of species data to a suite of
predictor variables (ter Braak 1986). Our response metric is the number of sightings per
hour for each of the 19 cetacean taxa for each sample site. The definition of “site” varies
depending on the level of temporal aggregation used in the analysis. For the
climatological analysis, sites are simply 2° x 2° grid cells. For ENSO analyses, sites are

grid cells in a particular ENSO phase (e.g., grid cells in Nifio years). For analyses of
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individual years, sites are grid cells in each particular year (e.g., grid cells in 1990). These
analyses were conducted using the community ecology package ‘vegan’ in the R
statistical software environment.

Interpretation of CCA results focused on three main aspects: 1) the percentage of
variance in the cetacean data (total and per taxon) that was explained by the yellowfin
tuna metrics, 2) definition of the canonical axis space by the yellowfin tuna metrics, and
3) associations between cetacean taxa and yellowfin tuna metrics, and relative strength of
those associations based on cetacean scores along the axes. Cetacean taxa with an axis
score of 0.25 or greater for at least one of the first two canonical axes (those present on
the triplots) were examined further to characterize their relationships with the yellowfin
tuna metrics. Taxa with axis scores less than 0.25 for both axes (those taxa relatively
close to the origin in the triplots) were not considered to have meaningful relationships
with the axis space defined by the yellowfin tuna metrics in the analysis.

Another element of the EBM indicators goal is to develop indicators of relative
abundance and biomass of species, particularly those that have strong effects on
ecosystem functioning. To quantify specific relationships between the fishery metrics and
cetaceans, which are top predators, we used generalized additive models (GAMs). GAMs
are commonly used to relate environmental variables of a habitat to characteristics of a
population, such as abundance or distribution (Forney et al. 2012). They are extended,
nonparametric versions of generalized linear models (likelihood-based regression
models) that replace the linear function which relates covariates to the response with an
additive smooth function (Hastie and Tibshirani 1986). In our models, the response

variable is the number of cetacean sightings per hour for a selected taxon. There are 6
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predictor variables: DolpCPUE (for dolphin fishing, metric tons of catch per day of
fishing effort), SchICPUE (for school fishing), LogCPUE (for log fishing), DolpSets
(number of sets on dolphins), SchlSets (number of sets on schools), and LogSets (number
of sets on logs). “Year’ and ‘ENSO’ were used as categorical variables when aggregating
the data at those levels. The number of sightings was modeled using a quasi-Poisson
likelihood (mean proportional to variance), a log link function, and the number of
cetacean survey hours as an offset. The use of effort as an offset in the model
standardizes for variations in the level of effort across grid cells, effectively modeling
sightings per hour (rather than number of sightings). These analyses were conducted
using the modeling package ‘mgcv’ in the R statistical software environment.

Using the ‘year’ temporal aggregation, we built a model using all years of data
except 2003. We left 2003 out of the model-building process so that we could validate the
model by making predictions onto 2003 as an ENSO-Neutral year. The model results
were used to make predictions for each cetacean taxon for 2003, both for grid cells that
contained survey effort for the year and also grid cells that only had fishery data but no
survey data. The result is a predicted map for each cetacean taxon, using only the
yellowfin tuna metrics to make the predictions.

RESULTS
Canonical Correspondence Analysis (CCA)
Climatological Analysis (All Data Aggregated Temporally)

When the data were aggregated into one temporal group (the climatological

view), the yellowfin tuna metrics explained 13.2% of the overall variance in the cetacean

data (Fig. 2). Axis 1 (x-axis) was defined by school sets (SchICPUE, SchlCatch, and
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SchlSets) in the negative direction and dolphin sets (DolpCPUE, DolpCatch, and
DolpSets) in the positive direction. Axis 2 (y-axis) was defined by dolphin sets in the
negative direction (mainly DolpSets and DolpCatch) and log sets in the positive direction
(mainly LogCPUE and LogSets). The three types of fishing occupied relatively separate
areas in the axis space (Fig. 2). Appendix 1 shows that the cetaceans generally exhibited
a unimodal response to Axis 1 and Axis 2, thus validating a primary assumption of the
CCA method.

Cetacean taxa were grouped into three tiers based on their scores for Axis 1 and 2
(Fig. 2). The lowest tier contained taxa with scores below 0.25 for both axes. Coastal
spotted dolphins, striped dolphins, Cuvier’s beaked whales, killer whales, and
mesoplodont beaked whales fell into this category. For these taxa, the variance explained
by Axes 1 and 2 combined was low, ranging from 0.3 to 6.5% (mean = 1.8%). Appendix
2 provides a breakdown of the percent of variance explained by each of the first four
canonical axes for each taxon. Axes 1 and 2 explain the largest portion of the variance for
most taxa; therefore, we only focused on these two axes when interpreting results.

The middle tier contained taxa with a maximum axis score between 0.25 and 0.5
(Fig. 2). It included offshore spotted dolphins, offshore common dolphins, short-finned
pilot whales, rough-toothed dolphins, sperm whales, Bryde’s whales, and dwarf sperm
whales. The variance explained by the tuna metrics ranged from 3.6 to 10.3% (mean =
6.7%).

The top tier contained cetacean groups with a maximum score above 0.5 for Axis
1 or 2 (Fig. 2). This included eastern spinner dolphins, whitebelly spinner dolphins,

offshore spotted mixed with eastern spinner dolphins, offshore spotted mixed with
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whitebelly spinner dolphins, Risso’s dolphins, bottlenose dolphins, and blue whales. For
these taxa, the tuna metrics explained from 4.0 to 29.1% of the variance (mean = 14.1%).
As such, the analysis lends the most support to associations found between these taxa and
the tuna metrics.

This analysis highlighted several relationships among cetaceans and tuna metrics
(Fig. 2). 1) There were 5 taxa closely aligned with dolphin fishing metrics. In the top tier
(taxa exhibiting the strongest relationships with tuna metrics), mixed schools of offshore
spotted and eastern spinner dolphins, as well as pure schools of eastern spinner dolphins,
were tightly linked to DolpCatch and DolpSets. In the middle tier, pure schools of
offshore spotted dolphins, rough-toothed dolphins, and dwarf sperm whales were closely
associated with DolpCPUE, DolpCatch, and DolpSets, respectively. 2) Four taxa were
associated with school fishing metrics, including blue whales, bottlenose dolphins, and
Risso’s dolphins in the top tier, and offshore common dolphins in the middle tier. 3)
Three taxa in the middle tier were most closely linked to log fishing metrics. Sperm
whales were closely associated with LogSets, and Bryde’s whales were closely linked to
LogCPUE, as are short-finned pilot whales but to a lesser degree. 4) Pure schools of
whitebelly spinner dolphins and mixed schools of offshore spotted with whitebelly
spinner dolphins were both in the top tier with a strong position opposite school fishing
metrics on Axis 1 and dolphin fishing metrics on Axis 2.

El Nifio Southern Oscillation (ENSO) Analysis

The overall percent of variance in the cetacean data explained by the tuna metrics

for the ENSO phases was similar to the climatological analysis and also across phases —

14.8% for the Neutral phase, 11% for El Nifio phase, and 10.6% for La Nifia phase (Fig.
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3). Definition of the axis space varied across phases. Under Neutral conditions, Axis 1
was defined by school and log fishing on the negative end, and dolphin fishing on the
positive end. Axis 2 was characterized by school and dolphin fishing in the negative
direction, and log fishing in the positive direction. The Neutral axis space was the most
similar to the climatological view. During El Nifio conditions, Axis 1 was defined by
school and log fishing on the negative side and dolphin fishing on the positive side. Axis
2 was not clearly defined in the negative direction, and was influence by all three types of
fishing in the positive direction, although DolpSets has the most influence. Thus, there
appeared to be weaker axis definition for El Nifio conditions. Under La Nifia conditions,
Axis 1 was defined by log fishing in the negative direction, with no clear definition in the
positive direction. Axis 2 was defined by dolphin fishing in the negative direction and
school fishing in the positive direction. Here, the separation between dolphin and school
fishing is clear, but log fishing and school fishing were not as clearly segregated as they
were in the climatological view.

The amount of variance explained for each taxon was reflected by the axis scores
they received, where higher scores indicated a higher proportion of variance explained.
Compared with the three-tiered structure based on maximum axis scores in the
climatological analysis (Fig. 2), Neutral conditions created the most similar structure and
La Nifia conditions the most different (Fig. 3). Under Neutral conditions, sperm whales,
coastal spotted dolphins, and offshore spotted dolphins moved into the top tier (highest
proportion of variance explained), while mixed offshore spotted with whitebelly spinner
dolphins moved down into the middle tier (Fig. 3). Mesoplodont and Cuvier’s beaked

whales moved up from the bottom tier to the middle tier. Under El Nifio conditions,
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sperm whales, coastal spotted dolphins, and offshore spotted dolphins again moved up
into the top tier, along with dwarf sperm whales, while bottlenose dolphins and blue
whales moved down into the middle tier. Killer whales moved from the bottom tier into
the middle tier. Under La Nifia conditions eastern spinner dolphins, mixed offshore
spotted with eastern spinner dolphins, and Risso’s dolphins moved down into the middle
tier, and offshore common dolphins, short-finned pilot whales, and sperm whales moved
up into the top tier. Coastal spotted dolphins, striped dolphins, Cuvier’s beaked whales,
killer whales, and mesoplodont beaked whales all moved from the bottom tier to the
middle tier. Bryde’s whale moved down from the middle tier to become the only taxon in
the bottom tier.

Relationships between the cetaceans and tuna metrics varied to different degrees
across ENSO phases depending on the taxon. Under Neutral conditions, mixed schools of
offshore spotted with eastern spinner dolphins, pure schools of eastern spinner dolphins,
and pure schools of offshore spotted dolphins had strong (top tier) associations with
dolphin fishing metrics (Fig. 3). Whitebelly spinner dolphins had a strong negative
relationship with dolphin fishing and school fishing metrics. Coastal spotted dolphins
showed a strong association with log fishing metrics. Risso’s dolphins and sperm whales
were strongly positioned between log and school fishing metrics. Blue whales and
bottlenose dolphins had strong relationships with school fishing metrics.

Under El Nifio conditions, strong relationships were maintained between dolphin
fishing metrics and mixed schools of offshore spotted with eastern spinner dolphins, pure
schools of eastern spinner dolphins, and pure schools of offshore spotted dolphins (Fig.

3). Dwarf sperm whales also showed a strong relationship with dolphin sets here. Pure
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schools of whitebelly spinner dolphins and mixed schools of offshore spotted with
whitebelly spinner dolphins again had strong negative relationship with dolphin fishing
metrics. Coastal spotted dolphins appeared to have a strong relationship with school
fishing metrics, though school fishing and log fishing metrics occupied similar axis
space. Sperm whales and Risso’s dolphins were strongly aligned with school sets.

Under La Nifia conditions, the relationships weakened between dolphin fishing
metrics and mixed schools of offshore spotted with eastern spinner dolphins, pure schools
of eastern spinner dolphins, and pure schools of offshore spotted dolphins (Fig. 3). This
was evidenced by these taxa dropping down into the middle tier of axis scores, indicating
the relationships existed but were weaker. Pure schools of whitebelly spinner dolphins
and mixed schools of offshore spotted with whitebelly spinner dolphins maintained their
distance from dolphin sets and catch, but appeared to be strongly associated with
DolpCPUE and LogCPUE. They typically occupied the space between those metrics, but
that space was condensed here. Short-finned pilot whales were strongly linked to
LogCPUE, and sperm whales were strongly positioned between log fishing and school
fishing metrics. Offshore common dolphins were tightly and strongly associated with
SchlSets and SchlCatch, while blue whales and bottlenose dolphins were top tier taxa
oriented closest to SchICPUE and distinctly opposite of log fishing metrics.

Analysis of One Selected Year for Each ENSO Condition

Of the three Neutral years (1989, 1990, and 2003), the analysis explained the
highest percent of variance in the cetacean data (21.7%) for 2003. Thus, we used 2003 to
as an example to demonstrate potential inter-annual variation that was lost when we

grouped three years together into one analysis. For 2003, Axis 1 was clearly defined by
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dolphin sets in the negative direction and school sets in the positive direction (Fig. 4).
Axis 2 was less well-defined, with log sets and dolphin CPUE in the negative direction
and school CPUE in the positive direction. The separation between dolphin and log
fishing was less clear in this year than when we aggregated the three Neutral years. There
were still strong relationships between dolphin fishing metrics and mixed schools of
offshore spotted with eastern spinner dolphins, pure schools of eastern spinner dolphins,
and pure schools of offshore spotted dolphins (Fig. 4). Rough-toothed dolphins were also
located with this group. These taxa were all separated from school fishing metrics along
Axis 1 and from log fishing metrics along Axis 2. Mixed offshore spotted with whitebelly
spinner dolphins were still strongly positioned between dolphin fishing metrics and log
fishing metrics, though that space was condensed here. Short-finned pilot whales and
Risso’s dolphins were strongly associated with dolphin fishing and also nearby log
fishing metrics. Cuvier’s beaked whales were tightly linked to log fishing metrics.
Bryde’s whales were strongly positioned in between school fishing and log fishing
metrics. Blue whales and sperm whales were strongly associated with school fishing
metrics. Dwarf sperm whales and mesoplodont beaked whales were most strongly
associated with school fishing metrics here.

For El Nifio years, the analysis explained the highest percent of variance for 2006
(28.2%). In 2006, Axis 1 was defined by school sets on the negative side and dolphin
metrics plus a small influence from log fishing metrics positive side (Fig. 4). Axis 2 was
not well-defined in the negative direction and was defined by dolphin and school metrics
in the positive direction. The separation between dolphin fishing and log fishing was not

very clear here. Eastern spinner dolphins were still in the top tier, exhibiting a strong
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relationship with dolphin fishing metrics only along Axis 1 (Fig. 4). Offshore spotted
mixed with whitebelly spinner dolphins were associated with eastern spinner dolphins,
which was unusual. Rough-toothed dolphins were also located in this group. Coastal
spotted dolphins appeared to also have a strong relationship with dolphin fishing metrics,
but on the positive side of Axis 2, opposite from eastern spinner dolphins. Offshore
common dolphins exhibited this same association with dolphin fishing metrics, but with
less strength. Sperm whales, Risso’s dolphins, and Bryde’s whales exhibited strong
associations with school sets.

The highest percent of variance explained for La Nifia years was 28.3% for 1988.
In this year, Axis 1 was defined by dolphin fishing metrics on the negative side and
school and log fishing metrics on the positive side (Fig. 4). Axis 2 was defined by
dolphin and log metrics in the negative direction and school metrics in the positive
direction. There was relatively clear separation of the three types of fishing in the axis
space. Nearly all taxa were in the top tier, exhibiting strong relationships with the tuna
metrics (Fig. 4). Only striped dolphins, Risso’s dolphins, mixed offshore spotted with
eastern spinner dolphins, and mixed offshore spotted with whitebelly spinner dolphins
were in the middle tier, the latter two just missing the 0.5 cutoff for the top tier. Rough-
toothed dolphins, bottlenose dolphins, offshore spotted dolphins, and pure schools of
whitebelly spinner dolphins were all tightly associated with dolphin sets and catch.
Eastern spinner dolphins were now associated with school fishing metrics and log fishing
CPUE. Short-finned pilot whales and sperm whales were strongly associated with log
sets and catch. Killer whales were also associated with log fishing metrics here. Cuvier’s

beaked whales were positioned between log and school fishing metrics. Offshore
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common dolphins were tightly linked to school catch, while dwarf sperm whales were
tightly linked to school fishing CPUE. Mesoplodont beaked whales, Bryde’s whales, and
blue whales were mostly associated with school fishing, but with influence from the
dolphin fishing metrics.
Generalized Additive Models (GAMs)
Climatological Analysis (All Data Aggregated Temporally)

The panel plots in Appendix 3 depict the smoothed functions estimated by the
models. These functions characterize the relationships between each tuna predictor
variable and the response variable for the specified cetacean taxon. The response variable
was always the number of sightings per hour of survey effort. The shapes of these
smoothed functions were not overly complex, which facilitated a straightforward visual
interpretation of the results. A flat line indicated that the predictor variable was probably
not useful in explaining variation in the data for that taxon. A line that generally
increased indicated a positive relationship between the predictor and the number of
sightings of the taxon. Likewise, a line that generally decreased indicated a negative
relationship between the two. Lines with inflection points indicated potentially more
complex responses to increasing values of the predictor variables, but because the
degrees of freedom were limited, these remained relatively straightforward to interpret.

The results from the model for mixed schools of offshore spotted with eastern
spinner dolphins serve as a good example of how these plots were interpreted (Appendix
3). First, the smoothed response to the DolpSets predictor had a positive slope that was
steeper at first and more gradual later, indicating that the number of sightings per hour of

this taxon increased with the number of dolphin sets. The ETP purse-seine fishery does
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indeed set its nets around this type of mixed school, so the positive relationship between
DolpSets and number of sightings per hour makes intuitive sense. Second, the smoothed
response for the DolpCPUE predictor was a downward sloping line, which indicates a
negative relationship between DolpCPUE and the number of sightings per hour. This
negative relationship could indicate that large, highly clumped schools of tuna are found
in association with dolphin schools that are spread out over a large area. Next, the
smoothed responses to the SchiSets and LogSets predictors had decreasing slopes,
indicating negative relationships between those predictors and the number of sightings
per hour. Because the data were aggregated temporally here, this indicates a spatial
segregation between dolphin fishing and log and school fishing, a result corroborated by
the CCA results. Lastly, the smoothed response lines for SchICPUE and LogCPUE
predictors were essentially flat and were not significant (Tbl. 2), indicating that they were
not useful in explaining the variance in the data for this taxon.

The deviance explained by the models ranged from 0% to 56% (mean: 29%) (Thl.
2). The models performed the worst for killer whales and Cuvier’s beaked whales,
explaining less than 10% of the deviance. Models for Bryde’s whales, mesoplodont
beaked whales, short-finned pilot whales, and sperm whales performed somewhat better
(10-19%). For striped dolphins, Risso’s dolphins, and mixed schools of offshore spotted
with whitebelly spinner dolphins, the models performed reasonably well (20-29%). They
explained 30-39% of the variance for dwarf sperm whales, offshore spotted dolphins,
blue whales, and offshore common dolphins. For rough-toothed dolphins, whitebelly
spinner dolphins, coastal spotted dolphins, eastern spinner dolphins, and bottlenose

dolphins, the models performed quite well with an explained variance of 40-49%. The
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best model (56%) was for mixed schools of offshore spotted dolphins and eastern spinner
dolphins.

The importance of the 6 yellowfin tuna metrics varied across taxa (Tbl. 2). Taxa
for which at least one dolphin fishing metric had the highest significance level (p <
0.001) included eastern spinner dolphins, whitebelly spinner dolphins, offshore spotted
dolphins, mixed offshore spotted with eastern spinner dolphins, mixed offshore spotted
with whitebelly spinner dolphins, bottlenose dolphins, rough-toothed dolphins, dwarf
sperm whales, mesoplodont beaked whales, and short-finned pilot whales. Using the
same criterion, school fishing appeared to be potentially important in explaining variation
in striped dolphins, offshore common dolphins, rough-toothed dolphins, sperm whales,
and blue whales. Similarly, log fishing metrics explained variation in eastern spinner
dolphins, offshore spotted dolphins, offshore spotted with eastern spinner dolphins
(MIXE), offshore spotted with whitebelly spinner dolphins (MIXW), striped dolphins,
short-finned pilot whales, and bottlenose dolphins.

El Nifio Southern Oscillation (ENSO) Analysis

The overall pattern in the importance of the 6 yellowfin tuna metrics was
generally similar to the pattern in the climatological analysis, but some differences
occurred within taxa (Tbl. 3). For example, in the climatological view, SchICPUE was
not important for whitebelly spinners or mixed schools of offshore spotted with eastern
spinner dolphins; however, it had the highest level of significance during La Nifia periods
for both of these groups in the ENSO analysis.

The taxa for which the importance of dolphin metrics was robust across ENSO

phases included: eastern spinner dolphins, whitebelly spinner dolphins, offshore spotted
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dolphins, mixed schools offshore spotted and eastern spinner dolphins, mixed schools of
offshore spotted and whitebelly spinner dolphins, rough-toothed dolphins, and dwarf
sperm whales (Tbl. 3). Out of 6 possible combinations of ENSO phases and dolphin
metrics (e.g., DolpCPUE for La Nifia or DolpSets for Neutral conditions), these groups
all had 5 or 6 that were significant. There were fewer taxa for which log fishing
predictors were robust across ENSO phases, and these only had a maximum of 2 or 3
significant combinations of ENSO phases and log fishing metrics. These included eastern
spinner dolphins, whitebelly spinner dolphins, offshore spotted dolphins, mixed offshore
spotted and eastern spinner dolphins, and blue whales, most of which were primarily
explained by LogSets rather than LogCPUE. Similarly, school fishing metrics were not as
robust across ENSO phases, and the taxa influenced by these only had a maximum of 3
or 4 combinations of ENSO phases and school fishing metrics that were significant.
These taxa included offshore spotted dolphins, coastal spotted dolphins, mixed schools of
offshore spotted and eastern spinner dolphins, Risso’s dolphins, offshore common
dolphins, rough-toothed dolphins, sperm whales, Bryde’s whales, blue whales, and
mesoplodont beaked whales.
Analysis of Individual Years

When running the models on each year separately, most of the relationships
between the cetaceans and the tuna predictors lost their consistency and robustness (Tbl.
4). Even most of the strong relationships tended to break down. Out of 20 possible
combinations of year and dolphin metrics for each taxon, only 4 taxa had 10 or more
significant combinations. Those were eastern spinner dolphins, whitebelly spinner

dolphins, mixed schools of offshore spotted and eastern spinner dolphins, and
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mesoplodont beaked whales. Only bottlenose dolphins exceeded this threshold for log
fishing metrics, and no taxa exceeded it for school fishing metrics.
Model Predictions for 2003

The deviance explained by the models built using all years except 2003 ranged
from 4.1% for killer whales to 55.6% for whitebelly spinner dolphins (mean = 20.1%)
(Tbl. 5). The adjusted R-squared values ranged from O for killer whales to 0.42 for
whitebelly spinner dolphins (mean = 0.13). GCV scores ranged from 0.04 for whitebelly
spinner dolphins to 2.01 for striped dolphins (mean = 0.75). Compared to the
climatological models, each of the tuna predictors was significant for fewer of the taxa.
Year, as a predictor variable, appeared to be potentially significant for about half the taxa,
although it was only significant at the highest level (p<0.001) for four groups: offshore
common dolphins, bottlenose dolphins, Bryde’s whales, and blue whales.

The prediction maps for 2003 (Figs. 5-23) were divided into three qualitative
categories (“good”, “fair”, and “poor”) based on how well the model prediction
corresponded to the 2003 survey observations. The “good” category was characterized by
maps with a relatively high coincidence of high model predictions (red to orange cells)
with high observed sightings per hour for 2003 (black to dark gray dots), and/or low
model predictions (yellow cells) with low observed sightings per hour (light gray dots).
This category included 10 taxa: offshore spotted dolphins, eastern spinner dolphins,
offshore spotted mixed with eastern spinner dolphins, whitebelly spinner dolphins,
offshore spotted with whitebelly spinner dolphins, sperm whales, rough-toothed dolphins,

striped dolphins, blue whales, and Bryde’s whales.
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The “fair” category consisted of maps with intermediate coincidence of model
predictions with observed sightings for 2003. This means that the model may have
captured some obvious areas of high or low sightings, while missing others. This
category included offshore common dolphins, short-finned pilot whales, Risso’s
dolphins, dwarf sperm whales, killer whales, bottlenose dolphins, Cuvier’s beaked
whales, and mesoplodont beaked whales.

The “poor” category included only the coastal spotted dolphin. The prediction for
coastal spotted dolphins was unrealistic; this subspecies is restricted to coastal waters, but
the model predicted areas of high sightings per hour offshore. Adding geographic or
bathymetric constraints (e.g., latitude and longitude, or depth) to the model could
alleviate this problem.

DISCUSSION
Interpretation of Patterns

Over-interpretation of results should be avoided for taxa that are challenging to
survey in high sea states, particularly beaked whales and dwarf sperm whales.
Additionally, caution should be taken when interpreting results from analyses in which
data overlap is poor. For most of the models built with a single year of data, the tuna
metrics failed to explain the cetacean data, which is attributable, at least in part, to the
low degree of overlap between the two datasets at the annual level. For example, for
many of the taxa, there are relatively few (less than 10) overlapping cells (i.e., cells that
contain both fishery effort and cetacean survey effort) that contain observed sightings for
these taxa in 2003. For all taxa, it is useful to compare the predicted maps to historical

observations for additional context.
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Yellowfin tuna purse-seine fishery metrics appear to have robust relationships
with several cetacean taxa in the ETP. For example, the association between dolphin
fishing metrics and mixed schools of offshore spotted and eastern spinner dolphins
appears to remain stable across years and ENSO phases. Other less robust relationships
exhibit inter-annual variability, potentially associated with ENSO phases. For example,
model results showed that year was a significant predictor for some taxa (blue whales,
offshore common dolphins, bottlenose dolphins, and Bryde’s whales), suggesting that
inter-annual variability, potentially associated with ENSO phases, may be important to
these species. These species all feed on schooling fish or krill and may be influenced by
variations in the strength of upwelling. Their behavior (or the behavior of the fishery)
may change in under certain conditions, causing their relationships with the 3 types of
fishing to change.

Comparison with Previous Research

Investigations into general relationships through canonical correspondence
analysis revealed positive associations between dolphin fishing metrics and 5 taxa (mixed
schools of offshore spotted with eastern spinner dolphins, pure schools of eastern spinner
dolphins, pure schools of offshore spotted dolphins, rough-toothed dolphins, and dwarf
sperm whales). There were also negative associations between dolphin fishing metrics
and 2 taxa (mixed schools of offshore spotted with whitebelly spinner dolphins and pure
schools of whitebelly spinner dolphins) along one axis, and a negative relationship with
offshore common dolphins along the other. These relationships reflect those found by
Reilly and Fiedler (1994) in a similar analysis performed with oceanographic variables

instead of fishery variables as predictors.
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Forney et al. (2012) constructed habitat-based spatial models for most of these
ETP cetaceans using environmental variables, and used them to predict densities (Figs.
24-28). Their suite of candidate predictor variables included bathymetry, distance to
shore, sea surface temperature, salinity, chlorophyll, and mixed-layer depth. The
deviance explained by these models ranged from 5.6% to 38.8% (mean= 15.0%), which
is similar to our model results (mean = 20.0%, range = 4.1 - 55.6%). The predicted maps
by Forney et al. (2012) are qualitatively very similar to the predicted maps in the present
study. There is remarkable resemblance in the areas predicted to have high and low
densities for each taxon. There are a few notable differences. The southern range of
whitebelly spinner dolphins might be better represented by the map from this study (Fig.
8 vs. Fig. 24). The maps for Risso’s (Fig. 13) and bottlenose dolphins (Fig. 22) extend
further offshore than maps in Forney et al. (2012) (Fig. 26), perhaps capturing more areas
of relatively high density. The map for blue whales in this study (Fig. 10) does not fully
capture the importance of the Costa Rica Dome, which is known to be important habitat
for blue whales. This feature is more apparent in the Forney et al. (2012) maps (Fig. 27).
For offshore common dolphins, the map in this study (Fig. 11) captures the high sightings
area along the 10°N thermocline ridge near 120°W, which is not pronounced in habitat
maps (Fig. 25).

Given that no geographic constraints (e.g., latitude, longitude, or grid cell
number) or oceanographic variables were included as predictor variables in our models,
they perform surprisingly well for most taxa. Comparing our prediction maps to the
habitat-based maps produced by Forney et al. (2012) validates this. Additionally,

comparing our prediction maps to maps of all historical sightings (Figs. 5-23, right panel)
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shows that many of the models predict high sighting rates in areas that have historically
had the highest observed sighting rates and low rates in areas where sightings have
historically been low.

While Forney et al. (2012) used environmental variables to produce maps of
predicted cetacean densities, we found that we could use tuna fishery metrics to produce
similar maps, from which we can infer some general habitat associations. Examining our
prediction maps for 2003 (Figs. 5-23, left panel) alongside a map of major oceanographic
features (Fig. 1), the taxa can be aggregated into 5 groups: 1) Eastern Pacific Warm Pool
associated (“warm pool taxa”); 2) anti-Eastern Pacific Warm Pool associated (“anti-warm
pool taxa”); 3) coastal associated (*“coastal taxa”); 4) upwelling feature associated — in
particular with areas surrounding Baja California, the Costa Rica Dome, the Equatorial
Cold Tongue, and the 10°N thermocline ridge (“upwelling taxa™); 5) those with wide
distributions and no apparent strong connections to the first four groups (“widespread
taxa”).

The “warm pool taxa” include offshore spotted dolphins, eastern spinner dolphins,
dwarf sperm whales, mixed schools of offshore spotted with eastern spinner dolphins,
and rough-toothed dolphins. “Anti-warm pool taxa” include pure schools of whitebelly
spinner dolphins and mixed schools of offshore spotted with whitebelly spinner dolphins.
“Coastal taxa” only includes the coastal spotted dolphin. “Upwelling taxa” includes
Bryde’s whales, offshore common dolphins, short-finned pilot whales, Risso’s dolphins,
bottlenose dolphins, blue whales, sperm whales (to some extent), striped dolphins (to
some extent), and killer whales (to some extent). The “widespread taxa” group includes

sperm whales (to some extent), striped dolphins (to some extent), killer whales, Cuvier’s
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beaked whales, and mesoplodont beaked whales. These general habitat associations
reflect those found in Forney et al. (2012).
Relevance of this Approach to EBM

In this study, we have used one set of biological metrics (tuna fishery metrics) to
make predictions about other biological components of an oceanic ecosystem (cetacean
community structure and relative abundance). This is different from the more common
approach of using environmental variables (e.g., physical oceanographic variables) to
make predictions about biological components of an ecosystem. Because we performed
this analysis on an ecosystem for which there are multiple long-term datasets, we were
able to validate our approach by comparing our results to previous studies that have
related physical variables to the same taxa. Our approach did not use any physical
variables to predict characteristics of cetacean populations (e.g., communities and
sighting densities), but our results were qualitatively the same as previous studies that did
use them. This exciting result provides incredible support for moving forward with our
approach.

This research has demonstrated that yellowfin tuna fishery metrics can be used as
indicators of the broader biological ecosystem in the ETP. Based on our findings, we can
be confident about the approach developed here and its extension to other taxa.
Specifically, our next steps will include similar investigations relating yellowfin tuna
fishery metrics to seabirds and larval fishes in the ETP, for which we have comparable
long-term datasets. Ultimately, our goal is to use these metrics to make predictions in

future years when we have no survey data on cetaceans, seabirds, and larval fishes. By
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developing measurable indicators of upper trophic level communities, this approach

provides great promise for EBM in the oceanic ETP.
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Table 1. Taxonomic information for cetaceans used in this study.
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Common Name Codes Scientific Name

Eastern spinner dolphin ESpin, 10 Stenella longirostris orientalis
Whitebelly spinner dolphin | WBSpin, 11 | Stenella longirostris longirostris
Offshore spotted dolphin OSpot, 2 Stenella attenuata

Coastal spotted dolphin CSpot, 6 Stenella attenuata graffmani
Offshore spotted + MIXE S. attenuata + S. longirostris orientalis
eastern spinner dolphins

Offshore spotted + MIXW S. attenuata + S. longirostris
whitebelly spinner dolphins

Striped dolphin STCO Stenella coeruleoalba

Risso’s dolphin GRGR Grampus griseus

Offshore common dolphin DEDE Delphinus delphis
Short-finned pilot whale GLMA Globicephala macrorhynchus
Bottlenose dolphin TUTR Tursiops truncatus
Rough-toothed dolphin STBR Steno bredanensis

Sperm whale PHMA Physeter macrocephalus
Bryde’s whale BAED Balaenoptera edeni

Cuvier’s beaked whale ZICA Ziphius cavirostris

Blue whale BAMU Balaenoptera musculus

Dwarf sperm whale KOSI Kogia sima

Killer whale OROR Orcinus orca

Mesoplodont beaked whales | Mesop Mesoplon spp.
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Table 2. Summary results from GAM models with all data aggregated temporally into
one group (climatological analysis). Models explain the indicated percent of deviance in
the cetacean data. P-values for smoothed functions of yellowfin tuna metrics indicate
whether each metric is important in explaining each taxon. Darker shades of green
indicate higher levels of significance (p<0.001 is darkest). “D”, “S”, and “L” signify
dolphin, school, and log fishing, respectively. “CPUE” = metric tons of catch per day of
fishing effort. “Sets” = number of times the purse-seine net was set in pursuit of tuna.
Taxonomic information as in Table 1.

Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets
Eastern spinner dolphin 47% 0.005 0.007 1.000 0.998
Whitebelly spinner dolphin 40% 0.118 0.100 0.007 0.986 0.276
Offshore spotted dolphin 32% 0.993 0.971 0.001
Coastal spotted dolphin 47% 0.118 0.011 0.005 0.041 0.030 0.999
Offsh. spot. + east. spinner 56% 0.183 1.000 0.005
Offsh. spot. + wb. spinner 29% 0.132 0.996 0.124
Striped dolphin 24% 0.011 0.205 0.104 | 0.989
Risso's dolphin 26% 0.002 0.121 0.489 0.103 0.018 0.077
Offshore common dolphin 34% 1.000 0.595 0.368 0.361 0.072
Short-finned pilot whale 18% 0.004 0.995 0.244 0.082 | 0.320
Bottlenose dolphin 46% 0.168 0.063
Rough-toothed dolphin 40% 0.050 0.003 0.063
Sperm whale 19% 0.993 0.204 0.077 0.998 0.037
Bryde's whale 10% 0.502 0.994 0.011 1.000 | 0.002 | 0.003
Cuvier's beaked whale 6% 0.178 0.998 1.000 | 0.992 | 0.592 | 0.083
Blue whale 33% 0.998 0.987 0.047 0.600 0.003
Dwarf sperm whale 30% 0.997 0.058 1.000 0.013
Killer whale 0% 1.000 0.999 0.999 0.999 0.997 0.997
Mesopl. beaked whales 14% 1.000 0.171 0.006 0.126 0.337
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Table 3. Summary results from GAM models with data grouped by EI Nifio Southern
Oscillation (ENSO) phase. Models explain the indicated percent of deviance in the
cetacean data. P-values for smoothed functions of yellowfin tuna metrics indicate
whether each metric is important in explaining each taxon. Darker shades of green
indicate higher levels of significance (p<0.001 is darkest). “D”, “S”, and “L” signify
dolphin, school, and log fishing, respectively. “CPUE” = metric tons of catch per day of
fishing effort. “Sets” = number of times the purse-seine net was set in pursuit of tuna.
Taxonomic information as in Table 1.

ENSO Phase + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets
Nifia: East. spinner dolphin 39% 0.018
Nifio: East. spinner dolphin 36% 1.000 0.995 1.000 0.015 0.404 0.015
Neutral: East. spinner dolphin 32% 0.029 0.998 0.078 0.005 0.248 0.005
Nifia: Wb. spinner dolphin 60%

Nifio: Wb. spinner dolphin 61% 0.573 0.013 0.218 0.003
Neutral: Wb. spin. dolphin 60% 0.777 0.158

Nifia: Offsh. spotted dolphin 19% 0.025 0.999 1.000 0.019

Nifio: Offsh. spotted dolphin 28% 0.097 0.065 0.428 0.054 0.992

Neutral: Offsh. spot. dolphin 24% 0.006 1.000 0.990 0.023
Nifia: Coastal spotted dolphin 31% 0.161 0.005 0.135 0.999 0.026 0.072
Nifio: Coastal spotted dolphin 98% 0.943 0.954 0.974 0.978 0.962 0.917
Neutral: Coastal spot. dolphin 56% 0.500 0.013 0.208 0.998 0.584 0.537
Nifia: Offsh. spot. + east. spin. 44% 0.004

Nifio: Offsh. spot. + east. spin. 44% 0.993 1.000
Neutral: Off. spot. + east. spin. 55% 0.992

Nifia: Offsh. spot. + wb. spin. 30% 0.999

Nifio: Offsh. spot. + wb. spin. 37% 0.006 0.768 0.992 0.021 | 0.212 | 0.056
Neutral: Off. spot. + wb. spin. 33% 0.002 0.446 0.998 0.002 0.014 0.034
Nifia: Striped dolphin 10% 0.996 0.280 0.988 1.000 0.526
Nifio: Striped dolphin 25% 0.996 0.225 0.007 0.065 | 0.991
Neutral: Striped dolphin 25% 0.032 0.997 0.489 0.996 0.029
Nifia: Risso's dolphin 24% 0.047 0.076 0.037 0.998 0.157 0.998
Nifio: Risso's dolphin 23% 0.999 0.108 0.010 0.300 | 0.001 | 0.999
Neutral: Risso's dolphin 19% 0.975 0.827 0.177 0.999 0.065
Nifia: Offsh. common dolphin 36% 0.998 0.005 0.408 0.001
Nifio: Offsh. common dolphin 31% 0.375 0.896 0.056 0.998 0.989
Neutral: Off. common dolphin 36% 0.299 0.002 0.994 0.999 0.183
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Table 3. Summary results from GAM models with data grouped by EI Nifio Southern

Oscillation (ENSO) phase. Continued.

ENSO Phase + Cetacean Taxon DevExp D_CPUE S_CPUE L_CPUE D_Sets S_Sets L_Sets
Nifia: Short-finned pilot whale 11% 0.067 0.999 0.213 0.999 0.991 0.026
Nifio: Short-finned pilot whale 10% 0.998 0.037 1.000 0.315 0.999 0.087
Neutral: Short-fin. pilot whale “ 0.295 0.307 0.019 0.998 | 0.023
Nifia: Bottlenose dolphin 26% 0.059 0.347 0.390 0.999 0.150 | 0.374
Nifio: Bottlenose dolphin 22% 0.128 0.999 0.004 0.589 0.998
Neutral: Bottlenose dolphin 32% 0.003 0.001 0.999 0.074 0.997 0.109
Nifia: Rough-toothed dolphin 37% 0.999 0.002
Nifio: Rough-toothed dolphin 19% 0.042 0.998 0.812 0.998 1.000 | 0.232
Neutral: Rough-tooth. dolphin 21% 0.002 1.000 0.999 0.004 | 0.999
Nifia: Sperm whale 20% 1.000 0.536 0.989 0.179 | 0.002 0.182
Nifio: Sperm whale 30% 0.996 0.999 0.998 0.177

Neutral : Sperm whale 32% 0.122 0.067 0.252 0.003 0.048 | 0.003
Nifia: Bryde's whale 12% 0.991 0.288 0.233 0.999 0.066 | 0.283
Nifio: Bryde's whale 22% 0.003 0.998 0.029 0.999 0.096 | 0.999
Neutral: Bryde's whale 7% 0.999 0.253 0.999 0.998 | 0.008 | 0.050
Nifia: Cuvier's beaked whale 18% 0.561 0.099 0.994 0.999 0.115 0.469
Nifio: Cuvier's beaked whale 7% 0.996 0.071 0.989 0.744 0.109 0.119
Neutral : Cuvier's beak. whale 15% 0.471 1.000 0.098 0.972 0.586 0.045
Nifia: Blue whale 43% 0.020 0.005 0.062 0.375 1.000 | 0.011
Nifio: Blue whale E! 0.997 0.009 0.002

Neutral: Blue whale 52% 0.678 0.045 0.071 0.290

Nifia: Dwarf sperm whale 27% 0.023 0.719 1.000 0.996

Nifio: Dwarf sperm whale 34% 0.026 0.998 0.209 0.013 0.999 0.329
Neutral: Dwarf sperm whale 37% 0.006 0.997 0.644 0.079 0.997 0.743
Nifa: Killer whale 9% 0.306 0.529 0.309 0.998 0.632 0.999
Nifio: Killer whale 18% 0.094 - 0.999 0.603 0.999 0.522
Neutral: Killer whale 9% 0.993 0.989 0.331 0.024 | 0.899 0.115
Nifia: Mesopl. beaked whales 9% 0.371 1.000 0.992 0.999 0.003 0.804
Nifio: Mesopl. beaked whales 18% 0.313 0.019 0.121 0.111 0.042 0.006
Neutral: Mesopl. beak. whales 24% 0.004 1.000 0.239 0.047 0.995




Table 4. Summary results from GAM models with data separated by individual years.
Models explain the indicated percent of deviance in the cetacean data. P-values for
smoothed functions of yellowfin tuna metrics indicate whether each metric is important
in explaining each taxon. Darker shades of green indicate higher levels of significance

(p<0.001 is darkest). “D”, “S”, and “L” signify dolphin, school, and log fishing,

respectively. “CPUE” = metric tons of catch per day of fishing effort. “Sets” = number of
times the purse-seine net was set in pursuit of tuna. Taxonomic information as in Table 1.

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L _CPUE D_Sets S_Sets L_Sets
1986 East. spin. dolphin 59% 0.998 0.144 0.009 0.011 0.003 | 0.321
1987 East. spin. dolphin 97% 0.652 0.641 0.902 0.973 0.768 1.000
1988 East. spin. dolphin E- 1.000 1.000 ‘

1989 East. spin. dolphin 45% 0.094 0.999 0.244 0.999 0.080 1.000
1990 East. spin. dolphin 57% 0.344 0.999 0.259 0.058 1.000 | 0.999
1998 East. spin. dolphin 47% 0.016 0.368 0.098 0.047 0.996 | 0.020
1999 East. spin. dolphin 45% 0.291 0.575 0.999 0.577 0.101 | 0.383
2000 East. spin. dolphin 68% 0.005 0.074 0.992 -I 0.998 | 0.998
2003 East. spin. dolphin 82% 0.901 0.974 1.000 0.919 1.000 | 0.845
2006 East. spin. dolphin 84% 0.996 0.209 0.163 0.045 0.281 1.000
1986 Wb. spin. dolphin M 1.000 1.000 -I 1.000 1.000
1987 Wb. spin. dolphin 100% 1.000 1.000 1.000 1.000 1.000 1.000
1988 Wh. spin. dolphin 62% 0.075 1.000 0.999 0.546 1.000 | 0.996
1989 Wb. spin. dolphin 100% 1.000 0.852 1.000 1.000
1990 Wh. spin. dolphin 100% ‘

1998 Wb. spin. dolphin 82% 0.769 1.000 0.869 0.867 1.000 1.000
1999 Wb. spin. dolphin 93% 0.578 0.228 0.259 0.775 0.999 | 0.999
2000 Wh. spin. dolphin 100% 0.999 1.000 1.000 1.000
2003 Wh. spin. dolphin 100% 1.000 1.000 1.000 1.000 1.000 1.000
2006 Wh. spin. dolphin 100% 1.000 1.000

1986 Off. spot. dolphin 33% 0.007 0.999 0.999 0.307 0.751 1.000
1987 Off. spot. dolphin 36% 0.193 0.999 0.002 0.040 1.000 | 0.993
1988 Off. spot. dolphin 62% 0.004 0.998 0.999 0.998 | 0.002
1989 Off. spot. dolphin 53% 0.217 0.377 0.999 0.006 | 0.249
1990 Off. spot. dolphin 36% 0.275 0.320 0.163 0.999 0.044 | 0.987
1998 Off. spot. dolphin 20% 0.007 0.037 1.000 0.002 1.000 | 0.998
1999 Off. spot. dolphin 0% 0.999 1.000 0.999 1.000 1.000 | 0.998
2000 Off. spot. dolphin 28% 0.267 0.998 0.156 0.287 0.088 | 0.999
2003 Off. spot. dolphin 55% 1.000 0.999 1.000 0.996 0.009
2006 Off. spot. dolphin 16% 0.205 0.999 1.000 1.000 0.575 1.000
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Table 4. Summary results from GAM models with data separated by individual years.
Continued.

Year + Cetacean Taxon DevExp D_CPUE S_CPUE L _CPUE D_Sets S_Sets L_Sets
1986 Coast. spot. dolph. 96% 0.996 1.000 1.000 1.000 0.999 | 1.000
1987 Coast. spot. dolph. 100% 1.000 ‘ 1.000
1988 Coast. spot. dolph. 100% 1.000 1.000 1.000 1.000 1.000 | 1.000
1989 Coast. spot. dolph. 100% 1.000 1.000 1.000 1.000 1.000 | 1.000
1990 Coast. spot. dolph. 85% 0.199 1.000 1.000 1.000 0.972 | 1.000
1998 Coast. spot. dolph. 43% 0.011 0.053 0.632 0.046 0.999 | 0.997
1999 Coast. spot. dolph. 49% 0.999 0.279 0.234 0.295 1.000 | 0.999
2000 Coast. spot. dolph. 90% 1.000 0.999 0.017 0.005 0.315 | 0.335
2003 Coast. spot. dolph. 61% 0.053 0.863 0.594 0.013 0.790 | 0.131
2006 Coast. spot. dolph. 97% 0.266 1.000 0.999 0.324 1.000 | 0.440
1986 Off. spot. + e. spin. 59% 0.099 0.009 0.001 0.995 | 1.000
1987 Off. spot. + e. spin. 36% 0.141 0.999 1.000 1.000 | 0.033 | 1.000
1988 Off. spot. + e. spin. 100%

1989 Off. spot. + e. spin. 58% 0.008 0.104 0.997 | 0.172
1990 Off. spot. + e. spin. 55% 0.018 0.082 0.999 0.032 0.027 | 0.152
1998 Off. spot. + e. spin. 45% 0.998 0.998 0.241 0.066 0.002 | 0.497
1999 Off. spot. + e. spin. 46% 0.015 0.087 0.166 0.004 | 0.024 | 0.183
2000 Off. spot. + e. spin. 47% 0.005 0.999 0.020 0.004 | 0.003 | 0.996
2003 Off. spot. + e. spin. E- 0.995 0.025 F 0.025 | 0.224
2006 Off. spot. + e. spin. 57% 0.044 0.665 0.077 0.025 0.388 | 0.997
1986 Off. spot + wb. spin. 90% 0.610 0.804 0.319 0.517 1.000 | 0.630

1987 Off. spot + wb. spin. ‘
1988 Off. spot + wb. spin

1989 Off. spot + wb. spin. 1.000 0.999

1990 Off. spot + wb. spin. 0.927

1998 Off. spot + wb. spin. ‘

1999 Off. spot + wb. spin. 43% 0.343 1.000 0.243 0.999 0.695 | 0.496
2000 Off. spot + wb. spin. 96% 0.937 0.935 1.000 0.854 0.906 | 0.967
2003 Off. spot + wb. spin. 100% 1.000 | 1.000
2006 Off. spot + wb. spin. 100%

1986 Striped dolphin 51% 0.020 0.998 0.001 0.060 0.823 | 0.021
1987 Striped dolphin 18% 1.000 0.999 0.012 0.117 0.556 | 0.586
1988 Striped dolphin 24% 0.999 0.999 0.999 0.999 1.000 | 0.014
1989 Striped dolphin 24% 0.119 0.615 0.101 0.364 0.999 | 1.000
1990 Striped dolphin 8% 1.000 0.998 0.046 0.999 1.000 | 0.999
1998 Striped dolphin 7% 0.999 0.999 0.997 0.999 1.000 | 0.115




Table 4. Summary results from GAM models with data separated by individual years.
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Continued.
Year + Cetacean Taxon DevExp D_CPUE S_CPUE L _CPUE D_Sets S_Sets L_Sets
1999 Striped dolphin 25% 0.999 0.002 0.999 0.022 0.998 1.000
2000 Striped dolphin 18% 1.000 0.344 1.000 0.002 0.988 | 0.063
2003 Striped dolphin 29% 1.000 0.075 0.996 0.207 1.000 | 0.022
2006 Striped dolphin 24% 0.064 0.431 0.009 0.999 0.999 1.000
1986 Risso's dolphin 3% 1.000 1.000 0.996 0.999 0.496 1.000
1987 Risso's dolphin 56% 0.860 0.088 0.229 0.018 0.998 | 0.143
1988 Risso's dolphin 31% 0.029 0.999 0.999 0.999 0.061 | 0.999
1989 Risso's dolphin 84% 0.002 0.019 0.058 0.002 1.000 | 0.843
1990 Risso's dolphin 80% 0.404 0.996 0.980 0.999 0.998 | 0.998
1998 Risso's dolphin 25% 1.000 0.250 0.270 0.417 0.559 | 0.999
1999 Risso's dolphin 60% 0.060 0.034 1.000 0.012 0.999 | 0.221
2000 Risso's dolphin 19% 0.999 1.000 1.000 0.999 0.025 | 0.127
2003 Risso's dolphin 48% 1.000 0.022 0.998 0.067 0.999 | 0.168
2006 Risso's dolphin 64% 1.000 0.161 0.316 0.052 0.000 | 0.295
1986 Off. comm. dolph. 95% 1.000 1.000 0.999 1.000 1.000 1.000
1987 Off. comm. dolph. 53% 1.000 0.060 0.028 0.256 0.001 | 0.207
1988 Off. comm. dolph. 93% 1.000 1.000 1.000 1.000 1.000 1.000
1989 Off. comm. dolph. 39% 0.999 0.648 0.047 0.023 0.352 | 1.000
1990 Off. comm. dolph. 83% 0.999 0.427 0.469 0.513 0.478 | 0.436
1998 Off. comm. dolph. 24% 0.131 0.999 0.105 0.999 0.999 | 1.000
1999 Off. comm. dolph. 45% 0.005 0.000 0.045 1.000 1.000 | 0.234
2000 Off. comm. dolph. 49% 1.000 0.003 0.292 0.137 0.091 | 0.996
2003 Off. comm. dolph. 23% 0.993 1.000 0.998 0.042 0.997 | 0.298
2006 Off. comm. dolph. 74% 0.047 0.395 0.079 0.078 0.741 | 0.124
1986 Short-fin. pilot wh. 79% 0.515 0.877 0.883 1.000 0.929 | 0.997
1987 Short-fin. pilot wh. 62% 0.085 0.316 0.162 1.000 1.000 | 0.540
1988 Short-fin. pilot wh. 93% 1.000 1.000 0.999 0.788 0.750 | 0.546
1989 Short-fin. pilot wh. 95% 0.948 0.964 0.851 0.911 0.944 | 1.000
1990 Short-fin. pilot wh. 90% 0.925 0.808 0.904 0.916 0.925 | 0.962
1998 Short-fin. pilot wh. 44% 0.183 0.999 0.999 0.226 0.410 | 0.603
1999 Short-fin. pilot wh. 58% 0.995 1.000 0.073 0.408 0.055 | 0.014
2000 Short-fin. pilot wh. 96% 0.813 0.797 0.902 0.888 0.722 | 0.960
2003 Short-fin. pilot wh. 92% 1.000 0.999 0.997 0.801 0.956 | 0.989
2006 Short-fin. pilot wh. 94% 1.000 1.000 1.000 1.000 1.000 | 0.998
1986 Bottlenose dolph. 36% 0.999 0.999 0.093 0.237 0.055 | 0.037
1987 Bottlenose dolph. 48% 0.085 0.999 0.169 0.116 0.008 | 0.041
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Table 4. Summary results from GAM models with data separated by individual years.
Continued.

Year + Cetacean Taxon DevExp D_CPUE S _CPUE L _CPUE D_Sets S_Sets L_Sets
1988 Bottlenose dolph. 78% 0.909 1.000 0.741 0.988 1.000 | 0.918
1989 Bottlenose dolph. 50% 0.990 1.000 0.002 0.025 1.000 | 0.005
1990 Bottlenose dolph. 88% 0.802 0.817 0.866 0.810 0.976 | 0.814
1998 Bottlenose dolph. 64% 0.001 1.000 ‘

1999 Bottlenose dolph. 50% 0.316 0.592 0.007 0.993 0.999 | 0.003
2000 Bottlenose dolph. 31% 0.996 0.162 0.041 0.999 0.525 | 0.103
2003 Bottlenose dolph. 51% 0.010 0.492 0.997 0.121 0.004 | 0.412
2006 Bottlenose dolph. 68% 0.006 0.009 0.101 0.448 0.004 | 0.020
1986 Roug.-tooth. dolp. 51% 0.005 0.028 0.998 0.461 0.081 | 0.151
1987 Roug.-tooth. dolp. 60% 0.997 0.037 0.167 0.999 0.115 | 0.096
1988 Roug.-tooth. dolp. | 100% | 10000 | 0.000 | 0.000 | 1.000 | 1.000

1989 Roug.-tooth. dolp. 13% 0.993 0.997 0.999 0.298 0.268 | 0.999
1990 Roug.-tooth. dolp. 39% 0.163 0.447 0.208 0.130 0.184 | 0.998
1998 Roug.-tooth. dolp. E- 0.999 0.003 0.995 0.999 | 0.245
1999 Roug.-tooth. dolp. 45% 0.130 0.648 0.228 0.999 0.183 | 0.222
2000 Roug.-tooth. dolp. 85% 0.496 0.965 0.954 0.826 0.832 | 1.000
2003 Roug.-tooth. dolp. 33% 0.999 0.999 1.000 0.242 0.204 | 0.081
2006 Roug.-tooth. dolp. T%- 0.764 0.002 0.249 0.947 | 0.003
1986 Sperm whale 41% 0.321 1.000 0.018 0.006 0.022 | 0.997
1987 Sperm whale 45% 0.066 1.000 0.184 0.996 0.021 | 1.000
1988 Sperm whale 73% 0.039 0.027 0.998 1.000 | 0.004 | 0.024
1989 Sperm whale 81% 0.139 0.169 0.154 0.124 1.000 | 0.183
1990 Sperm whale 38% 0.016 0.379 0.317 0.999 0.999 | 0.031
1998 Sperm whale 99% 0.909 0.722 0.264 0.647 0.891 | 0.789
1999 Sperm whale 93% 0.804 0.995 0.963 0.896 0.877 | 0.994
2000 Sperm whale 0.999 | 1.000
2003 Sperm whale 85% 1.000 0.365 0.809 | 0.915
2006 Sperm whale 100% 1.000 1.000

1986 Bryde's whale 75% 0.751 0.775

1987 Bryde's whale 58% 1.000 1.000

1988 Bryde's whale 95% 0.386 0.894 1.000 0.994 0.954 | 0.975
1989 Bryde's whale 60% 1.000 0.193 0.805 0.999 1.000 | 0.481
1990 Bryde's whale 15% 0.999 0.999 0.103 0.999 0.407 | 0.122
1998 Bryde's whale 0% 1.000 0.999 1.000 0.999 1.000 | 0.999
1999 Bryde's whale 59% 0.097 0.098 0.046 0.002
2000 Bryde's whale 43% 0.999 1.000 0.070 0.205 0.008 | 0.127
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Table 4. Summary results from GAM models with data separated by individual years.

Continued.
Year + Cetacean Taxon DevExp D_CPUE S _CPUE L _CPUE D_Sets S_Sets L_Sets
2003 Bryde's whale 64% 1.000 0.149 1.000 0.533 0.088 | 0.573
2006 Bryde's whale 32% 0.999 0.463 0.110 0.999 0.027 | 0.998
1986 Cuvier's beak. wh. 30% 0.999 0.999 1.000 0.999 0.064 | 0.039
1987 Cuvier's beak. wh. 97% 0.888 0.989 0.940 0.907 1.000 | 1.000
1988 Cuvier's beak. wh. @ 1.000 1.000 1.000 ﬂ
1989 Cuvier's beak. wh. 47% 0.293 0.758 0.999 0.999 0.999 | 0.384
1990 Cuvier's beak. wh. 0% 1.000 1.000 0.999 0.999 1.000 | 0.999
1998 Cuvier's beak. wh. 0.516 0.033 0.083 | 0.998
1999 Cuvier's beak. wh. 0.772 0.691 0.999 | 0.824
2000 Cuvier's beak. wh.
2003 Cuvier's beak. wh.
2006 Cuvier's beak. wh. 100%
1986 Blue whale 100% 1.000
1987 Blue whale 85% 1.000
1988 Blue whale 100% 1.000
1989 Blue whale 95% 0.820 0.820 0.985
1990 Blue whale 100% 1.000 1.000 1.000
1998 Blue whale 77% 0.999 0.323 0.707
1999 Blue whale 56% 1.000 0.998 0.365
2000 Blue whale @ 1.000 1.000
2003 Blue whale 99% 1.000 0.358 0.438
2006 Blue whale 47% 1.000 0.379 0.418
1986 Dwarf sperm wh. 71% 0.296 0.998 0.994
1987 Dwarf sperm wh. 97% 0.132 0.329 1.000
1988 Dwarf sperm wh. 81% 1.000 1.000 1.000
1989 Dwarf sperm wh. 80% 0.004 1.000
1990 Dwarf sperm wh. 74% 1.000 1.000 0.943
1998 Dwarf sperm wh. 54% 0.012 0.998 0.997
1999 Dwarf sperm wh. 64% 0.073 0.030 0.030
2000 Dwarf sperm wh. E- 0.999 0.666
2003 Dwarf sperm wh. 85% 0.980 0.596 0.999
2006 Dwarf sperm wh. 92% 0.383 0.918 1.000
1986 Killer whale 71% 0.994 0.538 0.986
1987 Killer whale E- 0.222 0.649
1988 Killer whale 71% 0.999 0.999 0.536
1989 Killer whale 61% 0.061 0.137 0.439
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Continued.
Year + Cetacean Taxon DevExp D_CPUE S_CPUE L _CPUE D_Sets S_Sets L_Sets
1990 Killer whale 81% 1.000 1.000 1.000 1.000 1.000 1.000
1998 Killer whale 27% 0.211 0.999 0.980 0.396 0.159 | 0.300
1999 Killer whale 91% 0.985 0.871 0.993 0.995 0.793 | 0.973
2000 Killer whale 59% 0.216 0.997 0.098 1.000 0.997 | 0.053
2003 Killer whale 95% 1.000 0.998 0.995 0.987 1.000 | 1.000
2006 Killer whale 7% 0.999 0.800 1.000 1.000 0.999 | 0.771
1986 Mesop. beak. wh. 53% 0.071 1.000 0.010 0.097 0.189 | 0.009
1987 Mesop. beak. wh. 41% 0.999 1.000 0.027 0.043 | 0.005
1988 Mesop. beak. wh. 83% 0.682 1.000 0.839 0.875 0.818 | 0.814

1989 Mesop. beak. wh. 0.025 0.011

1990 Mesop. beak. wh. 9% 0.091 0.999 0.994 1.000 1.000 | 1.000
1998 Mesop. beak. wh. 28% 0.266 0.253 0.997 0.084 0.999 | 0.453
1999 Mesop. beak. wh. 39% 0.081 0.137 0.999 0.471 0.061 | 0.225
2000 Mesop. beak. wh. 4% 1.000 0.999 0.998 0.999 1.000 | 0.316
2003 Mesop. beak. wh. 41% 1.000 0.027 0.501 0.084 0.999 | 0.999
2006 Mesop. beak. wh. 78% 0.999 0.192 0.042 0.343 | 1.000
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Figure 1. Schematic diagram of surface water masses and currents in the ETP. STSW =
Subtropical Surface Water. TSW = Tropical Surface Water. ESW = Equatorial Surface
Water. Shading represents mean sea surface temperature (darker = colder). The blue
dotted line is the boundary that applies to the ETP Regional Fisheries Management
Organization (the Inter-American Tropical Tuna Commission), which is responsible for
the conservation and management of marine resources in the region bounded by 150°W,
40°N, 40°S, and the coasts of the Americas. Adapted from Figure 2 in Fiedler and Talley
(2006).
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Figure 2. Relationships between tuna fishery metrics and sightings per hour for cetacean
taxa as revealed by canonical correspondence analysis (CCA) with all data aggregated
temporally into one group (climatological view). The CCA biplot contains grid cells as
black points, yellowfin tuna fishery metrics as predictors in blue, and cetacean taxa in
red. Predictors include — for dolphin, school, and log fishing methods - “Catch” (metric
tons of catch), “Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit
of effort, where effort is number of days fished). The predictors explain 13.2% of the
variance in the cetacean data. The horizontal axis is canonical axis 1; the vertical axis is
canonical axis 2. Values along the bottom and left sides correspond to cetacean axis
scores. Taxonomic abbreviations as in Table 1.
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Figure 24. Modeled species densities for pantropical spotted dolphin (offshore spotted

dolphin + coastal spotted dolphin), whitebelly spinner dolphin, and eastern spinner

dolphin. Models were built with environmental predictor variables. Panels show 3 sample

years, the multi-year average, and 90% confidence limits. Dots are observed sighting
locations for each time period. Figure from Forney et al. 2012.
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Striped dolphin
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Figure 25. Modeled species densities for striped dolphin, rough-toothed dolphin, and
short-beaked common dolphin (offshore common dolphin). Models were built with
environmental predictor variables. Panels show 3 sample years, the multi-year average,

and 90% confidence limits. Dots are observed sighting locations for each time period.
Figure from Forney et al. 2012.
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Bottlenose dolphin
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Figure 26. Modeled species densities for bottlenose dolphin, Risso’s dolphin, and
Cuvier’s beaked whale. Models were built with environmental predictor variables. Panels
show 3 sample years, the multi-year average, and 90% confidence limits. Dots are

observed sighting locations for each time period. Figure from Forney et al. 2012.



Blue whale
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Figure 27. Modeled species densities for blue whale, Bryde’s whale, and short-finned
pilot whale. Models were built with environmental predictor variables. Panels show 3
sample years, the multi-year average, and 90% confidence limits. Dots are observed
sighting locations for each time period. Figure from Forney et al. 2012.
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Dwarf sperm whale
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Figure 28. Modeled species densities for dwarf sperm whale and mesoplodont beaked
whales. Models were built with environmental predictor variables. Panels show 3 sample
years, the multi-year average, and 90% confidence limits. Dots are observed sighting
locations for each time period. Figure from Forney et al. 2012.
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APPENDIX 1
Canonical Correspondence Analysis Histograms

Results from canonical correspondence analysis (CCA) using all data aggregated
temporally into one group (climatological view). Predictor variables are yellowfin tuna
fishery metrics; the response is the number of sightings per hour for each of 19 cetacean
taxa. Frequency histograms (transformed to percentages) of Axis 1 and 2 scores for each
taxon mostly reveal unimodal relationships, thus validating a primary assumption of

CCA. Taxonomic abbreviations as in Table 1.
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Figure Al.1. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for offshore spotted dolphins (“OSpot”; top) and coastal spotted dolphins
(“CSpot”; bottom). Results from canonical correspondence analysis relating cetacean
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into
one group (climatological view). Taxonomic abbreviations as in Table 1.
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Figure Al.2. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for eastern spinner dolphins (“ESpin”; top) and whitebelly spinner dolphins
(“WBSpin”; bottom). Results from canonical correspondence analysis relating cetacean
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into
one group (climatological view). Taxonomic abbreviations as in Table 1.
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Figure A1.3. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for mixed schools of offshore spotted and eastern spinner dolphins (“MIXE”;
top) and mixed schools of offshore spotted and whitebelly spinner dolphins (“MIXW”;
bottom). Results from canonical correspondence analysis relating cetacean sightings per
hour to yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure Al.4. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for striped dolphins (“STCO”; top) and Risso’s dolphins (“GRGR”; bottom).
Results from canonical correspondence analysis relating cetacean sightings per hour to
yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure AL.5. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for offshore common dolphins (“DEDE”; top) and short-finned pilot whales
(“GLMA”; bottom). Results from canonical correspondence analysis relating cetacean
sightings per hour to yellowfin tuna fishery metrics, with data aggregated temporally into
one group (climatological view). Taxonomic abbreviations as in Table 1.
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Figure Al.6. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for bottlenose dolphins (“TUTR”; top) and rough-toothed dolphins (“STBR”;
bottom). Results from canonical correspondence analysis relating cetacean sightings per
hour to yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure Al.7. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for sperm whales (“PHMA; top) and Bryde’s whales (“BAED”; bottom).
Results from canonical correspondence analysis relating cetacean sightings per hour to
yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure Al.8. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for Cuvier’s beaked whales (“ZICA”; top) and blue whales (“BAMU”; bottom).
Results from canonical correspondence analysis relating cetacean sightings per hour to
yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure AL.9. Frequency histograms (transformed to percentages) of canonical Axis 1 and
2 scores for dwarf sperm whales (“KOSI”; top) and killer whales (“OROR”; bottom).
Results from canonical correspondence analysis relating cetacean sightings per hour to
yellowfin tuna fishery metrics, with data aggregated temporally into one group
(climatological view). Taxonomic abbreviations as in Table 1.
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Figure A1.10. Frequency histograms (transformed to percentages) of canonical Axis 1
and 2 scores for mesoplodont beaked whales (“Mesop”). Results from canonical
correspondence analysis relating cetacean sightings per hour to yellowfin tuna fishery
metrics, with data aggregated temporally into one group (climatological view).
Taxonomic abbreviations as in Table 1.
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APPENDIX 2

Canonical Correspondence Analysis Variance Explained Plots
Results from canonical correspondence analysis (CCA) using all data aggregated
temporally into one group (climatological view). Predictor variables are yellowfin tuna
fishery metrics; the response is the number of sightings per hour for each of 19 cetacean
taxa. Plots show the percent of variance in a given taxon’s data explained by each of the
first four canonical axes. Blue = Axis 1; Yellow = Axis 2; Green = Axis 3; Brown = Axis

4. Bar height indicates total variance explained by these axes.
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APPENDIX 3

Generalized Additive Model Plots
Results from generalized additive models using yellowfin tuna fishery metrics as
predictors and the number of sightings per hour for a given cetacean taxon as the
response. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort, metric tons

of catch per day of fishing).
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Number of sightings per hour: Offshore spotted dolphin (2)
32% deviance explained
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Figure A3.1 Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for offshore spotted dolphins as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Coastal spotted dolphin (6)
47.3% deviance explained
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Figure A3.2. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for coastal spotted dolphins as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Eastern spinner dolphin (10)
46.8% deviance explained
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Figure A3.3. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for eastern spinner dolphins as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Whitebelly spinner dolphin (11)
39.6% deviance explained
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Figure A3.4. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for whitebelly spinner dolphins as the
response variable. Predictors include — for dolphin, school, and log fishing methods —
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort =
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the
distribution of data. Taxonomic information as in Table 1.
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Number of sightings per hour: Bryde's whale (BAED)
9.6% deviance explained
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Figure A3.5. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for Bryde’s whales as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Blue whale (BAMU)
33.3% deviance explained
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Figure A3.6. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for blue whales as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Offshore common dolphin (DEDE)
34.3% deviance explained
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Figure A3.7. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for offshore common dolphins as the
response variable. Predictors include — for dolphin, school, and log fishing methods —
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort =
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the
distribution of data. Taxonomic information as in Table 1.
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Number of sightings per hour: Short-finned pilot whale (GLMA)
17.6% deviance explained
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Figure A3.8. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for short-finned pilot whales as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Risso’s dolphin (GRGR)
25.6% deviance explained
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Figure A3.9. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for Risso’s dolphins as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Dwarf sperm whale (KOSI)
29.9% deviance explained
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Figure A3.10. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for dwarf sperm whales as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Mesoplodon beaked whales (Mesop)
14.3% deviance explained
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Figure A3.11. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for mesoplodont beaked whales as the
response variable. Predictors include — for dolphin, school, and log fishing methods —
“Sets” (number of sets of the purse-seine net), and “CPUE” (catch per unit of effort =
metric tons of catch per day of fishing). Points are residuals; gray shading is the estimated
95% confidence interval; the rug plot (vertical lines along the x-axis) shows the

distribution of data. Taxonomic information as in Table 1.
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Number of sightings per hour: Offshore spotters + eastern spinners (MIXE)
55.6% deviance explained
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Figure A3.12. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for mixed schools of offshore spotted and
eastern spinner dolphins as the response variable. Predictors include — for dolphin,
school, and log fishing methods — “Sets” (number of sets of the purse-seine net), and
“CPUE” (catch per unit of effort = metric tons of catch per day of fishing). Points are
residuals; gray shading is the estimated 95% confidence interval; the rug plot (vertical
lines along the x-axis) shows the distribution of data. Taxonomic information as in Table
1.
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Number of sightings per hour: Offshore spotters + whitebelly spinners (MIXW)
28.8% deviance explained
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Figure A3.13. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for mixed schools of offshore spotted and
whitebelly spinner dolphins as the response variable. Predictors include — for dolphin,
school, and log fishing methods — “Sets” (number of sets of the purse-seine net), and
“CPUE?” (catch per unit of effort = metric tons of catch per day of fishing). Points are
residuals; gray shading is the estimated 95% confidence interval; the rug plot (vertical
lines along the x-axis) shows the distribution of data. Taxonomic information as in Table
1.
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Number of sightings per hour: Killer whale (OROR)
0% deviance explained
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Figure A3.14. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for killer whales as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Sperm whale (PHMA)
19% deviance explained
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Figure A3.15. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for sperm whales as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Rough—toothed dolphin (STBR)
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Figure A3.16. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for rough-toothed dolphins as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Striped dolphin (STCO)
23.7% deviance explained
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Figure A3.17. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for striped dolphins as the response variable.
Predictors include — for dolphin, school, and log fishing methods — “Sets” (number of sets
of the purse-seine net), and “CPUE” (catch per unit of effort = metric tons of catch per
day of fishing). Points are residuals; gray shading is the estimated 95% confidence
interval; the rug plot (vertical lines along the x-axis) shows the distribution of data.
Taxonomic information as in Table 1.
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Number of sightings per hour: Bottlenose dolphin (TUTR)
46.1% deviance explained
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Figure A3.18. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for bottlenose dolphins as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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Number of sightings per hour: Cuvier's beaked whale (ZICA)
5.9% deviance explained
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Figure A3.19. Results from generalized additive models with yellowfin tuna fishery
metrics as predictors and sightings per hour for Cuvier’s beaked whales as the response
variable. Predictors include — for dolphin, school, and log fishing methods — “Sets”
(number of sets of the purse-seine net), and “CPUE” (catch per unit of effort = metric
tons of catch per day of fishing). Points are residuals; gray shading is the estimated 95%
confidence interval; the rug plot (vertical lines along the x-axis) shows the distribution of
data. Taxonomic information as in Table 1.
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CHAPTER 3

Bayesian inference and assessment for rare-event bycatch in marine fisheries: a

drift gillnet fishery case study
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ABSTRACT

Fisheries bycatch is a global threat to marine megafauna. Environmental laws
require bycatch assessment for protected species, but this is difficult when bycatch is
rare. Low bycatch rates combined with low observer coverage may lead to biased,
imprecise estimates when using standard ratio estimators. Bayesian model-based
approaches incorporate uncertainty, produce less volatile estimates, and enable
probabilistic evaluation of estimates relative to management thresholds. Here, we
demonstrate a pragmatic decision-making process that uses Bayesian model-based
inferences to estimate the probability of exceeding management thresholds for bycatch in
fisheries with <100% observer coverage. Using the California drift gillnet fishery as a
case study, we: 1) model rates of rare-event bycatch and mortality using Bayesian
Markov chain Monte Carlo estimation methods and 20 years of observer data, 2) predict
unobserved counts of bycatch and mortality, 3) infer expected annual mortality, 4)
determine probabilities of mortality exceeding regulatory thresholds, and 5) classify the
fishery as having low, medium, or high bycatch impact using those probabilities. We
focus on leatherback sea turtles (Dermochelys coriacea) and humpback whales
(Megaptera novaeangliae). Candidate models included Poisson or zero-inflated Poisson
likelihood, fishing effort, and a bycatch rate that varied with area, time, or regulatory
regime. Regulatory regime had the strongest effect on leatherback bycatch, with the
highest levels occurring prior to a regulatory change. Area had the strongest effect on
humpback bycatch. Cumulative bycatch estimates for the 20-year period were 104-242
leatherbacks (52-153 deaths) and 6-50 humpbacks (0-21 deaths). The probability of

exceeding a regulatory threshold under the U.S. Marine Mammal Protection Act
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(Potential Biological Removal) of 0.113 humpback deaths was 0.58, warranting a
“medium bycatch impact” classification of the fishery. No PBR thresholds exist for
leatherbacks, but the probability of exceeding an anticipated level of 2 deaths per year,
stated as part of a U.S. Endangered Species Act assessment process, was 0.0007. The
approach demonstrated here would allow managers to objectively and probabilistically
classify fisheries with respect to bycatch impacts on species that have population-relevant
mortality reference points, and declare with a stipulated level of certainty that bycatch did
or did not exceed estimated upper bounds.
INTRODUCTION
Rare Events in Ecology and Management
Rare events can be ecologically important when they have high impacts (e.g.,
dispersal events, catastrophic weather, or disease) or accumulate to levels that affect
wildlife populations or human decision-making (e.qg., ship strikes of whales, shark attacks
on humans, or sightings of endangered species). However, inferring ecological
parameters from rare-event data is challenging. The sample sizes typically required to
estimate them with reasonable precision are quite large (Dixon et al. 2005, Amande et al.
2012). The data are commonly, though not always, overdispersed, often with more zeros
than expected for conventional statistical distributions, and thus violate model
assumptions (Cunningham and Lindenmayer 2005, Lewin et al. 2010, Webley et al.
2011). For instance, the Poisson distribution is useful for modeling count data, but its
requirement for equal mean and variance is often violated by rare-event data. Despite
these challenges, natural resource managers often must make inferences about rare events

to inform their decisions (e.g., Rojas-Bracho et al. 2006).
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Numerous approaches have been developed to deal with the analytical challenges
posed by rare-event data. Most fall into the category of using mixture models consisting
of one or more count and binomial processes (e.g., zero-inflated or hurdle models) to
cope with the many-zeros problem (e.g., Ver Hoef and Jansen 2007, Lewin et al. 2010,
Barlow and Berkson 2012, Okamura et al. 2012). Precision can sometimes be improved
by utilizing ancillary information in the form of informative Bayesian priors, modified
sampling designs (e.g., stratification), covariate-based prediction models, or additional
data sets that inform the same process of interest (e.g., Dixon et al. 2005). All of these
strategies can be accommodated by a Bayesian approach.

Bayesian methods emphasize probabilistic inference and posterior distribution
summaries, which facilitate full and transparent communication of uncertainty (Ellison
1996, Wade 2000). Because of these features, Bayesian methods have a substantial
history of application in the life sciences, ranging from human health and biomedical
research (Manton et al. 1989, Richardson and Gilks 1993, Cai et al. 2010) to wildlife
population dynamics and stock assessments (McAllister et al. 1994, Punt and Hilborn
1997, McAllister and Kirkwood 1998, Maunder et al. 2000, Maunder and Starr 2001,
Hoyle and Maunder 2004, Amstrup et al. 2010, Jay et al. 2011). Given the high levels of
uncertainty associated with rare-event problems and the importance of quantifying
management error, Bayesian statistics provide a transparent method for estimating the
probability of Type I (falsely inferring an effect) and Type Il (failing to identify an
important effect) error (Maunder et al. 2000, Ludwig et al. 2001, Hoyle and Maunder

2004).
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Fisheries Bycatch

Bycatch (the incidental capture of non-target species in fisheries operations)
remains a major global threat to marine megafauna, including sea turtles, marine
mammals, and seabirds (Dayton et al. 1995, Lewison et al. 2004, Read et al. 2006,
Wallace et al. 2010, Croxall et al. 2012). The U.S. has enacted a series of laws, including
the Endangered Species Act (ESA) and the Marine Mammal Protection Act (MMPA),
which require assessment of bycatch impacts on legally protected species (Moore et al.
2009). Assessment is more difficult in practice than in principle because bycatch of some
species is such a rare event (McCracken 2004, Amande et al. 2012).

The characteristics of rare-event bycatch pose estimation challenges. First,
protected megafauna are typically not targeted; in fact, fishers in many countries have
incentives not to catch these species (e.g., avoidance of damaged gear, legal fines, and
increased fishery regulation). Thus, the number of animals caught is relatively low.
Second, bycatch is recorded by scientific observers on board fishing vessels, but
deploying observers on every fishing trip is typically cost-prohibitive. Thus, in most U.S.
fisheries, observer coverage is less than 20%; in many it is less than 5% (Moore et al.
2009). Low bycatch rates combined with sparse observer coverage may lead to
unacceptably low precision and severe bias in bycatch estimates (McCracken 2004,
Amande et al. 2012, Carretta and Moore 2014).

Ratio estimators are commonly used to extrapolate bycatch estimates as the
product of an observed bycatch rate (e.g., number of catches per observed fishing set or
trip) and total effort in a fishery (e.g., number of sets or trips); however, they are not

suitable when observer coverage or bycatch rates are relatively low. When applied in
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such cases, commonly observed zeros result in under-estimates of zero bycatch, while
those events observed by chance result in implausibly high estimates. For example, in the
California drift gill net fishery (DGN fishery) off the west coast of the U.S., after 11
years (1999-2009) without a single observed sperm whale (Physeter macrocephalus)
interaction (observer coverage ranging from 13.0% to 22.7% annually), two sperm
whales were observed entangled in 2010 (Carretta et al. 2010), resulting in a ratio-based
estimate of 16 deaths or serious injuries for the year. In reality, total bycatch probably
was not as high as 16 in 2010 and not zero for all 11 of the previous years.

The issues with rare-event bycatch, including chance volatility in single-year
estimates, are not just a statistical abstraction; they present managers with real problems
related to MMPA and ESA regulations. To reduce the bias associated with single-year
estimates, NMFS typically uses 5-year means in its assessments. This approach offers
some improvement, but it is ad hoc and does not necessarily provide an adequate solution
(Carretta and Moore 2014). In particular, it does not transparently communicate the
uncertainty in single-year estimates, which may still be taken at face value by
stakeholders. This problem arose recently when the 2010 sperm whale estimate was cited
in a lawsuit against the U.S. National Marine Fisheries Service (NMFS) as evidence that
regulatory thresholds were being exceeded (Center for Biological Diversity 2012). Such
conclusions could have considerable, unnecessary impacts on the fishery, and they could
be avoided with less volatile estimates.

Model-based approaches can reduce the volatility of bycatch estimates. There are
several recent examples of using GLM-based mixture (e.g., zero-inflated) models to

improve bycatch estimates (Pradhan and Leung 2006, Minami et al. 2007, Cambie 2011,
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Winter et al. 2011). Bayesian methods are also particularly well suited for these problems
(e.g., Gardner et al. 2008, Sims et al. 2008) and have been used to estimate bycatch of
some protected species, including the vaquita (Phocoena sinus) (Gerrodette and Rojas-
Bracho 2011), Hector's dolphins (Cephalorhynchus hectori) (Davies et al. 2008), and
New Zealand fur seals (Arctocephalus forsteri) (Thompson et al. 2013). These methods
more fully integrate uncertainty and are quite useful for producing less volatile bycatch
estimates; however, they could be taken a step further to inform decision-making. Here,
we propose a pragmatic decision-making process that uses Bayesian model-based
inferences to classify the probability of protected species bycatch exceeding regulatory
thresholds or other reference points in fisheries with less than 100% observer coverage.
In this paper, we use fisheries observer data to: 1) model rates (per unit of fishing
effort) of rare-event bycatch and mortality (some animals are released alive but others
die) for protected species; our models view observed bycatch counts as random variables,
accounting for both observation error (imperfect detection of bycatch given incomplete
observer coverage) and biological process error (true annual variation), 2) use those
inferred rates to predict unobserved counts of bycatch and mortality, given a specified
level of fishing effort, 3) infer expected annual mortality, given the data and a specified
level of fishing effort, 4) determine probabilities of expected annual mortality falling
within certain ranges defined by regulatory thresholds, and 5) classify a fishery into a
category of low, medium, or high bycatch impact using the above probabilities. In this
classification system, placing a fishery into a higher impact category when in fact the
level of impact is low would be analogous to a Type | error. Assigning a lower impact

category when in fact bycatch impacts are high would be analogous to a Type Il error.
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We demonstrate our approach using the DGN fishery as a case study. Rare-event bycatch
has been observed in this fishery for numerous protected species, including leatherback
sea turtles (Dermochelys coriacea), loggerhead sea turtles (Caretta caretta), short-finned
pilot whales (Globicephala macrorhynchus), humpback whales (Megaptera
novaeangliae), sperm whales, and beaked whales (Family Ziphiidae) (HMSMT 2012).
We analyze data for leatherback sea turtles and humpback whales as representative
examples of endangered species regulated under the ESA and MMPA, respectively.
METHODS
California Drift Gillnet Fishery History and Data

The DGN fishery has existed since the late 1970s, operating primarily from
August through December and targeting large pelagic species such as thresher shark
(Alopias vulpinus) and swordfish (Xiphias gladius). Effort in the fishery has declined
over time according to California Department of Fish and Game (CDFG) vessel logbook
data (Table 1, Figure 1) (Hanan et al. 1993). NMFS has maintained an observer program
since 1990 to monitor marine mammal bycatch pursuant to the MMPA (Barlow 1989).
The observer data provide details of fishing effort including the date, latitude and
longitude coordinates, target and bycatch species caught, and condition of bycatch. From
1990 through 2009, there were 8,152 observations, with mean observer coverage of
15.6% per year (Table 1). There were 24 observed leatherback takes (a “take” is a single
bycatch event), 13 of which resulted in mortality and one (“unknown”) that we
conservatively assumed to also be fatal (Table 2). There were 0-5 observed leatherback

takes per year in 1990-1999, none in 2000-2008, and 1 in 2009 (Table 2). There were 3
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observed humpback takes, none of which resulted in death. The maximum number of
leatherbacks or humpbacks ever observed entangled at one time was 1.

The gear type used in this fishery is a long, large-mesh net (approximately 1800
m length with 35.6 cm mesh), which fishers deploy offshore at dusk and retrieve at dawn
(PFMC 2011). One iteration of this process is referred to as a “set.” Based on similarity
among DGN sets in gear, technology, methods, and soak time, we treat the set as the
basic unit of fishing effort (a conventional unit in bycatch analyses). Some physical
variability in net characteristics (length, mesh size, depth) exists but has not been found
to be a significant driver of bycatch variation (Julian and Beeson 1998). Since 1997, all
nets have been equipped with acoustic pingers (to deter odontocetes) and 36-foot net
extenders to reduce marine mammal bycatch.

Previous studies suggest that the amount, location, and timing of fishing effort are
the most significant drivers of bycatch variation in this fishery, at least for leatherbacks
(Julian and Beeson 1998, NMFS 2000, Benson et al. 2007). In 2001, NMFS implemented
a time-area fishery closure (NMFS 2001) with an objective to limit leatherback bycatch
to 9 takes and 6 deaths over a 3-year period (NMFS 2000). Annually, from August 15
through November 15 (“closure period” or “closure months™), the DGN fishery is
prohibited from operating in the Pacific leatherback conservation area (“closure area”),
comprised of state and federal waters from Point Conception (near Monterey Bay,
California) north to 45 degrees latitude in Oregon (Figure 1) (NMFS 2001). This
regulation targeted a time-area combination where most historical leatherback bycatch
(18 takes) was observed (Figure 1). For our analysis, we classified all sets and takes as to

whether they occurred inside or outside of the area or months delimited by the seasonal
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closure (Table 1, Figure 1). For the unobserved sets, we used the CDFG logbook data
(1990-2009) which contain dates and locations of fishing effort at the CDFG block level
(typically 10-arcminute square blocks on a latitude-longitude grid).
Modeling Rare-Event Bycatch in the DGN Fishery with a Bayesian Approach

We explored models that could account for potential time-area differences in
bycatch rates. Models varied with respect to available spatial and temporal covariates,
functional form, and number of estimated parameters (Tables 3, 4).

For a single species (e.g., leatherbacks), we used a Poisson likelihood function to
model the stochastic dependence of x;, the number of observed takes in year i, on 8, the

per-set take rate parameter, and n;, the number of observed sets in year i:

_ . (6 ixi
f(xi10,n) = e=0m CR (1)

x;!
where 8n; = J; is the Poisson rate (mean) parameter. Previous studies have also used the
Poisson distribution to model bycatch (NMFS 2004, Pradhan and Leung 2006, Gardner et
al. 2008, Murray 2009, 2011) because it can characterize data in which each observation
has a high probability for a zero count, a small probability for a count of one, and an
infinitesimal probability for a count of two or more. The DGN fishery data have these
Poisson characteristics plus one more: a mean per-set take rate (2.944 x 10°) roughly
equal to the variance (2.936 x 10°®). A strong positive correlation between the numbers of
observed takes and sets per year (Pearson's r=0.672; p=0.001; Figures 1, 2) supports
including the number of sets in the model. We assume statistical independence of all sets

and takes.
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We modeled the number of observed deaths, w;, with a binomial likelihood
function which quantifies the stochastic dependence of w; on x; and a conditional
mortality parameter, g (i.e., given a take of this species occurs, the probability that the

animal dies):

x;!

fwil xi, q5) = q"i(1—g)* i 2)

To estimate q for each species, we followed Chapter 2 in (Gelman et al. 2004) in
specifying a flat prior of Beta(1,1) which yields a posterior distribution of the form
Beta(l + way, 1 + Xan — Wai), Where wyy and Xq are the respective numbers of deaths and
takes in all years of the data. For leatherbacks, wy = 14 deaths and x4 = 24 takes; for
humpbacks, wa; = 1 death and x4 = 4 takes (the fisher-reported mortality is
conservatively treated as a take for purposes of estimating the conditional mortality rate
for humpbacks). Thus, for the posterior of g in our analyses, we used Beta(15, 11) for
leatherbacks and Beta(2, 4) for humpbacks. Appendix A contains more theoretical
background on our Bayesian modeling approach for interested readers.

Candidate models are outlined in Table 3. In M1 (simple model), the bycatch rate
6 is constant across all locations and times, such that expected annual observed bycatch
(4) varies simply with the number of observed fishing sets (n;). For M1r (regulation
model), 6 differs for pre- and post-regulation periods (i.e., 1990-2000 and 2001-2009). In
M2 (area model), M3 (time model), M4 (area-time interaction model), and M5 (area and
time model), 8 varies across different time-area combinations defined by the closure

limits (Table 1). The binary area variable, a, indicates whether effort occurred inside or

outside the area defined by the closure (whether or not the closure was in effect that year)
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(in M2, M4, M5). The binary time variable, t, indicates whether or not effort occurred
during the closure months of August 15 through November 15 (again, irrespective of
whether it was a closure year) (in M3, M4, M5). Model M2 describes area-only
differences in 8. Model M3 describes season-only differences in 8. For model M4, 6
differs for sets inside the closure area and season from those conducted either outside the
closure area or season. Finally, M5 allows for a unique 6 for each combination of being
in or out of the closure area or season. Regulation versions of M2-M5 (e.g., M2r) were
not tested because the binary regulation variable r would be confounded with a and/or t,
and there are not enough observed takes in post-regulation years (takes = 1) to fit overly
complex models.

We included zero-inflated Poisson (ZIP) versions of each model to allow for the
possibility that some effort may occur in time periods (e.g., post-regulation) or time-area
combinations with no exposure to bycatch risk. A mixture of effort where a portion (p) is
exposed to bycatch risk at Poisson rates (i.e., animals are present) and the other portion (1
—p) has no exposure to the risk (i.e., animals are not present) will result in more zeros
and higher variance than predicted by the Poisson distribution. The ZIP likelihood

function,
Fxil6,ng) = peom 2 4 (1 - p)o, ®)
is simply an extension of the Poisson likelihood function (Egn. 1). M1z, M2z, M3z, M4z,

and M5z add ZIP parameters (po — p3) to their parent models to allow the degree of zero-

inflation to vary across time-area categories (Table 3). For example, we hypothesize a
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higher probability of zero bycatch for effort occurring outside the closure area than
inside.

We used WinBUGS to implement Bayesian Markov chain Monte Carlo (MCMC)
methods for model estimation (Lunn et al. 2000). WinBUGS uses the Gibbs sampling
algorithm to sample from the posterior distributions of parameters. We used the R
statistical environment with packages R2WinBUGS and Coda to interface with
WinBUGS (Lunn et al. 2000, R Core Team 2013). Flat priors were specified for all
parameters (Table 3). All 20 years of NMFS observer data were included in the
estimation process. MCMC runs consisted of 200,000 iterations, including a burn-in of
50,000, and 3 chains. Convergence of chains onto stable estimates was confirmed using
the diagnostic statistic R and trace plots of parameter estimates over MCMC iterations.

To select the best model, we used the Deviance Information Criterion (DIC), a
Bayesian measure of model fit that includes a penalty factor for the number of parameters
(Spiegelhalter et al. 2002). Low DIC values are preferred to high DIC values. Models
with DIC values within 1-2 points of the lowest value deserve consideration
(Spiegelhalter et al. 2002). We selected models M1r and M2 as the best models for
leatherbacks and humpbacks, respectively (see Results).

Predicting Total Takes, Total Mortality and Expected Annual Mortality

The Poisson rate parameters A; = 6n; and m; = A;q are the expected annual takes
and deaths, respectively, given fishing effort n;, and where q is the conditional mortality
rate for takes.

For each species, we generated posterior distributions for m; and posterior

predictive distributions (PPDs, estimated distributions of unobserved bycatch or mortality
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counts given the estimated posterior for 8 and a specified level a fishing effort; see
Appendix A) for x; (observed takes), y; — x; (unobserved takes), y; (total takes), w;
(observed deaths), z; — w; (unobserved deaths), and z; (total deaths), using the following
simulation steps (model details in Table 3; parameter estimates in Table 4): (1) Calculate
B pre-reg. aNd B post-reg. TOr leatherbacks (M1r was the best leatherback model; see Results),
and O oussige and Binsige for humpbacks (M2 was the best humpback model), using random
draws from the posteriors for o and £:. (2) For year i, calculate a mean A;e, where e =
observed, unobserved, or total sets in year i, i.e., A, = k=0 0y N efire fOr
leatherbacks and ;. = Y2_ 0, i ¢ e fiae TOr humpbacks, where f is the fraction of sets
in a data classification. (3) Calculate m; = g1, for each level of effort, where the value §
is drawn from the posterior of g. (4) Draw a value of y; — x; from Poisson(Zie=unobs.). (5)
Calculate y; by adding the true value of x; to y; — x;. (6) Draw a value of z; — w; from
Binomial(y; — xi, 4). (7) Calculate z; by adding the true value of w; to z; — w;. (8) Draw a
value of x; and wj, from Poisson(Lie=obs.) and Binomial(x;, §), respectively (for
comparison of model predictions with real data). (9) Repeat previous steps 10,000 times
for year i to generate the PPDs. (10) Repeat previous steps for each year, 1990-2009. (11)
Repeat steps 1-3 to calculate msyure fOr a hypothetical future year. For this, we use the
average number of sets from the most recent 5-year period in the data (2005-2009),
assuming this reasonably estimates the level of effort that would probably occur in near
future years given the capacity (boats, permits, gear, etc.) and recent activity in the
fishery. This simulation allowed us to recreate the 20-year history of the fishery in terms

of observed, unobserved, and total bycatch and mortality (Figures 3, 4).



176

Comparison to Ratio Estimators

For fisheries with <100% observer coverage, ratio estimators are commonly used
to estimate total bycatch and mortality (e.g., Julian and Beeson 1998, Carretta et al. 2004,
Amande et al. 2012). The annual set-level bycatch rate for species s, rs, is estimated as
total observed bycatch divided by the total number of observed sets for the year.
Multiplying this by the total number of sets fished for the year, D, generates the estimate
of total bycatch (Carretta et al. 2004). The variance for total bycatch is ¢,,> = D?0,2,
where ¢,.2 is the variance estimate for the set-level bycatch rate. Following (Carretta et al.
2004), this may be obtained by resampling individual fishing trips (each containing one
or more sets) from the dataset to construct a nonparametric bootstrap distribution for ry
from which the variance is calculated. For comparison to the Bayesian model-based
approach presented here, we calculated ratio estimates for total takes and total mortality
for both leatherbacks and humpbacks (Table 5, Figures 3, 4). Our calculations vary
slightly from those reported by Julian and Beeson (1998) and Carretta et al. (2004) due to
slight differences in our estimates of total fishing effort.

Comparing Expected Annual Mortality to Policy Thresholds

We compared the posterior distributions of msyre for each species to relevant
policy thresholds. For humpbacks, the thresholds are prescribed by the MMPA. For the
stock affected by the DGN fishery (California/Oregon/Washington stock), the maximum
cumulative number of allowable deaths or serious injuries each year from all
anthropogenic sources, or Potential Biological Removal (PBR), is 11.3 (this estimate
applies to 2010-2012) (Carretta et al. 2010). Based on its annual interactions with a stock

of marine mammals, a fishery can be classified as Category I (mortality > 50% of the
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PBR level, i.e., frequent incidental mortality, or “high bycatch impact”), Category 11 (1%
of the PBR level < mortality < 50% of the PBR level, i.e., occasional incidental mortality,
or “medium bycatch impact”), or Category III (mortality < 1% of the PBR level, i.e., rare
or no known incidental mortality, or “low bycatch impact”). We superimposed these
classification thresholds (1% of PBR or 0.113 humpbacks per year and 50% of PBR or
5.65 humpbacks per year) onto the posterior distribution of mgwre and calculated the
probability that the DGN fishery would fall into each of the categories in future years.
PBR is not used to manage sea turtles; however, Incidental Take Statements contained
within Biological Opinions pursuant to the ESA essentially serve as de facto take limits
(provided the stated take levels are associated with a no-jeopardy finding in the
Biological Opinion). In this sense, NMFS “authorized” a maximum of 6 leatherback
deaths in a 3-year period in 2000 (NMFS 2000). We evaluated the probability of m¢,ure
for leatherbacks exceeding 2 deaths per year.
RESULTS
Model Selection

Models M1r (simple model with regulation variable) and M1z (simple model with
ZIP parameters corresponding to pre- and post-regulation) had the lowest DIC values for
leatherbacks (Table 4); we favored M1r because of its simpler model structure (no zero-
inflation) and its better fit to the data (M1z underestimated observed takes for pre-2001
years). There was little support for the next best models (M1, M2z, and M2), for which
DIC values were 6-10 points higher. Model choice for humpback whales was less clear,
owing to limited information in the dataset (only 3 observed takes). Models M2, M2z,

M4, and M4z had the lowest DIC values, followed within 1-3 DIC points by M1, M1z
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and M1r. We favored M2 (area model) for its simpler structure and because it captured
the effect of area suggested by the observer data (all 3 humpback takes occurred outside
the closure area).

In most cases, the addition of ZIP parameters did not substantially decrease the
DIC value; ZIP models typically had DIC values within 0-2 points of their non-ZIP
counterparts (Table 4). One exception was M1z for leatherbacks, which yielded a 6 point
improvement over M1. However, the same decrease was achieved by M1r, which
separated pre- and post-regulation periods without the addition of ZIP parameters. For
most ZIP models, the ZIP parameter estimates were roughly equal across data
classifications, suggesting a simpler model could have been specified with a 6 parameter
that varies and ZIP parameter p that remains constant. We specified and tested such
models, but they were not well-supported (i.e., DIC values were too high) and they did
not change results. Similarly, we tested models that held 6 constant and let p vary across
data classifications; again, we observed no improvements.

Based on model M1r for leatherbacks, the estimate of S, = -5.6 (Table 4, posterior
mean) corresponds to a pre-regulation bycatch rate of 8 = &/, = 0.0037 takes per set. The
estimate of 81 = -2.6 corresponds to a post-regulation bycatch rate of 8 = e’y /1 =
0.0003, which suggests the per-set bycatch rate was more than ten times higher before the
2001 regulation was implemented. Based on model M2 for humpback whales, o = -7.8
corresponds to 6 = 0.0004 for effort outside the closure area, while 1 = -800 corresponds

to 8 being effectively zero for effort inside the closure area.
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Predictions for Leatherback Turtles

Data and predictions for observed leatherback takes from model M1r show a
distinct drop in takes after 2000 (Figure 3a). The upper limit of the 99% prediction
interval (the prediction and credible intervals we describe are one-tailed) had a maximum
of 8 takes in pre-regulation years and 2 takes in post-regulation years (Figure 3a). It was
higher than the actual number of observed takes for all but one year. The median
predictions ranged from 0 to 3 takes per year and appeared to fit the data well.

M1r predictions for total takes, total mortality, and expected annual mortality
generally decreased from 1990 to 2000 (Figures 3b, 3c, 5a) -- reflecting a steady decline
in fishing effort over that time period (Table 1). The upper limit of the 99% prediction
interval during this time ranged annually from 13 to 36 for takes and from 9 to 25 for
mortality; the upper limit of the 99% credible interval ranged from 7.4 to 21.6 for
expected annual mortality. After 2000, predictions for all three quantities were close to
zero. Pre-regulatory ratio estimates (Table 5) were much more volatile than our model-
based estimates, ranging from zero in years when no bycatch was observed (even though
some may well have occurred) to values considered rather unlikely by our model
estimates (e.g., in 1992, 1995) (Figures 3b, 3c).

Based on the predicted mode across 20 years, the most probable cumulative
number of leatherback takes in this fishery was 141 (i = 163; 95% prediction interval
[P1] = 104-242), with 88 of those resulting in mortality (xx = 94; 95% Pl = 52-153).

Predictions for Humpback Whales
Data and predictions for observed humpback whale takes from model M2

remained relatively steady through time (Figure 4a). The upper limit of the 99%
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prediction interval had a maximum of 2 takes in both pre- and post-regulation periods. It
was higher than the true number of observed takes in all but 1 year (Figure 4a). The
median prediction was zero for all years.

M2 predictions for total takes, total mortality, and expected annual mortality
decreased slightly from 1990 to 2000 (Figures 4b, 4c, 5¢). The upper limit of the 99%
prediction interval over this time ranged annually from 4 to 6 for takes and from 2 to 3
for mortality; the upper limit of the 99% credible interval ranged from 1.1 to 2.0 for
expected annual mortality. After 2000, predictions for all three quantities were similar but
slightly closer to zero. The 3 years with observed takes had positive ratio estimates for
takes; all other ratio estimates were zero (Figures 4b, 4c). There are no previously
reported ratio estimates for humpback mortality, but (Julian and Beeson 1998) provided
an estimate of total takes for 1994 (6 takes, CVV=0.91).

The most probable cumulative number (the predicted mode) of humpback whale
takes in this fishery over 20 years was 17 (x = 21; 95% Pl = 6-50), with 1 of those
resulting in mortality (x = 6; 95% Pl = 0-21).

Comparing Expected Annual Mortality to Policy Thresholds

Posterior distributions for mgre are shown in Figures 5b and 5d. For leatherback
turtles, the probability of myure exceeding 2 deaths per year was 7.0x10™. For humpback
whales, the probability that msre was < 1% of the 2010-2012 PBR level (Category 111)
was 0.4198; the probability that it was between 1% and 50% of the PBR level (Category
IT) was 0.5802; the probability that it was > 50% of the PBR level (Category I) was 0.

The cutoff threshold between Categories | and Il (50% of PBR level, or 5.65 whales per
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year) did not overlap with the posterior distribution and is therefore not shown in Figure
5d.
DISCUSSION
Estimating Rare-Event Fisheries Bycatch
When applied to fisheries with rare-event bycatch and low observer coverage,
ratio estimators may provide misleading inference, with high levels of sampling variance
generating a false appearance of catches ranging from zero in some years to alarmingly
high values in others. Fisheries managers have recognized these issues and have
sometimes used multi-year averages when assessing fisheries interactions for policy
purposes. Pooling observer data from multiple years effectively reduces the volatility
(sampling variance) of estimates associated with small numbers of observed takes, but
pooling is an ad hoc strategy that leaves open questions as to how many of years of
information should be pooled under different circumstances and may fail to address
stakeholders' perceptions of low or high catches in individual years. The model-based
Bayesian approach presented here achieves the same objective of reducing volatility
through its formal use of all information contained in the time series, but it carries the
added benefits of obviating arbitrary decisions about how many years of data to combine
and enabling probabilistic inference for bycatch and mortality within a single year,
conditional on the amount and known characteristics of fishing effort.
Modeling Conclusions
The purpose of this paper was to demonstrate a Bayesian model-based approach
that uses rare-event bycatch data and minimal supporting detail on fishing effort to

estimate bycatch, infer expected annual mortality, and evaluate the probability of
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exceeding regulatory thresholds. We explored the importance of relevant covariates to
account for broad scale differences in bycatch rates across regulatory regimes and time-
area combinations, but causal inference was not our focus. Fully explaining variation in
bycatch rates is important, but would require a richer dataset, including for example
fishery-independent data on the habitat, range, migration, population structure, status, etc.
for bycatch species (Eguchi et al. (in prep.)). In reality, the rare-event nature of bycatch
typically limits evaluation of causal factors to simple models, since the associated small
number of observed takes is difficult to fit to models with a large number of parameters.
Our analysis suggested that the highest levels of leatherback bycatch occurred in years
with higher levels of effort, and in years prior to regulatory implementation of the
leatherback closure (decreased by an order of magnitude after the closure). For
humpbacks whales, area was the strongest effect.
Management and Policy Applications

In our case study analysis of the DGN fishery, we expressed estimates of total
bycatch and mortality for leatherbacks and humpbacks as PPDs (Figures 3b, 3c, 4b, 4c),
which allowed us to quantify upper limits of the 99% prediction intervals for the
estimates. These limits can be interpreted as upper bounds on the number of leatherbacks
or humpbacks that are predicted to be incidentally caught or killed in a given year, and
managers can declare with 99% certainty that total bycatch or mortality did not exceed
that upper bound. It would be straightforward to evaluate other limits as well (e.g., obtain
minimum estimates, or upper or lower limits for multi-year sums). We also presented
median model predictions, which can be interpreted as point estimates of total bycatch or

mortality and compared to ratio estimates (Figures 3b, 3c, 4b, 4c). Median model
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predictions fluctuated with annual variations in fishing effort but otherwise varied over a
narrower range than ratio estimates. This is due to the assumed model structure (i.e.,
bycatch rates that vary with regulatory regime or area, but not year) and our use of 20
years of data to estimate model parameters.

While estimates of total bycatch and mortality are important, regulatory reference
points are based on limits to annual rates of mortality. The use of posterior distributions
allows straightforward assessment of the probability that such limits (for a single year, or
for multiple years combined) are exceeded. For humpbacks, we were able to make
probability statements with respect to PBR-based thresholds used for MMPA fishery
classification (Figure 5d). Using this approach, the DGN fishery might best be classified
as a Category Il fishery, since this is the most likely scenario given the data. If the model
used for inference accurately represents the true data-generating process and parameter
estimation is unbiased, the probability that the fishery should actually be classified in the
low impact Category 111 (0.42) can be thought of as the probability of committing a Type
I error (falsely inferring that bycatch impact is medium rather than low). Alternatively, if
managers chose to classify the fishery as Category Ill, there would be a 0.58 probability
of committing a Type Il error (failing to recognize that bycatch impact is medium rather
than low). A similar management model could potentially be implemented for sea turtles,
though suitable population-relevant reference points for fisheries mortality would be
needed to support this approach (Curtis and Moore 2013). This pragmatic approach for

classifying fisheries bycatch impact would be novel for sea turtles.
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Concluding Remarks

Bayesian model-based methods are well suited to analyze rare-event bycatch data
for fisheries with <100% observer coverage. We have shown how inference of expected
annual mortality could be used to evaluate the probability that regulatory thresholds are
exceeded for a single protected species, providing examples for leatherback sea turtles
and humpback whales. Future efforts should focus on generalizing the approach to
inform multi-species or multi-fisheries bycatch management strategies. For example, one
could use this approach to estimate the probability that bycatch exceeds a policy
reference point for multiple species subject to bycatch. Given budgetary constraints for
monitoring, approaches such as those employed here could help maximize the benefit of
observer data for the protection of vulnerable marine species, while minimizing the cost

of observer programs and the regulatory burden placed on fisheries.
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Table 2. Summary of observed takes of leatherback sea turtles (DC) and humpback
whales (MN) in the California drift gillnet fishery, 1990-2009. Time-area categories
related to the leatherback sea turtle closure implemented in 2001 are shown (see Table 1
for definitions).

Summary of Observed Takes, 1990-2009
Take # | Species | Year | Condition | Area / Time
1 DC 1990 Dead I, C
2 DC 1941 Alive I, C
3 DC 1992 Alive I.C
4 DC 19492 Alive I, C
5 DC 1992 Dead I, C
i DC 1992 Diead I.C
T DC 1992 Diead O, N
H DC 1993 Dead I, C
a DC 1993 | Unknown I. C
10 DC 1994 Alive I, C
11 DC 19495 Alive I, C
12 DC 1995 Dead I.C
13 DC 19495 Diead I.C
14 DC 1995 Dead I.C
15 DC 1995 Dead 0, C
11 DC 1996 Diead [, N
T DC 1996 Dead I, C
15 DC 1997 Diead I, C
19 DC 1997 Dead I.C
20 DC 1997 Alive I.C
21 DC 1997 Alive I.C
22 DC 19949 Alive 0, N
23 DC 1999 Alive 0, C
24 DC 2009 Alive 0, C
1 MN 1944 Alive 0, C
2 MN 1999 Alive 0, N
3 MN 2004 Alive 0, C
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10 4 A Observed takes (1990-2000)

® Observed takes (2001-2009)

A Upper limit of 99% prediction interval for observed takes (1990-2000)
- O Upper limit of 99% prediction interval for observed takes (2001-2009)
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Figure 2. Scatterplot showing the relationship between the numbers of observed sets and
leatherback sea turtle takes per year (Pearson's r=0.672; p=0.001). Observer data are
indicated by closed symbols and model predictions by open symbols, with triangles and
circles for pre- and post-2001 regulation time periods, respectively. Upper limits of the
99\% prediction intervals were produced by model M1r (see Methods). Predictions were
made for observed data only as a means of checking the model.
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Figure 3. Model M1r predictions for the number of leatherback sea turtle takes in (a) the
observed portion of fishing for each year, and (b) total fishing effort for each year. The
upper limits of the 99% prediction intervals are indicated with circles and solid lines, the
median predictions with triangles and dashed lines. The actual number of observed takes
for each year is shown in (a), and ratio estimates are shown for comparison in (b). Model
predictions and ratio estimates for total mortality are shown in (c).
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Figure 4. Model M2 predictions for the number of humpback whale takes in (a) the
observed portion of fishing for each year, and (b) total fishing effort for each year. The
upper limits of the 99% prediction intervals are indicated with circles and solid lines, the
median predictions with triangles and dashed lines. The actual number of observed takes
for each year is shown in (a), and ratio estimates are shown for comparison in (b). Model
predictions and ratio estimates for total mortality are shown in (c).
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Figure 5. Model predictions for expected annual mortality (m;, where i is year) for
leatherback sea turtles (a; model M1r) and humpback whales (c; model M2). Observed
and fisher-reported mortality are shown in (a) and (c) as benchmarks (note: observed data
only represent 15.6% of fishing effort on average). In (b) and (d), expected annual
mortality (mswre) IS based on fishing effort for a hypothetical future year (1064 sets, the
2005-2009 average). In (d), a cutoff of 1% of the Potential Biological Removal (PBR)
policy threshold for this population of humpback whales (0.113 whales per year)
represents a decision point for classification of the fishery into either Category 111
(mortality < 1% of PBR) or Category II (1% of PBR < mortality < 50% of PBR). The de
facto limit based on NMFS-authorized incidental mortality of leatherbacks is shown in

(b).
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APPENDIX A
Theoretical Basis for Estimating Rare-Event Bycatch Using a Bayesian Approach
For a single species (e.g., leatherbacks), we used a Poisson likelihood function to
model the stochastic dependence of x;, the number of observed takes in year i, on 6, the
per-set take rate parameter, and n;, the number of observed sets in year i:
(ony~i

f(x16,n;) = e M, (A.1)

Xi
where dn; = J; is the Poisson rate (mean) parameter. Previous studies have also used the
Poisson distribution to model bycatch (NMFS 2004, Pradhan and Leung 2006, Gardner et
al. 2008, Murray 2009, 2011) because it can characterize data in which each observation
has a high probability for a zero count, a small probability for a count of one, and an
infinitesimal probability for a count of two or more. The DGN fishery data have these
Poisson characteristics plus one more: a mean per-set take rate (2.944 x 10°%) roughly
equal to the variance (2.936 x 10°%). A strong positive correlation between the numbers of
observed takes and sets per year (Pearson's r = 0.672; p = 0.001; Figures 1 and 2)
supports including the number of sets in the model. We assume statistical independence
of all sets and takes.
We used a conjugate gamma prior distribution for 6:
p(0) x e Flga-i, (A.2)
which constrains 6 to be positive. After applying Bayes' rule, the posterior density,
p(O|n;, x;) « f(x;16,n)p(6) (A3)

e e—(ﬁ+ni)900<+xl-—1' (A.4)



199

is also a gamma distribution, Gamma(a+x;, f+n;), with a form that suggests interpreting
o and £ as the prior numbers of observed takes and sets from previous years, respectively,
before observing the current year's sample of x; takes in n; sets.
Following this interpretation, a noninformative prior could be specified by

assigning a = 0 and S =0, yielding

p(@) = 071,0< 0 < oo, (A.5)
which is diffuse and improper (does not integrate over the support). This prior reflects
ignorance about 6 before observing the data, and places the greatest weight on values
near zero. The resulting posterior,

p(B|n;, x;) o e fmigxi1, (A.6)
bears formal similarity to the likelihood function, but now summarizes reasonable beliefs

about ¢ in light of the current observation of x;. The posterior mean, y,_ x;, and variance,

ni

09 = % are formally identical to the maximum likelihood estimator and variance of
i

the maximum likelihood estimator of 8 in the classical Poisson model, but are subject to
a different interpretation under the Bayesian paradigm.
To specify an informative prior, we could assign a = X, and g = n,, where X, and

n, are the respective numbers of observed takes and sets in all previous years p:

p(8) o e X1, (A.7)
The corresponding posterior,
p(6]n;, x;) o« e—@(np+ni)6xp+xi—1, (A.8)
. 2 XptX
has a mean u g XD+ and variance og“ = Gy 0

Tlp+TLl'
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The posterior predictive distribution (PPD) for the number of unobserved takes, y;
— Xi, is derived from the Poisson likelihood function and the posterior for 9:
(i — xINyny, %) = [, p(vi — %16, N; = n))p(8|n;, x)do,  (A.9)
where y; and N; are the total (observed + unobserved) numbers of takes and sets in year i,

respectively. This is a negative binomial distribution, Negbin(a + y; — xi,% ), where

a and f are again the numbers of observed takes and sets from all previous years
(Gelman et al. 2004). This PPD reflects posterior uncertainty in 8 and in unobserved
experience. Adding x; produces a PPD for y;. Whereas a posterior distribution supports
inference about a parameter in the likelihood function (in our case, 6, a bycatch rate), a
posterior predictive distribution supports predictive statements about the output of the
likelihood function (in our case, y; — Xj, the unobserved bycatch count). A PPD may be
specified for any amount of fishing effort based on past numbers of observed sets and
takes, regardless of whether the effort occurred in the past or has yet to occur in the
future. This assumes that the same probability model holds under different years and
conditions, which seems reasonable given that the distribution of these rare-event takes
over 20 years appears to follow a Poisson distribution. The PPD can be used to produce
range or point estimates of bycatch for the specified level of effort.

To model the number of observed deaths, wj, we specify a binomial likelihood
function which quantifies the stochastic dependence of w; on x; and a conditional
mortality parameter, g (i.e., given a take of this species occurs, the probability that the

animal dies):
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x;!

fwilxi, qs) = 22— a"i (1 — @)™ (A.10)

A noninformative, conjugate prior of Beta(1,1) for q results in a posterior
distribution of the form Beta(1+w,, 1+x,-wp) (Chapter 2 in (Gelman et al. 2004)). Over
20 years, wp = 14 deaths and x, = 24 takes for leatherbacks, and wy, = 1 death and x, = 4
takes for humpbacks (the fisher-reported mortality is conservatively treated as a take for
purposes of estimating the conditional mortality rate for humpbacks). Throughout our
analyses, we use the posteriors Beta(15, 11) for leatherbacks and Beta(2, 4) for
humpbacks.

The PPD for the number of unobserved deaths, z; — wj, can be constructed using

Binomial(PPD for y; — xi, q). Adding w; to this distribution produces a PPD for z;, the

total number of deaths for that species in year i.
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CONCLUSION

The goal of this dissertation was to apply theoretical concepts (ecosystem
services, indicators, and trade-offs) of ecosystem-based management (EBM) to oceanic
ecosystems. These ecosystems are incredibly important for supporting people around the
world, and they need more holistic management if we expect them to provide services for
a growing global population. The work accomplished in this dissertation has provided
new insights related to ecosystem services, indicators, and trade-offs. All of these are
important to the EBM goals of implementing management strategies that incorporate the
needs of humans, manage anthropogenic influences, and are adaptive over time with
continued scientific input. The findings show promise for EBM in oceanic ecosystems,
and particularly for the eastern tropical Pacific (ETP).

This research has laid the foundation for several future studies that will continue
to push EBM forward in the oceanic commons. Related to ecosystem services in the ETP,
the importance of sport fishing (mostly for billfishes and tunas) to local economies
should be further studied. There were only a few recent reports available on the economic
impacts of this activity in a few of the major Latin American locations known for
attracting anglers. The estimated value for the three major locations combined was $1.2
billion per year, which was almost half of our estimated value for the commercial fishery.
There is a perception among anglers that commercial fishing negatively impacts their
experience, and this would be an interesting idea to test. This is part of a broader question
— how does the use of one ecosystem service (e.g., commercial fisheries) impact the
availability of another (e.g., recreational fishing)? A starting point might be to determine

the degree of overlap in the fished populations. Similarly, a rich but complex area of
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research would be to investigate how each unit of fishing impacts biodiversity and carbon
storage in the ocean. With respect to the value of biodiversity in the ETP, it would be
interesting and important to study both the existence value of cetaceans, seabirds, and
marine turtles through surveys (e.g., contingent valuation surveys), and also the direct use
value through surveys of eco-tourists throughout the region. The reason for doing this
type of research would be to better understand the users and stakeholders of the ETP,
other than commercial fisheries. Ideally, all of the stakeholders would be involved in
setting overarching goals for the region.

The research on indicators in this dissertation demonstrated that tuna fishery
metrics can be used to predict cetacean densities in the ETP. This was an exciting result
in itself, and it also gives us confidence that we can apply the approach to seabirds and
larval fishes, for which we have similar long-term datasets. The ability to predict
densities of these three taxa using fishery metrics in future years would facilitate
monitoring of upper trophic levels, which would be a powerful tool for EBM.

The chapter on informing protected species bycatch management is currently in
press with Ecological Applications. There is potential to apply the approach to other
species and fisheries, and the general methods are applicable to other natural resource
problems.

This research has relied upon the use of long-term datasets that have been
maintained over decades. These datasets are invaluable and will continue to be
instrumental in understanding linkages among species, oceanographic habitats, and
human activities as we examine them with new perspectives that are relevant to EBM for

the oceans.
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