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Abstract

Objectives—We examined florbetapir positron emission tomography (PET) amyloid scans 

across stages of preclinical Alzheimer’s disease (AD) in cortical, allocortical, and subcortical 

regions. Stages were characterized using empirically defined methods.

Methods—A total of 312 cognitively normal Alzheimer’s Disease Neuroimaging Initiative 

participants completed a neuropsychological assessment and florbetapir PET scan. Participants 

were classified into stages of preclinical AD using (1) a novel approach based on the number of 

abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on 

Aging and the Alzheimer’s Association (NIA-AA) criteria. Preclinical AD groups were compared 

to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized 

uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs).

Results—Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with 

SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern 
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of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and 

thalamus largely did not differ across stages of preclinical AD.

Conclusions—Substantial amyloid accumulation in cortical areas has already occurred before 

one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of 

results in some allocortical/subcortical ROIs include lack of correspondence between (1) 

cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical 

florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel 

method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive 

assessment to better characterize preclinical AD, we can advance our understanding of who is at 

risk for future progression.

Keywords

Dementia; Beta-amyloid peptides; Florbetapir; Positron emission tomography; Neuropsychology; 
Biomarkers; Alzheimer disease

INTRODUCTION

The ability to accurately identify individuals at risk for progression to Alzheimer’s disease 

(AD) is dependent on detecting and characterizing its earliest manifestations. Efforts to 

characterize early stages of AD have focused on identifying biomarkers that become 

abnormal well before an individual demonstrates clinical symptoms. Beta-amyloid (Aβ) 

peptides are the primary component of amyloid plaques, a hallmark feature of AD. These 

peptides are thought to accumulate very early in the pathogenesis of AD (Jansen et al., 2015) 

and to drive other downsteam effects, including a progressive loss of neurons and cognitive 

symptoms (Jack et al., 2010; Jack, Knopman, et al., 2013). More recently, it has been 

proposed that pathways promoting Aβ and neurodegeneration may arise independently and 

then converge, leading to further acceleration of neurodegeneration and cognitive 

impairment (Sperling, Mormino, & Johnson, 2014).

Florbetapir is an amyloid imaging tracer that has been shown through in vivo and ex vivo 
studies to measure cortical fibrillar Aβ (Clark et al., 2012). Within the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset, we recently examined cortical amyloid burden as 

measured by florbetapir positron emission tomography (PET) amyloid scans in empirically 

derived subtypes of mild cognitive impairment (MCI) (Bangen et al., 2016). We found that 

65% of MCI participants with impaired neuropsychological performance and 34% of normal 

controls demonstrated an abnormal scan that was positive for amyloid (Bangen et al., 2016). 

These findings are consistent with the literature showing a high prevalence of amyloid 

deposition in cognitively normal samples (Balasubramanian, Kawas, Peltz, Brookmeyer, & 

Corrada, 2012; Bennett, Schneider, Bienias, Evans, & Wilson, 2005; Davis, Schmitt, 

Wekstein, & Markesbery, 1999; Price et al., 2009; Rodrigue et al., 2012; Rowe et al., 2007), 

suggesting some level of amyloid burden may be nonspecific and not necessarily a sign of 

early AD. On the other hand, it is possible that at least some of these individuals with high 

amyloid levels are already in a “preclinical” stage of AD.
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“Preclinical” AD is a phase in which individuals are classified as “cognitively normal” yet 

they demonstrate abnormalities in biomarkers or subtle cognitive markers associated with 

AD. The National Institute on Aging and the Alzheimer’s Association (NIA-AA) have 

proposed a method of staging preclinical AD based on the presence or absence of these 

particular markers. Stage 1 involves amyloidosis; Stage 2 involves amyloidosis plus 

neurodegeneration; Stage 3 involves amyloidosis, neurodegeneration, and evidence of 

“subtle cognitive decline” (from one’s own baseline) defined as “very subtle cognitive 

impairment” on sensitive cognitive measures (Sperling et al., 2011). Studies that have 

attempted to apply these NIA-AA criteria have also included two additional classifications: 

“suspected non-AD pathophysiology” (SNAP; individuals with normal amyloid levels but 

evidence of neurodegeneration) and “Unclassified” (individuals with subtle cognitive decline 

but no neurodegeneration) (Jack et al., 2012).

A limitation to this staging system, which is based on the amyloid cascade hypothesis (Jack 

et al., 2010; Jack, Knopman, et al. 2013), is that many individuals do not follow this 

proposed sequence of events, as there is growing evidence that neurodegeneration 

(Edmonds, Delano-Wood, Galasko et al., 2015; Jack, Wiste, et al., 2013) and/or cognitive 

changes (Edmonds, Delano-Wood, Galasko, et al., 2015; Jedynak et al., 2012; Landau et al., 

2010) may precede amyloidosis as the first sign of prodromal AD.

We proposed an alternative classification method for staging preclinical AD (Edmonds, 

Delano-Wood, Galasko, et al., 2015). Our staging method is based simply on a tally of the 

number of abnormal biomarkers (i.e., amyloidosis, neurodegeneration) or cognitive markers 

(i.e., subtle cognitive/functional decline) associated with preclinical AD that each individual 

possesses without regard for their temporal order of occurrence. This method does not 

adhere to the amyloid cascade hypothesis (Jack et al., 2010; Jack, Knopman, et al., 2013), 

which requires a specific temporal order of biomarker/cognitive marker abnormalities 

(although there is recent acknowledgement that amyloid and neurodegeneration do not have 

to occur in a fixed sequence; Jack, Knopman, et al., 2013; Sperling, Mormino, & Johnson, 

2014). Rather, our classification method is based on the work of Braak, Zetterberg, Del 

Tredici, and Blennow (2013) who have proposed an alternative model to the amyloid 

cascade hypothesis. This model posits that AD pathologic markers (Aβ deposition, tau 

pathology, neurodegeneration) co-occur nearly simultaneously, and the perceived differences 

in timing are thought to be due to varying sensitivity of the biomarkers or of our ability to 

detect change, rather than a true difference in the sequence of these neurobiological changes. 

Cognition has traditionally been viewed as the last marker to be affected in preclinical AD 

due to the routine use of insensitive measures (i.e., rating scales or screening measures). 

However, sensitive episodic memory measures (i.e., verbal list learning and memory) may 

be the earliest markers to become abnormal in the progression to AD (Jedynak et al., 2012). 

We found that our approach to classification was as predictive of progression to MCI or AD 

as the method proposed by the NIA-AA criteria (Edmonds, Delano-Wood, Galasko, et al., 

2015).

The current study aimed to build upon our previous findings in MCI (Bangen et al., 2016) by 

examining Aβ burden using florbetapir PET amyloid scans in individuals who are earlier in 

the disease process—those with preclinical AD. We hypothesized that we would observe an 
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increase in cortical Aβ burden across stages of preclinical AD, with relatively low levels in 

early stages of preclinical AD and levels approaching MCI participants by the later stages. 

An exploratory aim was to examine amyloid burden in several allocortical and subcortical 

regions, including the accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and 

thalamus. We expected that subcortical amyloid would largely follow the same pattern as 

cortical amyloid, with levels increasing over stages of preclinical AD.

METHODS

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership. This 

study was approved by an ethical standards committee on human experimentation at each 

institution. Written informed consent was obtained from all participants or authorized 

representatives participating in the study. For additional information, see www.adni-info.org.

Participants

This cross-sectional study included 312 “cognitively normal” participants and 145 MCI 

participants enrolled in ADNI (mean age = 72.3 years; SD = 7.2). The sample of 312 

cognitively normal individuals is a subset of 570 ADNI participants who we had previous 

classified by stage of pre-clinical AD (Edmonds, Delano-Wood, Galasko, et al., 2015). For 

the current study, we included those participants who had a florbetapir PET scan with 

processed data available for download as of December 1, 2015. See Figure 1 for a flowchart 

showing which participants from the overall ADNI database were included in the current 

study.

The classification of “cognitively normal” versus MCI for this study was determined by an 

actuarial neuropsychological diagnostic method (Bondi et al., 2014; Jak et al., 2009) applied 

to participants’ baseline neuropsychological test data. We have previously demonstrated that 

conventional diagnostic methods for MCI (which are based on subjective complaints, rating 

scales, cognitive screening measures, and a single memory test; Petersen, 2004; Petersen et 

al., 2010) are highly susceptible to false-positive diagnostic errors, with over one-third of 

MCI samples being better classified as “cognitively normal” due to normal cognitive 

functioning, normal AD biomarkers, and low progression rates to AD (Bangen et al., 2016; 

Bondi et al., 2014; Clark et al., 2013; Edmonds, Delano-Wood, Cark, et al., 2015; Edmonds 

et al., in press). MCI diagnosed via our actuarial neuropsychological method, which assigns 

diagnoses of MCI based on multiple objective neuropsychological tests assessing a range of 

cognitive domains, has been shown to produce greater diagnostic stability (Jak et al., 2009) 

and stronger relationships between cognition, biomarkers, and rates of progression to AD 

(Bondi et al., 2014; Clark et al., 2013; Edmonds et al., 2016).

MATERIALS AND PROCEDURE

Preclinical AD Staging Based on Number of Abnormal Biomarkers

Participants underwent neuropsychological testing and lumbar puncture for cerebrospinal 

fluid (CSF) collection at the same visit during their baseline assessment. We classified all 

cognitively normal participants as “normal” or “abnormal” for (1) cerebral amyloidosis, (2) 
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neurodegeneration, and (3) subtle cognitive/functional decline. Abnormal cerebral amyloid 

accumulation was defined as CSF Aβ1–42 level of < 192 pg/mL, and the presence of 

neurodegeneration was defined as CSF tau level of >93 pg/mL or CSF p-tau181p level of >23 

pg/mL (Shaw et al., 2009).

We operationalized subtle cognitive decline based on two measures of language (Animal 

Fluency; Boston Naming Test), two measures of attention/executive function (Trail Making 

Test, Parts A & B), and two scores from a memory measure (Rey Auditory Verbal Learning 

Test [AVLT] 30-min delayed free recall and recognition). Each score was converted to an 

age-corrected standard score (Ivnik et al., 1992; Shirk et al., 2011; Weintraub et al., 2009). 

Subtle cognitive or functional decline was defined as having (1) scores > 1 SD below the 

age-corrected normative mean (i.e., “impaired”) on two of the six neuropsychological 

measures in different cognitive domains (patients with two impaired scores within the same 
cognitive domain were considered to have MCI and excluded from the study; see Edmonds, 

Delano-Wood, Galasko, et al., 2015), or (2) a Functional Activities Questionnaire (FAQ) 

score of 2, indicative of some decline in daily activities (patients with an FAQ score of ≥3 

were considered to have MCI and excluded from the study). The number of abnormal 

biomarkers or cognitive markers that each individual possessed was tallied to determine their 

stage of preclinical AD. For comparison purposes, we also classified participants based on 

the NIA-AA criteria (Sperling et al., 2011).

Florbetapir PET Data Acquisition and Processing

All participants underwent florbetapir PET imaging within 2 weeks of their baseline 

neuropsychological assessment. A detailed description of ADNIs florbetapir PET imaging 

data acquisition and processing methods can be found online (http://adni.loni.usc.edu/

methods/pet-analysis/pre-processing/). Briefly, florbetapir images consisting of four or six 

frames were acquired post-injection of florbetapir F18. Each scan was reviewed for quality 

control before being co-registered, averaged, reoriented into a standard 160 × 160 × 96 voxel 

image grid with 1.5-mm cubic voxels, and smoothed to a uniform isotropic resolution of 8 

mm full width at half maximum. Structural MR images were skull-stripped, segmented, 

parcellated using Freesurfer (version 5.3.0; surfer.nmr.mgh.harvard.edu) and then co-

registered to each participant’s first florbetapir image. Freesurfer was used to delineate 

cortical and subcortical regions.

The ADNI database provides the mean florbetapir uptake within several cortical and 

subcortical regions. The four cortical regions of interest (ROI) were: (1) frontal, (2) anterior/

posterior cingulate, (3) lateral parietal, and (4) lateral temporal cortex. ADNI extracts 

florbetapir means from gray matter in each subregion within these four large ROIs (Jagust et 

al., 2009; Mormino et al., 2009). For the current study, standardized uptake value ratios 

(SUVRs) were calculated using the procedure recommended by ADNI: dividing the 

florbetapir mean for each of the cortical ROIs by the mean florbetapir uptake value for the 

reference region (i.e., whole cerebellum). ADNI provides a global cortical summary SUVR, 

which is calculated by creating a conventional (non-weighted) average across the four main 

cortical ROIs and dividing by the mean florbetapir uptake value of the whole cerebellum. 

Increased retention of florbetapir is thought to reflect increased cortical amyloid load.
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The ADNI database also includes florbetapir uptake values for allocortical and subcortical 

ROIs. The following seven regions were examined: (1) acumbens, (2) amygdala, (3) caudate, 

(4) hippocampus, (5) pallidum, (6) putamen, and (7) thalamus. We created SUVRs by 

averaging the left and right values for each ROI and dividing by the mean florbetapir uptake 

value for the reference region (i.e., whole cerebellum).

Statistical Analyses

Differences between stages of preclinical AD (based on number of abnormal biomarkers) in 

demographics, apolipoprotein E (APOE) genotype, and baseline neuropsychological 

performance were examined using analysis of variance (ANOVA) and chi-square analyses. 

To examine our hypotheses related to cortical and allocortical/subcortical Aβ burden across 

preclinical AD stages, group differences in regional florbetapir SUVRs were examined using 

multivariate analysis of covariance (MANCOVA). Bonferroni-corrected post hoc 
comparisons were conducted for significant omnibus tests (four preclinical AD groups based 

on number of abnormal biomarkers; six comparisons; p = .05/6 = .008). We also used 

MANCOVA to compare preclinical AD groups to the 145 MCI participants.

All cognitively normal participants were also classified based on the NIA-AA criteria 

(Sperling et al., 2011). Group differences in regional florbetapir SUVRs were examined 

using MANCOVA with Bonferroni-corrected post hoc comparisons (six NIA-AA stages; 15 

comparisons; p = .05/15 = .003). Lastly, to ensure that our results were not simply due to our 

method of classifying “cognitively normal,” we examined florbetapir SUVRs using only 

those individuals who were originally classified as cognitively normal by ADNI based on 

conventional diagnostic criteria (Petersen et al., 2010); see Supplemental Materials for 

further description of this subset (n = 132).

RESULTS

Clinical Characteristics of Preclinical AD Stages

For the 312 cognitively normal participants, 46.2% of the sample (n = 144) was positive for 

amyloidosis, 68.6% (n = 214) for neurodegeneration, and 17.3% (n = 54) for subtle 

cognitive/functional decline. There was no difference in age, education, gender, or APOE 

status between participants who demonstrated subtle cognitive decline (n = 30) versus subtle 

functional decline (n = 24; p’s >.05).

The number of abnormal biomarkers or cognitive markers that each individual possessed 

was tallied to determine their stage of preclinical AD. Using this classification strategy, 55 

participants (17.6%) had no abnormal biomarkers or cognitive markers (“0 Biomarkers”); 

127 (40.7%) had one abnormal marker (“1 Biomarker”); 105 (33.7%) had two abnormal 

markers (“2 Biomarkers”); and 25 (8.0%) had abnormalities on all three markers (“3 

Biomarkers”; see Table 1). Of those with one abnormal biomarker, 23 had amyloidosis, 91 

had neurodegeneration, and 13 had subtle cognitive/functional decline. Of those with two 

abnormal biomarkers, 89 had amyloidosis and neurodegeneration, 7 had amyloidosis and 

subtle/functional cognitive decline, and 9 had neurodegeneration and subtle cognitive/

functional decline.
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Demographic and neuropsychological characteristics for each stage of preclinical AD based 

on number of abnormal biomarkers are presented in Table 1. Age, education, and gender did 

not differ significantly between groups. The prevalence of APOE-ε4 carriers increased 

across preclinical AD stages, with the 0 Biomarkers and 1 Biomarker groups differing 

significantly from the 2 Biomarkers and 3 Biomarkers groups (p <.001; φc = .36). All 

analyses comparing preclinical AD stages controlled for APOE status.

Comparison of the 312 cognitively normal and the 145 MCI participants revealed no 

significant age difference (p >.05). However, the MCI group had less education (mean = 

15.7 years; SD = 2.8; p = .001), more males (60.0%; p = .03), and a greater prevalence of 

APOE-ε4 carriers (62.7%; p <.001). Analyses comparing the preclinical AD stages to MCI 

controlled for education, gender, and APOE status.

Cortical Amyloid in Preclinical AD Stages

The mean florbetapir SUVRs for each cortical ROI, as well as the mean global cortical 

florbetapir SUVRs, are shown as a function of preclinical AD stage (based on number of 

abnormal biomarkers) in Table 2 and Figure 2. There were significant group differences for 

global cortical SUVR and for SUVRs in all cortical ROIs (ps <.001). Post hoc comparisons 

showed the same pattern of results across all cortical ROIs: the 0 Biomarkers and 1 

Biomarker groups did not differ from each other (p >.05), but both had significantly lower 

SUVRs than the 2 Biomarkers and 3 Biomarkers groups (p <.001). The 2 Biomarkers and 3 

Biomarkers groups did not differ from each other (p >.05). Comparison of the preclinical 

AD stages (based on number of abnormal biomarkers) to MCI revealed that the 2 

Biomarkers and 3 Biomarkers groups had mean florbetapir SUVRs that were not 

significantly different from MCI for all cortical ROIs (p >.05); see Figure 2.

Allocortical and Subcortical Amyloid in Preclinical AD Stages

Mean florbetapir SUVRs for the seven allocortical and subcortical ROIs are shown as a 

function of preclinical AD stage (based on number of abnormal biomarkers) in Table 2 and 

Figure 3. There were significant group differences in the accumbens, amygdala, caudate, and 

putamen (p < .001). Post hoc tests showed a pattern of results that was similar to the cortical 

regions for each of these four allocortical/subcortical areas: the 0 Biomarkers and 1 

Biomarker groups did not differ (p > .05), and the 2 Biomarkers and 3 Biomarkers groups 

did not differ (p > .05). However, the 0 Biomarkers and 1 Biomarker groups had 

significantly lower SUVRs than the 2 Biomarkers group for all four regions (ps < .001) and 

lower SUVRs than the 3 Biomarkers group for the accumbens and putamen (ps < .001).

A different pattern emerged for the other three allocortical and subcortical regions. There 

were no differences among the groups in SUVRs in the hippocampus (omnibus p = .45) or 

the thalamus (omnibus p = .29). While the omnibus test for the pallidum was significant at p 
= .01, Bonferroni-corrected post hoc tests showed the only significant group difference was 

between the 0 Biomarkers and 2 Biomarkers group.

Comparison of the preclinical AD stages to MCI (see Figure 3) revealed that the 2 

Biomarkers and 3 Biomarkers groups had mean florbetapir SUVRs that did not differ from 

the MCI group for the amygdala, caudate, and pallidum (ps ≥ .05). The 3 Biomarkers group 
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also did not differ from MCI for the accumens and putamen (ps ≥ .04). SUVRs in the 

hippocampus and thalamus did not differ between MCI and any of the preclinical AD stages 

(based on number of biomarkers) (omnibus ps >.05).

Comparison to Preclinical AD Stages Based on NIA-AA Criteria

The NIA-AA criteria for preclinical AD (Sperling et al., 2011) was applied to stage all 312 

cognitively normal participants. Comparison of the number of participants classified at each 

stage of preclinical based on the two staging systems is shown in Table 3. Mean florbetapir 

SUVRs for cortical and allocortical/subcortical regions are shown as a function of NIA-AA 

preclinical AD stage in Figure 4. MANCOVA with APOE status included as a covariate (as 

this variable differed significantly between groups based on NIA-AA criteria) showed that 

the SNAP and Unclassified groups did not differ from one another in global cortical SUVR 

or SUVRs in any cortical ROIs (ps > .05), nor did they statistically differ from Stage 0 (ps 

> .05) or Stage 1 (ps >.01). Similarly, for the subcortical ROIs, the SNAP and Unclassified 

groups did not differ significantly from each other (ps > .02), or from Stage 0 (ps > .03) or 

Stage 1 (ps >.04). The SNAP and Unclassified groups had significantly lower SUVRs than 

Stages 2 and 3 for all cortical ROIs (ps <.001); lower SUVRs than Stage 2 for the 

accumbens, amygdala, caudate, and putamen (ps < .002); and lower SUVRs than Stage 3 for 

the accumbens (ps <.001).

Comparison of the NIA-AA stages to MCI participants revealed that Stages 2 and 3 had 

mean florbetapir SUVRs that were not significantly different from MCI for all cortical ROIs 

(ps > .05); see Figure 4. Stages 2 and 3 also did not differ from the MCI group for 

allcortical/subcortical ROIs (p ≥ .04). Stage 1 and the Unclassified group did not differ from 

MCI for the pallidum (p ≥ .03). There were no group differences for the hippocampus 

(omnibus p > .05) or thalamus (p >.01).

Comparison to Conventional Diagnostic Methods

We examined florbetapir SUVRs in only those individuals classified as “cognitively normal” 

by ADNI’s diagnostic criteria (n = 132) (Petersen et al., 2010; see Supplemental Material). 

The pattern of results for amyloid deposition in the cortical and allocortical/subcortical ROIs 

across stages of preclinical AD in this subsample was remarkably similar to the results 

found in the full sample of 312 participants who were classified as “cognitively normal” 

based on actuarial neuropsychological criteria. This was the case both when stages of 

preclinical AD were based on the number of abnormal biomarkers (see Supplementary 

Figure 1) or the NIA-AA criteria (see Supplementary Figure 2).

DISCUSSION

We examined florbetapir PET amyloid scans in preclinical AD to characterize the prevalence 

and pattern of cerebral amyloid burden. Preclinical AD stages were based on empirically 

defined methods (Edmonds, Delano-Wood, Galasko, et al., 2015). In cortical ROIs, amyloid 

deposition increased across stages of preclinical AD, consistent with our hypothesis. This is 

not surprising, given that the preclinical AD stages themselves were based on three markers, 

one of which was participants’ CSF Aβ1–42 level. The correspondence between florbetapir 
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PET imaging and CSF Aβ has been shown to be quite high in the ADNI dataset, with 86% 

agreement between the two measurements (Landau, Lu, et al., 2013). Thus, it follows that 

cortical SUVRs would be higher in the 2 and 3 Biomarkers groups, where nearly everyone 

(97% of the 2 and 3 Biomarkers groups combined) had abnormal CSF Aβ1–42, relative to the 

0 and 1 Biomarker groups where the rate of CSF Aβ1–42 abnormality was much lower (14% 

of the 0 and 1 Biomarker groups combined).

Levels of florbetapir PET Aβ in the later stages of pre-clinical AD were not significantly 

different from MCI participants, although it should be noted that this does not necessarily 

imply equivalence and there was a trend for the 2 and 3 Biomarkers groups to have 

somewhat lower amyloid levels than the MCI group (see Figures 2 and 3). These findings 

are consistent with the notion that cerebral amyloid pathology may often, although not 

invariantly, occur early in the pathogenesis of AD, perhaps as many as 20–30 years before 

expression of clinical AD (Jansen et al., 2015), and that substantial accumulation has already 

occurred before one meets criteria for a clinical diagnosis for even mild forms of cognitive 

impairment.

The most intriguing finding from this study was the pattern of results seen in the allocortical 

and subcortical gray-matter regions. Several of these regions followed the same general 

pattern as the cortical areas, including the accumbens, amygdala, caudate, and putamen. 

However, the SUVRs observed in the hippocampus, pallidum, and thalamus largely did not 

differ across stages of preclinical AD. This finding indicates that neither our staging system 

nor the NIA-AA staging system adequately captures the progression of amyloid in these 

allocortical and subcortical regions. One possible explanation for the discrepancy is that CSF 

Aβ1–42 may not correspond well to florbetapir PET SUVRs in these particular subcortical 

structures. Previous research has shown that CSF and PET markers of amyloid are indeed 

associated with one another, but in a nonlinear way. Specifically, the relationship between 

CSF Aβ1–42 and florbetapir PET in the ADNI sample was found to be strong only when 

values were in the midrange on both measures; they did not closely correlate in the low and 

high range of values (Toledo et al., 2015). This suggests that CSF and florbetapir PET bio-

markers are measuring different aspects of AD amyloid pathology (Toledo et al., 2015), 

which may account for our unexpected findings in some of the allocortical/subcortical 

regions.

An SUVR of 1.11 has been suggested as a cutoff value for “amyloid positivity” in cortical 

regions (Joshi et al., 2012; Landau, Breault, et al., 2013). However, it is unclear what cutoff 

value would be most appropriate for determining “positivity” in subcortical regions. One 

consideration in establishing such a cutoff is that the cortical uptake measure samples from a 

larger number of voxels relative to the smaller subcortical ROIs, which may make 

subcortical SUVRs less reliable and more sensitive to variation. Thus, a single cutoff value 

for regions of different sizes may not be ideal, perhaps necessitating different normative 

values for each region. On the other hand, perhaps abnormality should be determined by a 

range of SUVRs values rather than a particular cutoff, given the drawbacks of dichotomizing 

a continuous predictor in biomarker research (Royston, Altman, & Sauerbrei, 2006).
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Despite not having a clear cutoff for “positivity,” the pallidum, putamen, and thalamus all 

appear to have high SUVRs across preclinical AD stages. The accumbens and caudate are 

also quite high in the later stages. Older neuropathologic studies in AD patients have shown 

that the striatum is particularly vulnerable to amyloid deposition and diffuse plaques (Braak 

& Braak, 1990; Suenaga, Hirano, Llena, Yen, & Dickson, 1990), especially the caudate, 

rostral putamen, and accumbens (Brilliant, Elble, Ghobrial, & Struble, 1997). The 

hippocampus, on the other hand, is an area that shows a low level of amyloid deposition 

until late in the disease (Arriagada, Growdon, Hedley-Whyte, & Hyman, 1992; 

Giannakopoulos, Hof, Michel, Guimon, & Bouras, 1997; Price, Davis, Morris, & White, 

1991), consistent with our finding that SUVR levels in the hippocampus did not increase 

across stages of preclinical AD.

The pattern of observed SUVRs raises questions regarding the timing and/or sequence of 

amyloid accumulation between cortical and some allocortical and subcortical regions. At 

face value, our results appear to suggest that subcortical amyloid deposition occurs early in 

the disease process, and that the buildup of amyloid may be more complete in subcortical 

areas relative to cortical areas, even by the earliest phases of preclinical AD. However, such 

a sequence of amyloid accumulation would contradict the cascade of events that has been 

described in the literature which is a downward progression of Aβ from neocortex to 

subcortical regions (e.g., thalamus and striatum) (Braak & Del Tredici, 2015; Thal, Rüb, 

Orantes, & Braak, 2002).

Although studies have shown early subcortical Aβ deposition in the basal ganglia and 

thalamus in autosomal dominant forms of AD (Klunk et al., 2007; Bateman et al., 2012; Cho 

et al., 2013), this has not been described in late-onset sporadic AD. Therefore, rather than 

being indicative of an alternate sequence of amyloid accumulation in late-onset sporadic 

AD, the current findings may point to a lack of correspondence between subcortical 

florbetapir PET SUVRs and the underlying neuropathology. Hatsuta et al. (2015) found 

that 11C-Pittsburgh compound B (PiB) uptake in cortical regions was highly correlated with 

amyloid deposition and neuritic plaques at autopsy in patients with dementia; however, PiB 

uptake in subcortical grey matter (i.e., basal ganglia, thalamus, amygdala) did not show 

these associations. In a previous study, subcortical PiB uptake in the putamen and thalamus 

were found to be high regardless of whether a patient had amyloid aggregates at biopsy 

(Leinonen et al., 2008). The current findings dovetail nicely with this work and suggest that 

the discrepancy between subcortical SUVRs and histopathological measures of amyloid 

deposition/neuritic plaques could extend to a preclinical AD group, although clearly more 

work is needed to explore this hypothesis.

An alternative interpretation of our findings is that amyloid deposition in certain subcortical 

regions is non-specific and unrelated to risk for future development of AD. Previous studies 

have reported amyloid positivity in up to one-third of cognitively normal older adults 

(Chételat et al., 2013; Sperling et al., 2014); however, the clinical implications of these 

elevations in asymptomatic individuals remain uncertain (Leuzy, Zimmer, Heurling, Rosa-

Neto, & Gauthier, 2014; Sperling et al., 2014). It is also possible that subcortical disease 

may be contributing to our findings of high SUVRs in some subcortical regions. Although 

participants with significant vascular burden (Hachinski Ischemic Score of > 4) were 
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excluded from the ADNI sample, previous research has shown the presence of vascular 

pathology in ADNI’s cognitively normal participants (Nettiksimmons et al., 2013) and MCI 

participants (Toledo et al., 2013). Future studies examining vascular risk factors and vascular 

biomarkers in stages of preclinical AD are needed to address this possibility.

In sum, our analysis of the florbetapir PET imaging data in the ADNI cohort demonstrates 

unique patterns of amyloid burden in cortical and subcortical regions before a clinical 

diagnosis. Longitudinal research will be important to further understand how biomarkers of 

subcortical amyloid are related to the mechanistic pathways underlying AD, and whether the 

presence of amyloid in striatal or other subcortical regions may add predictive power in 

determining who is most likely to progress to AD. Beach and colleagues (2016) have 

recently suggested that amyloid imaging of the cerebral cortex and striatum together may 

increase accuracy in making a clinicopathological diagnosis of AD and in the pathology-

based clinical staging of AD. Perhaps this type of clinical staging could be applied even 

earlier in the disease process if longitudinal findings ultimately show that “cognitively 

normal” individuals with both cortical and striatal amyloid burden have an increased risk of 

progressing to MCI or AD.

A limitation of our study was ADNI’s use of Freesurfer to delineate the ROIs. Although 

scans underwent a quality control process by ADNI, previous research has shown that 

Freesurfer’s segmentation accuracy is decreased in subcortical structures (e.g., thalamus; 

Eggert, Sommer, Jansen, Kircher, & Konrad, 2012). An additional limitation is that 

neuropsychological measures were corrected for age only, as normative data correcting for 

age, education, and sex were not available for all measures. A strength of our study was our 

ability to compare the two classification systems for preclinical AD. We demonstrated that 

the NIA-AA method essentially produced the same pattern of results as our novel staging 

method. The “SNAP” and “Unclassified” groups were largely comparable to Stages 0 and 1; 

therefore, separating these two groups based on their sequence of biomarker abnormalities 

neither improved nor informed the characterization of preclinical AD at baseline. Our 

previous work has also shown that these additional categories did not improve the prediction 

of who progressed to MCI/AD, since most participants who progressed did not follow the 

temporal order proposed by NIA-AA criteria (Edmonds, Delano-Wood, Galasko, et al., 

2015). Similarly, other studies have shown that both “amyloid-first” and 

“neurodegeneration-first” (i.e., SNAP) biomarker profile pathways to preclinical AD exist 

(Jack, Wiste, et al., 2013), and that individuals with subtle cognitive decline but no 

neurodegeneration (i.e., Unclassified) progress to MCI/AD at a relatively high rate (Toledo 

et al., 2014). By combining sophisticated imaging biomarkers with detailed cognitive 

assessment to better characterize stages of preclinical AD, we can advance our 

understanding of which individuals are at risk for future progression, with the hope that 

eventually disease-modifying interventions can be provided early in the course of the 

disease.
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Fig. 1. 
Flowchart showing which participants from the overall ADNI database were included in the 

current study.
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Fig. 2. 
Mean regional and global florbetapir standard uptake ratio (SUVR) for cortical regions in 

preclinical AD stages (based on number of abnormal biomarkers) and MCI. Error bars 

denote standard error of the mean. Letters denote significant group differences: a = different 

than 0 Biomarkers; b = different than 1 Biomarker; c = different than 2 Biomarkers; d = 

different than 3 Biomarkers; e = different than MCI.
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Fig. 3. 
Mean standard uptake ratio (SUVR) for allocortical/subcortical regions in preclinical AD 

stages (based on number of abnormal biomarkers) and MCI. Error bars denote standard error 

of the mean. Letters denote significant group differences: a = different than 0 Biomarkers; b 

= different than 1 Biomarker; c = different than 2 Biomarkers; d = different than 3 

Biomarkers; e = different than MCI.
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Fig. 4. 
Mean standard uptake ratio (SUVR) for (a) cortical and (b) subcortical regions when 

participants were classified based on NIA-AA criteria for preclinical AD. Error bars denote 

standard error of the mean. Letters denote significant group differences: a = different than 

Stage 0; b = different than Stage 1; c = different than Stage 2; d = different than Stage 3; e = 

different than SNAP; f = different than Unclassified; g = different than MCI.

Edmonds et al. Page 19

J Int Neuropsychol Soc. Author manuscript; available in PMC 2017 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edmonds et al. Page 20

Ta
b

le
 1

D
em

og
ra

ph
ic

 a
nd

 n
eu

ro
ps

yc
ho

lo
gi

ca
l c

ha
ra

ct
er

is
tic

s 
fo

r 
pa

rt
ic

ip
an

ts
 in

 e
ac

h 
st

ag
e 

of
 p

re
cl

in
ic

al
 A

D
 (

ba
se

d 
on

 n
um

be
r 

of
 a

bn
or

m
al

 b
io

m
ar

ke
rs

)

0 
B

io
m

ar
ke

rs
 (

n 
= 

55
)

1 
B

io
m

ar
ke

r 
(n

 =
 1

27
)

2 
B

io
m

ar
ke

rs
 (

n 
= 

10
5)

3 
B

io
m

ar
ke

rs
 (

n 
= 

25
)

F
 o

r 
χ

2
Si

g.
E

ff
ec

t 
si

ze

D
em

og
ra

ph
ic

s

 
A

ge
 (

ye
ar

s)
70

.7
 (

6.
7)

71
.3

 (
7.

0)
73

.6
 (

7.
3)

72
.1

 (
6.

0)
F 

=
 2

.8
6

p 
=

 .0
4

 
E

du
ca

tio
n 

(y
ea

rs
)

16
.6

 (
2.

4)
16

.9
 (

2.
5)

16
.4

 (
2.

5)
16

.0
 (

2.
8)

F 
=

 1
.3

5
p 

=
 .2

6

 
G

en
de

r 
(%

 f
em

al
e)

50
.9

%
52

.0
%

46
.7

%
64

.0
%

χ
2  

=
 2

.5
3

p 
=

 .4
7

φ c
 =

 .0
9

 
A

PO
E

 (
%

 ε
4 

po
si

tiv
e)

14
.5

%
22

.8
%

49
.5

%
68

.0
%

χ
2  

=
 4

0.
50

p 
<

.0
01

φ c
 =

 .3
6

N
eu

ro
ps

yc
ho

lo
gi

ca
l (

ra
w

)

 
A

ni
m

al
 F

lu
en

cy
21

.3
 (

4.
2)

21
.4

 (
4.

9)
20

.5
 (

4.
8)

16
.5

 (
3.

6)
F 

=
 9

.1
6

p 
<

.0
01

 
B

N
T

28
.2

 (
1.

5)
28

.5
 (

1.
6)

27
.9

 (
2.

2)
27

.0
 (

2.
2)

F 
=

 6
.0

5
p 

=
 .0

01

 
T

M
T,

 P
ar

t A
 (

s)
30

.5
 (

11
.1

)
30

.7
 (

8.
1)

33
.3

 (
10

.3
)

44
.7

 (
14

.7
)

F 
=

 1
5.

10
p 

<
.0

01

 
T

M
T,

 P
ar

t B
 (

s)
73

.2
 (

23
.7

)
74

.4
 (

27
.8

)
87

.9
 (

47
.6

)
10

4.
9 

(5
2.

1)
F 

=
 8

.3
7

p 
<

.0
01

 
A

V
LT

 R
ec

al
l

8.
4 

(4
.1

)
8.

1 
(4

.0
)

6.
0 

(3
.4

)
3.

7 
(3

.4
)

F 
=

 1
4.

80
p 

<
.0

01

 
A

V
LT

 R
ec

og
ni

tio
n

12
.7

 (
2.

0)
13

.0
 (

1.
9)

12
.7

 (
2.

2)
11

.7
 (

2.
0)

F 
=

 3
.3

6
p 

=
 .0

6

N
ot

e.
 D

at
a 

ar
e 

su
m

m
ar

iz
ed

 a
s 

m
ea

n 
(S

D
) 

un
le

ss
 o

th
er

w
is

e 
no

te
d.

A
PO

E
 =

 a
po

lip
op

ro
te

in
 E

; B
N

T
 =

 B
os

to
n 

N
am

in
g 

Te
st

; T
M

T
 =

 T
ra

il 
M

ak
in

g 
Te

st
; A

V
LT

 =
 R

ey
 A

ud
ito

ry
 V

er
ba

l L
ea

rn
in

g 
Te

st
.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2017 January 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edmonds et al. Page 21

Ta
b

le
 2

M
ea

n 
fl

or
be

ta
pi

r 
SU

V
R

 f
or

 c
or

tic
al

 a
nd

 s
ub

co
rt

ic
al

 r
eg

io
ns

 f
or

 p
ar

tic
ip

an
ts

 in
 e

ac
h 

st
ag

e 
of

 p
re

cl
in

ic
al

 A
D

 (
ba

se
d 

on
 n

um
be

r 
of

 a
bn

or
m

al
 b

io
m

ar
ke

rs
)

0 
B

io
m

ar
ke

rs
 (

n 
= 

55
)

1 
B

io
m

ar
ke

r 
(n

 =
 1

27
)

2 
B

io
m

ar
ke

rs
 (

n 
= 

10
5)

3 
B

io
m

ar
ke

rs
 (

n 
= 

25
)

F
 o

r 
χ

2
Si

g.
E

ff
ec

t 
si

ze

C
or

tic
al

 r
eg

io
ns

 
Fr

on
ta

l
1.

00
 (

.0
8)

1.
03

 (
.1

0)
1.

25
 (

.2
2)

1.
29

 (
.1

9)
F 

=
 4

5.
75

p 
<

.0
01

 
C

in
gu

la
te

1.
11

 (
.0

9)
1.

13
 (

.1
0)

1.
35

 (
.2

4)
1.

38
 (

.2
0)

F 
=

 3
7.

32
p 

<
.0

01

 
Pa

ri
et

al
1.

03
 (

.0
8)

1.
04

 (
.1

1)
1.

26
 (

.2
2)

1.
29

 (
.1

8)
F 

=
 4

2.
89

p 
<

.0
01

 
Te

m
po

ra
l

0.
95

 (
.0

7)
0.

97
 (

.0
8)

1.
17

 (
.1

9)
1.

20
 (

.1
7)

F 
=

 5
0.

81
p 

<
.0

01

 
To

ta
l C

or
tic

al
 A

m
yl

oi
d

1.
02

 (
.0

7)
1.

04
 (

.0
9)

1.
26

 (
.2

1)
1.

29
 (

.1
8)

F 
=

 4
6.

74
p 

<
.0

01

A
llo

co
rt

ic
al

/s
ub

co
rt

ic
al

 r
eg

io
ns

 
A

cc
um

be
ns

0.
93

 (
.0

9)
0.

97
 (

.0
8)

1.
18

 (
.2

3)
1.

22
 (

.2
1)

F 
=

 3
9.

31
p 

<
.0

01

 
A

m
yg

da
la

0.
98

 (
.0

8)
0.

99
 (

.0
7)

1.
05

 (
.1

2)
1.

06
 (

.1
1)

F 
=

 9
.2

4
p 

<
.0

01

 
C

au
da

te
1.

05
 (

.1
0)

1.
09

 (
.1

0)
1.

15
 (

.1
4)

1.
14

 (
.1

3)
F 

=
 6

.5
2

p 
<

.0
01

 
H

ip
po

ca
m

pu
s

1.
09

 (
.1

0)
1.

10
 (

.0
8)

1.
11

 (
.1

2)
1.

09
 (

.0
9)

F 
=

 0
.8

9
p 

=
 .4

5

 
Pa

lli
du

m
1.

37
 (

.1
3)

1.
40

 (
.1

1)
1.

44
 (

.1
3)

1.
39

 (
.1

3)
F 

=
 3

.7
8

p 
=

 .0
1

 
Pu

ta
m

en
1.

22
 (

.0
9)

1.
24

 (
.0

9)
1.

36
 (

.1
7)

1.
36

 (
.1

6)
F 

=
 1

9.
46

p 
<

.0
01

 
T

ha
la

m
us

1.
20

 (
.0

9)
1.

21
 (

.0
9)

1.
23

 (
.1

3)
1.

19
 (

.1
1)

F 
=

 1
.2

5
p 

=
 .2

9

N
ot

e.
 D

at
a 

ar
e 

su
m

m
ar

iz
ed

 a
s 

m
ea

n 
(S

D
).

 A
ll 

SU
V

R
s 

us
e 

w
ho

le
 c

er
eb

el
lu

m
 a

s 
re

fe
re

nc
e 

re
gi

on
.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2017 January 17.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Edmonds et al. Page 22

Ta
b

le
 3

N
um

be
r 

of
 p

ar
tic

ip
an

ts
 c

la
ss

if
ie

d 
at

 e
ac

h 
st

ag
e 

of
 p

re
cl

in
ic

al
 A

D
 b

as
ed

 o
n 

th
e 

tw
o 

st
ag

in
g 

sy
st

em
s

St
ag

in
g 

sy
st

em
 b

as
ed

 o
n 

nu
m

be
r 

of
 a

bn
or

m
al

 b
io

m
ar

ke
rs

b

0 
B

io
m

ar
ke

rs
1 

B
io

m
ar

ke
r

2 
B

io
m

ar
ke

rs
3 

B
io

m
ar

ke
rs

N
IA

-A
A

 S
ta

gi
ng

 S
ys

te
m

a
St

ag
e 

0
55

–
–

–

St
ag

e 
1

–
23

–
–

St
ag

e 
2

–
–

89
–

St
ag

e 
3

–
–

–
25

SN
A

Pc
–

91
9

–

U
nc

la
ss

if
ie

dd
–

13
7

–

N
ot

e.
 N

IA
-A

A
 =

 N
at

io
na

l I
ns

tit
ut

e 
on

 A
gi

ng
–A

lz
he

im
er

’s
 A

ss
oc

ia
tio

n;
 S

N
A

P 
=

 s
us

pe
ct

ed
 n

on
-A

D
 p

at
ho

ph
ys

io
lo

gy
.

a St
ag

in
g 

sy
st

em
 b

as
ed

 o
n 

th
e 

bi
om

ar
ke

rs
/c

og
ni

tiv
e 

m
ar

ke
rs

 a
n 

in
di

vi
du

al
 p

os
se

ss
es

 a
nd

 r
eq

ui
re

s 
a 

sp
ec

if
ic

 te
m

po
ra

l o
rd

er
 (

i.e
., 

am
yl

oi
do

si
s 

fi
rs

t, 
th

en
 n

eu
ro

de
ge

ne
ra

tio
n,

 th
en

 s
ub

tle
 c

og
ni

tiv
e 

de
cl

in
e)

.

b St
ag

in
g 

sy
st

em
 b

as
ed

 o
n 

th
e 

nu
m

be
r 

of
 b

io
m

ar
ke

rs
/c

og
ni

tiv
e 

m
ar

ke
rs

 a
n 

in
di

vi
du

al
 p

os
se

ss
es

 w
ith

ou
t r

eg
ar

d 
fo

r 
th

ei
r 

te
m

po
ra

l o
rd

er
 o

f 
oc

cu
rr

en
ce

.

c SN
A

P 
pa

rt
ic

ip
an

ts
 h

ad
 n

eu
ro

de
ge

ne
ra

tio
n 

w
ith

 n
or

m
al

 a
m

yl
oi

d 
le

ve
ls

.

d U
nc

la
ss

if
ie

d 
pa

rt
ic

ip
an

ts
 h

ad
 s

ub
tle

 c
og

ni
tiv

e/
fu

nc
tio

na
l d

ec
lin

e 
w

ith
 n

o 
ne

ur
od

eg
en

er
at

io
n.

J Int Neuropsychol Soc. Author manuscript; available in PMC 2017 January 17.


	Abstract
	INTRODUCTION
	METHODS
	Participants

	MATERIALS AND PROCEDURE
	Preclinical AD Staging Based on Number of Abnormal Biomarkers
	Florbetapir PET Data Acquisition and Processing
	Statistical Analyses

	RESULTS
	Clinical Characteristics of Preclinical AD Stages
	Cortical Amyloid in Preclinical AD Stages
	Allocortical and Subcortical Amyloid in Preclinical AD Stages
	Comparison to Preclinical AD Stages Based on NIA-AA Criteria
	Comparison to Conventional Diagnostic Methods

	DISCUSSION
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Table 2
	Table 3



