
UC San Diego
Open Educational Resources, NanoEngineering UCSD

Title
Shell for Scientific Computing: The Kind of Introduction I'd Have Liked

Permalink
https://escholarship.org/uc/item/4qb8927d

ISBN
979-8-218-11224-0

Author
Bopp, Steven Edward, Ph.D.

Publication Date
2022-12-15

DOI
10.21221/S2G59Q

Data Availability
The data associated with this publication are within the manuscript.

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qb8927d
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

1

2

Shell for Scientific Computing
The Kind of Introduction I’d Have Liked

First Edition. Winter, 2022

Steven E. Bopp, Ph.D.

University of California San Diego

UC eScholarship

Copyright: © 2022 Steven Edward Bopp. Intellectual property and works of code, text, sci-
entific or artistic visualizations, or otherwise, as well as included data are the original creations of
the author.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

This license allows sharing, copying, or redistributing the work for non-commercial purposes pro-
vided clear attribution of the author and publisher. Additional details concerning the CC-BY-NC-
SA license may be found at https://creativecommons.org/licenses/by-nc-sa/4.0/.

ISBN: 979-8-218-11224-0 (electronic; https://doi.org/10.21221/S2G59Q)

Publisher: This version was initially released in electronic form on December 15, 2022. Published
by eScholarship, University of California. An electronic version of this book is freely available at
https://escholarship.org/uc/item/4qb8927d.

Cover Art: Graphic produced from an original series of VASP calculations run with automated
code developed by Steven Edward Bopp using gnuplot on a wicked Department of Energy super-
computer!

Colophon: This document was typeset using LATEX; graphics were made using a variety of freely
available software including Linux, Inkscape, GIMP, and VESTA.

4

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.21221/S2G59Q
https://escholarship.org/uc/item/4qb8927d

For Tami, Gregory, and Douglas

5

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

6

Shell for Scientific Computing: The Kind of Introduction I’d
Have Liked

Steven E. Bopp, Ph.D.: Materials Science & Engineering

First Edition, Winter 2022

Contents
1 Introduction 11

1.1 Motivation for this text . 12
1.2 Acknowledgements . 13
1.3 Acronyms defined . 14
1.4 BASH cheat sheet: my most common commands . 16
1.5 The Bourne-again shell (BASH) . 17
1.6 Accessing the shell . 17

2 Shell Commands and How to Use Them 18
2.1 Shell navigation: pwd, cd, ls, file . 18
2.2 Handling files in the shell . 20

2.2.1 Create, rename, copy, move, and delete: touch, mv, cp, rm 21
2.2.2 Reading, writing, and destroying files: ls, nano, cat, head, tail 22
2.2.3 Viewing filters and file comparisons: more, less, and diff 23
2.2.4 Create and unzip archives: tar, and gzip . 26
2.2.5 Z-commands: zcat, zdiff, zless, and zmore . 27
2.2.6 Estimate a file’s disk usage: du . 28

2.3 Special characters: :, ;, &, &&, |, $, !, <, >, *, ∼, ?, /, \, %, ., .., 28
2.3.1 The slash character / . 30
2.3.2 The backslash character \ . 31
2.3.3 The modulo character % . 31
2.3.4 The sequence wildcard character * . 31
2.3.5 The single character wildcard ? . 32

2.4 Ownership and file modes: chmod and chown . 33
2.5 Superuser operations: su, sudo and fakeroot . 33
2.6 Shortcuts in the shell . 34

2.6.1 Quick-searching the BASH history: reverse-i-Search ^r 34
2.6.2 Command shortcuts in the shell: alias and unalias 35

2.7 Time-based commands: date, cal, sleep, tty-clock . 37
2.8 Linux services: service . 39

7

3 Shell Programs and How to Run Them 40
3.1 System monitors: top, htop, atop, and gotop . 40
3.2 whoami, uname and hostname . 41
3.3 Network monitoring: bmon, nmap, arp and ping . 41
3.4 Process controls: no hangups and forks . 42
3.5 find . 43
3.6 wget and curl . 44
3.7 vim: a text editor in the shell . 45
3.8 Gnuplot . 46
3.9 lynx . 56
3.10 openmpi . 57
3.11 ssh and scp . 57
3.12 bc an arbitrary precision BASH calculator . 58
3.13 dos2unix, converting old dos files to UNIX format 61

4 Logical Operations: Variables, Redirects, Pipes, While, For, and If 63
4.1 Redirects and variables . 63
4.2 Pipes: an example with the tee command . 66
4.3 Loops and built-in logical counters . 66

4.3.1 For loops . 67
4.3.2 Until loops . 68
4.3.3 While loops . 69
4.3.4 If statements: check whether a program is installed 71

5 Shell Scripting: Making General Purpose Tools 73
5.1 Make a curses-style text-based user interface with while loops and case functions . . 73
5.2 Make a timer in the shell (for use within scripts) using variables and built-in math

functions . 76
5.3 BASH web scraping HTML using Gnuplot, lynx, awk, sed, and bc (and checking for

installed programs with if statements) . 78
5.4 Use functions to make a user interface video editor script with ffmpeg 86
5.5 Scripting with custom options using getopts, for, if, and while statements, as well as

exit and shift conditions . 88
5.6 Automate installation (sort of) with redirects and shell scripts 94
5.7 Normalize and ’fix’ data sets using dos2unix or tr, sed, grep, sort, wc, awk, for, eval,

and bc . 95
5.8 Convert obscure .xrdml files to two-column .dat with tr, awk, paste, bc, and wc . . . 100

6 Shell Scripts for DFT Calculations with Quantum ESPRESSO (PWscf) 105
6.1 Compiling Quantum Espresso . 105
6.2 Some common error sources in Quantum ESPRESSO 106
6.3 Quantum Espresso file headers and environment variables 106
6.4 Charge density and the electron localization Function (ELF) 111
6.5 K-resolved projected density of states (KPDOS) and the Fermi surface 122
6.6 The complex dielectric function with epsilon.x . 138
6.7 Cif2Cell: create an interactive BASH script for crystal-making 147
6.8 Firmi: create Fermi surface .stl files from Quantum Espresso output 149

8

7 Shell Scripts for DFT Calculations with Exciting 151
7.1 Compiling Exciting Oxygen . 151
7.2 Some common error sources in Exciting . 153
7.3 Ground state energy of NaCl . 153
7.4 Second harmonic generation (SHG) of a TiN monolayer (relaxed by VASP) with

automatic lattice vector conversion to Bohr radii from POSCAR 158

8 Create Crystals and Heterostructures in the Shell with Atomsk 165
8.1 Installing Atomsk on Linux . 165
8.2 Compiling Atomsk from its source on Linux . 166
8.3 Creating simple structures . 167
8.4 Creation of oriented and duplicated crystals . 173
8.5 Creation of monolayers and heterostructured slabs 178
8.6 Adding randomness to a crystal . 189

9 Shell Scripts for DFT Calculations with VASP 193
9.1 Compiling VASP 5.3 . 193
9.2 Some common error sources in VASP . 194
9.3 Relaxation of a (111)-oriented TiN monolayer on AlN 195
9.4 Automating many simultaneous calculations with VASP: the O2 dimer, and data

analysis with MATLAB . 203
9.5 Automating many simultaneous calculations with VASP: the Al2O3 system, and data

analysis with MATLAB . 216
9.6 Adsorption of an AlO dimer on a c-axis oriented Al2O3 surface, and data analysis

with MATLAB . 229
9.7 Adsorption of a TiN dimer on a (111)-oriented TiN Surface, and data analysis with

MATLAB . 245
9.8 A script to collect and collate energy and volume parameters from VASP calculations

and notify the user for unconverged calculations with for loops, awk, tail, and tput bel259
9.9 A script to collect and collate many vasprun.xml files with for loops, and a temporary

counter file . 270
9.10 A Gnuplot script for plotting OSZICAR and ignoring the file header 273

10 Shell Scripting for Force Field Creation with MEAMfit and MEAMfit2 274
10.1 Compiling MEAMfit . 274
10.2 Compiling MEAMfit2 . 275
10.3 Some common error sources in MEAMfit . 276
10.4 Collecting many vasprun.xml files for use with MEAMfit by using for loops and the

expr command . 277
10.5 Plotting a MEAMfit interatomic separations histogram in Gnuplot 279
10.6 A MEAMfit input script for some automation, and a demonstration of MEAMfit

fitting and testing on an example data set . 285
10.7 Removing selected calculations from a set with automation 295

9

11 Shell Scripting for Force Field Creation with potfit 297
11.1 Compiling potfit . 297
11.2 Collecting many VASP OUTCAR files for potfit . 300
11.3 Using the potfit vasp2force built-in . 301
11.4 Using the potfit makeapot built-in . 304
11.5 Using the potfit potfit_setup built-in . 310
11.6 Running potfit to generate a MEAM potential . 310

12 Additional Topics Just for Fun 313
12.1 The fork bomb: a denial of service ’virus’ . 313
12.2 Text diagrams for inline human-readable descriptions of your code 313
12.3 Text decorations for utility and fun . 315
12.4 Using text to speech and alert sounds in the terminal 316

13 Concluding Remarks 318

References 319

“There are not many persons who know what wonders are
opened to them in the stories and visions of their youth; for
when as children we listen and dream, we think but
half-formed thoughts, and when as men we try to remember,
we are dulled and prosaic with the poison of life. But some of
us awake in the night with strange phantasms of enchanted
hills and gardens, of fountains that sing in the sun, of golden
cliffs overhanging murmuring seas, of plains that stretch down
to sleeping cities of bronze and stone, and of shadowy
companies of heroes that ride caparisoned white horses along
the edges of thick forests; and then we know that we have
looked back through the ivory gates into that world of wonder
which was ours before we were wise and unhappy."

— H. P. Lovecraft, Celephaïs

10

1 Introduction

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

This text is intended to be a concise, examples-driven guide to some ways that the shell may
be used for scientific computing, automation of what would be otherwise tedious processes on the
computer, collection and navigation of data sets, and automatic conversion and analysis of legacy
data that might be otherwise difficult to for modern computers to read. Efforts will be made to
add the included scripts into the following Github repository incrementally when time is available
to do so: https://github.com/sbopp/Shell_For_Scientific_Computing_SE_Bopp. This will be
done for ease of use by the reader so that code won’t have to be copied and pasted directly from
this .pdf document.

Many guides consider very carefully the background and supporting physics in addition to some
examples of code and programming; this guide is not like that. This text is more or less purely a
guide on how to use computational tools based on some worked examples. Some common errors
for different situations are also compiled based on notes from my own research while I was learning
how to use these tools. The reader is assumed to be able to understand (with just a bit of figuring
on their part) the background theory and physics on which many of the topics discussed herein are
based. Citations for more background on specific physics underlying some of the included codes are
given at the end in the references section.

That being said, all examples contained within were inspired by scripts and code fragments
valuable to my research. I use BASH for automation, navigation, and code execution on remote
machines, and for running computations on supercomputers. All of what follows is a compilation
(with as many comments within the code and explanations surrounding the code as was reasonable
for me) of shell scripts or means of utilizing existing shell programs that I have written with the
help of numerous online resources for my own projects. I value the shell for many reasons, one of
which being that it assists dramatically in automation.

Automation can be an incredible boon to time and sanity savings, and reduction of human-
induced errors that come from tedium. Automation however is not favorable in all situations, for
example where innovation may be hindered. Many examples herein are used to automate tasks
by performing a set-in-stone series of data conversions, calculations, executions, etc...; it is wise
to consider when automation is beneficial and when other mechanisms for time savings such as
improvements in processes may be more prudent. That being said, this text concerns mostly the
automation of processes with the shell: an effectively automated user.

Sections in this text include general means of getting used to the shell, then how to execute
commands and programs in the shell, and finally running your own shell scripts with all sorts of
applications ranging from web scraping to making your own curses-style text-based user interface.
All the code I supply is intended to be plug-and-play and should work out of the box. That being said
however, I supply all of the following without any guarantee of any kind and without any warranty of
any kind. Any ramifications of the use, deployment, or any other possible means of implementation
or exploitation of the information contained within this text are the sole responsibility of the reader.

Nothing whatsoever within this text is meant to be direct or indirect or any form of legal advice
in any capacity at all. Automated scripts can be used for good and innocuous things just as they
can be used for malicious purposes. Don’t be malicious, use what is in this text for good and for
your own non-malicious purposes. Continuing to use this text constitutes an agreement on the
part of the reader to use the contents of this text, the information it contains, and everything it
references for no malicious or illegal activity. Furthermore this user agreement absolves the author

11

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q
https://github.com/sbopp/Shell_For_Scientific_Computing_SE_Bopp

in any and every capacity of what the end-user of this texts does or plans to do with the information
that they gain while reading, studying, or implementing this text or the things it references.

In general terms, as it relates to computing, a shell is a user interface for an operating system’s
services. In order to view this document on a computer, you are probably using the explorer.exe
shell (a fun bit of mischief in elementary school was to kill the explorer.exe processes on many
networked computers...totally "hypothetically"...of course) if you are on Windows or the GNOME
shell on Ubuntu Linux. These shells are graphical user interfaces (GUIs) and, chances are, you
already know how to use at least one of them. This document will attempt to teach the reader how
to use a terminal shell, like BASH in the stead of, or in addition to a GUI shell.

The primary focus of this document will be an introduction to command line use and scripting
in the BASH shell for Linux and UNIX (specifically Darwin) machines. This guide is by no means
meant to be exhaustive and absolutely no warranty is offered with this document.

As it stands, BASH is one of, if not the most widely used shell on Linux and UNIX machines.
Using the shell from a terminal offers a user much greater access to the machine and its contents,
especially when run as an administrator or a root user (the user on the computer which has full
access to everything on the machine) than does someone using the default GUI shell.

In addition to the obvious benefits of controlling in relative totality the processes on a machine,
uses for the shell include automating system tasks, accessing remote systems like supercomput-
ers, running an incredible variety of programs, downloading programs from trusted sources and
compiling them all through one terminal window.

1.1 Motivation for this text
Somewhere around my sophomore year in college, the mechanical hard drive of my very first (and
about six year old at that point) laptop died spectacularly, taking my files and wildly generic
super, super, super awful operating system which shall not be named, down to the clicky, crunchy,
hardware failure grave. Intending to never again spend a penny on the operating system that shall
not be named, I bought a new disk and hopped on the Linux train.

This text was written in small bursts over a period of several years with the intention, more
or less, to be a simultaneous compendium of notes on BASH commands for my own reference and
so I could get more comfortable writing in LATEX. I’m supplying this as a text for whoever my
wish to use it for their own research work with absolutely zero warranty or guarantee of any kind.
Any repercussions of the use of any and all code or written word given in this document are solely
the responsibility of the party using or referencing this text and not at all the responsibility of the
author. Use BASH and the shell for good!

I have done a reasonable amount to compile the following into cogent, brief, and ’recipes’ for
various useful operations in the BASH shell. I have a significant angle toward scientific computing
and data analysis so that’s what I present here. All reasonable efforts have been made to ensure
that the supplied code runs smoothly, however the contents of this text are not guaranteed to be
perfect and the user may have to modify some things slightly to fit updating systems or slightly
different system architectures or programs (especially as things may change slightly with software
updates and the like).

12

1.2 Acknowledgements
This text is dedicated to all those that lift me up and help to illuminate my path: my mother,
father, brother, mentors, and friends. The following guides were written with the hope that they
might be useful to others trying to use computational science techniques by reducing the somewhat
formidable barrier to entry that I experienced when beginning.

I’ve learned mostly all that I know about BASH and code in general from a litany or resources too
long to retell in this text and, unfortunately, too numerous to remember. However, some specific
parties to thank are as follows: My friend Dr. Patrick E. Sims, a mentor to me since I was an
undergraduate and he was working on his chemistry Ph.D. who is a wizard with the shell and first
principles calculations. My parents who are lovingly responsible for a lifetime’s worth of consistent
support in learning and gaining skills. I also thank my brother Dr. Douglas G. Bopp for a friendly
rivalry finding solutions to all manner of scientific, engineering, and computational problems; his
hard work and dedication to solving complicated, exciting, and technologically relevant problems
in physics and engineering, as well as how he’s built his own business inspire me.

I acknowledge and appreciate the guidance of my thesis adviser Dr. Zhaowei Liu for his mentor-
ship, and guidance on my research topics. I greatly appreciate the conversations, mentorship, and
the access to super-computing resources that were given to me by my professor and thesis commit-
tee member Dr. Tod Pascal and the National Energy Research Scientific Computing Center which
I utilized during my Ph.D. research and to grow my skills in BASH. I’ve also learned a lot of what
I know about shell scripting from the developers and example-writers of the Quantum Espresso
code, they influenced the way that I create and compose shell scripts for my own personal and
professional use to a large extent. I use the Ubuntu operating system whenever I can (additionally,
I use OpenSUSE and others but Ubuntu is my go-to). The Ubuntu creators sent me a free copy of
Ubuntu 13.10 saucy salamander in the mail completely at their own expense on a live CD; that’s
a time for which I am nostalgic and grateful. The three years of support awarded to me by the
Department of Defense (DoD) through the 2019-2022 National Defense Science and Engineering
Graduate (NDSEG) Fellowship Program and the Air Force Office of Scientific Research (AFOSR)
were of enormous benefit, affording me the latitude to complete this text and my PhD work. I
would also like to thank the hard work and dedication of Allegra Swift from the UCSD Geisel
Library who helped me pull together all of the resources for publishing this book.

It’s very surreal to have completed the first version of this text since some incarnation of it has
been living in my head for the better part of a decade. It’s too strange for me to call this entirely
complete, so let’s call it a good start! The last years spent intermittently writing these pages have
seen me through life in two states, the entirety of graduate school, many late nights, all sorts of
uncomfortable major historical events, and such a proliferation of friendships, freedom, growth, and
becoming that I just can’t help but smile while writing this. Right now, it’s one of those rare perfect
moments and I’m delighted to be able to share it with you!

Some things and parties I’ve relied on and am grateful to thank are the following: La Jolla and
its wild, misty, Seussical vibe of pristine beaches and confused-looking trees became my new home,
a better place would be hard to find. Regent’s Pizzeria with its deep dish slices for how it reminds
me of an old home. 757, my delightful shoebox apartment at UCSD, for its cozy accommodations,
surrounding community, and how it became my new home. My Crown Victoria, that beautiful old
bulletproof black and white Arizona police interceptor, I am so pleased and happy it’s kept me safe
and given me the freedom of exploration over all these years.

Thank you everyone, my parents, brother, family, friends, mentors, and of course Tony Twenty
Toes—the cat—you’ve bolstered me to not lose my courage and your contributions to who I am

13

and to how I see, as well as your friendship are valuable beyond what I can concisely express.

1.3 Acronyms defined
Acronyms are used in the text; to try and alleviate any confusion, I have tried to catalog most of
those acronyms here:

14

^ Literally the key-press of the control key
^c Interrupt or the ’kill’ command
^r The reverse-i-search
^M The carriage return
& The fork POSIX command
Å Angstrom unit: 10−10meter = 10nm = 1Å
a0 The lattice parameter
arg Argument
BASH Bourne Again Shell
cat Concatenate
coord Coordinate
.csv Comma separated values: a file extension
ctrl Control: the literal keystroke of the control key
.dat Data: a file extension
DFT Density functional theory
diff Difference
dir Directory
DOS Disk Operating System
EAM Embedded Atom Model
EOF End of File
fish Friendly Interactive Shell
GUI Graphical User Interface
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
lat Lattice
MD Molecular Dynamics
MEAM Modified Embedded Atom Method
mpi Message Passing Interface
opt Option
param Parameter
png Portable network graphics: a file format
ps PostScript: a file format
POSIX Portable Operating System Interface
QE Quantum ESPRESSO
recipr. Reciprocal
seq Sequence
su Super User
sudo BASH Command Meaning Super User Do (e.g. su do)
.svg Salable vector graphics: a file format
tty Teletype
TUI Text-Based User Interface
TZ Time Zone
UI User Interface
uname User Name
var Variable
VASP The Vienna Ab initio Simulation Package
w/ With
XRR X-ray Reflectometry

15

1.4 BASH cheat sheet: my most common commands
For the impatient (like myself), here are a few of my most commonly used commands in the shell.
I refer back to these all the time.

Compress a file with tar:
1 ta r −c zv f a r ch ive . ta r . gz d i r e c to ry−or− f i l e

Uncompress a file with tar:
1 ta r −xvf a r ch ive . ta r

Set common aliases:
1 a l i a s whcih=’ which ’ ; a l i a s s l= ’ l s ’

Remove an alias:
1 una l i a s whcih=’ which ’ ; una l i a s s l= ’ l s ’

Echo field 1 from row 1 in a text file into a variable with awk:
1 var=$ (awk ’ { i f (NR==1) p r in t $1} ’ f i l e . txt)

Check size of all files in a directory with du:
1 du −sh ∗

Connect to a remote system with ssh:
1 ssh − l uname −Y uname . uname . com

Copy a file from a remote system to a local machine with scp:
1 scp uname@uname . uname . com:~/ f i l e . t a r . gz /Users /mainuser /Desktop

Copy a file from a local machine to a remote system with scp:
1 scp f i l e . t a r . gz uname@uname . uname . com:~

Switch commas for spaces using sed:
1 sed − i ’ s / ,/ /g ’ ${Temp_File_Name}

Create a variable from math operations on n other variables with bc
1 Calc_Var=$ (echo " s c a l e =2;($a) ∗($b) " | bc)

Translate a file with dos line-endings into the UNIX format using tr:
1 t r −d ’ \ r ’ < f i l e . windows . csv > f i l e . unix . csv

Execute a shell script and tee its output to a file:
1 . / Script_Name . sh |& tee −a README. txt

Create a file with cat and redirects:
1 cat > File_Name . sh << EOF
2 #!/ bin /bash
3 echo "Add some contents here "
4 EOF

16

1.5 The Bourne-again shell (BASH)
BASH is my favorite shell for many reasons including that it’s what I learned to script with and
am most comfortable using. There are many shells with many interesting and useful features. fish,
and zsh (especially the ohmyzsh) packages are popular and friendly to work with. It is important
to note that sometimes there are commands which will work perfectly in BASH but may not work
well in sh or csh (which we will talk about in the next section). Making sure that your command
line interpreter can actually execute the commands that you are giving it may sound trivial but it
can be significantly frustrating if its an unknown unknown when you’re just starting out with the
terminal (this becomes vastly more important when scripting with the shell).

1.6 Accessing the shell
There are many shells, worthy of mention, beside BASH, are the following: sh, csh, zsh and fish
(the former being one of this author’s favorites especially for Darwin machines). Shells can be
accessed through a command window called the terminal (sometimes called the console or similar
on other operating systems). In Ubuntu Linux and Darwin UNIX, Terminal is the default command
interpreter for the shell. Ubuntu users can easily access the terminal with the keyboard shortcut
Ctrl+Shift+T or from the start menu; Darwin users can access the terminal from the spotlight
search or the Utilities directory in their Applications directory.

Whatever way you access the terminal, the end result will be similar. To list what shell you are
using in the terminal, type the following:

1 echo $0

As explained, this will return the shell you are using. In order to switch shells (assuming that
they are installed) a user need only enter into the terminal the name of the shell they want to run.
For example, if one wanted to run the c-shell, the user would need only type the following into the
terminal:

1 csh

To exit this shell, back to the default shell, one only needs to enter the following:
1 e x i t

For the rest of this text, we will focus on the ubiquitous command line interpreter BASH because
it is by far and away the most popular program of its type.

17

2 Shell Commands and How to Use Them

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Running commands in the shell is made to be relatively straightforward, if you’ve been following
this guide, then you’ve already successfully run several commands...no biggie eh?

Of particular and ubiquitous value is the manual command; as its name implies, ’man’ will open
the user manual for a specific command. For example, run the following:

1 man bash

As will be visible in the terminal window, you have been pulled into a program which shows the
user available information for the BASH shell. Most programs installed on the the system that are
accessible through the terminal should have a manual page. This author cannot stress enough how
helpful this will be for a user in their future. Enter q to exit the manual page.

In the next sections we will discuss a list of several useful tools for successfully interacting with
the BASH shell (and most other shells for that matter). Do not be daunted by the several pages that
these sections will occupy, all of the tutorials contained in this section are relatively straightforward
and shouldn’t take much time to complete. Much of what is contained in this section may be
redundant to a more skilled shell user and such a person my be better served by skipping on to
subsequent sections. However, the examples that follow in this chapter are included for reference
and completeness.

After completing this section, a user should be able to do all of the following: navigate their
system in the shell; create, open and delete files and directories (as well as archives); read, write
and destroy files; set and change the ownership or the mode of a file; use and identify the usefulness
of special characters; and run programs as the root user or the fake root user (a command whose
level of usefulness is devious).

At any time, it is helpful for the user to know the following: first, the command:
1 ! !

will repeat the last input command to the terminal; second, using the up and down arrows in
the command processor mode of the terminal will navigate a user through the history of recently
issued commands. Pressing the up arrow once and then enter will have the same effect as running
the ’ !!’ command. Additionally, using the tab key will tell the shell to attempt an auto completion
of what you are typing; for example, if your directory contains a file called user.txt and one were
to type ’us’ and then press tab, the shell would attempt to insert the remainder of the file name,
assuming that there are no other files starting with ’us.’

2.1 Shell navigation: pwd, cd, ls, file
In order to navigate your way around in the shell, you need to use text commands, just like almost
everything else in the shell. There are, however workarounds for the navigation explained herein,
these will be explained at the end of this section.

Enter into the terminal the following:
1 pwd

This program is called ’print working directory’ and it will do just that. BASH will output the
location of the directory in which you are currently located. This will be a /home/user directory
for an Ubuntu user or a /Users/macuser type directory for a Darwin machine.

18

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

In order to navigate one directory closer to the root directory, enter into the terminal the
following:

1 cd . . ; pwd

You have just run two commands one after the other: cd .. navigated you ’up’ one directory;
pwd lists for you your new location. Now, enter the following into the terminal:

1 cd /

You are now in the root directory, this can be evidenced with pwd at any time. Using the cd
/ command is similar to the bare cd command which sends you to your home directory. Let’s say
that you’re a curious user and you want to see what files and folders are in your root directory.
Enter the following into the terminal:

1 l s −a

What have you done? All together, you have listed all of the directories and files in the root
directory. Now try running the command above again but without the ’-a’ tag. You’ll notice that a
variety of items which were prepended with a ’.’ are now missing. These are called hidden files and
hidden directories, the ’-a’ tag has allowed you to list all of these items, regardless of their having
been prepended with a ’.’ or not.

How do you know what a certain file or folder is, especially if your terminal does not highlight
types with different colors? Fear not, the following command will never fail to help:

1 f i l e bin /

You have just executed the ’file’ command on the bin/ directory. The BASH output should be
something like: "bin/: directory." In order to navigate into one of the directories which you can
see, it is as simple as this:

1 cd /bin

List out the files and you can see that you are in a directory which contains programs that can
be run with the shell. Do you see our friends ls, pwd and BASH? With the cd command, navigate
back to the home directory and enter again into the command window the following:

1 cd
2 cd /bin

With pwd you can see that you are again in the /bin directory, in the same way, you can
access any directory in your computer (assuming that you have the correct permissions) with the
cd command.

Your home directory is perhaps the most frequented by the user. One final usage of cd or
navigation in general is with the tilde ~. If, say, you need to specify the location of a file or a
directory for the shell, you can use the entire path to the file or directory like so (here, all we are
doing is creating a variable whose value is the location of an executable, vasp in this case. We’ll
talk more about variables a little later on in this text):

1 Program_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp"

However that becomes cumbersome and inconvenient for instances where your home directory
is several levels inside of other directories. If, for example, your home directory is named ’uname’,
then you could change the above location to the below location, the two are equivalent but one just
assumes that /uname is the home directory of the user

19

1 Program_Location="~/codes /vasp/vasp . 5 . 3 / vasp"

The only difference between the previous two commands is that one has had the string /uname
truncated into ~which is very handy for all sorts of things when you don’t want to type out the full
path every time.

There are other ways to navigate and explore files in the terminal than with the cd command,
one such shining example is a program called Ranger. Ranger is a file explorer written in a language
called ncurses which allows for extremely efficient exploration of files and directories on your system.
To run Ranger, you need to install the program, if you are an Ubuntu (or similar OS) user, this
can be accomplished easily with the following command:

1 sudo apt−get i n s t a l l ranger

(sudo is a command called supervisory user do, it is extremely powerful and can cause unintended
consequences on your computer’s system if used incorrectly. Don’t let the power of sudo deter you
though! (We’ll talk more about it later). If you are a Darwin user, then you will need to enter the
following:

1 brew i n s t a l l ranger

Brew is part of the homebrew package manager for Darwin which is similar to apt-get; to
install it, search the internet for the Homebrew Package Manager and follow its instructions. Other
systems, such as distributions based on Fedora Linux and Red Hat will need you to substitute the
’apt’ command for the ’yum’ command.

Ranger is a lot of fun to use and can be really helpful when attempting to navigate through
many levels of directories or look for a specific file in many directories or among many other files
(when that is you’re not using a search command like find which is discussed in section 3.5). Ranger
gives you a more gui-like experience compared to the sort of cold-feeling use of ls and cd. You can
run ranger (after installing it of course) with the following command:

1 ranger

I highly recommend taking some time to use ranger to explore the filesystem and see first-hand
some of its capabilities! You can even use it to preview files and their headers which I find to be
enormously useful, especially when using remote machines.

2.2 Handling files in the shell
Fast, flexible, modular, automatable management of the files that contain our data and calculations
is one of the most attractive features of the shell. We will see in this book how the shell is similar to
an automated user that never makes mistakes and will perform repetitive tasks like file manipulation,
handling, copying, comparing, searching, etc... expertly and astronomically quicker than could a
human user; that’s the true power of shell scripting. More or less, everything contained within this
book could be done without the automation that BASH and other shells allow, however the value
of this text is in the time savings that come from the sheer intractability of trying to do some of
those operations ’by hand’.

In the following sections, we will take the first steps into some of this by exploring ways that
files can be handled and manipulated in the shell.

20

2.2.1 Create, rename, copy, move, and delete: touch, mv, cp, rm

Using the shell, it is facile to create a file (let’s call the file file.txt); this can be done with the
following command:

1 touch f i l e . txt

Upon checking the contents of the current directory (remember the ls command?), one will find
that the file called file.txt now exists. Now try running the following command:

1 mv f i l e . txt . f i l e . txt

Listing again the files in the directory will not show the file, adding the ’-a’ tag to the ’ls’
command will reveal the file—you have modified the file by renaming it; additionally, you have
turned it into a hidden file. The command can be reversed to rename the file to what it was
previously. This is one of the two uses for the move (mv) command in the shell. Renaming the file
back to file.txt will be left as an exercise for the reader.

Issue the following command to the terminal:
1 mkdir t e x t_ f i l e s

List the contents of your current directory and you will see a new directory called text_files
(the _character is used because spaces in a file name are tedious to call in the shell, one would need
to subpend each separate word in the file name with another backslash if one wanted to included
spaces in a file name).

Now issue the following command:
1 cp f i l e . txt copy . txt

Listing the files in the directory, a user will find that there is a new file called copy.txt; this is
the power of the cp command, to make copies of files and name them in the same line of text.

Enter the following command:
1 mv f i l e . txt t e x t_ f i l e s

Again list the items in your current directory and you will see that the file.txt file is no longer
present. You have in fact moved the file into the previously created directory. This is the second
use of the move (mv) command. In the command, the target directory can be any which you want
(assuming that you have the proper permissions).

Navigate into your newly created directory and issue the following command:
1 rm f i l e . txt

Upon listing the items in the directory, one will find that there are no contents. What you
have done is use the remove ’rm’ command to remove the file. It is worthy of note that the ’rm’
command does not overwrite or destroy the file, it only erases the link between the file and the shell
so that it is difficult (but not impossible) to access. File destruction techniques will be explained
in section 2.2.2.

Navigate back to the parent directory (try using ’cd ..’) and list its contents, you should again
see the text_files directory. Now issue the following command:

1 rm −r t e x t_ f i l e s

List again the items in your current directory and you will see that the text_files directory is
missing. What you have done is erase the text_files directory. You used the ’-r’ tag because the
vanilla ’rm’ command will not erase files and directories recursively.

21

2.2.2 Reading, writing, and destroying files: ls, nano, cat, head, tail

When a user spends time in the shell, they may find it convenient to view and edit text in files,
as well as securely deleting them (shredding or destroying). There is a program called ’sed’ which
allows a user to edit text without another program to aid them, ’sed’ is beyond the scope of this
section but is extremely useful and will be discussed at length in sections like 5.3 and 5.7.

There are two primary quick ways to view text, only the first of which will allow you to edit.
The first of these is the use of text editors (like text edit on Darwin systems or gedit on Ubuntu
and similar systems), the second is the use of operations which read text from a file and print that
text to the terminal.

Find for yourself, if you will, a text-containing file whose length is considerable, maybe more
than 40 lines and move or copy it into your current directory (let’s call the file text.txt).

Let’s try to edit the file called text.txt; to do this, enter into the terminal the following command:
1 nano text . txt

In your terminal, you should see the entire body of text contained in the file called text.txt,
additionally you will see a list of possible commands at the bottom of the screen and the label
’GNU nano’ at the top left.

Currently, you are in the terminal-based text editor called nano. You can read, write to and
delete from the document. Enter ctrl+o to save changes and ctrl+x to exit the nano program (in
the shell, the control key is abbreviated as ’^’ so, ctrl+o would be abbreviated as ’^o’).

There are many other programs which are made to edit text, such as pico (closed source), vi
and vim and emacs. These programs are beyond the scope of this section but vim specifically will
be discussed at greater length in section 3.7 because of how ubiquitous and useful it is.

Alternative to nano, there are many ways of viewing text without entering another program or
editing the text—helpful when one wants to just view the contents of a file. Enter into the terminal
the following commands:

1 cat t ex t . txt ; head text . txt ; t a i l t ex t . txt

In your terminal, you should have seen first the entire text of the file printed out, then the top
ten lines of the file and then the bottom ten lines of the file; these are, respectively, the functions
of the cat, head and tail commands, all of which are extremely helpful.

Finally, it may be necessary for the purpose of security, to be able to securely delete files: not
just to remove the link which allows the shell to access the and mark the to be overwritten by new
files. This can be useful when data perhaps for measurements that you are very near to publish or
patent and that are stored on publicly accessible hard disks. There are several programs which can
do this effectively, but the Linux shred command seems like a reasonable choice.

Let’s again use the example of a file called text.txt. Make sure that such a file is indeed in your
current directory and run the following command:

1 cp text . txt d e l e t e . txt ; rm −Pv f i l e . txt

Above, you copied the file text.txt, naming the copy delete.txt. Next, you ran the rm command
with the ’P’ tag (overwrite files before unlinking) and the ’v’ tag (verbose). It is unknown to this
author how effective the ’P’ option is relative to the two commands which will follow (although it
is assumed to be less effective).

On Linux machines, chances are good that the program called ’shred’ will be either installed
or easy to install from the terminal. On Darwin machines, the program called ’srm’ should come
pre-installed with the machine.

22

Make again the text.txt (instead this time naming it delete.txt) file with the same commands
as above.

Now, if you are running a Linux operating system, run the first of the two following commands;
if you are running a Darwin machine, run the second of these two commands:

1 shred −uvz d e l e t e . txt

1 srm −mvz de l e t e . txt

In both cases, the file called delete.txt will have been overwritten, written completely with zeros
and then unlinked. In both cases, the ’v’ option was added so that the shell would print out what
it was doing (this is known as the verbose mode) and the ’z’ option was added to write the file
completely with zeros before truncation.

It should be known that, with sufficient time and computing power, these files can be recon-
structed, the time and power necessary for such a reconstruction being directly proportional to the
number of overwrite steps and time spent overwriting. It is beneficial for the reader to explore the
manual pages of these programs before their use.

2.2.3 Viewing filters and file comparisons: more, less, and diff

Viewing files in the shell can be done in numerous ways, some of which (including tools for editing
text) were just discussed in section 2.2.2. However, there are many more ways of viewing files
which do not involve editing the text like might be done with nano, vim (discussed in section 3.7),
vi, or listing out the entire contents of the text to the terminal like would be done with the ’cat’
command. Two such programs are what are known as viewing filters and are named ’more’ and
’less’.

These viewing filters allow for viewing a file as if it were split into pages on the terminal, this
variety of viewing is known as paging. The ’more’ command lets you page through a file one full
screen at a time (e.g., the file is printed to the terminal as discrete chunks that you can only navigate
discretely between as if you were turning the pages of a book). The ’less’ program is frequently
explained as being the opposite of ’more’ and allows for paging with scrolling where it is easier to
navigate smoothly up and down a file.

We can demonstrate the more program using an INFO.OUT file from an Exciting (see chapter
7 for more about the Exciting DFT code) with the following command:

1 more INFO.OUT

The result will look something like the following where ’more’ shows you the contents of the file
and also shows the percent progress through the file that you are currently viewing. However, more
is significantly irritating in that it will only allow you to advance one line at a time by using the
enter key (or with special commands that allow you to skip forward some number of lines, etc...),
and it will print the text file to the standard output of the terminal. The manual page for more
explains that the program is "...especially primitive" which is absolutely hilarious to this author.
Please view a sample output of the more command in the following terminal session (you can quit
more any time by striking the q key):

1 ==
2 | EXCITING OXYGEN sta r t ed =
3 | =
4 | compi le r : i f o r t (IFORT) 19 . 0 . 3 . 1 9 9 20190206 =
5 | =

23

6 | MPI ve r s i on us ing 32 p roc e s s o r (s) =
7 | | us ing MPI−2 f e a t u r e s =
8 | =
9 | Date (DD−MM−YYYY) : 11−08−2021 =

10 | Time (hh :mm: s s) : 0 6 : 07 : 09 =
11 | =
12 | A l l un i t s are atomic (Hartree , Bohr , e t c .) =
13 ==
14

15 ∗∗
16 ∗ Ground−s t a t e run s t a r t i n g from atomic d e n s i t i e s ∗
17 ∗∗
18

19 ++
20 + Sta r t i ng i n i t i a l i z a t i o n +
21 ++
22

23 Lat t i c e v e c t o r s (c a r t e s i a n) :
24 0.0000000000 4.0015000000 4.0015000000
25 4.0015000000 0.0000000000 4.0015000000
26 4.0015000000 4.0015000000 0.0000000000
27

28 Rec ip roca l l a t t i c e v e c t o r s (c a r t e s i a n) :
29 −0.7851037495 0.7851037495 0.7851037495
30 0.7851037495 −0.7851037495 0.7851037495
31 0.7851037495 0.7851037495 −0.7851037495
32

33 Unit c e l l volume : 128.1440540068
34 Br i l l o u i n zone volume : 1.9357137978
35 −−More−−(4%)

Unlike the more program, less is actually fantastic. This is factual because ’less’ has vastly
enhanced functionality on top of the basic idea of the ’more’ program. Some of this functionality is
that you can scroll with your mouse through the file with numerous more options and capabilities.
Additionally, ’less’ will not print the contents of the file to the standard output in the terminal:
this feature is especially important when you don’t like to have a cluttered terminal, don’t want
to constantly be scrolling between different portions of the terminal session, or just hate having to
clear the terminal constantly to eliminate the extraneous standard output. We can demonstrate
the less command with on the same INFO.OUT file by using the following command (you can exit
from less at any time by striking the q key, as is customary in many BASH programs):

1 l e s s INFO.OUT

The terminal will switch to a new view where less will populate the entire window with the
contents of the file that you have directed it to as well as giving an indication of the file name and
the percent progress through the file that you have made in your viewing printed to the bottom of
the terminal.

1 ==
2 | EXCITING OXYGEN sta r t ed =
3 | =
4 | compi le r : i f o r t (IFORT) 19 . 0 . 3 . 1 9 9 20190206 =
5 | =
6 | MPI ve r s i on us ing 32 p roc e s s o r (s) =
7 | | us ing MPI−2 f e a t u r e s =
8 | =
9 | Date (DD−MM−YYYY) : 11−08−2021 =

24

10 | Time (hh :mm: s s) : 0 6 : 07 : 09 =
11 | =
12 | A l l un i t s are atomic (Hartree , Bohr , e t c .) =
13 ==
14

15 ∗∗
16 ∗ Ground−s t a t e run s t a r t i n g from atomic d e n s i t i e s ∗
17 ∗∗
18

19 ++
20 + Sta r t i ng i n i t i a l i z a t i o n +
21 ++
22

23 Lat t i c e v e c t o r s (c a r t e s i a n) :
24 0.0000000000 4.0015000000 4.0015000000
25 4.0015000000 0.0000000000 4.0015000000
26 4.0015000000 4.0015000000 0.0000000000
27

28 Rec ip roca l l a t t i c e v e c t o r s (c a r t e s i a n) :
29 −0.7851037495 0.7851037495 0.7851037495
30 0.7851037495 −0.7851037495 0.7851037495
31 0.7851037495 0.7851037495 −0.7851037495
32

33 Unit c e l l volume : 128.1440540068
34 Br i l l o u i n zone volume : 1.9357137978
35 INFO.OUT l i n e s 1−34/783 5%

Another useful command in BASH is diff and, as the name might imply, it allows you to see
the differences between files more easily than painstakingly searching through the files by yourself
with your human eyeballs. The diff command is demonstrated here and used to view the differences
between two scripts that have very similar purpose (which will be discussed in chapter 9. Here we
compare two files VASP_EV_Collector.sh VASP_Slab_EV_Collector_v2.sh with the diff com-
mand. The standard output then consists of pairs of lines that are given where some difference is
detected between the two files on a certain line in both of the files. Please see the following terminal
session:

1 uname@uname:~> d i f f VASP_EV_Collector . sh VASP_Slab_EV_Collector_v2 . sh
2 4c4
3 < #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− VASP_EV_Collector . sh :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
4 −−−
5 > #−:−:−:−:−:−:−:−:−:−:−:−:− VASP_Slab_EV_Collector_v2 . sh :−:−:−:−:−:−:−:−:−:−:−:−:−
6 7c7
7 < #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:− October 6 , 2021 −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
8 −−−
9 > #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:− October 5 , 2021 −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−

10 14 c14
11 < # File_Name="VASP_EV_Collector_v3 " ; touch ${File_Name } . sh ; chmod +x ${File_Name } .

sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README_EV_Collector . txt
12 −−−
13 > # File_Name="VASP_EV_Collector_v2 " ; touch ${File_Name } . sh ; chmod +x ${File_Name } .

sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README_EV_Collector . txt
14 33 c33
15 < echo " Enter ing d i r e c t o r y $a"
16 −−−
17 > echo "Enter ing d i r e c t o r y $a"
18 36 ,38 d35
19 < Convergence=$ (awk ’/F=/{pr in t $1 } ’ OSZICAR)

25

20 < i f [[$Convergence = 1]] ; then echo ’ Converged ’ ; e l s e tput be l && echo
’<!> Warning : Ca l cu l a t i on Did Not Converge <!>’ ; f i

21 <
22 49 c46
23 < echo " For l a t t i c e parameter = ${a0 } , Total energy = ${E0} Energy per ion = $

{Energy_Per_Ion} Volume per ion = ${Volume_Per_Ion} "
24 −−−
25 > echo " For l a t t i c e parameter = ${a0 } , Total energy = ${E0} Energy per ion = ${

Energy_Per_Ion} Volume per ion = ${Volume_Per_Ion} "
26 uname@uname:~>

The diff command is especially useful in version control of documents and to highlight where
changes may have been made without other cumbersome implementations of the same functionality.

2.2.4 Create and unzip archives: tar, and gzip

Here we will see how to store and extract files from a .tar archive as well as use the programs called
gzip and gunzip. The discussion here will be limited to the .tar (tape archive) files and the .gz and
.bz2 compression formats. As always, the reader is encouraged to explore the manual page for tar;
this can be easily reached with the following command:

1 man tar

The (tape archive) .tar.gz file format is ubiquitous for packing files, especially on Linux systems.
documentation for the tar program is excellent and straightforward on the internet. As a quick
primer, one can create a .tar.gz archive from a single or a number of files with the following command

1 ta r −c zv f name−of−arch ive . ta r . gz /path/ to / f i l e (s) _to_archive

Here, the -c option means to ’create.’ To unpack files from the same archive, one can issue the
following command (assuming that you are located in the same directory as the archive of interest):

1 ta r −xvf name−of−arch ive . ta r . gz

Additionally, sometimes it just becomes annoying to have all the contents of the archive printed
to the terminal as it is being unpacked because you may have pertinent information already printed
to the terminal that you don’t always want to scroll up to see. To suppress the output of tar, you
can remove the -v (verbose) option and run the unpacking as follows:

1 ta r −xf name−of−arch ive . ta r . gz

To pack files into a .tar package, it is as simple as issuing the following command (omit the
above if you wish, substituting files for what ever is necessary):

1 touch f i l e 1 . sh f i l e 2 . sh f i l e 3 . sh
2 ta r −c f a r ch ive . ta r f i l e 1 . sh f i l e 2 . sh f i l e 3 . sh

If you list out the contents of your directory, you will see that there are four new files, one of
which being appended with the .tar format; this file is the package which you have just made. To
zip the file, one must only issue the following command:

1 gz ip a rch ive . ta r

Listing the contents again will show that the file has again been appended with a new format,
this time its name will be archive.tar.gz; the .gz format is that of the gzip program.

To undo all of the commands which you have just done, issue the following commands:

26

1 rm f i l e 1 . sh f i l e 2 . sh f i l e 3 . sh ; gunzip a r ch ive . ta r . gz ; ta r −xvf a r ch ive . ta r

What you have done is the following: first, you deleted the three original files using rm; next,
you unzipped the .gz file with the program called gunzip; finally, you unpacked the .tar archive
(adding the -v tag will print the operations to the terminal) and got back all of the three files which
you made in the beginning. Listing the contents of the directory will confirm this.

If (as you will in the future of this document) you are to run into a file appended with the format
.tar.bz2, you can use the same program (tar) to unpack the files, you must just add the -j tag to the
list of options you choose; an example is included here for a theoretical file called archive.tar.bz2:

1 ta r −xv j f a r ch ive . ta r . bz2

2.2.5 Z-commands: zcat, zdiff, zless, and zmore

If you have ever used the archive tool in Ubuntu, you may have noticed that is has a very appealing
functionality in that you can use it to view the contents of archives without actually unpacking the
archive file. This is an especially attractive feature when you use archives as a large part of your
workflow and/or have a proliferation of very large archives that you use to store your important
files and calculations. BASH has several programs with similar effects which are generally known
as the z-commands. These commands operate on archives generally ending in *z (e.g., *.tar.gz,
etc...) but can be given options which allow then to operate on other files beyond those in .gz and
similar formats.

We can see the use of zcat in the following commands where we create a text file and then pack
it into a *.tar.gz archive and try to concatenate its contents with the cat command. We see however
that trying to use the cat command returns a standard output that is not human-readable. This
can be resolved by using zcat instead. This is especially useful for VERY large text files like what
you might find in a .out file for a large DFT or MD computation. Please see the following terminal
session:

1 uname@uname:~> touch h e l l o . txt
2 uname@uname:~> echo h e l l o > h e l l o . txt
3 uname@uname:~> gz ip h e l l o . txt
4 uname@uname:~> l s
5 h e l l o . txt . gz
6 uname@uname:~> cat h e l l o . txt . gz
7 ?? nahe l l o . txt ?H???? 0 :6
8 uname@uname:~> zcat h e l l o . txt . gz
9 h e l l o

10 uname@uname:~>

Using the zcat command here allowed us to read the archive contents without actually unpacking
it! This works great for individual files but can get weird for archives of many files and directories.

Using the pipe operation (please see section 4.2 for more coverage of the pipe), we can reroute
the standard output of zcat into the BASH command more:

1 zcat a r ch ive . ta r . gz | more

This is equivalent to the simplified command:
1 zmore a r ch ive . ta r . gz

Similarly, we can pipe zcat into the BASH command less:
1 zcat a r ch ive . ta r . gz | l e s s

27

Which, similarly, is equivalent to the simplified command:
1 zmore a r ch ive . ta r . gz

We can also use the command zdiff to see the differences between archives. Please see the
following terminal session (which builds upon the previous example with the hello.tar.gz file):

1 uname@uname:~> touch goodbye . txt
2 uname@uname:~> echo goodbye > goodbye . txt
3 uname@uname:~> gz ip goodbye . txt
4 uname@uname:~> d i f f h e l l o . txt . gz goodbye . txt . gz
5 Binary f i l e s h e l l o . txt . gz and goodbye . txt . gz d i f f e r
6 uname@uname:~> z d i f f h e l l o . txt . gz goodbye . txt . gz
7 1c1
8 < he l l o
9 −−−

10 > goodbye

The standard output here shows that there is a difference on the first line in the first field where
the first file says ’hello’ and the second file says ’goodbye’. Obviously this is a trivial case and is
vastly more helpful for large files that would make your eyes bleed to directly compare, especially
after a long day or night working on the terminal. Tools like these make life easier.

2.2.6 Estimate a file’s disk usage: du

Using shell programs that write files is common practice, being able to quickly see the size of a file
that has been created by the shell or a pre-existing file is useful. The shell program du can help
with this. Run the command:

1 du −sh ∗

The output of du may look something like this (ls is run here first to list quickly what is in the
directory of interest):

1 uname@uname:~/ codes> l s
2 Pseudo atomsk_0 .11 e v f i t excit ing_mpi e x c i t i n g_ s e r i a l exciting_smp sourc e s

vasp
3 uname@uname:~/ codes> du −sh ∗
4 126M Pseudo
5 21M atomsk_0 .11
6 93K e v f i t
7 278M excit ing_mpi
8 256M ex c i t i n g_ s e r i a l
9 257M exciting_smp

10 70M source s
11 178M vasp

du has listed all the files contained in the directory as well as their sizes (e.g., K for kilobytes,
M for megabytes, G for gigabytes, ...)

2.3 Special characters: :, ;, &, &&, |, $, !, <, >, *, ∼, ?, /, \, %, ., .., ...
BASH utilizes quite a few special characters most or all of which are useful for properly understand-
ing what is going on between different commands and in different parts of the shell environment.
In the following sections, we will discuss some of these characters, their implications, and how (in
some cases) they can be used to our great advantage.

28

Special characters in bash may encompass more than just a single character as well. In some
cases a single character may be a special character, in some other cases repeating that character
twice may be a distinct special character with its own uses and value distinct from the single
character. We have already seen an example of this in the !! command which can be used to repeat
the immediately previous command.

Since special characters are used in most places and very frequently in even the simplest of
commands, it is difficult to create an individual section of special characters before other sections
covering different functionalities of BASH that may be more intuitive to being with. However,
there are some special characters that have very interesting and unique functionalities that fit well
into this category and an attempt will be made here to create a section devoted to describing the
special characters or linking to other sections that have good coverage of the special characters.
Even though some of these special characters may be described in less depth elsewhere in this text,
a table of BASH special characters and their meanings follows, I include this as a handy reference
to the time of paging back and forth around this text trying to remember what’s what.

29

Character Character Name Character Description
: The null operator See section 4.3.3 for an example of using the colon character with

a while loop.
; Command separa-

tor
Separates commands without condition and allows for stringing
of multiple commands into one single command

&& Conditional Com-
mand Separator

Separates commands and allows for the next command to be
executed only if the previous command was executed properly

& Fork Executes all preceding commands in the background
| Pipe Allows the user to take the output of one program and turn it

into the input of another program. See section 4.2 for more on
pipes

$ Variable Special character in the shell denoting a variable e.g., you could
create a variable with a=1 and then call that variable with echo
$a

! Logical Not The logical not symbol usually for use in conjunction with tests
and square brackets

< Redirect Input Allows you to direct a file into a preceding command. See section
4.1 for more information on redirecting an input

> Redirect Output Allows you to take the output of one command and directly write
it into a file. See section 4.1 for more information on redirecting
an output

* Sequence Wildcard The sequence wildcard built-in. See section 2.3.4 for more exam-
ples

? Single Character
Wildcard

The single character wildcard built-in. See section 2.3.5 for more
examples

/ Slash Appends the names of paths in BASH. See section 2.3.1 for more
information

\ Backslash Also allows you to escape a built-in. See section 2.3.2 for more
on the backslash

∼ Home Directory The tilde denotes the location of the home directory in Linux
and UNIX systems

% Modulo Returns the remainder of an integer division operation. See sec-
tion 4.3.1 for an example that includes modulo

. Current directory Special character denoting the working directory. Use the com-
mand pwd at any time to see the full path to your working di-
rectory

.. Parent directory Special character denoting he parent directory e.g., the directory
one level above the working directory

((...)) Double Parenthesis Allows arithmetic expansion and evaluation. See section 4.3.1
for an example including the double parenthesis

2.3.1 The slash character /

The slash character / is interesting and has a few operations within BASH. First of all, it is used
to denote a path e.g., a directory called directory is technically named directory/

Running the following command will print all of the files in the directory to the terminal and

30

all of the directories will be printed with a slash following their name
1 l s −CHGp −−c o l o r ∗

2.3.2 The backslash character \

Another use of the slash character / is to escape a built in operation. This is very useful if you
want to actually print $a to the terminal in the event that you have a variable named a and not
just print its stored value. Please see the following terminal session for a visual explanation:

1 a=1
2 uname@uname:~> echo $a
3 1
4 uname@uname:~> echo \$a
5 $a
6 uname@uname:~> echo "\$a i s $a"
7 $a i s 1

2.3.3 The modulo character %

The modulo operation, given by special character %, returns the remainder of an integer division
operation. This can quickly be paired with the non-floating point arithmetic builtin expr as in the
following example which uses expression to divide 11 by 6 and return the remainder:

1 uname@uname:~> expr 11 % 6
2 5

Here, the command has returned 5 as the remainder of 11/6 which itself is 1 with remainder 5.
Similarly, we can see the benefit of the modular arithmetic (which can be used as a sort of periodic
counter) in the following where we evaluate the remainder of 13/6

1 uname@uname:~> expr 13 % 6
2 1

The value that BASH has returned is 1 which makes sense because 13/6 is 2 with remainder 1.

2.3.4 The sequence wildcard character *

The wildcard character * is a way for the user to define the argument of a shell command more
generally. * is extremely, massively useful to the point that I use it nearly constantly (mostly
because it is very tedious to constantly type and retype commands and specific file names in the
shell; * helps mitigate that issue. That is to say the wildcard adds an element of ’whatever’ into a
command. If it pleases the reader, run the ls command and then run the following:

1 l s ∗

The reader will find that the common ls command did its job and showed the (un-hidden)
contents of the home directory. Of more interest is what happened when the wildcard character
was added to the command: contents of the current directory are listed as well as the first order
contents of all the directories in the working directory.

Next let’s try making several files with different formats. Consider using the following (it’s going
to be helpful to run this command in a new, empty directory, for simplicity let’s call it ’directory’):

1 touch {a . . c } . txt {a . . c } . dat {a . . c } . sh ; l s

31

You’ve created nine new files of three different extensions using the touch command and then
listed the contents of the working directory. But what if there were an arbitrary number of items
in the directory and only the ones starting with a certain letter or ending with a certain extension
are relevant? At the reader’s leisure, run the following:

1 l s a∗

1 l s ∗ . sh

1 l s ∗ .∗

The terminal will print first a list of all the files starting with the letter a (lower case exclusively)
regardless of any information following the first character. Next, the terminal will print a list of all
the files that are .sh extended regardless of any information before the .sh. Finally, the terminal will
list all of the files in the current directory. A discerning reader can tell that the wildcard operation
is exceptionally handy when performing operations on multiple objects in the same command.
Moving, removing, editing, and much more are accessible with the wildcard. All of the contents
of a directory can be deleted with the sequence wildcard character (be careful to perform this
operation only in a directory that has no files that the reader would miss if they were deleted), try
the following:

1 l s ; rm ∗ ; l s

The reader will find, after looking at the obvious differences between the lists given before and
after the ’rm *’ operation that there are no longer any files in the working directory. If the reader
had executed mv * .. instead, then all of the files in the working directory would be moved one
directory up in the tree (assuming that such a directory exists).

2.3.5 The single character wildcard ?

Similar to the sequence wildcard operation described in section 2.3.4 , the single character wildcard
? will look only for a single matching character. Please see the following terminal session (be not
daunted, for the for loops used here are discussed in greater detail in section 4.3.1):

1 uname@uname:~> f o r a in { 0 . . 1 0 0 0 . . 5 0 0 } ; do mkdir $a_Dir ; done
2 uname@uname:~> f o r a in { 5 . . 1 0 0 5 . . 5 0 0 } ; do mkdir $a_Dir ; done
3 uname@uname:~> l s
4 1000_Dir 1005_Dir 1_Dir 500_Dir 505_Dir 5_Dir
5 uname@uname:~> l s ?_Dir
6 1_Dir :
7

8 5_Dir :
9 uname@uname:~> l s ???_Dir

10 500_Dir :
11

12 505_Dir :
13 uname@uname:~> l s ????_Dir
14 1000_Dir :
15

16 1005_Dir :

As can be seen, we have greater control over the specificity with which guesses are made by the
terminal when using the ? character compared to the * character. In all honesty however, I do find
that the * is more useful in the general cases but ? is included for completeness and reference.

32

2.4 Ownership and file modes: chmod and chown
If, say, someone were to want to set ownership parameters for a certain file, let’s call it file.txt,
then that person would need to use the change ownership function which is a built-in for the BASH
shell. Enter the following into the terminal:

1 touch f i l e . txt ; sudo chown uname f i l e . txt

What we have done is the following: first, we created a file called file.txt; next, we modified the
ownership parameter (with the program called chown) of the file such that the user called ’uname’
is set as the owner of the file.

Ownership is important on a system for several reasons, one of the most important is that many
system files are set to be owned by the root user (discussed in section 2.5), by default a current user
will not find themself logged into the root account unless several steps have been taken. Modifying
root-owned files and directories is generally impossible unless one is logged into the root account
or one uses the sudo (to be discussed in section 2.5) command. Modifying the ownership of such a
file can make modifying it simpler.

Change mode (chmod) is another program which the reader will find to be of enormous value
in the coming sections (mainly in executing their own or downloaded scripts in the shell). Change
mode is the program called chmod and it is used to change the file mode or the access control list.
That is to say, chmod allows a user to define what users can do what with a file. Run the following
command in the terminal:

1 touch s c r i p . sh ; chmod 755 s c r i p t . sh ; . / s c r i p t . sh

Here is what you have just done: the first section (as you should know from what was discussed
previously in 2.2.1) created a file called script.sh; the next section changed the mode of the file to
755, this means that the owner can execute the file, read the file and write to the file but other
users can only read and write to the file; finally, you executed the file called script.sh (using the ./
command will execute a file).

Congratulations, you have just made your very first shell script; while it may not have done
anything particularly world-changing, it is the first step to shell scripting—an extremely powerful
tool with which the bulk of this text is concerned. The same could have be accomplished if the
reader had replaced the 755 with +x where x is the executable tag. To demonstrate the similarity
between 755 and +x, the reader can compare the result of the previous command to that of the
following.

1 touch s c r i p 2 . sh ; chmod +x s c r i p t 2 . sh ; . / s c r i p t 2 . sh

2.5 Superuser operations: su, sudo and fakeroot
Often, when running programs or commands in the shell, one may find that only users with admin-
istrator (or root) permissions on the system will be able to perform certain commands or access
certain files or directories. For the purposes of security, it is ill-advised for a user to be signed per-
manently into the root account, so the question becomes: how do I run administrator commands?

One will find that the command to operate as the root user is called ’sudo,’ an acronym for
’supervisory user do’ (some people pronounce it like ’sue-do,’ which is the technically correct way
but fun people say it like ’pseudo’). Chances are that, if you are running a Linux system, you have
already used the sudo command for installations. Try entering into the terminal the following:

33

1 sudo − i

The terminal will require the administrator password; when it is entered, the user will find that
they have been logged into a new account called root@user where user can be replaced by the
hostname of the user. This is, however, not usually recommended because of security issues and
possibilities of damage to the system by a less experienced user or even simple mistakes. To log out
of the root account, enter the following into the terminal:

1 e x i t

Running commands with root privileges without being signed into the root account is simple
and can be accesses with the sudo command in the following way:

1 sudo echo "You ’ re running t h i s as the root user ! "

For those intending to run interactively as root, that is to be free of the relative burden of
entering the sudo command every time that something needed to be run as the root user, one
can use the ’su’ command. It’s really just as easy as keying in the following command and giving
your password, however the su command is generally considered much riskier to run that the sudo
command. There are a lot of benefits of using sudo over su but for the general user, its mainly a
concern of the extra time it takes to type sudo every time you run a command which can make
changes which may be difficult or impractical to reverse giving the user more chance to contemplate
whether they’re doing exactly what they want to do. The exit command will again remove the user
from the root mode.

1 su

A similar command to sudo is called ’fakeroot.’ A user will find that the fakeroot command
does not come pre-installed on most system;, use the appropriate command to install it now. Run
the following:

1 f ak e r oo t

A clever user will find that they have been logged into an account which is analogous to the
root account but has no actual root permissions. The devious beauty of fakeroot is that, for many
operations, it is enough for the system to just look like the user is the root user instead of actually
being signed into the root account.

Exploration of the manual page for the fakeroot command will show its myriad uses which will
not be enumerated here, suffice it to say however that there’s a lot of fun to be had with fakeroot
(however, only use it for good!).

2.6 Shortcuts in the shell
I’m a lover of most things that end up saving me time. As it turns out, many shrewd people feel
the same way, to the extent that there are quite a few bits of time-saving functionality built into
the shell. Some of these functionalities are listed in the following sections:

2.6.1 Quick-searching the BASH history: reverse-i-Search ^r

A particularly useful command in the shell is run with ctrl+r. This is what is known as the reverse-
i-search and it allows you to quickly search through previous commands that you have submitted
through the terminal to BASH. Entering ctrl+r into a BASH terminal session will result in your

34

name in the terminal session switching to a line displaying the string reverse-i-search and some
other characters like in what’s shown below

1 MainUsers−iMac :~ mainuser$
2 (r eve r s e−i−search) ‘ ’ :

If you begin to type into the reverse-i-search, you will see guesses that BASH presents to you
based on how well the string you submit fits a string stored in the log of commands that you have
submitted to BASH. At any time, the reverse-i-search can be aborted with the ctrl+c command.
What follows are several search phrases that the reverse-i-search considered, the search terms are
shown between the back tick and the apostrophe following the (reverse-i-search) phrase, and the
reverse-i-search best guess is given after the colon:

1 MainUsers−iMac :~ mainuser$
2 (r eve r s e−i−search) ‘ s ’ : l s
3 MainUsers−iMac :~ mainuser$
4 (r eve r s e−i−search) ‘ s s ’ : s sh − l uname −Y uname . uname . com
5 MainUsers−iMac :~ mainuser$
6 (r eve r s e−i−search) ‘ sc ’ : scp uname@uname . uname . com:~/Xpspeak41 . z ip /Users /mainuser /

Desktop
7 MainUsers−iMac :~ mainuser$

Reverse-i-search is a convenient tool for recalling long or complicated commands. Entries can
be scrolled through in the normal way that one would navigate the BASH history as well (e.g., by
using the up and down arrow key) while using the reverse-i-search.

2.6.2 Command shortcuts in the shell: alias and unalias

Alias is a tool I can hardly live without, it grants the user the power to define specific actions for
the terminal to execute based on pre-defined commands that you link to an ’alias’ (which is more
or less like an abbreviation but can in effect be any non-special characters). This gives several
capabilities: one of the simplest but most headache-alleviating sometimes is to tell the command
line to replace typos with the proper command; another implementation is to pre-define annoyingly
cumbersome or complicated commands and run them under an alias. There is excellent coverage of
how to use alias all over the internet and I’m sure you’ll be able to define a few aliases for yourself
immediately but I can think of some pertinent examples which I find to be helpful.

Consider the case of the command ls. Because I’m not an exceptionally skilled typist, I’ll
frequently commit the typo sl as a replacement for ls which usually throws a monkey wrench into
my flow working in the shell. Alias can help! Consider the following terminal transcript:

1 MainUsers−iMac :BASH mainuser$ s l
2 −BASH: s l : command not found
3 MainUsers−iMac :BASH mainuser$ a l i a s s l= ’ l s ’
4 MainUsers−iMac :BASH mainuser$ s l
5 Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub . csv
6 Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub_UNIX_Format . csv
7 UNIX_Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub . csv
8 tmp . dat
9 x−ray_data_normalized . dat

10 x−ray_data_normalizer . sh
11 MainUsers−iMac :BASH mainuser$ una l i a s s l
12 MainUsers−iMac :BASH mainuser$ s l
13 −BASH: s l : command not found

35

To recap the terminal session included immediately previously, I tried to issue the command sl
to BASH. Because that is not a valid command, BASH rejected it and returned a ’command not
found’ string. Since sl is (at least for me) a common typo for ’ls’ I use alias to create a link between
sl and ls by issuing the command sl=’ls’ (it is important to not include spaces after or before the
= sign). Attempting to pass the sl command again after setting it as an alias returns the expected
output of ls. Convenient! Finally, for the sake of completeness of the example, you can use unalias
to remove the alias you just created. After running unalias sl and trying to pass the sl command
again, we find that BASH will return a command not found string.

Alias can be used to issue more complicated commands as well, this may be especially helpful
when you have several similar commands in your history and the reverse-i-search can’t return your
wanted results as easily as just setting a new alias. An alias I find exceptionally useful is when I am
attempting to connect to a supercomputer with ssh like the following example (I have truncated
some of the output here for the sake of saving space):

1 MainUsers−iMac :BASH mainuser$ a l i a s s=’ ssh − l uname −Y uname . uname . com ’
2 MainUsers−iMac :BASH mainuser$ s
3

4 Login connect ion to host uname :
5

6 Password + OTP:

I find this to be immediately practical for time savings 1) in the actual typing or searching for a
previously run command, and 2) in eliminating a lot of the hassle with passing typos or mistakes in
a command. I’m a big fan of creating large personal dictionaries composed of these sorts of aliases
mostly because I like to expend my efforts more on things that cannot be automated instead of
grinding away at things that could have been automated by some means. Basically this means that
you don’t have to be a good typist to be a good typist, all you need is some moderate skills in the
terminal! Hooray BASH!

You can use this all sorts of ways and creating a simple BASH program (left as an exercise to the
reader at the end) to implement many of your own aliases all at once is a good way of keeping track.
Another useful incarnation of this would be to execute programs or scripts or do some operation
while you are not in that directory and save yourself the hassle of using many cd commands or
writing out a whole path every time you want to run a program or perform an operation that can
be automated.

An excerpt from one of my personal alias dictionaries is as follows (there are lots of little tricks
within that I very much enjoy using and find to be time-savings):

1 a l i a s s l= ’ l s ’ # Correct f o r s p e l l i n g e r r o r s
2 a l i a s ks=’ l s ’ # Correct f o r s p e l l i n g e r r o r s
3 a l i a s xs=’ cd ’ # Correct f o r s p e l l i n g e r r o r s
4 a l i a s a l i s a=’ a l i a s ’ # Correct f o r s p e l l i n g e r r o r s
5 a l i a s ckear=’ c l e a r ’ # Correct f o r s p e l l i n g e r r o r s
6 a l i a s whcih=’ which ’ # Correct f o r s p e l l i n g e r r o r s
7

8 a l i a s cd . .= ’ cd . . ’ # Quick change o f d i r e c t o r y
9

10 a l i a s .2= ’ cd . . / . . / ’ # Quick change o f d i r e c t o r y
11 a l i a s .3= ’ cd . . / . . / . . / ’ # Quick change o f d i r e c t o r y
12 a l i a s .4= ’ cd . . / . . / . . / . . / ’ # Quick change o f d i r e c t o r y
13 a l i a s .5= ’ cd . . / . . / . . / . . / . . / ’ # Quick change o f d i r e c t o r y
14

15 a l i a s . .= ’ cd . . / ’ # Quick change o f d i r e c t o r y

36

16 a l i a s . . .= ’ cd . . / . . / ’ # Quick change o f d i r e c t o r y
17 a l i a s = ’ cd . . / . . / . . / ’ # Quick change o f d i r e c t o r y
18 a l i a s = ’ cd . . / . . / . . / . . / ’ # Quick change o f d i r e c t o r y
19

20 a l i a s c=’ c l e a r ’ # Replaces c l e a r with c
21 a l i a s f=’ f i nd . | grep ’ # Co l l e c t s user input a f t e r the f command and

sea r che s with grep f o r any matches
22 a l i a s l c=’wc − l ’ # Count l i n e s in a f i l e
23 a l i a s l t=’du −sh ∗ | s o r t −h ’ # L i s t s the f i l e s i z e s o f a l l i tems in a

d i r e c t o r y in order o f s i z e
24 a l i a s mk=’mkdir ’ # Replaces the mkdir command as mk, s i n c e I have

the need f o r speed
25 a l i a s nf=’ l s | wc − l ’ # L i s t o f number o f f i l e s with in a d i r e c t o r y
26 a l i a s sz=’du −sh ∗ ’ # L i s t s the f i l e s i z e s o f a l l i tems in a

d i r e c t o r y
27 a l i a s cco=’ cd ∗/ ; cat OSZICAR ’ # Enters the only d i r e c t o r y and ca t s out the

OSZICAR f i l e , u s e f u l in t e s t ope ra t i on s
28 a l i a s c l s=’ c l e a r ; l s ’ # Replaces c l e a r ; cd . . ; l s as c l s , s i n c e I have

the need f o r speed
29 a l i a s l s r=’ l s −r ∗ ’ # L i s t i tems r e c u r s i v e l y in a d i r e c t o r y
30 a l i a s rmr=’rm −r ’ # Replaces the rm −r command as rmr , s i n c e I have

THE NEED FOR SPEED
31 a l i a s rn f=’ l s −r ∗ | wc − l ’ # Recurs ive l i s t o f number o f f i l e s with in a l l

s u bd i r e c t o r i e s
32 a l i a s rmev=’rm ∗EV∗ ’ # De l e t e s a l l f i l e s conta in ing the s t r i n g EV from

a d i r e c t o r y
33 a l i a s untar=’ ta r −zxvf ’ # Unpack ta r f i l e s
34 a l i a s mktar=’ ta r −c zv f ’ # Pack ta r f i l e s ta r −c zv f name−of−arch ive . ta r . gz

/path/ to / d i r e c to ry−or− f i l e
35 a l i a s vimsh=’vim ∗ . sh ’ # Runs vim on a s h e l l s c r i p t (only use i f the r e

i s j u s t a s i n g l e ∗ . sh f i l e in the d i r e c t o r y)
36 a l i a s c a l c=’ cd ~/uname/ ca l c ’ # d i r e c t o r y l o c a t i o n
37 a l i a s codes=’ cd ~/uname/ codes ’ # d i r e c t o r y l o c a t i o n
38 a l i a s s c r i p t s=’ cd ~/uname/ s c r i p t s ’ # d i r e c t o r y l o c a t i o n

2.7 Time-based commands: date, cal, sleep, tty-clock
date and cal are mostly straightforward programs, date I find to be immediately useful in a variety
of situations because it will print the date and time (or really whatever you want regarding the
current time). I find this to be useful when I want to add timestamps to a program to see how long
individual sections take to run, or to print time steps when web scraping so its easier to dump into
a plotting program later on. cal is more of a convenience sometimes when you want a calendar so
I thought I’d add it here, however the basic implementation is all that I’ll cover because I think it
has limited utility in the scope of this text. Running the date and cal commands in the terminal
individually will give you the following output:

1 MainUsers−iMac :BASH mainuser$ date
2 Sun Aug 29 18 : 32 : 29 PDT 2021
3 MainUsers−iMac :BASH mainuser$ c a l
4 August 2021
5 Su Mo Tu We Th Fr Sa
6 1 2 3 4 5 6 7
7 8 9 10 11 12 13 14
8 15 16 17 18 19 20 21
9 22 23 24 25 26 27 28

37

10 29 30 31

For me, when collecting data especially, I find it useful to print the date in terms of seconds from
the start of UNIX time. This eliminates a lot of code clutter because you can just read a simple
single number into your plotting program (e.g., the number of seconds since the start of UNIX time)
and convert that to the current date. An alternative that I find to be cumbersome is to have the
plotting program read a formatted string of numbers like month, day, year, hours, minutes, seconds.
One way of printing the UNIX time currently in seconds is by issuing the following command:

1 MainUsers−iMac :BASH mainuser$ date ’+%s ’
2 1630306447
3

The output is the number of seconds since January 1st, 1970 at 00:00:00 UTC. E.g., it has been
1630306447 seconds since January 1st, 1970 00:00:00 UTC at the time of this writing. We will cover
more on the use of the date command and various formatting options that you have when invoking
it in the scripting section of this text which starts in section 5.

Sleep is a particularly useful time-based command that allows you to control the timing between
execution steps in a program e.g., in between individual commands in a set or between steps in
a loop. We’ll see this used in several examples in shell scripting, particularly in section 5.2, and
when running programs or submitting jobs to certain types of queues on a cluster like in section
9. Even though the specific results might be just a bit underwhelming at the current time, we can
get a sense of how the sleep command works by running the following example commands that tell
BASH to sleep for 1 second, 10 seconds, and 10 minutes respectively:

1 s l e e p 1

1 s l e e p 10

1 s l e e p 10m

As with most things in the shell, the sleep command can be escaped by using the ctrl+c com-
mand.

tty-clock is a neat little program mostly for looking cool...and telling the time I guess...but
mostly for aesthetics. All tty-clock really does is to make a nice little continuously updating clock
in the shell that sort of resembles one of those old-fashioned paper card flip clocks/displays. Because
I can’t copy verbatim what is output to the terminal by tty-clock, I’ll include an approximation
after the following command to run tty-clock in my normal way (tty-clock has many options, peruse
them at your leisure):

1 sudo apt−get i n s t a l l tty−c l o ck
2 tty−c l o ck −c −C 1 −t −s

The output of tty-clock run this way resembles the following (except for the fact that the real
thing, with the options we gave tty-clock, will have red text):

1

2 # #### #### #### #### ####
3 # # # # # # # # # #
4 # # # #### #### #### # #
5 # # # # # # # # # #
6 # #### #### #### #### ####
7

8 2021−08−24 [AM]

38

2.8 Linux services: service
Service is a very interesting program that can be used to monitor, start, stop, or restart services and
daemons in Linux. This can cause significant trouble with your system if you are halting essential
services using super used privileges. However sometimes it is essential to know how to manipulate
the services ruining on your system. This is perhaps an antiquated example but there were a litany
of common problem for some wifi drivers in the Ubuntu 14.04 era. One way of fixing some of the
problems, at least temporarily, was to halt and restart the network manager. This could be done
using the following command:

1 sudo s e r v i c e network−manager r e s t a r t

The status of all services running on the system can be checked with the following command
(basically we’re running all of the initialization scripts for all of the services on the system and
printing them to the terminal in alpha-order):

1 uname@debian−micro :~ $ sudo s e r v i c e −−s tatus−a l l
2 [+] apparmor
3 [+] chrony
4 [+] cron
5 [+] dbus
6 [+] haveged
7 [−] hwclock . sh
8 [+] kmod
9 [+] networking

10 [+] procps
11 [+] r s y s l o g
12 [+] sendmail
13 [+] ssh
14 [−] sudo
15 [+] udev
16 [+] unattended−upgrades
17 [−] x11−common

It is worthy of note again that manipulating services in your system can lead to undesired effects
if you aren’t being careful. The extent of how much this can foul up a system is pretty evident in
the following terminal output where Debian returns a ’command not found’ when we try to run
service with anything but super user privileges:

1 uname@debian−micro :~ $ s e r v i c e −−help
2 −BASH: s e r v i c e : command not found
3 uname@debian−micro :~ $ sudo s e r v i c e −−help
4 Usage : s e r v i c e < opt ion > | −−s tatus−a l l | [service_name [command | −− f u l l −r e s t a r t

]]

In this instance, Debian appears to be deliberately hiding the service command to anyone other
than those who know exactly what they’re looking for. In the scope of the damage that can be
done to a system by misusing the service command and that I’d also agree its not usually needed
to be manipulated by the user, that may or may not be justified.

39

3 Shell Programs and How to Run Them

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

The differences between shell programs and shell commands can be subtle in some instances
so I will not make a great effort here to institute rigorous definitions of each since it would not
contribute much to this work. That being said however, I had to make case-by-case decisions on
what programs and commands to include in what sections so as to not make any one section too
daunting or time-consuming to reference.

In general, I would say that a command references a program and passes options, file names,
etc... from the user to the program via the shell. However, programs can be single commands
themselves in the shell. For the reasons of that semi-ambiguity, I have made judgement calls of
what to call a command and what to call a program in the previous and the current sections. Some
shell programs have already been covered in the commands section because I felt that they would be
more fittingly placed where they are. In the following subsections, we’ll cover some shell programs
that I think have great value and personally use regularly.

Running programs in the shell is simple, if you have indeed installed the Ranger file explorer
into your shell as shown in the previous section, then enter the following into your terminal to
execute the program:

1 ranger

Use the arrow keys to navigate between directories and files without the use of the cd command.
This program is extremely helpful and more helpful, in many cases, with the exploration of files
than a typical graphical user interface shell.

Ranger is just one of an extremely large number of programs which can be installed via the
command line on Linux and UNIX systems. Some useful shell programs will be discussed in the
remainder of this section.

3.1 System monitors: top, htop, atop, and gotop
htop is a system monitor that seems to have been borne out of another system monitor called top.
Top appears to be standard software included with most BASH distributions that I have seen,
however htop is not usually standard and needs to be installed with the following command:

1 sudo apt−get i n s t a l l htop

The system monitor top (also called a process viewer) will more likely than not be installed
on your system currently. htop is, as explained by the developers, "An interactive process viewer
for Unix [and Linux]." Atop is another process viewer/monitor that can be more useful for servers
and clusters than htop or top in some instances. Install and run htop with the following command
(users on Darwin or Fedora-like systems will have to make substitutions for the ’apt-get’ command
with ’brew’ or ’yum’ respectively):

1 htop

Use the arrow keys to navigate in htop or enter ’q’ to quit htop. The program has its own
instructions which will not be repeated here, I invite you to use the manual page for htop in order
to see its full capabilities.

Top and atop have differing features but, as this author is concerned, htop is the most helpful,
re-configurable, and visually appealing.

40

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

One excellent use for all of these programs is their ability to kill existing processes running on
your computer while giving you a real-time update of such programs system load, memory and
CPU percentages and their parent processes.

There are a range of similar system monitors including another called gotop which some people
prefer. I generally find that top is the quickest to use on systems that are not your own because
htop may be not be installed and you may not have installation privileges on those systems. For
my own machines I prefer vastly to use htop, it mostly boils down to increased functionality in that
you can kill processes in an almost gui-like way from htop very easily and that the information is
presented in a much more pleasing to look at way with nice colors and constant width columns that
are more human-readable. Additionally, htop is user-configurable which I find aids me in quickly
finding the information I care about and excluding what’s superfluous.

3.2 whoami, uname and hostname
About whoami, uname and hostname, there is little to be said. Simply, the program whoami will
print the user ID of the account which a user in currently logged into. Uname is slightly more
interesting than whoami: upon exploring the manual page, the reader will find that uname will,
depending on the option(s) that they select, uname will supply a user with information about the
computer and the current user. For instance, uname can tell you the kernel which you are running,
the operating system and other pertinent information. The most helpful of all these commands
may be the following:

1 uname −a

A user will find that all of the pertinent information about the system, in brief terms, has been
printed to the terminal.

Hostname has interesting utility inasmuch as it will tell a user their IP address on the sub
network to which that person is attached. Consider the following commands:

1 hostname ; hostname −I

The first of these two commands will return the name of the user on the system, the second
of these commands will return all of the IPv4 addresses attached to the host. The latter can be
helpful for connecting two computers on the same network via SSH.

3.3 Network monitoring: bmon, nmap, arp and ping
There exist many network tools for the Linux and UNIX shell however, three of the best are bmon,
nmap and arp.

Installing these programs is simple and follows the installation rules as above, listed again here
for convenience (’program’ in these examples should be substituted for whatever shell program you
are intending to install):

1 sudo apt−get i n s t a l l ’ program ’

1 brew i n s t a l l ’ program ’

1 sudo yum i n s t a l l ’ program ’

41

Specifics of these tools can be found in their respective manual pages but some interesting
features will be listed here. We will start with bmon, arguably the simplest of all the programs in
this subsection. Run in the terminal the following:

Bmon is (as its name might imply) a bandwidth monitor which gives the user information about
receive and transmit (rx and tx) bits on a per-interface basis as well as printing to the terminal a
semi-GUI of the network traffic in real time (many features not listed).

1 bmon

Nmap is an excellent tool which can be used to determine who is on a network (e.g. the network
map, its namesake), what device they are using and what operating system that device is using. I
find that nmap is useful in determining how devices are accessing your network and/or if there are
devices you don’t recognize and may consider to be malicious.

This program will list the used IPv4 addresses being used on the network to which the user is
attached, the address in the command can be substituted for any valid IPv4 address. Nmap has
excellent utility in network exploration and port scanning but these topics are beyond the scope of
this text.

The user can try the following command after installing nmap:
1 nmap −sn 192 . 168 . 0 . 1/24

Press on your keyboard the letters ’d’ and ’i,’ these will bring up detailed network statistics as
well as a real-time pseudo-GUI of the network receive and transmit load as a function of time.

Nmap is a simple program to run and the reader is strongly encouraged to read the manual page
for nmap and, for that matter, any program that you run. After installing nmap in the normal
way, run the following command:

Arp (address resolution protocol) is excellent for determining information about the media
access controls of devices attached to a network and will print the sub-net addresses of all the
devices running on the network to which you are attached. Additionally, arp can manipulate the
IPv4 network cache inasmuch as that it can add, manipulate or delete entries from the network
neighbour cache. A simple way to start using arp is to issue the following command (this will hardly
scratch the surface of the program’s capability):

1 arp −a

Ping is a helpful command which issues packets to a known gateway that elicit a response from
that gateway, the response will be printed with relevant statistics onto your terminal. To exit this
command the use of ctrl+c will be helpful. Consider running the command:

1 ping 8 . 8 . 8 . 8

This command will send packets to the 8.8.8.8 Google DNS server and receive back a response.
Among its many applications, Ping is particularly helpful when configuring clusters for checking
whether nodes are online, and for generally determining whether a connection to a particular server
or address is accessible. Conveniently, ping comes pre-installed in most UNIX and Linux based
systems.

3.4 Process controls: no hangups and forks
As can be seen in the previous sections, it is infinitely useful to run programs in the terminal.
Running programs in the terminal can have drawbacks however; one such case is that (without

42

what will be discussed in this section) the terminal must remain open while the program is running
unless special actions are taken. Two possibilities for running programs after the terminal is closed
are called no hangups, and forks. Let’s take, for example, the case of running PyRoom (one of this
author’s favorite free text editors).

Run the program with the following (assuming that it is installed on the system):
1 pyroom

Now, if you were close the terminal window, PyRoom would close along with it. This is a
double-edged sword: if the user is running a program which has a high propensity for crashing or
other catastrophic failures like locking up and freezing, it can be helpful to close the terminal in
order to halt the program; other times, when a program is running in the terminal and you want
to continue using that terminal, a user might find themself out of luck since the terminal session
will be occupied with that program.

The workarounds for these problems are called no hangups, and the fork. No hangups is way
of running a program which ignores problems (like closing the terminal when a program is running
a.k.a hangups). When a program is running with nohangups you will not have access to use your
terminal window for anything else before the program is closed. The fork is different; forking a
program means that you will run the program you want and get your terminal back immediately
(that is you can issue new commands or run new programs in the same terminal); you will see,
however that, when you close the terminal, any programs running in it will be closed as well.

Now let’s try running PrRoom with no hangups, the fork, and a combination of each. Enter
into the terminal the following:

1 nohup pyroom

Now try closing the terminal in which you have run the program, you will find that PyRoom
will stay open even though the terminal is closed: this is the power of nohup (the command to run
with no hangups). Close PyRoom and enter into the terminal the following:

1 pyroom &

Try entering a new command into the terminal, you will see that the terminal is available to
process new commands; if, however, you closed the terminal, you will see that PyRoom will close
with it. This is the power of the fork (the fork is entered into the terminal after a command as the
& option).

An excellent usage of both these programs simultaneously is to call them on the same program,
this can be done in the following way:

1 nohup pyroom &

Running the above command will run PyRoom without hangups and fork the program, imme-
diately giving you back access to the terminal.

3.5 find
Find allows the reader, as is said in its man page, to "...Search for files in a directory hierarchy." Find
is a particularly useful program in many instances where analogous operations with the ls program
would be cumbersome. A good instance of this is to list all of the files in the working directory
which are executable. Refer to the Ownership and Change Mode section (2.4) of this document
and create an executable file, or multiple if that’s more interesting. Now run the following:

43

1 f i nd . −maxdepth 1 −perm −a+x −type f

The reader will find that the newly created executable(s) as well as any pre-existing in the
working directory have been printed to the terminal. Elements of this command are the -maxdepth
option which specifies how many sub-directories will be be searched for the argument (1 searches
only the working directory), the perm option accepts an argument of what the permissions the files
that find is looking for should have (the a+x can be replaced by 111 which is just to say that only
a special type of user can execute the file), and the -type f is a cost-based optimizer looking for
regular files (can be replaced to search for other file types, see manual).

A practical usage here may be to find log files that have been buried in layers of directories after
a failed compilation (which is, humorously, for myself at least, all too common) running a search
for log files may look like the following:

1 uname@uname:~> f i nd ~/uname/ −type f −name con f i g . l og
2 ~/uname/ codes / exciting_smp/ ex t e rna l /FoX/ con f i g . l og
3 ~/uname/ codes / exciting_smp/ s r c / libXC/ con f i g . l og
4 ~/uname/ codes / excit ing_mpi / ex t e rna l /FoX/ con f i g . l og
5 ~/uname/ codes / excit ing_mpi / s r c / libXC/ con f i g . l og
6 ~/uname/ codes / e x c i t i n g_ s e r i a l / ex t e rna l /FoX/ con f i g . l og
7 ~/uname/ codes / e x c i t i n g_ s e r i a l / s r c / libXC/ con f i g . l og
8 ~/uname/ e x c i t i n g / ex t e rna l /FoX/ con f i g . l og
9 ~/uname/ e x c i t i n g / s r c / libXC/ con f i g . l og

3.6 wget and curl
Downloading large numbers of files from online repositories manually can quickly become excessively
tedious. Wget is a "GNU utility for downloading network data," as per the program’s manual. Wget
is one of the most popular programs for downloading information off of FTP servers but it works
excellently on HTTP and HTTPS protocols as well. Non-interactive and link-following operation
make the program especially helpful so that download processes can be run in the background or
while you’re away at lunch (for example). Database collectors rejoice, we’re going to learn today!

Let’s try an example to download an online database of information. To avoid any trouble,
I’m going to omit any specifics of website names and instead just refer generally to ’website.’ On
many database websites, navigating to each page and individually downloading the file you need
would be laborious and I certainly don’t want to spend all of that time to get the files that I want.
Additionally, it is usually useful to be able to access databases offline if possible. In order to try
and recursively download a database to your computer, run the following code in your terminal (if
wget is not installed then install it the usual way). Wget is also smart enough to make its own
directories and sub directories, if all goes well you should be able to browse your favorite databases
offline (disk space beware).

1 wget −r http :// webs i te

Wget should have run and printed a large number of operations to the terminal consisting of
what file it is downloading, where it is being downloaded from, where it is being placed on your
disk, and a nice status bar of the download progress. The -r tag specifies a recursive download e.g.
grab the files from the directory you specify and those related to it.

Wget can also be run without the -r option on a single file with known location, see the following
terminal session as an example:

44

1 uname@uname:~> wget http :// e x c i t i n g . wd f i l e s . com/ l o c a l−− f i l e s /oxygen/ e x c i t i n g . oxygen .
ta r . gz

2 −−2021−08−18 11:50:23−− http :// e x c i t i n g . wd f i l e s . com/ l o ca l−− f i l e s /oxygen/ e x c i t i n g .
oxygen . ta r . gz

3 Reso lv ing e x c i t i n g . wd f i l e s . com (e x c i t i n g . wd f i l e s . com) . . . 1 07 . 20 . 139 . 170
4 Connecting to e x c i t i n g . wd f i l e s . com (e x c i t i n g . wd f i l e s . com) | 1 0 7 . 2 0 . 1 3 9 . 1 7 0 | : 8 0 . . .

connected .
5 HTTP reques t sent , awai t ing re sponse . . . 200 OK
6 Length : 15182668 (14M) [app l i c a t i on /x−gz ip]
7 Saving to : ’ e x c i t i n g . oxygen . ta r . gz ’
8

9 e x c i t i n g . oxygen . ta r . gz 100%[=======>] 14 .48M 15 .8MB/ s in 0 .9 s
10

11 2021−08−18 11 : 50 : 24 (15 . 8 MB/ s) − ’ e x c i t i n g . oxygen . ta r . gz ’ saved [15182668/15182668]

Another means of downloading files within the shell is the program named curl which has its
own costs and benefits compared to wget. While wget is my go-to program when I can get it,
it’s also not natively available on Mac OS (at least at the time of this writing) whereas curl is.
An example of using curl to download a large(ish) text file of the Webster’s dictionary from the
Project Gutenberg website (for various reasons I find it super useful to have a plain text dictionary
available!) is included below:

1 MainUsers−iMac : Desktop mainuser$ cu r l https : //www. gutenberg . org / f i l e s /29765/29765−8.
txt −−output websters . txt

2 % Total % Received % Xferd Average Speed Time Time Time Current
3 Dload Upload Total Spent Le f t Speed
4 100 27 .5M 100 27 .5M 0 0 2517k 0 0 : 0 0 : 1 1 0 : 0 0 : 1 1 −−:−−:−− 8418k
5

Curl will automatically download the file 29765-8.txt from gutenberg.org and then write it to
the directory of your choice: the desktop in my case. I do personally like the overall design of the
data monitor (shown above as a terminal output after the file had completed transferring) on curl
as well. If you so desire, the output of curl can be silenced with the -s or –silent options.

3.7 vim: a text editor in the shell
Vim is a text editor that has some very nice functionality but can be strange to a user just starting to
use it for the first time. It is also very important to recognize that Vim commands and functionality
are enormously broad and will not be covered exhaustively here. Coverage of Vim that will be
provided in this text will be as much as may be needed to quickly edit and create files on a remote
cluster for work with data sets or shell scripts (which will be discussed in detail including and
following section 5). First, Vim can be installed with the following:

1 sudo apt−get i n s t a l l vim

and run with the following on a file (in this case, a file called README.txt):
1 vim README. txt

You will see Vim open in the terminal (if you are on Mac OSX then you may need to have
X11 or XQuartz installed for Vim to work properly) and the contents of the README.txt file will
be printed to the body of Vim. Editing in Vim is different than some other editors like nano or
Microsoft Word for example.

45

Deleting lines or characters is easy from the main screen of Vim. Deleting a character is as
simple as navigating to that character with the arrow keys and pressing delete. Deleting an entire
line is possible too by navigating to the line that you want to delete and entering the following:

1 dd

Pressing the i key will enter the user into insert mode in Vim, this is generally the most useful
for my interests and allows the user to add and delete text and lines easily as they would with a
normal text editor. Newer versions of Vim also contain nice features like syntax highlighting and
indicating layers of grouping symbols like (), [], and {}.

A tricky part (at first but simple when the commands are known) about Vim is saving and/or
exiting the program. If you are in a mode of the program, for example the insert mode that we just
covered, you can press the escape key to escape that mode. There are lots of options from here but
the two most useful may be the following:

To save and quit, enter the following after pressing the escape key (wq stands for write and then
quit):

1 :wq

To quit without saving, enter the following after pressing the escape key (the ! says, in approx-
imate terms, to Vim ’force this command’):

1 : q !

If you would like to entirely delete the contents of a file that you are in the midst of editing with
Vim, you can press the escape key and then type the following before hitting the enter or return
keys:

1 : 1 , $d

Alvin Alexander in his blog at alvinalexander.com lists the context of the different characters
issued to Vim here as the following: the character : starts the ’last line mode’; 1 tells Vim to begin
at the first line; ,$ tells Vim to continue the command (which we started at line 1) until the end of
the file; and the d command obviously means delete.

3.8 Gnuplot
Gnuplot is a fantastic and full-featured tool for plotting using the terminal. It has all sorts of
capabilities and supported formats, and can be controlled to the finest minutia you heart may
desire. I make extensive use of Gnuplot in my own research and find that with great ease you
can make plots from data files that look much nicer than those created by some other programs
like MATLAB (which unfortunately could stand to see some improvement in the aesthetics of its
plotting engine which is otherwise extremely full-featured). In fact, I make extensive use of Gnuplot
in section 5.3 of this text where I demonstrate how to make a web scraping engine all with shell
script and use Gnuplot to create a plot readable headless in the terminal! With Gnuplot, you don’t
even have to write the plot to a graphics file in order to visualize it, you can tell Gnuplot to output
the plot as symbols directly to the terminal! I find that feature to be infinitely useful, especially
when using remote systems like super computers.

Gnuplot can be installed easily on Linux systems using the following command:
1 sudo apt−get i n s t a l l gnuplot

Or on Mac OS by using the following command:

46

1 brew i n s t a l l gnuplot

Running Gnuplot is also simple and can be done in the following way with the following results:
1 MainUsers−iMac :BASH Programs mainuser$ gnuplot
2

3 G N U P L O T
4 Vers ion 5 .2 pa t ch l e v e l 2 l a s t modi f i ed 2017−11−15
5

6 Copyright (C) 1986−1993 , 1998 , 2004 , 2007−2017
7 Thomas Will iams , Col in Ke l l ey and many othe r s
8

9 gnuplot home : http ://www. gnuplot . i n f o
10 faq , bugs , e t c : type " help FAQ"
11 immediate he lp : type " help " (p l o t window : h i t ’h ’)
12

13 Terminal type i s now ’unknown ’
14 gnuplot>

Since Gnuplot is all command line tools for creating graphics files, it can be a little bit intim-
idating to use at first glance. However, I believe that, after just a few minutes working with the
program, it is intuitive, quick, and easy in most cases to get running at a high level. I most fre-
quently use Gnuplot for plotting data from large .csv or .dat formatted files and have never found
it to hang up with issues like line-ending characters that we discuss in sections 5.7 and 3.13.

In the following examples, I will show use cases of my own with example scripts for the use of
Gnuplot, as well as some of its features and workarounds for some of its quirks.

To get started, we can create the following data file that I will name data.dat for simplicity.
The file is just integers 1-12 as well as their products with 2 and their squares. You can create the
same data file using the following script (execute the script by copying it into a text editor, giving
it a name like data_file.dat, executing chmod +x data_file.dat, and then ./data_file.dat):

1 #!/ bin /bash
2 cat > data . dat << EOF
3 1 2 1
4 2 4 4
5 3 6 9
6 4 8 16
7 5 10 25
8 6 12 36
9 7 14 49

10 8 16 64
11 9 18 81
12 10 20 100
13 11 22 121
14 12 24 144
15 EOF

Now that you have a data file that can be used with Gnuplot, we can begin to work on plotting
the data and creating figures. Gnuplot can create graphics with a range of different formats using
different terminals within Gnuplot that are set by the user. I prefer to have .svg files for all of my
plots because they can be recolored, re-scaled, and retouched simply after their creation with several
programs including Inkscape. For this reason I will discuss mostly the svg-enhanced terminal in
this section but I will also cover the "dumb" terminal, which outputs plots directly as text into the
terminal (this functionality is used extensively in section 5.3).

47

To make a simple plot of the data file we just created, we can run the following commands in
Gnuplot (assuming that you are located in the same directory as the data.dat file you just created):

1 gnuplot> s e t te rmina l svg enhanced
2

3 Terminal type i s now ’ svg ’
4 Options are ’ s i z e 600 ,480 f i x ed enhanced font ’ Ar ia l , 12 ’ butt dashlength 1 .0 ’
5 gnuplot> s e t out ’ data . svg ’
6 gnuplot> p lo t ’ data . dat ’ us ing 1 :2
7 gnuplot>

What we did was to first define for Gnuplot what file format we want using the set terminal
command. Next, we set an output file called data.svg. Finally, we plot the data using the first and
second columns in the data file (which are passed to Gnuplot as 1:2). These Gnuplot commands
will create the following plot as a salable vector graphics (svg) image:

Some of the syntax in Gnuplot is able to be abbreviated. These abbreviations can save a lot of
time for the user and I recommend their use for the sake of brevity. Some of these commands and
their abbreviations are tabulated in the following table:

48

line(s) l
line color lc
line width lw
plot p
quit q
title t
using u
with w
xlabel xl
xrange xr
ylabel yl
yrange yr

Gnuplot is excellent at handling multiple sets of data at the same time. If we want to plot all
of the data points in the data.dat file using abbreviations, and some extra, fancy options as well,
we can do so with the following commands (please refer to the above table of abbreviations for the
long names of equivalent commands in Gnuplot):

1 gnuplot> s e t te rmina l svg enhanced
2

3 Terminal type i s now ’ svg ’
4 Options are ’ s i z e 600 ,480 f i x ed enhanced font ’ Ar ia l , 12 ’ butt dashlength 1 .0 ’
5 gnuplot> s e t xr [0 : 1 2]
6 gnuplot> s e t yr [0 : 1 6 0]
7 gnuplot> s e t t i t l e ’ Gnuplot and data . dat ’
8 gnuplot> s e t y l ’ Ca lcu lated Value ’
9 gnuplot> s e t x l ’Argument ’

10 gnuplot> s e t out ’ data2 . svg ’ ; p ’ data . dat ’ u 1 :2 t ’ Products o f 2 ’ w l , ’ data . dat ’ u
1 :3 t ’The Second Power ’ w l

11 gnuplot>

This time, we use the first and second columns as the first data set, and then the first and third
columns as the second data set. Running the above commands will create the following plot:

49

Gnuplot has all sorts of further capabilities, the full scope of which is beyond this text. However,
there are many other Gnuplot scripts as well as outputs that I would like to present. For the sake
of brevity though I will keep the examples brief and attempt to include as many useful options in
the scripts as reasonable.

One case where I use Gnuplot for my own research is in preparing figures for journal publications.
Usually I like to have some color and clear labeling in these plots since they will be on record with a
journal. One such example is with X-ray diffraction data with multiple psi-angles that I include in
a paper [1] (reproduced here with permission). I use Gnuplot to plot the data, as well as to convert
the y-values to log scale, and to color the plots so that they look attractive and of publication
quality. Because the input data file is long, I will not include it here but I will include the script
that generates the plot and the plot as well.

1 s e t t e rmina l svg enhanced
2 s e t xrange [3 3 . 2 5 : 3 4 . 7 5] ; s e t yrange [5 . 4 : 9 . 5]
3 s e t t i t l e ’ Logsca l e ps i−Ti l t XRD’
4 s e t x l ab e l ’ 2_theta ’ ; s e t y l ab e l ’ Log I n t e n s i t y (A.U.) ’
5 unset y t i c s
6 s e t border

50

7 unset key
8 s e t d a t a f i l e s epa ra to r " , "
9

10 s e t out ’PsiTilt_XRD . svg ’
11 p ’PsiTilt_XRD . csv ’ u 1 : (l og ($2)) t ’ 0 ’ l c rgb ’#8F00E5 ’ w l , ’ PsiTilt_XRD . csv ’

u 3 : (l og ($4)) t ’ 1 ’ l c rgb ’#DF00D2 ’ w l , ’ PsiTilt_XRD . csv ’ u 5 : (l og ($6)) t
’ 2 ’ l c rgb ’#DA006F ’ w l , ’ PsiTilt_XRD . csv ’ u 7 : (l og ($8)) t ’ 3 ’ l c rgb ’#
D40011 ’ w l , ’ PsiTilt_XRD . csv ’ u 9 : (l og ($10)) t ’ 4 ’ l c rgb ’#CF4700 ’ w l , ’
PsiTilt_XRD . csv ’ u 11 : (l og ($12)) t ’ 6 ’ l c rgb ’#C99C00 ’ w l , ’ PsiTilt_XRD . csv ’
u 13 : (l og ($14)) t ’ 8 ’ l c rgb ’#9CC400 ’ w l , ’ PsiTilt_XRD . csv ’ u 15 : (l og ($16)) t
’ 10 ’ l c rgb ’#46BF00 ’ w l

In this plot, I use several useful functionalities of Gnuplot. First, I set the ranges in the x- and
y-directions using the xrange and yrange commands. Next, I set the title of the plot as well as its x-
and y-labels. Next I remove all tic markings from the y-axis because the data is in log of arbitrary
intensity and used to show drop-off of a relative value. After that I set a border around the plot,
unset the plot’s key, and tell Gnuplot that commas are used as the data file separator.

Data file separators are important and can throw errors in Gnuplot that are concerned with

51

the readability of the data set. If you have spaces separating all of your data value columns in the
data set, then Gnuplot will not need to be told specifically what the data file separator is since
that seems to be its default setting. In the case of the common comma separated values (.csv)
file format, values are obviously not separated by spaces and therefore you need to tell Gnuplot
specifically that commas are used. Remembering this can alleviate a lot of headaches down the
road.

Finally, I set the name of output file as a title relevant to what I’m working on, and then plot
the data. Plotting the data has two interesting commands that we will explore. First, I use the
mathematical capability of Gnuplot to calculate the log of the data before I plot it, this is done
using the second column in each data set which is the intensity of X-rays that are collected by a
detector. Gnuplot stores this data series as a variable and we cal call that variable by placing a $
sign before the column number and enclosing the entire calculation in parenthesis (variables will be
covered in greater depth in section 4.1). This makes for a convenient means of re-scaling data on
the fly. Finally, I also set the line color that I want by giving Gnuplot a hexadecimal color value to
assign to each of the lines individually.

In the following, I include a chart where the user can reference the number of curves that they
want to plot with different colors and then copy the numbers of ’evenly-spaced’ hex colors from the
chart (one of my own creation that I find frequently useful for all matter of plotting operations).

52

3 Colors 4 Colors 5 Colors 6 Colors 7 Colors 8 Colors 9 Colors 10 Colors 11 Colors 12 Colors 13 Colors 14 Colors 15 Colors
#8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5 #8F00E5
#D21B00 #D8004F #DB0088 #DD00AA #DE00C1 #DF00D2 #E000DF #D800E0 #D100E1 #CB00E1 #C600E1 #C200E2 #BE00E2
#46BF00 #CB8000 #D21B00 #D50024 #D8004F #DA006F #DB0088 #DC009B #DD00AA #DE00B7 #DE00C1 #DF00CA #DF00D2

#46BF00 #C8B000 #CE5900 #D21B00 #D40011 #D60034 #D8004F #D90066 #DA0078 #DB0088 #DC0095 #DC00A0
#46BF00 #C0C600 #CB8000 #CF4700 #D21B00 #D40007 #D50024 #D7003B #D8004F #D90061 #DA006F

#46BF00 #ABC500 #C99C00 #CD6800 #CF3D00 #D21B00 #D30001 #D50019 #D6002E #D70040
#46BF00 #9CC400 #C8B000 #CB8000 #CE5900 #D03700 #D21B00 #D30300 #D40011

#46BF00 #91C300 #C7C000 #CA9400 #CC6E00 #CE4E00 #D03300 #D21B00
#46BF00 #88C300 #C0C600 #C9A300 #CB8000 #CD6200 #CF4700

#46BF00 #81C200 #B4C500 #C8B000 #CA8F00 #CC7200
#46BF00 #7CC200 #ABC500 #C7BB00 #C99C00

#46BF00 #77C200 #A3C400 #C7C500
#46BF00 #73C100 #9CC400

#46BF00 #70C100
#46BF00

53

Another example of using Gnuplot is to make the following figure that compares wavelength
of light to an approximately matching hex color for the visible spectral range. I find this useful
when I am trying to understand more intuitively a color of light when someone relays to me the
wavelength of that light. This example relies heavily on the arrow and label commands which are
Gnuplot built-ins. I use arrows without heads and with a heavy line width (lw) of a certain length
to create ’pillars’ that all have a certain hex color assigned to them based on a series of labels that
are all rotated 90 degrees so that they are aligned with the color ’pillars’. Please see the figure
below:

To replicate this figure, begin by creating the following text file with the attached script and
running it in the normal way by pasting it into a shell script extended file and changing its mode
so that it is executable with chmod+x:

1 #!/ bin /bash
2 cat > data . dat << EOF
3 0 ,0
4 0 . 0 1 , 0 . 0 1
5 EOF

The Gnuplot script is slightly different than those that we have spoken about before because we
are not actually plotting any data here. If you looked at the data file, you will have seen that there
are only two points and they actually lie outside of the box that we are plotting. This plot actually
only uses the arrow and label functionality and we just include that data file and two points for the
program to plot just to keep Gnuplot happy. Plotting this way allows you to create data graphics
with Gnuplot outside of its regular data plotting functionality.

1 s e t t e rmina l svg enhanced s i z e 3840 ,2160 font ’ Ar ia l , 100 ’
2 s e t xrange [3 7 3 : 7 8 7]

54

3 s e t yrange [−0 . 0 2 : 1 . 2 5]
4 unset y t i c s
5 s e t x l ab e l ’Wavelength ’
6 s e t d a t a f i l e s epa ra to r " , "
7 s e t key below
8

9 s e t arrow 1 from 380 ,0 to 380 ,1 nohead lw 40 l c rgb ’#610061 ’
10 s e t arrow 2 from 390 ,0 to 390 ,1 nohead lw 40 l c rgb ’#79008d ’
11 s e t arrow 3 from 400 ,0 to 400 ,1 nohead lw 40 l c rgb ’#8300b5 ’
12 s e t arrow 4 from 410 ,0 to 410 ,1 nohead lw 40 l c rgb ’#7e00db ’
13 s e t arrow 5 from 420 ,0 to 420 ,1 nohead lw 40 l c rgb ’#6a00 f f ’
14 s e t arrow 6 from 430 ,0 to 430 ,1 nohead lw 40 l c rgb ’#3d00 f f ’
15 s e t arrow 7 from 440 ,0 to 440 ,1 nohead lw 40 l c rgb ’#0000 f f ’
16 s e t arrow 8 from 450 ,0 to 450 ,1 nohead lw 40 l c rgb ’#0046 f f ’
17 s e t arrow 9 from 460 ,0 to 460 ,1 nohead lw 40 l c rgb ’#007 b f f ’
18 s e t arrow 10 from 470 ,0 to 470 ,1 nohead lw 40 l c rgb ’#00a 9 f f ’
19 s e t arrow 11 from 480 ,0 to 480 ,1 nohead lw 40 l c rgb ’#00d5 f f ’
20 s e t arrow 12 from 490 ,0 to 490 ,1 nohead lw 40 l c rgb ’#00 f f f f ’
21 s e t arrow 13 from 500 ,0 to 500 ,1 nohead lw 40 l c rgb ’#00 f f 9 2 ’
22 s e t arrow 14 from 510 ,0 to 510 ,1 nohead lw 40 l c rgb ’#00 f f 0 0 ’
23 s e t arrow 15 from 520 ,0 to 520 ,1 nohead lw 40 l c rgb ’#36 f f 0 0 ’
24 s e t arrow 16 from 530 ,0 to 530 ,1 nohead lw 40 l c rgb ’#5e f f 0 0 ’
25 s e t arrow 17 from 540 ,0 to 540 ,1 nohead lw 40 l c rgb ’#81 f f 0 0 ’
26 s e t arrow 18 from 550 ,0 to 550 ,1 nohead lw 40 l c rgb ’#a3 f f 0 0 ’
27 s e t arrow 19 from 560 ,0 to 560 ,1 nohead lw 40 l c rgb ’#c3 f f 0 0 ’
28 s e t arrow 20 from 570 ,0 to 570 ,1 nohead lw 40 l c rgb ’#e1 f f 0 0 ’
29 s e t arrow 21 from 580 ,0 to 580 ,1 nohead lw 40 l c rgb ’#f f f f 0 0 ’
30 s e t arrow 22 from 590 ,0 to 590 ,1 nohead lw 40 l c rgb ’#f f d f 0 0 ’
31 s e t arrow 23 from 600 ,0 to 600 ,1 nohead lw 40 l c rgb ’#f f b e00 ’
32 s e t arrow 24 from 610 ,0 to 610 ,1 nohead lw 40 l c rgb ’#f f 9b00 ’
33 s e t arrow 25 from 620 ,0 to 620 ,1 nohead lw 40 l c rgb ’#f f 7 700 ’
34 s e t arrow 26 from 630 ,0 to 630 ,1 nohead lw 40 l c rgb ’#f f 4 f 0 0 ’
35 s e t arrow 27 from 640 ,0 to 640 ,1 nohead lw 40 l c rgb ’#f f 2 100 ’
36 s e t arrow 28 from 650 ,0 to 650 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
37 s e t arrow 29 from 660 ,0 to 660 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
38 s e t arrow 30 from 670 ,0 to 670 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
39 s e t arrow 31 from 680 ,0 to 680 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
40 s e t arrow 32 from 690 ,0 to 690 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
41 s e t arrow 33 from 700 ,0 to 700 ,1 nohead lw 40 l c rgb ’#f f 0 000 ’
42 s e t arrow 34 from 710 ,0 to 710 ,1 nohead lw 40 l c rgb ’#ed0000 ’
43 s e t arrow 35 from 720 ,0 to 720 ,1 nohead lw 40 l c rgb ’#db0000 ’
44 s e t arrow 36 from 730 ,0 to 730 ,1 nohead lw 40 l c rgb ’#c80000 ’
45 s e t arrow 37 from 740 ,0 to 740 ,1 nohead lw 40 l c rgb ’#b50000 ’
46 s e t arrow 38 from 750 ,0 to 750 ,1 nohead lw 40 l c rgb ’#a10000 ’
47 s e t arrow 39 from 760 ,0 to 760 ,1 nohead lw 40 l c rgb ’#8d0000 ’
48 s e t arrow 40 from 770 ,0 to 770 ,1 nohead lw 40 l c rgb ’#770000 ’
49 s e t arrow 41 from 780 ,0 to 780 ,1 nohead lw 40 l c rgb ’#610000 ’
50

51 s e t l a b e l ’#610061 ’ l e f t at 380 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
52 s e t l a b e l ’#79008d ’ l e f t at 390 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
53 s e t l a b e l ’#8300b5 ’ l e f t at 400 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
54 s e t l a b e l ’#7e00db ’ l e f t at 410 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
55 s e t l a b e l ’#6a00 f f ’ l e f t at 420 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
56 s e t l a b e l ’#3d00 f f ’ l e f t at 430 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
57 s e t l a b e l ’#0000 f f ’ l e f t at 440 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
58 s e t l a b e l ’#0046 f f ’ l e f t at 450 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
59 s e t l a b e l ’#007 b f f ’ l e f t at 460 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
60 s e t l a b e l ’#00a 9 f f ’ l e f t at 470 , 1 .025 font " a r i a l , 40 " r o t a t e by 90

55

61 s e t l a b e l ’#00d5 f f ’ l e f t at 480 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
62 s e t l a b e l ’#00 f f f f ’ l e f t at 490 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
63 s e t l a b e l ’#00 f f 9 2 ’ l e f t at 500 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
64 s e t l a b e l ’#00 f f 0 0 ’ l e f t at 510 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
65 s e t l a b e l ’#36 f f 0 0 ’ l e f t at 520 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
66 s e t l a b e l ’#5e f f 0 0 ’ l e f t at 530 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
67 s e t l a b e l ’#81 f f 0 0 ’ l e f t at 540 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
68 s e t l a b e l ’#a3 f f 0 0 ’ l e f t at 550 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
69 s e t l a b e l ’#c3 f f 0 0 ’ l e f t at 560 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
70 s e t l a b e l ’#e1 f f 0 0 ’ l e f t at 570 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
71 s e t l a b e l ’#f f f f 0 0 ’ l e f t at 580 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
72 s e t l a b e l ’#f f d f 0 0 ’ l e f t at 590 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
73 s e t l a b e l ’#f f b e00 ’ l e f t at 600 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
74 s e t l a b e l ’#f f 9b00 ’ l e f t at 610 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
75 s e t l a b e l ’#f f 7 700 ’ l e f t at 620 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
76 s e t l a b e l ’#f f 4 f 0 0 ’ l e f t at 630 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
77 s e t l a b e l ’#f f 2 100 ’ l e f t at 640 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
78 s e t l a b e l ’#f f 0 000 ’ l e f t at 650 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
79 s e t l a b e l ’#f f 0 000 ’ l e f t at 660 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
80 s e t l a b e l ’#f f 0 000 ’ l e f t at 670 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
81 s e t l a b e l ’#f f 0 000 ’ l e f t at 680 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
82 s e t l a b e l ’#f f 0 000 ’ l e f t at 690 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
83 s e t l a b e l ’#f f 0 000 ’ l e f t at 700 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
84 s e t l a b e l ’#ed0000 ’ l e f t at 710 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
85 s e t l a b e l ’#db0000 ’ l e f t at 720 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
86 s e t l a b e l ’#c80000 ’ l e f t at 730 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
87 s e t l a b e l ’#b50000 ’ l e f t at 740 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
88 s e t l a b e l ’#a10000 ’ l e f t at 750 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
89 s e t l a b e l ’#8d0000 ’ l e f t at 760 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
90 s e t l a b e l ’#770000 ’ l e f t at 770 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
91 s e t l a b e l ’#610000 ’ l e f t at 780 , 1 .025 font " a r i a l , 40 " r o t a t e by 90
92

93 s e t out ’ c o l o r s . svg ’ ; p ’ data . csv ’ u 1 :2

Other terminals may be used with Gnuplot as well, some of the most popular are the .png
terminal and the .ps terminal. Additionally, it is very important to note again that data file
separators are user-defined for Gnuplot in all cases except for the single space data file separator
which is its default. Data file separators can be mostly anything that you’d like within reason. For
example, if you had a .csv file where the data file separators (as the name .csv or ’comma separated
values’ would imply), then you could add the following command to the beginning of your Gnuplot
script to change that setting:

1 s e t d a t a f i l e s epa ra to r " , "

3.9 lynx
lynx is a neat, totally text-based web browser that can be used in the terminal and it can be
installed with the following command:

1 sudo apt−get i n s t a l l lynx

Running lynx on its own can be kind of tedious, especially compared to a modern browser but
can be done for kicks here and there. One excellent functionality however is that lynx has the
ability to dump the nicely formatted contents of a web page into a local file. This will become very
important in section 5.3 on web scraping. We can try for ourselves dumping a web page with the
following command to dump a the contents of a weather report to a local file:

56

1 lynx −−dump https : // hpwren . ucsd . edu/ Sensors /SDSC/ > lynx_dump . txt

Here we use a special character > which is a redirect (we’ll cover these in section 4.1 but for now it
just takes the output of a command and dumps it into a text file). An example output of this is the
following (where some extra text at the end has been trimmed for brevity using another command
called sed which we will explore briefly in section 5.3 where we make a web scraper).

1 user@debian−micro :~ $ cat lynx_dump . txt
2 REFRESH(61 sec) : [1] https : // hpwren . ucsd . edu/ Sensors /SDSC/
3 HPWREN mult i cast−based weather s t a t i o n data d i sp l ay
4 20210818 15 : 00 : 56 − UCSD San Diego Supercomputer Center : 32 .88N 117.24W
5 400 ’
6 This s enso r i s a Davis met s t a t i o n
7 graphs are s i n c e midnight two days ago
8 [2] Outside a i r temperature 23 .6 Ce l s i u s 74 .4 Fahrenheit
9 [3] I n s i d e a i r temperature 25 .7 Ce l s i u s 78 .2 Fahrenheit

10 [4] Outside r e l a t i v e humidity 76 percent
11 [5] I n s i d e r e l a t i v e humidity 54 percent
12 [6]Wind d i r e c t i o n 227 degree s
13 [7]Wind speed 2 .2 meter/ second 5 mi l e s /hour
14 [8] 1 0min wind speed 1 .8 meter/ second 4 mi l e s /hour
15 [9] Air p r e s su r e 1006 m i l l i b a r
16 [1 0] So la r r ad i a t i on 384 watts /(meter ^2)
17 [1 1]UV 22 UV Index /10
18 [1 2] Rain ra t e 0 c l i c k s /hour
19 [1 3] D i sc la imer

3.10 openmpi
Serial computations are calculations run on a single computing unit. Running large or ’expensive’
calculations, especially with programs that require vast computing resources like VASP and Berke-
leyGW in serial may not be tractable due to time constraints. These computations can be run
on many computing units at a time with a parallelization software. OpenMPI is a parallelization
program for dividing a lengthy calculation between many computing units in order to save time
on a calculation. I will not get into depth with how to run this program, however I include the
following commands for the installation of OpenMPI packages which have worked for me in the
past when compiling Quantum Espresso (which will be discussed at length in section 6) on my own
personal computers.

1 sudo apt−get i n s t a l l openmpi−bin openmpi−doc libopenmpi−dev

3.11 ssh and scp
SSH (secure shell) and SCP (secure copy) are built-in programs to BASH. SSH allows the user to
control a remote system via the terminal and SCP allows a user to securely copy a file from a remote
machine to their local machine or vice versa. If you are very interested in SCP and its protocols,
you may also be interested in searching for how ssh tunnels work but the nuances of these topics
are beyond the scope of this text.

Using a supercomputer, almost all of the time you will have to use SSH in order to communicate
with the machine. Some newer interfaces actually allow for access to terminals through an internet
browser which is wildly convenient but we will continue this example with SSH because many

57

systems still require that sort of connection. One such instance of how you can begin talking to
a remote system is with the following command (specific to some supercomputer systems that I
commonly use for my own research.:

1 ssh − l uname −Y uname . uname . com

An example output of this command (again specific to the supercomputer systems that I com-
monly use) is as follows:

1 Last l o g i n : Sun Aug 22 20 : 40 : 32 on ttys001
2 MainUsers−iMac :~ mainuser$ ssh − l uname −Y uname . uname . com
3

4 Login connect ion to host uname :
5

6 Password + OTP:

An SSH session can be ended at any time by killing the terminal that the session is running
inside of. Alternatively, a more convenient means of ending an SSH session is to press the enter or
return key and then type the following into the keyboard before pressing the enter or return key
again:

1 ~.

Issuing tilde and period to the terminal and pressing the return or enter keys will end the SSH
session and return to the terminal that the connection to the server has closed.

3.12 bc an arbitrary precision BASH calculator
Unfortunately, at least in my opinion, BASH does not have extensive built-in mathematical func-
tionality. One way to work around this is to use shell programs that you can pipe variables and
mathematical operations into (we will discuss more about the idea of a ’pipe’ in section 4.2). One
such shell program is called bc. From its manual page, "bc is a language that supports arbitrary
precision numbers with interactive execution of statements."

What this means, more or less, is that you can select the number of significant figures that you
want to use in your calculation; this is done using the scale option in bc. This is extremely handy
in many situations like when you are selecting the accuracy you desire for a certain calculation,
formatting significant figures to ease work down the line, or by rounding calculations to the nearest
integer, tenth of a decimal place, or wherever your heart so desires.

bc can be run in the terminal as its own standalone program, however there are such a large
number of useful calculators beyond bc that this is not my normal use case. Where bc shines
however is within shell scripts as a command where you want to run quick calculations, especially
on variables within the script. bc can be run from the terminal with the following command and
mathematical calculations can be run within bc:

1 bc

Please see the following which is a terminal log of several commands run using bc to get a feel
for how to use the program and its functionality. The default scale set for bc is 1, this can deter
first time users because they might ask bc to calculate the square root of 2 for example and they’ll
see that bc gives them an answer of 1. You can control the scale of the calculation by setting
scale=n where n is the number of significant figures you want to calculate. You can escape from bc
by typing quit into the terminal.

58

1 MainUsers−iMac :~ mainuser$ bc
2 bc 1 .06
3 Copyright 1991−1994 , 1997 , 1998 , 2000 Free Software Foundation , Inc
4 This i s f r e e so f tware with ABSOLUTELY NO WARRANTY.
5 For d e t a i l s type ‘ warranty ’ .
6 1+2; sq r t (2) ; 2^8
7 3
8 1
9 256

10 s c a l e =0; 3+5; 3−5; 3∗5 ; 3/5 ;
11 8
12 −2
13 15
14 0
15 s c a l e =2; 3+5; 3−5; 3∗5 ; 3/5 ;
16 8
17 −2
18 15
19 . 60
20 s c a l e =0; sq r t (2) ; s c a l e =1; s q r t (2) ; s c a l e =2; s q r t (2) ;
21 1
22 1 .4
23 1 .41

bc can also perform a number of operations on variables, one I think is particularly useful is the
increment commands that are demonstrated here:

1 MainUsers−iMac :~ mainuser$ var="1"
2 MainUsers−iMac :~ mainuser$ bc
3 bc 1 .06
4 Copyright 1991−1994 , 1997 , 1998 , 2000 Free Software Foundation , Inc .
5 This i s f r e e so f tware with ABSOLUTELY NO WARRANTY.
6 For d e t a i l s type ‘ warranty ’ .
7 ++ var
8 1
9 ++ var

10 2
11 ++ var
12 3
13 qu i t
14 MainUsers−iMac :~ mainuser$ echo $var
15 1
16 MainUsers−iMac :~ mainuser$ bc
17 bc 1 .06
18 Copyright 1991−1994 , 1997 , 1998 , 2000 Free Software Foundation , Inc .
19 This i s f r e e so f tware with ABSOLUTELY NO WARRANTY.
20 For d e t a i l s type ‘ warranty ’ .
21 var ++
22 0
23 var ++
24 1
25 var ++
26 2
27 var ++
28 3
29 qu i t
30 MainUsers−iMac :~ mainuser$ echo $var
31 1

59

For me, a particular use case of bc is in the creation and management of input files for DFT
and other calculation engines like VASP and Exciting. VASP prefers to have an NPAR option in
its INCAR file (we will discuss VASP more substantively in section 9) that is approximately the
square root of the number of cores that you are calculating with when you are running a parallel
computation; this can be quickly done with bc as is shown below. I automate this for my scripts
because I frequently change the number of nodes that I use for calculations and would otherwise
forget to change this parameter every time I change my scripts. Automation here saves me a lot of
effort and spares me sometimes re-running calculations and wasting time with improperly defined
parameters. I also find bc very useful for the conversion of units like angstroms into atomic units
like Bohr radii, this I do automatically by extracting values from a VASP POSCAR file as variables
using awk and then converting them with a conversion factor using bc. These conversions are
immediately useful in programs like Exciting which will be discussed at greater length in section 7

The following quick script creates three variables and an input file for VASP, I use this as part
of my setup when I run VASP calculations in parallel on remote clusters. In the script, the first
two variables are user-defined and are a small name for the calculation to use as well as a number
of job nodes. The job node variable is used in SLURM scripts for queuing and running jobs as well.
Next we use bc to calculate the nearest integer to the square root of the number of job nodes which
is an optimization parameter for the INCAR file. This is done by creating NPAR as a variable that
is defined as the echo of the square root of the Job_Nodes variable into bc with a scale set to 0
(which will return the nearest integer to the square root).

1 System_Name="FCC_Al" # Give a c a l c u l a t i o n t i t l e f o r VASP
2 Job_Nodes="64" # Give the number c a l c u l a t i o n nodes
3

4 NPAR=$ (echo " s c a l e =0; s q r t ($Job_Nodes) " | bc)
5 # Calcu la te NPAR f o r INCAR f i l e [~ sq r t (job co r e s)] ;
6 # sc a l e=0 s e t s bc to round to nea r e s t i n t e g e r f o r VASP
7

8

9 #−:
10 #−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:
11 #−:
12

13 cat > INCAR << EOF
14 # General Setup
15 System = ${System_Name} # Ca l cu la t i on T i t l e
16 PREC = NORMAL # Options : Normal , Medium , High , Low
17

18 ISMEAR = −5
19 IBRION = 2
20 ISIF = 3
21 LWAVE = .FALSE.
22 LCHARG = .FALSE.
23 ENCUT = 250.00
24

25 # Pa r a l l e l i z a t i o n
26 NPAR = ${NPAR} # approx . SQRT(number o f co r e s)
27 EOF
28

29 echo " Writing input f i l e INCAR . . . "
30 echo " done"

Of course you do not have to be relegated to a certain level of precision or another, that is one
of the best features of bc in my opinion. You can define what ever level of precision you want as

60

long as it is within reason. Above, we saw that using the scaling set to zero was convenient for a
specific case where we wanted bc to return the nearest integer to the square root of a number of
nodes but we can run all sorts of calculations with all sorts of levels of precision:

1 MainUsers−iMac :~ mainuser$ bc
2 bc 1 .06
3 Copyright 1991−1994 , 1997 , 1998 , 2000 Free Software Foundation , Inc .
4 This i s f r e e so f tware with ABSOLUTELY NO WARRANTY.
5 For d e t a i l s type ‘ warranty ’ .
6 s q r t (64) ; s q r t (32) ; s q r t (16) ; s q r t (8) ; s q r t (4)
7 8
8 5
9 4

10 2
11 2
12 s c a l e =10; s q r t (64) ; s q r t (32) ; s q r t (16) ; s q r t (8) ; s q r t (4)
13 8.0000000000
14 5.6568542494
15 4.0000000000
16 2.8284271247
17 2.0000000000
18 s c a l e =50; s q r t (64) ; s q r t (32) ; s q r t (16) ; s q r t (8) ; s q r t (4)
19 8.00
20 5.65685424949238019520675489683879231427868750150779
21 4.00
22 2.82842712474619009760337744841939615713934375075389
23 2.00

3.13 dos2unix, converting old dos files to UNIX format
We will talk slightly more about misbehavior that can come from attempting to perform shell
operations on files that are formatted for different systems than UNIX in the scripting section
that covers data manipulation and normalization in section 5.7 on page 95 of this text but various
parameters can interfere with improper operation of BASH programs when files are not formatted
properly. A common incarnation of this problem is when one tries to use BASH in Mac OS, Linux,
or UNIX on an old DOS-formatted file. These old DOS-formatted files are in fact very common
because many of the research instruments and machines that you will find in universities are non-
networked old Windows XP systems (or perhaps even older *gasp!*). Of particular annoyance is
the carriage return character in DOS which is very different from the UNIX line ending character.
Some programs, awk is an example of these, will not like to operate on files that have the carriage
return character and will say that there is an illegal character and then escape out of the operation
that you have wanted them to perform. An example of this is the following error:

1 (standard_in) 1 : i l l e g a l cha rac t e r : M̂

One way to work around this is to use a program to convert the format of the old dos-formatted
file into the UNIX format. This can be done actually with the program tr (translate) as will be
seen in section 5.7 but it can also be done with other programs that are purpose-built. One such
program is known as dos2unix and can be installed with the following command:

1 sudo apt i n s t a l l dos2unix

This can easily be run on a DOS-formatted file (I find that dos2unix works easiest on Linux
systems) with the following where dos2unix will create a new file that is of the UNIX format:

61

1 ubuntu−budgie@ubuntu−budgie :~/Desktop$ dos2unix DOS_file . csv
2 dos2unix conver t ing f i l e DOS_file . csv to Unix format . . .

Deeper characteristics of these individual formatting standards are beyond the scope of this text
but suffice it to say that there are several formats like these and that I find the most universal of these
to be the UNIX format. If you are confronted with errors that report an illegal character, consider
checking whether the line endings and formatting are what BASH and/or whatever program you
are running is expecting.

It is worthy of note that, if you are attempting to have an old DOS system read a file which is
formatted for UNIX or another standard, dos2unix can also be run the opposite direction. That
is to say that dos2unix can also convert UNIX formatted files to the DOS format by running the
unix2dos command.

62

4 Logical Operations: Variables, Redirects, Pipes, While, For,
and If

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Redirects and pipes, as well as how they interact with various types of loops underpin the
incredible modularity and versatility of the shell, what I consider to be its most valuable attribute.
Redirects are commands instructing shell programs to output into a separate file (either extant
or created at the time of the redirect); redirects can also work in reverse, e.g. reading a file to a
program. Pipes are slightly different and are intended to transform outputs of a command or a
program into inputs for other commands or programs. Daisy chaining redirects and pipes lends
itself well to modular programming and shell scripting as we’ll explore in further sections like 5.

Variables speak for themselves, they’re the backbone of most shell scripts and can be stored and
called easily in the shell for numerous uses. While and For loops speak for themselves as well and
allow incremental operations.

In the following sections, we will explore a quick example of using a shell script to create an
SBATCH file for use in supercomputer program execution, the script uses variables to store values
and writes them into a file using a redirect and the cat command. We will also explore various
easy implementations of while and for loops. In the next chapter we will see how to put all of these
tools, as well as tools we’ve learned up to this point into scripts that perform useful operations like
web scraping, multiple option selection and execution, and data handling and normalization.

4.1 Redirects and variables
Redirects are somewhat self explanatory in that they allow they redirection of one thing into
another. There are two types of redirects, the redirect of input < and the redirect of output >. A
redirect of input can be imagined as the following: program ← file. A redirect of the output can
be imagined as the following: program → file

In the redirect of an input, a file’s contents can be loaded into a program for analysis or other
handling with that program. In the redirection of an output, a file can have its contents written to
with the output of another program.

A use case of the redirect of input < is given in the following where we determine the number
of lines in a large text file using the wc (word count) command with the -l (lines) option and we are
redirecting the large text file (in this case the Webster’s Dictionary) into wc with the redirect of
input. The result will be the number of lines in the Webster’s Unabridged Dictionary being printed
to the terminal:

1 uname@uname:~> wc − l < Websters_Unabridged_Dictionary . txt
2 974267

A very popular use case (at the very least in this text) of the redirect of output is in writing
files based on what is returned by a shell program. This a very valuable tool when you are aiming
to create new files based on the contents of a script and the variables inside of it. Please see the
following terminal session where we have a number of text files that and we redirect the output of
the ls command into a new file called Text_Files.txt which will contain the names of all the original
files in the directory:

1 uname@uname:~> l s
2 Text_File_1 Text_File_2 Text_File_4 Text_File_6 Text_File_8
3 Text_File_10 Text_File_3 Text_File_5 Text_File_7 Text_File_9

63

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

4 uname@uname:~> l s > Text_Files . txt
5 uname@uname:~> head Text_Files . txt
6 Text_File_1
7 Text_File_10
8 Text_File_2
9 Text_File_3

10 Text_File_4
11 Text_File_5
12 Text_File_6
13 Text_File_7
14 Text_File_8
15 Text_File_9
16 uname@uname:~> l s
17 Text_File_1 Text_File_2 Text_File_4 Text_File_6 Text_File_8 Text_Files . txt
18 Text_File_10 Text_File_3 Text_File_5 Text_File_7 Text_File_9

The general idea of variables is pretty self explanatory. Variables can be quickly implemented
in BASH, just like many other programs for all sorts of uses which include but are not limited to
storing mathematical values, storing the number of an iteration in a loop, storing a string of text,
storing the location of a file or executable, ect ... Variables in the shell are first defined with a string
followed by an = sign and then the variable can be called later on by referring to the string with
a $ before the string. Please see the following terminal session for how to create and call variables
in some instances (for more coverage of the program bc please refer to section 3.12, and for more
coverage of the pipe special character, please refer to section 4.2):

1 uname@uname:~> a=1
2 uname@uname:~> echo $a
3 1
4 uname@uname:~> b="Hel lo World"
5 uname@uname:~> echo $b
6 Hel lo World
7 uname@uname:~> l a t =1.000000
8 uname@uname:~> Top_Atom="5.40425600 "
9 uname@uname:~> Titanium_Nitride_Dimer_Bond_Length=" 1.6337 "

10 uname@uname:~>
11 uname@uname:~> lat_a=$ (echo " s c a l e =9; $Top_Atom + $ l a t " | bc)
12 uname@uname:~> lat_b=$ (echo " s c a l e =9; $lat_a + $Titanium_Nitride_Dimer_Bond_Length"

| bc)
13 uname@uname:~> echo $lat_a
14 6.40425600
15 uname@uname:~> echo $lat_b
16 8.03795600

Redirects and variables are essential ingredients in most of my shell scripts. The following
is a fragment from a script that I frequently use for submitting calculations to a supercomputer
which uses redirects and variables. The script is divided into two sections. The first section defines
variables using the following formalism: varname=’var-value’. All of these variables can be called
at any time in the shell after they are stored. Even a the location of an executable can be stored
and then used. Here we direct BASH to the executable for VASP but the same script can be used
interchangeably with any executable really. This is immediately useful because now you do not
need to handle rewriting and creating individual files any more but you can compose numerous files
into a single script and have that script create your files for you in the shell before executing the
code (especially when that code is dependent on the files that were written with the cat command
in the shell) that you are interested in.

64

As just discussed, redirects < and > (also « and ») are known as the standard input and
standard output commands respectively. Because redirects let you redirect the output of one
program directly into another, the shell has a powerful ability to compose the use of many other
programs in a step-wise manner. Like the > command which can be used to direct the output of
command into overwriting a file, the » command can be used similarly but instead of overwriting
the file, the output will be appended to the file (e.g., written to a new line or set of lines in the
file). There is a useful distinction to know however, using > will take an entire standard output
and write it to a file. Using the command 2> will instead just allow the user to redirect the exit
code of the file or the output of the command into the file. Each of these commands have many
uses and are good tricks to have.

The second section of this script is slightly more complicated and uses a pair of redirects. Of
these, the first line (line 17 in the overall script) is the most complicated and does the heavy lifting.
We first use cat (the familiar concatenate command) and redirect its standard output into a new file
that is defined partially as a variable. The file is written explicitly as the variable Job_Name and
then appended with the .sb extension which is used for sbatch commands (a tool used frequently
for queuing programs to be run on a supercomputer). Next, cat redirects the standard input of the
terminal session into the file now being called Sbatch_Example.sb (since it will call the value of
the variable Job_Name) until it comes to the characters EOF whereupon it will terminate cat and
write the file.

After the line containing the cat command and the redirects, we can see that the following lines
contain the shebang line for a BASH script, several SBATCH commands, and then it issues the
srun command for specifying certain parameters to be used in a calculation. EOF is written to
signal cat to halt writing the file and then the script uses ’echo’ to write an update to the terminal
stating that the file has been created.

1 #!/ bin /bash
2 #−:
3 #−:−:−:−:− Create v a r i a b l e s f o r s t o r i n g SBATCH commands −:−:−:−:−:−
4 #−:
5 Job_Name="Sbatch_Example" # Give a name to apply to f i l e s
6

7 Job_Time=" 00 : 30 : 00 " # Give the run time in hh :mm: s s
8 Job_Nodes="64" # Give the number o f c a l c u l a t i o n nodes
9 Job_Queue="debug" # Give the queue (e . g . , ’ debug ’ or ’ r egu la r ’)

10

11 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp"
12

13 #−:
14 #−:−:−:−:−:−:−:−:−:−: Create an SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:
15 #−:
16

17 cat > ${Job_Name} . sb << EOF
18 #!/ bin /bash
19 #SBATCH −−job−name=$Job_Name
20 #SBATCH −N ${Job_Nodes}
21 #SBATCH −C haswe l l
22 #SBATCH −q ${Job_Queue}
23 #SBATCH −t ${Job_Time}
24

25 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
26

27 EOF
28

65

29 echo " Writing input f i l e ${Job_Name} . sb . . . "
30 echo " done"

This methodology becomes very helpful when you run many scripts of the same type with small
variations between them, especially when they are being run on remote machines like a cluster.
Having your scripts do the tedious work for you is mainly the whole point of shell scripting (at least
for most of my use cases). Redirects and variables take care of much of this.

4.2 Pipes: an example with the tee command
Pipes are another staple of shell scripting. All that pipes do is allow you to use the output of one
program as the input of another program. The implications of how to use pipes then is vast. We
won’t go into extreme depth with pipes here but I’ll give what I find to be a very useful example.

Suppose you have a script that prints some useful output to the terminal. An example of this
would be, for example, the status of a program that you are running on a supercomputer cluster.
Sure it is useful to see that output with your eyes, for example to see how long it has taken a
calculation to be completed in real time but that information may be useful in the future as well.
Saving the output of a terminal session then becomes very interesting and important for future
reference. One way this can be done is with a pipe and the program called ’tee’.

The following BASH command executes a shell script called File_Name.sh (again using the ./
command) and then uses a pipe | to direct the terminal output into a program called tee (here we
also use & after the pipe, this allows us to pipe the standard output as well as the standard error
of the program into tee). tee is interesting but briefly its use here is to not interfere with what is
printed to the terminal while simultaneously writing everything printed to the terminal to a file.
The -a option which we give to tee tells tee to append to a file (in this case we give it the file
README.txt). So, as long as the program File_Name.sh is running, tee will be writing the output
of the terminal to the README.txt file. This can be halted by issuing ctrl+c to the terminal.

1 . / File_Name . sh |& tee −a README. txt

4.3 Loops and built-in logical counters
Loops are the bread and butter of shell scripting for scientific computing because, very often, you
are intending to determine some quality of a physical system with respect to another quality of a
physical system. For example, maybe you are trying to determine the temperature as a function
of time as given by a weather station. You can use a loop to continuously collect information
from the weather station as a function of time (for an in-depth coverage of this as a web-scraping
project, please see section 5.3). Or perhaps you might want to use the shell to control the value of
a lattice parameter in the input files of a DFT code and run calculations for many different lattice
parameters in a specified range (for more coverage of this topic, please see chapter 9. There are too
many instances of useful applications of loops to list here.

In the following sections, we will cover for loops, while loops, until loops, and if statements. In
section 5.1 we will cover more on the use of the BASH equivalent of switch/case statements, and
in 5.4 we will cover more on the use of functions in BASH.

66

4.3.1 For loops

For loops are another familiar element in most programming languages. As with others, for loops in
BASH allow the step-wise execution of code based on a sequence that controls the loop by assigning
the value of that sequence at a specific step to a control variable for each step in the loop, continuing
until the conditions of the loop are exhausted.

An introductory demonstration of for loops can be made by giving a small sequence which counts
from 0 to 5 in increments of 1 and creates a directory named after the current step in the loop for
each increment along that sequence. Please see the following example:

1 uname@uname:~> f o r a in { 0 . . 5 . . 1 } ; do mkdir $a ; done
2 uname@uname:~> l s
3 0 1 2 3 4 5

We can also structure for loops recursively
1 uname@uname:~> f o r a in { 0 . . 5 . . 1 } ; do mkdir $a ; cd "$a" ; f o r b in { 0 . . 5 . . 1 } ; do

mkdir $b ; cd "$b" ; cd . . ; done ; cd . . ; done
2 uname@uname:~> l s −r ∗
3 for_loop . sh
4

5 5 :
6 5 4 3 2 1 0
7

8 4 :
9 5 4 3 2 1 0

10

11 3 :
12 5 4 3 2 1 0
13

14 2 :
15 5 4 3 2 1 0
16

17 1 :
18 5 4 3 2 1 0
19

20 0 :
21 5 4 3 2 1 0

Iterating on the immediately previous example, we can create our own recursive listing program
with the use of a for loop! Please see the following script that recursively lists the contents of all
the directories within a directory, this is roughly equivalent to the ’ls -r * command that we just
used:

1 uname@uname:~> l s
2 0 1 2 3 4 5
3 uname@uname:~> f o r a in ∗/ ; do echo "$a : " ; cd "$a" ; l s ; cd . . ; done
4 0/ :
5 0 1 2 3 4 5
6 1/ :
7 0 1 2 3 4 5
8 2/ :
9 0 1 2 3 4 5

10 3/ :
11 0 1 2 3 4 5
12 4/ :
13 0 1 2 3 4 5

67

14 5/ :
15 0 1 2 3 4 5

The for logical operation is especially valuable in scientific computing with shell script because
it can allow for automation in the creation of calculation scripts. That is to say, for many programs
like VASP, Quantum ESPRESSO, Exciting, etc... input files can be turned into templates and
tweaked slightly and iteratively to give a whole series of calculations that describe many atomic
configurations of a system. This is especially evident in VASP calculations where the POSCAR
file has a universal scaling constant for the lattice vectors that can be turned into a shell script
controlled variable.

Lattice vectors and their scaling directly impact many properties of materials: a direct result
of the distances between ions and their configuration(s) in a crystal being the progenitor of many
properties. Lattice vectors and mostly anything else you can imagine can be controlled using
variables in shell scripts so that properties as a function of other properties can be calculated
(swept) over a space. One pertinent example of this is the calculation of total energy in a crystal
over a range of structures and lattice vectors to determine the global minimum energy atomic
configuration which usually corresponds to a stable or preferred structure.

An implementation of exactly this methodology will be discussed in chapter 9 but a slight teaser
of how the for loop is constructed is as follows:

1 f o r l a t in ‘ seq −w ${Lat_Param_Min} ${Step_Size } ${Lat_Param_Max} ‘ ; do

Remember that, in the previous example, backticks ` are a very important part of the operation
as the backtick ` tells BASH to execute all code within backticks ` before running a program on
the code contained within the backticks. Choosing between backticks and parentheses for a certain
application can sometimes be ambiguous as they can have similar results. However, that is a bit
beyond the scope of the present section.

For loops can also be paired with the modulo operation % which returns the remainder of an
integer division operation. In the following example (which was inspired by an article on www.shell-
tips.com) we can check for even and odd numbers in a sequence

1 uname@uname:~> f o r a in { 1 . . 1 0 } ; do i f ((a % 2)) ; then echo "\$a=$a : odd" ; e l s e
echo "\$a=$a : even" ; f i ; done

2 $a=1: odd
3 $a=2: even
4 $a=3: odd
5 $a=4: even
6 $a=5: odd
7 $a=6: even
8 $a=7: odd
9 $a=8: even

10 $a=9: odd
11 $a=10: even

4.3.2 Until loops

As the name might imply, until loops allow for a process or series of processes or commands to
continue some condition is satisfied. This can in some regards result in similar effects to for loops
and while loops but has its own distinct advantages in some aspects. As a primer, please see the
following command which uses an until loop to create distinct, empty text files and then fills them
with some distinct text. The loop can be modified to create any n number of files controlled by a
variable $a which is incremented based on the logical counter operation ((a = a+ 1)):

68

1 uname@uname:~> a=1; un t i l [$a −gt 5] ; do touch $a . txt ; echo "He l lo ! My name i s $a .
txt ! " > $a . txt ; ((a=a+1)) ; done

2 uname@uname:~> l s ; cat ∗
3 1 . txt 2 . txt 3 . txt 4 . txt 5 . txt
4 Hel lo ! My name i s 1 . txt !
5 Hel lo ! My name i s 2 . txt !
6 Hel lo ! My name i s 3 . txt !
7 Hel lo ! My name i s 4 . txt !
8 Hel lo ! My name i s 5 . txt !
9

As just stated, the operation ((a = a+ 1)) is known as a counter and does the heavy lifting in
the previous commands. In BASH as well as many other languages, + is known as the increment
operation and − is known as the decrement operation; both of these are built-ins in BASH and
they comprise just two of a larger set of logical operations which are broadly useful.

As you may imagine, until loops can have interesting consequences if they are paired with a
logical comparison like true and false. For example, if we were to say do x while y is true then
there may be a case when y is always true. This is a neat way of making an infinite loop in BASH.
Please see the following example implementing an infinite loop with an until statement in BASH
where the command will echo the phrase ENDLESS to the terminal until the condition ’false’ is
satisfied (which it never will be in this case):

1 uname@uname:~> un t i l f a l s e ; do echo ENDLESS; s l e e p 1 ; done
2 ENDLESS
3 ENDLESS
4 ENDLESS
5 ENDLESS
6 ^C

4.3.3 While loops

While loops are common in many languages and just allow the interpreter to run a series of com-
mands while something else is happening. I find this particularly useful when creating infinite loops
to perform some operation or having a loop terminate after some condition has been met. One of
the most streamlined ways of creating an infinite loop with a while loop is the following example
where the option we give to the while loop is : which, in this context, is the special character for
the null operator which essentially says ’don’t do anything at all’:

1 uname@uname:~> whi le : ; do echo ENDLESS; s l e e p 1 ; done
2 ENDLESS
3 ENDLESS
4 ENDLESS
5 ^C

While loops can be paired with a logical operation as their option and thereby be used to create
a loop that will commence until some algebraic expression has been satisfied. Simple algebraic
expressions like greater than >, and less than < can rapidly be given to while loops as their option
too. The following example pairs a decrement operation – with the greater than operation saying
’while this variable is greater than zero, continue and for each step subtract 1 from the variable
until the conditions are exhausted:

1 uname@uname:~> x=5; whi l e ((x > 0)) ; do echo $ ((x−−)) ; done
2 5

69

3 4
4 3
5 2
6 1

We can perform a similar operation, this time using the increment operation ++ instead and
pairing it with the less than operation:

1 uname@uname:~> x=−5; whi l e ((x < 0)) ; do echo $ ((x++)) ; done
2 −5
3 −4
4 −3
5 −2
6 −1

We can perform this same sort of logical arithmetic in more complicated cases than simple addi-
tion or subtraction of 1 and instead operate with an arbitrary argument of the increment/decrement
value. The argument of the increment and decrement value is given in the second to last command
in the following examples with let "var-=n" where n is an arbitrary quantity and the -= operation
can be substituted for whichever valid operation suits your use case.

In the following example, we give a variable with initial value 100 and then decrement that value
by 25 for each step of the while loop. The conditions of the while loop say: while the variable is
greater than or equal to (the -ge option) 25, continue.

1 uname@uname:~> var=100; whi l e [$var −ge 25] ; do echo Number : $var ; l e t "var−=25" ;
done

2 Number : 100
3 Number : 75
4 Number : 50
5 Number : 25

We can also run the exact same loop as above swapping out the semicolon after the do echo
command with a double ampersand && which says ’do the next step only if the previous step has
completed successfully’:

1 uname@uname:~> var=100; whi l e [$var −ge 25] ; do echo Number : $var && l e t "var−=25"
; done

2 Number : 100
3 Number : 75
4 Number : 50
5 Number : 25

Keeping along a similar theme, we can change the argument of the greater than or equal to
parameter my modifying the numerical quantity within the square brackets like in the following.
This time, we say ’while a variable with initial condition of 100 is greater than or equal to -100,
decrement that variable by 25 for each step of the loop:

1 uname@uname:~> var=100; whi l e [$var −ge −100] ; do echo Number : $var ; l e t "var−=25"
; done

2 Number : 100
3 Number : 75
4 Number : 50
5 Number : 25
6 Number : 0
7 Number : −25
8 Number : −50
9 Number : −75

10 Number : −100

70

We can swap the type of operation being performed within the square brackets quickly to less
than or equal to by changing the operation to -le. Then we can run a similar loop as before, this
time saying ’given a variable with initial value -100, while that variable is less than or equal to 25,
increment that value 25 for each step of the loop:

1 uname@uname:~> var=−100; whi l e [$var − l e 25] ; do echo Number : $var ; l e t " var+=25"
; done

2 Number : −100
3 Number : −75
4 Number : −50
5 Number : −25
6 Number : 0
7 Number : 25

One useful case of this is the following example. We can use while to continuously print as
output to the shell a the status of a program, directory, file, etc... See the following command:

1 whi le [1] ; do c l e a r ; l s − l r t ; s l e e p 5 ; c l e a r ; done

In this example we use while [1] ; do as the beginning of this command. While [1] will loop all
of the commands following the semicolon and after issuing the do command, right up to when the
done command is issued. Parameters within the square brackets can be modified to whatever the
user really desires; however, here the [1] just makes for a convenient way of creating an infinite
while loop. Following the issue of while [1] ; do ... we have ls -lrt; sleep 5; done. The idea is that
we are just continually updating the terminal with the contents of the current directory, waiting
for 5 seconds, clearing the terminal, and then doing it all again.

This can be done in a more immediately useful way (especially when paired with a pipe to the
tee command as explained in section 4.2) by issuing the sqs command (which is a specific squeue
command for some clusters) that prints the status of a program running on a queue in a super
computer. We can use the while command in the following way then to collect information about
what the status of a program running on a cluster is:

1 whi le [1] ; do sqs ; date ; s l e e p 5 ; done

This program also calls the date command which prints the current system time to the terminal.
The output of this small program may look like the following which is a convenient way to monitor
a program in real time (some of the output of sqs has been truncated so that the output fits more
appropriately in this printed text):

1 JOBID ST USER NAME NODES TIME_LIMIT TIME SUBMIT_TIME
2 45727798 R uname TiN 16 10 :00 0 :02 2021−08−16T18 : 1 8 : 4 3
3 Mon Aug 16 18 : 18 : 48 PDT 2021
4 JOBID ST USER NAME NODES TIME_LIMIT TIME SUBMIT_TIME
5 45727798 R uname TiN 16 10 :00 0 :07 2021−08−16T18 : 1 8 : 4 3
6 Mon Aug 16 18 : 18 : 53 PDT 2021
7 JOBID ST USER NAME NODES TIME_LIMIT TIME SUBMIT_TIME
8 45727798 R uname TiN 16 10 :00 0 :12 2021−08−16T18 : 1 8 : 4 3
9 Mon Aug 16 18 : 18 : 58 PDT 2021

4.3.4 If statements: check whether a program is installed

If is another operator to which anyone with programming experience will most likely have had
some exposure. As a primer to shell scripts, we can consider the following (a useful little code

71

block that checks for whether a program is installed on your system which was adapted from some
initialization scripts from the library of Quantum Espresso example calculations):

1 # check f o r gnuplot
2 gnuplot_command=‘which gnuplot 2>/dev/ nul l ‘
3 i f ["$gnuplot_command" = ""] ; then
4 $ECHO
5 $ECHO "gnuplot not in PATH"
6 echo " I n s t a l l i n g Gnuplot"
7 sudo apt−get i n s t a l l gnuplot
8 e l s e
9 echo "Gnuplot i n s t a l l e d "

10 f i

You may peruse the program at your leisure as we will talk in more depth about this exact
block of code in the next section, however it uses the conditionality of the if statement to out
benefit. The script sets a variable (presented in backticks which tell BASH to evaluate everything
within the backticks before evaluating the remainder of the line of code, so make sure that your
system is rendering ` as a backtick and not an apostrophe) that outputs the ’which’ status of
the program called Gnuplot. Then we construct an if-statement which checks whether there was
something written to the ’gnuplot_command’ variable (it compares the contents of the variable
to the empty contents ”). In the case that there was something written, then the program will
echo to the terminal that Gnuplot is installed; in the alternative case (using the else part of the
if-statement) the program finds the variable ’gnuplot_command’ to be empty, whereupon it will
print some text to the terminal and install the program.

You can run this program for yourself by following these steps:
1) Create a file called Installation_Check.sh

1 touch Insta l l a t ion_Check . sh

2) Make the file called Installation_Check.sh executable
1 chmod +x Insta l l a t ion_Check . sh

3) Begin editing the program called Installation_Check.sh with vim
1 vim Insta l la t ion_Check . sh

4) Paste the above program into the Installation_Check.sh file using ctrl+v and then pressing
the escape button followed by :wq which will save your changes and exit vim

5) Run the program to check whether Gnuplot is installed:
1 uname@debian−micro :~ $. / Ins ta l la t ion_Check . sh
2 Gnuplot i n s t a l l e d

As you can see, we do indeed have the Gnuplot program installed as the terminal has returned
the ’Gnuplot installed’ line from our script.

In the next section, we will explore several scripts that I find to be useful and which use most
or all of what we have covered up to this point to perform useful operations and automation.

72

5 Shell Scripting: Making General Purpose Tools

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Shell scripting has broad utility in a range of situations involving computational tasks that lend
themselves well to automation. Mainly, as we’ve seen previously in this text, the shell is used to
reduce the total effort required to perform what might be otherwise excessively tedious operations
if performed with a graphical user interface (GUI), mouse, and keyboard. We’ve already seen how
useful the shell is in performing such tedious operations in the section concerning wget and curl
(3.6). In several computational physical sciences, a very common implementation of shell scripting
is calculating properties of materials with molecular dynamics (MD), density functional theory
(DFT), (I shutter to say it but due to the computational cost) GW, and all sorts of quantum
chemistry, theoretical spectroscopy, and others I’m undoubtedly forgetting.

In the next few subsections, we’ll explore some shell scripts as easy to follow ’recipes’ that I think
are worthwhile to consider for a variety of reasons. All efforts are made to explain the functionality
of these scripts point by point and make them tunable to the reader’s needs.

5.1 Make a curses-style text-based user interface with while loops and
case functions

User interfaces (UIs) are clearly ubiquitous but design of a graphical user interface (GUI) can be
tedious and unnecessary for many applications. Especially in ’headless’ systems, GUIs just would
slow everything down for many operations. Consider the older-style BIOS text-based user interface
that many of us are accustomed to, it can be navigated quickly and clearly understood without
having nearly any footprint on system resources. Curses, and ncurses are text-based user interface
(TUI) libraries that are very useful for programs which need some user instructions but where a
GUI might be overkill. There’s clearly also some strange sort of style points (at least in this author’s
opinion) to be awarded for the use of ncurses.

Let’s consider how to make a text-based user interface with the shell using a function, some
variables, and a whole bunch of echo statements. This menu program was partially inspired by
an underappreciated YouTube BASH tutorial called "Creating Command Line Menus with Shell
Scripts" by theurbanpenguin. Please see the following script:

1 #!/ bin /bash
2

3 # menu . sh
4 # Written by Steven Bopp on 18 May 2016
5

6 f unc t i on s e l e c t i o n () {
7 echo −e "\n" # Add a new l i n e with \n
8 echo −e "Enter your s e l e c t i o n \c" # Suppress a new l i n e with \c
9 }

10

11 whi le t rue
12 do
13 c l e a r # Erase the prev ious input each time t h i s b lock i s run
14 # Display menu text
15 echo "=="
16 echo "===== Programs and Tools Launch Menu ====="
17 echo "=="
18 echo "Enter 1 to launch programs"
19 echo "Enter 2 to a c c e s s system t o o l s "

73

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

20 echo "Enter 3 to manage Linux packages "
21 echo "Enter q to e x i t t h i s menu"
22 s e l e c t i o n
23

24 read answer_zero
25 case $answer_zero in # Star t primary switch case block
26

27 1) # This b lock launches the program launch menu
28 c l e a r
29 echo "=="
30 echo "========== Program Launch Menu ==========="
31 echo "=="
32 echo "Enter 1 to launch VESTA"
33 echo "Enter 2 to run nano on an e x i s t i n g f i l e "
34 echo "Enter 3 to run the Ranger f i l e e xp l o r e r "
35 echo "Enter q to e x i t the menu"
36 s e l e c t i o n
37

38 read answer_one
39 case $answer_one in
40 1) # This b lock execute s VESTA in Ubuntu .
41 cd /home/uname/Documents/Programs/VESTA/VESTA−x86_64
42 . /VESTA ; ;
43 2) # This b lock w i l l execute nano on a user input f i l e name
44 echo −e "Enter the name o f the f i l e \c"
45 read t e x t f i l e # Read user input and s t o r e as $ t e x t f i l e
46 echo "You are now ed i t i n g $ t e x t f i l e "
47 nano $ t e x t f i l e ; ; # Execute nano on $ t e x t f i l e
48 3) # Execute Ranger
49 ranger ; ;
50

51 esac # End program launch sub−menu switch case block
52 read input_one
53 ; ; # End program launcher
54

55 2) # This b lock launches the system t o o l s sub−menu
56 c l e a r
57 echo "=="
58 echo "======= System Tools Launch Menu ========="
59 echo "=="
60 echo "Enter 1 to launch htop"
61 echo "Enter 3 to run Nmap on a s p e c i f i c IPv4 address "
62 echo "Enter 4 to run Address Reso lut ion Protoco l "
63 echo "Enter 8 to r e s t a r t the network−manager s e r v i c e "
64 echo "Enter q to e x i t t h i s menu"
65 s e l e c t i o n
66

67 read answer_two
68 case $answer_two in
69 1) # This b lock launches htop
70 htop ; ;
71 3) # Execute Nmap on a user input IPv4 address
72 echo −e "Enter the IPv4 address \c"
73 read nmap
74 echo "Nmap w i l l now scan the g iven IPv4 address : $nmap"
75 Nmap $nmap ; ;
76 4) # Run l o c a l network IPv4 Address Reso lut ion Protoco l
77 echo "Host address : "

74

78 hostname −I
79 echo "Network addre s s e s : "
80 arp −a ; ;
81 8) # This b lock w i l l r e s t a r t the network−manager s e r v i c e
82 sudo s e r v i c e network−manager r e s t a r t ; ;
83 q) # This b lock execute s the e x i t command from th i s menu
84 e x i t ; ;
85

86 esac # End o f system t o o l s launch sub−menu
87 read input_two
88 ; ; # End system t o o l s sub−menu
89

90 3) # This b lock manages packages on Linux
91 c l e a r
92 echo "=="
93 echo "======== Manage Linux Packages ==========="
94 echo "=="
95 echo "Enter 1 to see i n s t a l l p o l i c y o f a program"
96 echo "Enter 2 to search f o r i n s t a l l e d p r i n t e r packages "
97 echo "Enter 3 to d e l e t e c on f i g u r a t i on and/ or data f i l e s + dependenc ies o f a

package in Ubuntu"
98 echo "Enter q to e x i t t h i s menu"
99 s e l e c t i o n

100

101 read answer_three
102 case $answer_three in
103 1) # Run sudo apt−cache po l i c y on a program
104 echo −e "Enter the name o f the program \c"
105 read program # Read user input and s t o r e as $program
106 echo "You are now ed i t i n g $program"
107 apt−cache po l i c y $program ; ; # run on $program
108

109 2) apt i tude search p r i n t e r | grep ^ i ; ;
110 3) echo −e "Enter the name o f the program \c"
111 read programa # Read user input and s t o r e as $programa
112 echo "You are now purging $programa"
113 sudo apt−get purge −−auto−remove $programa ; ;
114 q) e x i t ; ;
115

116 esac
117 read input_three
118 ; ; # End o f package manager
119

120

121 esac # End primary switch case block
122 echo −e "Enter re turn to cont inue \c"
123 read input_zero # New va r i ab l e c a l l e d input from the case statement which i s

d i sp layed
124

125 done

This script gives us the unique capability of creating a text-based user interface with the shell.
We can use this for all sorts of things, most frequently I use it for automating programs in the shell
and remembering long or tedious commands. I especially find this useful when I run a program
infrequently and would forget the specific command(s) to run said program if they were not written
down somewhere, wasting time. So, to combat that, I just usually add entries to a large, master
menu program where I store many commands and series of commands that I would have a hard

75

time remembering otherwise but I know I’ll come back to at some point. We can run the above
menu script (after making it executable with chmod; for more on ownership and executability, see
section 2.4) as follows:

1 MainUsers−iMac : Desktop mainuser$ chmod +x menu . sh
2 MainUsers−iMac : Desktop mainuser$. /menu . sh

The program will output a series of ’screens’ which can be navigated by using the number keys.
Running the above command will give the following and wait for the user’s input:

1 ==
2 ===== Programs and Tools Launch Menu =====
3 ==
4 Enter 1 to launch programs
5 Enter 2 to a c c e s s system t o o l s
6 Enter 3 to manage Linux packages
7 Enter q to e x i t t h i s menu
8

9

10 Enter your s e l e c t i o n

Entering option 3 (for example) will result in the display of the following screen:
1 ==
2 ======== Manage Linux Packages ===========
3 ==
4 Enter 1 to see i n s t a l l p o l i c y o f a program
5 Enter 2 to search f o r i n s t a l l e d p r i n t e r packages
6 Enter 3 to d e l e t e c on f i gu r a t i on and/ or data f i l e s + dependenc ies o f a package in

Ubuntu
7 Enter q to e x i t t h i s menu
8

9

10 Enter your s e l e c t i o n

As you can see, this is a remarkably simple way to collate all sorts of programs and commands
into one agile and easy to modify script. The individual blocks can be modified to have any content
you wish and the ’levels’ of navigation can be increased with the addition of more blocks within
other blocks. Modularity is ’baked in’ here intentionally to make it simple to change functionality
rapidly and without having to remember complicated scripting commands.

The only shortcoming of this script is that its all controlled with a single while loop. This means
that if we wanted to do something like deploy the script with additional options (like what you’d
see in other shell programs e.g., -v, -i, etc...) we couldn’t do that without significant hassle. Later
on in this text, I’ll show how to create a similar menu which has the ability to be run with options
based on the program called getopts and construction of the code using functions instead of while
loops. Implementations of scripts with getopts will be discussed at length in section 5.5.

5.2 Make a timer in the shell (for use within scripts) using variables and
built-in math functions

One useful trick in the shell is to create a timer inline with the BASH commands. This is helpful
especially when you are running programs locally and want to see how long each successive step has
taken. I use this methodology when running Quantum Espresso calculations on my local machines
because I like to get a baseline reading of how long calculations will take to converge before passing
them to a remote supercomputer.

76

The timer script is simple and supplied with a lot of placeholders where it is intended that you
can paste your own code. All this script does is to create a master variable called ’START_TIME’
which stores a number of seconds. After this, at each step in the run of the script, we use the
simple mathematical functionality in BASH built-ins to calculate the elapsed seconds between the
start time and the current time, store that output as a new variable, and then echo the value of
that variable to the terminal. Please see the following script:

1 #!/ bin /bash
2

3 START_TIME=$SECONDS # Begin e lapsed time measurement
4 # Timer here i n s p i r e d by Tom Anderson from StackOverf low
5

6 #−:
7 #−:−:−:−:−:−:−:−:−: Begin Ca l cu l a t i on D i r e c t i on s −:−:−:−:−:−:−:−:−:
8 #−:
9

10 # In s e r t some s h e l l code here , perhaps a d i r e c t i o n s f o r the s c r i p t
11

12 ELAPSED_TIME1=$ (($SECONDS − $START_TIME))
13 echo " I t has been $ELAPSED_TIME1 seconds "
14

15 echo " Task 1 complete " ; s l e e p 1
16

17 #−:
18 #−:−:−:−:−:−:−: Begin Non−Se l f−Cons i s t ent Ca l cu l a t i on :−:−:−:−:−:−:
19 #−:
20

21 # In s e r t some s h e l l code here , perhaps a c a l c u l a t i o n
22

23 ELAPSED_TIME2=$ (($SECONDS − $START_TIME))
24 echo " I t has been $ELAPSED_TIME2 seconds "
25

26 echo " Task 2 complete " ; s l e e p 1
27

28 #−:
29 #−:−:−:−:−:−:−:−:−:− Begin ep s i l o n . x Ca l cu l a t i on −:−:−:−:−:−:−:−:−:
30 #−:
31

32 # In s e r t some s h e l l code here , perhaps a c a l c u l a t i o n
33

34 ELAPSED_TIME3=$ (($SECONDS − $START_TIME))
35 echo " I t has been $ELAPSED_TIME3 seconds "
36

37 echo " Task 3 complete " ; s l e e p 1
38

39 #−:
40 #−:−:−:−:−:−:−:−:−:− Create Au_Permittivity . dat :−:−:−:−:−:−:−:−:−:
41 #−:
42

43 # In s e r t some s h e l l code here , perhaps c r e a t i n g a f i l e with cat
44

45 ELAPSED_TIME4=$ (($SECONDS − $START_TIME))
46 echo " I t has been $ELAPSED_TIME4 seconds "
47

48 echo " Task 4 complete " ; s l e e p 1
49

50 #−:

77

51 #−: Begin P lo t t i ng with Gnuplot (Assuming That I t i s I n s t a l l e d) :− :
52 #−:
53

54 # In s e r t some s h e l l code here , perhaps p l o t t i n g something . . .
55

56 ELAPSED_TIME5=$ (($SECONDS − $START_TIME))
57 echo " I t has been $ELAPSED_TIME5 seconds "
58

59 echo " Task 5 complete " ; s l e e p 1
60

61 #−:
62 #−:−:−:−:−:−:−:−:−:− End Elapsed Time Measurement :−:−:−:−:−:−:−:−:−:
63 #−:
64

65 ELAPSED_TIME=$ (($SECONDS − $START_TIME))
66 echo " I t has been $ELAPSED_TIME seconds "
67

68 echo " Job Completed ! "

In this example script, we use the BASH built-in called sleep. All sleep does here is to delay
the next operation in the script for a set amount of time. Sleep can be a very useful command in
loops which do not need to have a continuous duty cycle like what we will see when we discuss web
scraping with the shell in section 5.3. Running this script after making it executable with chmod as
discussed in section 2.4 (with the sleep function as a dummy placeholder for some other operation)
returns the following output to the terminal:

1 MainUsers−iMac : Desktop mainuser$ chmod +x timer . sh
2 MainUsers−iMac : Desktop mainuser$. / t imer . sh
3 I t has been 0 seconds
4 Task 1 complete
5 I t has been 1 seconds
6 Task 2 complete
7 I t has been 2 seconds
8 Task 3 complete
9 I t has been 3 seconds

10 Task 4 complete
11 I t has been 4 seconds
12 Task 5 complete
13 I t has been 5 seconds
14 Job Completed !
15 MainUsers−iMac : Desktop mainuser$

5.3 BASH web scraping HTML using Gnuplot, lynx, awk, sed, and bc
(and checking for installed programs with if statements)

Web scraping has become a super popular topic lately for all sorts of applications involving the
automated collection of data. Stock trading and price monitoring are one very interesting example
of this technology but, as an easy way to introduce web scraping, we will consider the collection
of weather information from a micro weather station. In order to do our web scraping here, we
will rely on a few shell programs including lynx, awk, sed, and bc (the bc calculator is discussed
at length in section 3.12). Furthermore, we will visualize the results completely headless in the
terminal with the Gnuplot software package (discussed more in section 3.8).

Absolutely none of the following text (or any of the text within this document) is intended to be
legal advice!

78

Do your own research and make sure that your implementation(s) of web scraping are 100%
legal. Web scraping is, in general terms, the process of automatically collecting information from
the internet (or a network) in general and/or an individual website for the purposes of cataloging,
databasing, owning, re-distributing, or using in any means information relevant to the interests of
the collector. Web scraping may be a bit of a gray area at the current time, legally speaking. It
appears to be legal to use instrumented browsers or scripts to collect data from any legally and
publicly accessible website so long as the contents are not malicious or illegal and do not interfere
with copyright or other rights held by the owners of the content; however, I am not a lawyer and
cannot verify or deny these the legality of things.

The reason I bring this up is that there seems to be a blurred line between distributed denial of
service (DDoS) attacks and web scraping in the case when web scraping is done at very high refresh
rates. That is to say, if your web scraper is asking a server for lots of information many times per
second or per minute and it is inadvertently (or intentionally) hogging lots of that server’s resources
to the detriment of that server or its owner, then that script is having a similar effect as a DDoS
attack. At the current time, as far as I can tell, DDoS is an illegal operation. My recommendation
is to not do illegal things, and especially to not use the information contained within this text to
do illegal things.

The web scraping script supplied in the following is divided into four sections that all have their
own specific uses. The first section is easiest to describe. All we do here in the first section is to
check that lynx, bc, and Gnuplot are installed and, in the event that they are not, install them.
The way this is achieved is through three if/else statements that individually use the BASH built-in
called ’which’ to check whether a program has been installed in the path. The value of where that
program is (or is not) within the path is then stored as a variable where it is compared conditionally
to an if/else statement. Nothing much happens in the if/else statement if the program is installed
but in the event that the program is not installed, the ’else’ portion of the statement will install
the program.

After that (still in the first section of the script), I use the built-in called timedatectl to change
the time zone to be PDT (which is the timezone in which the weather station that we’ll be scraping
is located). Finally in this section, I create a variable to store the current data and then pass that
variable to a new variable called File_Name which will always be unique for each new run of the
script because it will always be prepended with the unique date on which the script was run. There
is also a section of code near the very beginning that is commented out, I use this sort of header
as a copy and paste on most of my scripts when I am working on a remote machine. The purpose
of this chunk of code (please leave it commented out) is to create a new file that can contain the
script which follows. This is very useful on remote machines because you can copy and paste the
line of code (without the comment mark) into the terminal on the remote machine and then paste
your script into vim, write and quit from vim, and then the script will be run automatically. Note
that the script will be run with no hangups (nohup) and that there is a fork at the end of that
commented line of code so the program can run in the background.

In the second part of the web scraper script, all we are doing is creating a new empty file which
will be named based on the value of the variable ${File_Name} which we defined in the previous
section of code. This is done quickly using cat and redirecting all of that output until cat sees the
string EOF (for more on cat and similar commands, see section 2.2.2). Additionally, for archival
purposes, the data file has a header added which tells the contents of each of the columns and
their units which are going to be written into the file. It is important that the header of this file is
contained within quotation marks because that way it will not be considered by plotting programs

79

like Gnuplot. Finally, just as an aesthetic touch (and to see that the program has reached a certain
’checkpoint’), I have the script echo to the terminal that it is writing the file called ${File_Name}.

In the third section of the web scraper script, we create a program that can plot the data
contained within the data file we previously created. The name of this script is Weather_Plotter.sh
and will be able to be run with ./Weather_Plotter.sh after we run the main web scraper script. If
you are familiar with Gnuplot, then this may be relatively straightforward to you, there are however
some aspects that I customize to make the functionality of the plotting program more functional.
We use cat the normal way to redirect the following output, except in this instance we put EOF
into quotation marks so that BASH will not mess with any of the variables contained inside the
script. Then we create two variables that are made by searching the data file we are scraping into
using the awk command (somewhat humorously this could be called a scraper scraper program
maybe?). Awk here is used to check the data file for the UNIX times corresponding to the start
time of the data and the end time of the data, these are useful for making the data plotting more
streamlined. What follows until the EOF string is a script that Gnuplot will recognize. This script
that Gnuplot will recognize is created again using cat, however we use the exclamation mark as the
end condition so as to not interfere with the "EOF" end condition of the parent script.

The Gnuplot script is relatively straightforward but contains a few nice tricks that I will explain
here. Since I run these scripts on a remote machine in the Google cloud without any GUI, and
because I want to be able to visualize the data quickly, we want to be able to make plots and
visualize them all within the terminal and not have to use a GUI program. Gnuplot has a terminal
style called ’dumb’ which allows us to do exactly that. The ’dumb’ Gnuplot terminal will give us
a direct output to the terminal of the plot we ask for based on the data that we give to Gnuplot.
We have to tell Gnuplot that the data going into the x-axis is going to be time and then we set
the format to seconds using the command "%s". I do this specifically because I think it’s easy to
work with UNIX time which is all in seconds since January 1st, 1970 at UTC. The UTC part of
the UNIX time is annoying to me however so later on I covert this in the code to Pacific time so
that the plot won’t have a rigid offset relative to my timezone. I then set the x-axis of the plot
to have a specific data labeling where the month and the day appear just above the hour and the
minute. The fanciest part of this script is that we then use the previously defined start and end
date variables that we collected with awk to automatically set the x-range in the script. After that
we plot the data from the file using the ’p’ function in Gnuplot (which could be replaced by the
’plot’ function, ’p’ is just the shorthand which is nice most of the time) using lines and we also
suppress the title of the data set in the final plot. Finally we write that to the disk and change the
script’s mode so that it is executable.

Finally, the fourth section of this script titled as ’Scraping Loop’ is where the all of the scraping
is actually done. Everything up to this point has just been setup. To start, this part of the script
prints some status text to the terminal and then begins a while loop that will run infinitely or until
the program is killed. This while loop contains all of the remainder of the code and is set to run
and then re-run with an interval of 10 minutes which is defined by the sleep function at the end
of the script. The while loop starts by using lynx to dump the contents of an HTML page into
a nicely formatted .txt file. An output of this lynx command can be seen below, please note that
there is a lot of extra text at the end of the file that we don’t specifically want (everything after
’References’).

1 debian−micro@debian−micro :~ $ cat lynx_dump . txt
2 REFRESH(61 sec) : [1] https : // hpwren . ucsd . edu/ Sensors /SDSC/
3 HPWREN mult i cast−based weather s t a t i o n data d i sp l ay
4 20210822 19 : 47 : 40 − UCSD San Diego Supercomputer Center : 32 .88N 117.24W

80

5 400 ’
6 This s enso r i s a Davis met s t a t i o n
7 graphs are s i n c e midnight two days ago
8 [2] Outside a i r temperature 19 .3 Ce l s i u s 66 .8 Fahrenheit
9 [3] I n s i d e a i r temperature 25 .2 Ce l s i u s 77 .3 Fahrenheit

10 [4] Outside r e l a t i v e humidity 88 percent
11 [5] I n s i d e r e l a t i v e humidity 49 percent
12 [6]Wind d i r e c t i o n 322 degree s
13 [7]Wind speed 0 .4 meter/ second 1 mi l e s /hour
14 [8] 1 0min wind speed 1 .8 meter/ second 4 mi l e s /hour
15 [9] Air p r e s su r e 1003 m i l l i b a r
16 [1 0] So la r r ad i a t i on 0 watts /(meter ^2)
17 [1 1]UV 0 UV Index /10
18 [1 2] Rain ra t e 0 c l i c k s /hour
19 [1 3] D i sc la imer
20 Refe rences
21 1 . https : // hpwren . ucsd . edu/ Sensors /SDSC/
22 2 . https : // hpwren . ucsd . edu/ cg i−bin /Davisgraph . p l ? s =198.202.124.3−HPWREN:SDSC:

Davis :1 :0&p=OAT&t=UCSD at SDSC&y=Ou
23 t s i d e a i r temperature in degree s Fahrenheit
24 3 . https : // hpwren . ucsd . edu/ cg i−bin /Davisgraph . p l ? s =198.202.124.3−HPWREN:SDSC:

Davis :1 :0&p=IAT&t=UCSD at SDSC&y=In
25 s i d e a i r temperature in degree s Fahrenheit
26 4 . https : // hpwren . ucsd . edu/ cg i−bin /Davisgraph . p l ? s =198.202.124.3−HPWREN:SDSC:

Davis :1 :0&p=ORH&t=UCSD at SDSC&y=Ou
27 t s i d e r e l a t i v e humidity in percent
28 5 . https : // hpwren . ucsd . edu/ cg i−bin /Davisgraph . p l ? s =198.202.124.3−HPWREN:SDSC:

Davis :1 :0&p=IRH&t=UCSD at SDSC&y=In
29 s i d e r e l a t i v e humidity in percent
30 6 . https : // hpwren . ucsd . edu/ cg i−bin /Davisgraph . p l ? s =198.202.124.3−HPWREN:SDSC:

Davis :1 :0&p=WD&t=UCSD at SDSC&y=Win
31 d d i r e c t i o n in degree s

We do not want that extra text I mentioned because we will begin after this to catalog and
parse the data using awk. The way I have it set up, awk would output several items instead of a
single item (we would ideally like the data that we are scraping not have extra junk along with it)
unless we cut away that excess text. To simply get rid of that extra text we use the sed command
with the -i option which allows you to edit files in place. sed is instructed here to look for a string
’References’ and then to delete everyting after that string with the $d command. Now that we have
cleaned up the data a bit so it is more conducive to our purposes, we will extract all of the useful
information from it. This is done simply with the awk command and a separate variable; the awk
command is run for every data point that we want to scrape. All of these commands use awk to
search the file for a string and then print a field specified by $ and then the number of the field. A
field is given here as a string which could be separated from other strings using spaces. So if you
had say 4 strings on a line all separated by spaces, the first string would also be the first field, the
second string would also be the second field, etc... until the final string being the final field. The
field numbers and the strings to search for within the text file are given by the writer of the script,
this is not an automated process here. Awk reads the data from the text file generated by lynx and
then creates a variable for each piece of data.

Finally, after we have used awk to create our variables, we create a few date variables so we can
plot the data easily. A new variable called Date is created using the date builtin and formatting
it as dd-mm-yyyy-hh-mm-ss (yyyy is because we used capital Y instead of lower case y, if we had
used the lower case we would only get yy for the year formatting). A UNIX time variable is then

81

created by converting the date into seconds using the date builtin command. Next we create a
variable (Pacific_Time) which changes the UTC UNIX time to the PDT UNIX time, this is done
using the program bc. Here we create a new variable Pacific_Time whose contents are the current
UNIX time - 25200 which is the number of seconds difference between UTC and PDT time. This is
achieved using bc where we use the scale command to choose a number of significant figures for bc
to calculate to and then piping the calculation into bc. Finally, all of these variables are echoed into
a string with single spaces separating data points and then appended to the data file we created
using the the » redirect. The program then waits 10 min and starts all over again.

Please see the following shell script which is the web scraper in its entirety. If you want to run
it yourself, please ensure that lynx is installed on your system as that is the only non-standard
package:

1 #!/ bin /bash
2 #−:
3 #−:−:−:−:−:−:−:−:−:−:−: Weather_Scraper . sh −:−:−:−:−:−:−:−:−:−:−:−:
4 #−:
5

6 #Fi l e="Weather_Scraper . sh " ; touch ${ F i l e } ; chmod +x ${ F i l e } ; vim ${ F i l e } ; nohup . / ${
F i l e } &

7

8 echo " Checking f o r lynx and bc packages . . . "
9

10 # check f o r lynx
11 lynx_command=‘which gnuplot 2>/dev/ nul l ‘
12 i f ["$lynx_command" = ""] ; then
13 $ECHO
14 $ECHO " lynx not in PATH"
15 echo " I n s t a l l i n g lynx "
16 sudo apt−get i n s t a l l lynx
17 e l s e
18 echo " lynx i n s t a l l e d "
19 f i
20 # check f o r bc
21 bc_command=‘which gnuplot 2>/dev/ nul l ‘
22 i f ["$bc_command" = ""] ; then
23 $ECHO
24 $ECHO "bc not in PATH"
25 echo " I n s t a l l i n g bc"
26 sudo apt−get i n s t a l l bc
27 e l s e
28 echo "bc i n s t a l l e d "
29 f i
30 # check f o r gnuplot
31 gnuplot_command=‘which gnuplot 2>/dev/ nul l ‘
32 i f ["$gnuplot_command" = ""] ; then
33 $ECHO
34 $ECHO "gnuplot not in PATH"
35 echo " I n s t a l l i n g Gnuplot"
36 sudo apt−get i n s t a l l gnuplot
37 e l s e
38 echo "Gnuplot i n s t a l l e d "
39 f i
40 echo " done"
41

42 sudo t imeda t e c t l set−t imezone America/Los_Angeles # Set TZ PDT
43

82

44 Date=$ (date ’+%d−%m−%Y−%H−%M−%S ’) # Set date / time formatt ing
45 File_Name=${Date}_UCSD_Weather . dat # Create a dated f i l e name
46

47 #−:
48 #−:−:−:−:−:−:−:−:−:−:−:− Create data f i l e :−:−:−:−:−:−:−:−:−:−:−:−:
49 #−:
50

51 cat > ${File_Name} << EOF
52 "YYYYMMDD HH:MM: SS Date_Retrieved_%d−%m−%Y−%H−%M−%S Unix_Time Unix_Time−>

Pacific_Time Temp(C) Temp(F) Humidity(%) Wind_Dir . (deg .) Wind_Speed(mi/hr)
Air_Pressure (m i l l i b a r) UV(Index /10) Rain_Rate (c l i c k s /hr) "

53 EOF
54

55 echo " Writing f i l e ${File_Name } . . . " ; echo " done"
56

57 #−:
58 #−:−:−:−:−:−:−:−:−: Create data p l o t t e r program :−:−:−:−:−:−:−:−:−:
59 #−:
60

61 cat > Weather_Plotter . sh << "EOF"
62 #!/ bin /bash
63

64 F i l e=${File_Name} # Can be rep laced with s t a t i c f i l e name
65

66 Start_Date=$ (awk ’ { i f (NR==2) p r i n t $5} ’ ${ F i l e })
67 End_Date=$ (awk ’END { pr in t $5 } ’ ${ F i l e })
68 # Search f i l e f o r UNIX time where data s t a r t s and ends
69

70 ## Plot Data with Gnuplot
71 gnuplot <<!
72 s e t t e rmina l dumb s i z e 100 ,50
73 s e t x l ab e l "Date"
74 s e t y l ab e l "Degrees F"
75 s e t xdata time
76 s e t timefmt "%s"
77 s e t format x "%m/%d\n%H:%M" # s e t s x−ax i s fo rmatt ing \n = newl ine
78 s e t xrange ["$Start_Date" : "$End_Date"] # s e t xrange [1628825426 :1628859039] #

Change to s t a r t and end po in t s o f the Pa c i f i c Unix Time # Thanks to Mark
S e t c h e l l from Stack Overflow

79 p ’ ${ F i l e } ’ u 5 :7 with l i n e s n o t i t l e # Change f i l e name f o r your needs
80 !
81 EOF
82

83 echo " Writing f i l e Weather_Plotter . sh . . . " ; echo " done"
84 chmod +x Weather_Plotter . sh
85

86 #−:
87 #−:−:−:−:−:−:−:−:−:−:−:−:− Scraping Loop −:−:−:−:−:−:−:−:−:−:−:−:−:
88 #−:
89

90 echo " Scraping from https : // hpwren . ucsd . edu/ Sensors /SDSC / . . . "
91 echo " Writing to ${File_Name } . . . "
92

93 whi le [1] ; do
94

95 lynx −−dump https : // hpwren . ucsd . edu/ Sensors /SDSC/ > lynx_dump . txt
96 # Dump contents o f html page in to a n i c e l y formatted . txt f i l e
97 sed − i ’ / Re fe rences / , $d ’ lynx_dump . txt

83

98 # Use sed to d e l e t e ($d) a l l l i n e s a f t e r and in c l ud ing the word "Re fe rences " to make
awk return only s i n g l e s t r i n g s , the as−c rea ted lynx_dump . txt f i l e w i l l have
ext ra junk at the end which would bother our va r i ab l e c r e a t i on with awk
otherwi se

99

100

101 # Parse lynx_dump . txt with awk , use that to c r e a t e v a r i a b l e s :
102

103 Day=$ (awk ’ /San Diego Supercomputer /{ p r i n t $1} ’ lynx_dump . txt)
104 # Make var with awk from f i e l d 1 , data format : YYYYMMDD
105 Time=$ (awk ’ /San Diego Supercomputer /{ p r i n t $2} ’ lynx_dump . txt)
106 # Make var with awk from f i e l d 2 , data format : HH:MM: SS
107 Temp_c=$ (awk ’ /Outside a i r temperature /{ p r i n t $4} ’ lynx_dump . txt)
108 # Make var with awk from f i e l d 4 , data format : Ce l s i u s
109 Temp_f=$ (awk ’ /Outside a i r temperature /{ p r i n t $6} ’ lynx_dump . txt)
110 # Make var with awk from f i e l d 6 , data format : Fahrenheit
111 Humidity=$ (awk ’ / r e l a t i v e humidity /{ p r in t $4} ’ lynx_dump . txt)
112 # Make var with awk from f i e l d 4 , data format : Percent r e l a t i v e
113 Wind_Direction=$ (awk ’ /Wind d i r e c t i o n /{ p r in t $3} ’ lynx_dump . txt)
114 # Make var with awk from f i e l d 3 , data format : Degrees
115 Wind_Speed=$ (awk ’ /Wind speed /{ p r in t $3} ’ lynx_dump . txt)
116 # Make var with awk from f i e l d 3 , data format : Mi les per hour
117 Air_Pressure=$ (awk ’ /Air p r e s su r e /{ p r i n t $3} ’ lynx_dump . txt)
118 # Make var with awk from f i e l d 3 , data format : M i l l i b a r
119 UV=$ (awk ’ /UV/{ pr in t $2} ’ lynx_dump . txt)
120 # Make var with awk from f i e l d 2 , data format : UV Index /10
121 Rain_Rate=$ (awk ’ /Rain ra t e /{ p r i n t $3} ’ lynx_dump . txt)
122 # Make var with awk from f i e l d 3 , data format : C l i ck s per hour
123

124 Date=$ (date ’+%d−%m−%Y−%H−%M−%S ’) ; Unix_Time=$ (date ’+%s ’)
125 Pacific_Time=$ (echo " s c a l e =2;($Unix_Time − 25200) " | bc)
126

127 echo $Day $Time $Date $Unix_Time $Pacif ic_Time $Temp_c $Temp_f $Humidity
$Wind_Direction $Wind_Speed $Air_Pressure $UV $Rain_Rate >> ${File_Name} #
Append new data to . dat f i l e

128

129 s l e e p 10m # S i t e found to update every 1 minute
130

131 done

A sample of the data file output of this script is given as follows:
1 debian−micro@debian−micro :~ $ cat 14−08−2021−06−38−45_UCSD_Weather_Report . dat
2 "YYYYMMDD HH:MM: SS Date_Retrieved_%d−%m−%Y−%H−%M−%S Unix_Time Unix_Time−>

Pacific_Time Temp(C) Temp(F) Humidity(%) Wind_Dir . (deg .) Wind_Speed(mi/hr)
Air_Pressure (m i l l i b a r) UV(Index /10) Rain_Rate (c l i c k s /hr) "

3 20210814 06 : 38 : 19 14−08−2021−06−38−45 1628948325 1628923125 19 .2 66 .6 100 17 0 .0
1012 0 0

4 20210814 06 : 48 : 38 14−08−2021−06−48−45 1628948925 1628923725 19 .4 66 .9 100 14 0 .0
1012 0 0

5 20210814 06 : 58 : 07 14−08−2021−06−58−46 1628949526 1628924326 19 .4 66 .9 100 14 0 .0
1012 0 0

6 20210814 07 : 08 : 26 14−08−2021−07−08−46 1628950126 1628924926 19 .6 67 .3 100 14 0 .0
1012 0 0

7 20210814 07 : 17 : 54 14−08−2021−07−18−46 1628950726 1628925526 19 .9 67 .9 100 14 0 .0
1012 0 0

8 20210814 07 : 28 : 25 14−08−2021−07−28−46 1628951326 1628926126 20 .2 68 .3 100 14 0 .0
1012 0 0

9 20210814 07 : 38 : 44 14−08−2021−07−38−47 1628951927 1628926727 20 .2 68 .4 100 14 0 .0

84

1012 0 0
10 20210814 07 : 48 : 13 14−08−2021−07−48−47 1628952527 1628927327 20 .3 68 .6 100 85 2 .2

1012 0 0
11 20210814 07 : 58 : 38 14−08−2021−07−58−47 1628953127 1628927927 20 .5 68 .9 100 59 1 .3

1012 5 0
12 20210814 08 : 07 : 47 14−08−2021−08−08−47 1628953727 1628928527 20 .8 69 .4 100 59 0 .0

1012 6 0

85

The Gnuplot output in my case looks like the following plot with degrees F on the y-axis and
the date in mm/dd with the time below that on the x-axis:

1 debian−micro@debian−micro :~ $. / Weather_Plotter . sh
2 76 +−−+
3 | ∗ + + + + + + + + |
4 | ∗ |
5 | ∗ |
6 | ∗ ∗ |
7 | ∗ ∗∗ ∗∗∗ |
8 | ∗ ∗∗ ∗∗∗ |
9 74 |−+∗ ∗∗ ∗∗∗ +∗|

10 | ∗∗ ∗∗ ∗∗∗ ∗ |
11 | ∗∗ ∗∗ ∗∗∗ ∗ |
12 | ∗∗ ∗∗∗ ∗∗∗ ∗ |
13 | ∗ ∗ ∗∗ ∗ ∗∗∗ ∗ |
14 | ∗ ∗ ∗ ∗ ∗∗∗ ∗ |
15 | ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ |
16 | ∗ ∗ ∗∗∗∗∗ ∗ ∗ ∗∗ ∗ ∗ |
17 72 |−∗ ∗∗ ∗∗∗∗∗ ∗ ∗ ∗∗ ∗ +∗|
18 | ∗ ∗∗ ∗∗∗∗∗ ∗ ∗ ∗ ∗ ∗ |
19 |∗∗ ∗∗ ∗∗∗∗∗ ∗ ∗ ∗ ∗∗ ∗ |
20 |∗∗ ∗∗ ∗∗∗∗∗∗ ∗ ∗ ∗ ∗∗ ∗ |
21 |∗∗ ∗∗ ∗ ∗∗∗∗ ∗ ∗ ∗ ∗ ∗∗ |
22 |∗∗ ∗ ∗ ∗∗∗ ∗ ∗ ∗ ∗ ∗∗ |
23 |∗ ∗ ∗ ∗∗∗ ∗ ∗ ∗∗ ∗ ∗∗ |
24 70 |∗+ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗−|
25 |∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ |
26 |∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗ |
27 |∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗∗∗∗∗ ∗ |
28 |∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗∗ ∗ |
29 |∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗∗ |
30 |∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗ |
31 68 |−+ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ +−|
32 | ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗∗ |
33 | ∗ ∗ ∗ ∗ ∗∗∗ ∗∗ |
34 | ∗ ∗ ∗∗∗ ∗ ∗ ∗∗ |
35 | ∗∗ ∗ ∗∗∗∗ ∗ |
36 | ∗∗ ∗ ∗∗∗ |
37 | ∗ ∗ ∗∗ |
38 | ∗∗∗∗∗ |
39 66 |−+ ∗∗∗∗ +−|
40 | ∗∗ |
41 | |
42 | |
43 | |
44 | |
45 | + + + + + + + + + |
46 64 +−−+
47 08/14 08/15 08/15 08/16 08/16 08/17 08/17 08/18 08/18
48 12 :00 00 :00 12 :00 00 :00 12 :00 00 :00 12 :00 00 :00 12 :00
49 Date

5.4 Use functions to make a user interface video editor script with ffmpeg
The following script was born out of a need to quickly edit a video presentation for a SPIE talk I
was recording during the 2020 pandemic for my Ph.D. research. I was having lots of trouble editing

86

the video and encoding it using iMovie and other tools that I had available to me at the time.
In the heat of my frustration at not getting things to work properly for some strange file format
reason, I Googled as a humorous aside something about how to edit videos in the terminal. What I
discovered, fully expecting nothing at all, was that there are really excellent tools for editing video
in the shell! One of the most popular of these is called ffmpeg.

I want to give special thanks to the guide from arj.no/2018/05/18/trimvideo/ for help learning
about some of the ffmpeg commands, this person’s guide was very helpful to me and some of the
commands here are inspired by those examples.

This script is used to make modifications to video files. One example of this being useful is if you
have a bit of dead air or an unwanted part at the beginning or the end of an audio/video recording.
This can be tedious to extract by some means but with the shell it can be a breeze actually. This
script follows a similar path to the example where we discuss making a text-based user interface
but it purely uses functions that have a switch case and it all runs inside of a while loop. This will
become very valuable in section 5.5 because we will show how to create a shell script that can run
with specific options (by options I mean things like $ program_name -o -v -...)

1 #!/ bin /bash
2

3 f unc t i on s e l e c t i o n () {
4 echo −e "\n" # Add a new l i n e with \n
5 echo −e "Enter your s e l e c t i o n \c" # Suppress a new l i n e with \c
6 }
7

8 f unc t i on menu () {
9 c l e a r # Erase the prev ious input each time t h i s b lock i s run

10 echo "=="
11 echo "========== ffmpeg video ed i t o r ==========="
12 echo "=="
13 echo "Enter 1 : ffmpeg cuts a movie between two times "
14 echo "Enter 2 : ffmpeg ex t r a c t s a f i x ed durat ion o f a movie"
15 echo "Enter q : e x i t t h i s menu"
16 s e l e c t i o n
17

18 read answer_one
19 case $answer_one in # Star t primary switch case block
20

21 1) # Se l e c t a por t i on o f a movie to keep and remove the r e s t
22 echo −e "What ’ s the name o f the f i l e you ’ d l i k e to cut ?"
23 read f i lename_in # Read user input and s t o r e as $f i lename_in
24 echo −e "What would you l i k e your r e s u l t i n g f i l e to be named?"
25 read f i lename_out # Read user input and s t o r e as $f i lename_out
26 echo −e " Spec i f y s t a r t and end times next . . . "
27 echo −e " Please g ive the new s t a r t time . hh :mm: s s "
28 read t ime_start # Read user input and s t o r e as t ime_start
29 echo −e " Please g ive the new end time . hh :mm: s s "
30 read time_end # Read user input and s t o r e as time_end
31 f fmpeg − i $ f i l ename_in −s s $t ime_start −to $time_end −c : v copy −c : a copy

$fi lename_out
32 ; ;
33

34 2) # Extract a durat ion o f a movie with a given s t a r t i n g time
35 echo −e "What ’ s the name o f the f i l e you ’ d l i k e to cut ?"
36 read f i lename_in # Read user input and s t o r e as $f i lename_in1
37 echo −e "What would you l i k e your r e s u l t i n g f i l e to be named?"
38 read f i lename_out # Read user input and s t o r e as $f i lename_out1

87

39 echo −e " Spec i f y v ideo s t a r t time and video durat ion next . . . "
40 echo −e "Give de s i r ed durat ion o f the r e s u l t i n g video hh :mm: s s "
41 read durat ion # Read user input and s t o r e as durat ion
42 echo −e "Give video cut s t a r t i n g time hh :mm: s s "
43 read t ime_start # Read user input and s t o r e as time_end
44 f fmpeg − i $ f i l ename_in −s s $t ime_start −t $durat ion −c : v copy −c : a copy

$fi lename_out
45 ; ;
46

47 q) e x i t # This b lock execute s the e x i t command on the menu
48 ; ; # End menu ex i t command command
49

50 esac # End primary switch case block
51 echo −e "Enter re turn to cont inue \c"
52 read input_one # New user−input va r i ab l e c a l l e d input_one
53

54 } # End o f menu func t i on
55

56 whi le [1] ; do menu ; done # Runs menu func t i on

Obviously ffmpeg can be run on its own without a script, this was just a convenient way to show
how to make a menu of options with functions instead of completely with while loops (like in the
curses-style text-based user interface example given in section 5.1) at the same time. An example
of a properly formatted ffmpeg command could be as follows for a .mp4 formatted video file:

1 f fmpeg − i SPIE_Presentation .mp4 −s s 00 : 00 : 00 −to 00 : 14 : 00 −c : v copy −c : a copy
SPIE_Presentation_Trimmed .mp4

5.5 Scripting with custom options using getopts, for, if, and while state-
ments, as well as exit and shift conditions

Custom options are something that we see in almost every professionally made shell program that
we run in the terminal. One example that we talked about was the options when using tar that
we discussed in section 2.2.4. Specifically, we pointed out that running tar without the -v option
suppressed its output. This is what options are great for: they give you a choice of whether or
not to implement certain features of a program. If you are a curious reader, you may have already
wondered up to this point how we might go about adding our own options that can be run with
our programs. In this section, I will show you how to do exactly that using a BASH built-in called
getopts.

Getopts is a utility that allows you to retrieve arguments about what options you want to have
applied to the execution of a script based on a list of parameters that are included in that script.
For various reasons, using getopts is vastly easier when you have your program defined as a set of
functions like we discussed in section 5.4. That way you can have getopts control and execute your
functions within while loops for your various parameters (the options) and have your script default
to user-defined functions in the event that no additional options are given.

A large amount of what I have learned about how to use getopts and options came from my
reading through the source code of a program for DFT work called WanT. So I would like to thank
the team of developers working on the WanT code because a lot of my knowledge of how to use
options and getopts comes from my tinkering with and adaptation of some of their code. For
anyone interested, the specific program in the WanT code is called run.sh. Additionally, I want to
thank kammerl.de/ascii/AsciiSignature.php and its creator for the standard font ASCII art! If you

88

haven’t yet, you may consider checking it out for yourself, the developer of that website made it a
fantastic resource for creative and fun ASCII art projects that you can incorporate into your own
code!

Because I want these chunks of code to be easily readable and also very quickly implementable
into your own programs, I am including only a minimally functional main portion of this script and
choosing to focus mainly on the use of getopts. This script is similar to the previous in that it is
a few menus and sub-menus all defined with functions. Getopts then takes over and controls how
the functions behave based on options that are supplied when running the program. The part of
this script containing all the functions is highly truncated as well.

One note here is that having a little bit of extra ’breathing room’ in your code and plenty of
comments is very vital for human-readability and reference when you come back to your code after
not having looked at it for a long time. Nevertheless, the header portion of this code is very similar
to the script for editing a video file with ffmpeg (see section 5.4) and you should be able to see
exactly what its doing without too much hassle.

The following code is divided into three sections. The first is what we just talked about in the
previous paragraph and is only minimally functional so that the script isn’t too bulky and crowded.
The second section gives several variables that we will apply within the getopts. And the third
section contains all of the getopts commands as well as what the script should do in the case that
no options are given with its execution in the terminal. This third section is, of course, the most
pertinent here and will be verbosely commented as well as given more ’breathing room’ compared
to the first section so that it is more easily human-readable.

This third section does a few interesting things and is the reason we can add options onto a
script comprised otherwise of functions and variables. All of the parts of this third section basically
tell getopts how to handle using the functions and variables that you have defined in your script.
What follows is an explanation of the third section of this script, e.g. everything below the header
’getopts Implementation’:

First, several variables are defined: the main variable is called ALLOWED_ACTION that
allows options to be called, the other two are dummy variables that we are saving for use in just a
bit. Next, we begin the main loop with getopts. Getopts operates within a while loop here and we
pass the options that we want to define (here h, m, w, i, and x) via the string :hmwix: (it is very
important here that the options you pass to getopts are just single characters and given without
any spaces between). The x option is going to operate as a dummy variable that we will store an
input into as a variable called $OPTARG. Nothing will happen with the script if we try to run it
with just the -x option. The -x option will only function in conjunction with another option written
plain words like ’help’. As an example (for the script included below), if we try to run it with the
-x option, we will get the following result:

1 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −x
2 e r r o r : x r e qu i r e s an argument
3 MainUsers−iMac :BASH Programs mainuser$

After that, we create a switch/case section defining what actions to take for each of the options
we previously passed to getopts; these should be roughly self-explanatory as they do similar things
to what I’ve explained in the text-based user interface section. One exception to the this is use
of the ’shift’ and ’exit’ commands. The shift command (a BASH built-in) more or less is going to
remove one or more argument(s) from the beginning of a list based on the argument passed to the
shift command. With shift, if we had three variables say $1, $2, and $3 and used shift 2 on them,
the following would happen: $1 would be erased, $2 would become $1, and $3 would become $2.

89

This is handy for reordering options in a list. Shift has many uses most of which are beyond the
scope of this text, I recommend that you read up on that subject yourself. However, here we used
shift to reorder the list so that if the -x command is given, we will change the way that BASH is
interpreting the list of actions and have it consider the three if loops after the primary getopts loop.
The exit command (another BASH built-in) allows you to exit the script with a given status, in
this case we give that status as 0; this sort of formalism allows you to track what the exit status is
for a certain script, e.g. a termination for valid reasons like the script ending, an error, an improper
argument, etc... Beyond what the shift and exit commands are doing here, the remainder of the
’while getopts’ loop should be more or less self-explanatory.

Next there is a while loop for the $LIST and $ACTION variables that, in the case you do not
give any options for getopts to consider, the program will default into normal execution. This while
loop has an interesting portion built into the square brackets that allows you to show an indication
of why the loop became true. The loop arguments also let us create the variable $ACTION that we
use to compare conditional statements of whether the input matches a phrase that we define in our
list. If statements control what to do in the event that these comparison conditions are satisfied.
These three if statements define the options which can be passed to getopts with full words: these
options here are ’help’, ’info’, and ’menu’. These blocks can be elaborated on in the event that you
want to add more full-word options to a script.

Finally, ending the script, we create a dummy variable called $FOUND that we use within a for
loop. The for loop and the following if statement control some exit conditions for what is passed to
getopts by the user in the variable called $ACTION. Basically, it says to BASH ’in the event that
we know what the user is trying to do, based on the list of things that we know how to do, then do
the thing, otherwise exit with a pre-defined condition’.

1 #!/ bin /bash
2

3 #−:
4 #−:−:−:−:−:−:−:−:−:−:−:−:− Main Functions :−:−:−:−:−:−:−:−:−:−:−:−:
5 #−:
6

7 f unc t i on s e l e c t i o n () {
8 echo −e "\n" ; echo −e "Enter your s e l e c t i o n \c"
9 }

10 f unc t i on menu () { c l e a r # Erase the prev ious input each time t h i s b lock i s run
11 echo "=="
12 echo "============= menu func t i on =============="
13 echo "=="
14 echo "Enter 1 : What happens when you pre s s 1?"
15 echo "Enter 2 : What happens when you pre s s 2?"
16 echo "Enter q to e x i t t h i s menu"
17 s e l e c t i o n ; read answer_one ; case $answer_one in # switch / case
18 1) c l e a r ; echo "============== Not very much ! ! ==========="
19 echo "Enter q to e x i t the menu"
20 s e l e c t i o n ; read answer_two ; case $answer_two in
21 q) e x i t ; ;
22 esac ; read input_two ; ; # User−de f ined commands
23 2) c l e a r ; echo "========== S t i l l not very much ! ! ========="
24 echo "Enter q to e x i t the menu"
25 s e l e c t i o n ; read answer_three ; case $answer_three in
26 q) e x i t ; ;
27 esac ; read input_three ; ;
28 q) e x i t ; ; # End menu ex i t command command
29 esac ; echo −e "Enter re turn to cont inue \c" ; read input_one

90

30 }
31

32 #−:
33 #−:−:−:−:−:−:−:−:−:−: Welcome Banner Var iab l e s −:−:−:−:−:−:−:−:−:−:
34 #−:
35

36 WELCOME="
37 Welcome ! "
38

39 WELCOMECONTINUE="
40 Welcome !
41 Continue to menu? y/n"
42

43 HELPMENU="
44 _ _ _ __ __
45 | | | | ___| |_ __ | \/ | ___ _ __ _ _
46 | |_| | / _ \ | ’_ \ | | \ / | | / _ \ ’_ \ | | | |
47 | _ | __/ | |_) | | | | | __/ | | | |_| |
48 |_| |_| ___|_| .__/ |_| |_| ___|_| |_| __,_|
49 |_|
50

51 Access the menu with . /menu . sh
52

53 Simple args are −m − i −h
54 For in fo , run . /menu . sh − i
55 For menu , run . /menu . sh −m
56 For help , run . /menu . sh −h
57

58 More s p e c i f i c args with −x
59 For s i n g l e−use menu , run . /menu . sh −x menu
60 For help , run . /menu . sh −x help
61 For in fo , run . /menu . sh −x help "
62

63 INFO="
64 Menu . sh ve r s i on 2 .0
65 Created by Steven E. Bopp on March 17 , 2019 :
66 For a curses− l i k e text−based user i n t e r f a c e
67 Mater i a l s Sc i ence & Engineer ing "
68

69 #−:
70 #−:−:−:−:−:−:−:−:−:−:− getopt s Implementation :−:−:−:−:−:−:−:−:−:−:
71 #−:
72

73 ALLOWED_ACTION="help i n f o menu" # −x ∗ opt ions a l lowed to be c a l l e d
74 ACTION=
75 LIST=
76

77 # Begin ge topt s primary whi le loop
78 whi le ge topt s : hmwix : OPT # Def ine args ; ∗ : r e q u i r e s an arg .
79 do
80 case $OPT in
81 (x) ACTION="$OPTARG" ; s h i f t 2 ; ;
82 (h) echo "$HELPMENU" ; e x i t 0 ; ;
83 (m) whi l e t rue ;
84 do
85 menu
86 done ; ;
87 (i) echo "$INFO" ; e x i t 0 ; ;

91

88 (w) c l e a r ; echo "$WELCOMECONTINUE" ;
89 read welcomecontinue
90 case $welcomecontinue in
91 y) whi l e t rue ; do menu ; done ; ; # Run program normally
92 n) e x i t ; ; # This nav iga te s the user to the desktop
93 q) e x i t ; ;# Exit command from th i s menu app l i c a t i on
94 esac # End program launch sub−menu switch case block
95 read welcomecontinue ; ; # End Welcome (−w)
96 (:) echo " e r r o r : $OPTARG r equ i r e s an argument"
97 e x i t 1 ; ; # Te l l s i f argument i s unknown
98 (?) echo " e r r o r : unknown opt ion $OPTARG"
99 e x i t 1 ; ; # Te l l s i f opt ion i s unknown

100 esac
101 done
102

103 # Runs menu func t i on in the event that no opt ions are chosen
104 whi le [−z "$LIST" −a −z "$ACTION"]
105 do
106 menu
107 done
108

109 # Deploy −x ∗ opt ions from ALLOWED_ACTIONS va r i ab l e he lp
110 i f ["$ACTION" = "help "] ; then
111 echo "$HELPMENU"
112 e x i t 0
113 f i
114

115 # Deploy −x ∗ opt ions from ALLOWED_ACTIONS va r i ab l e i n f o
116 i f ["$ACTION" = " i n f o "] ; then
117 echo "$INFO"
118 e x i t 0
119 f i
120

121 # Deploy −x ∗ opt ions from ALLOWED_ACTIONS va r i ab l e menu (one time run s i n c e i f . . f i)
122 i f ["$ACTION" = "menu"] ; then
123 menu
124 e x i t 0
125 f i
126

127 FOUND=
128 f o r a l lowed in $ALLOWED_ACTION
129 do
130 i f ["$ACTION" = "$al lowed "] ; then FOUND="yes " ; f i
131 done
132

133 i f [−z "$FOUND"] ; then
134 echo " e r r o r : unknown ac t i on = $ACTION"
135 e x i t 2
136 f i

Some examples of inputs and outputs of this script are as follows:
Here we can see the usefulness of the exit command from before when we try to run the program

with –help vs. -help. Exit 2 is given here and prints ’unknown action = $ACTION’ to the terminal.
This is an example of why using exit with conditions is very handy in lots of scenarios, it allows
you to tell yourself why the program halted exactly and then print that to the terminal.

1 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −−help
2 e r r o r : unknown opt ion −

92

3 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −help
4

5 _ _ _ __ __
6 | | | | ___| |_ __ | \/ | ___ _ __ _ _
7 | |_| | / _ \ | ’_ \ | | \ / | | / _ \ ’_ \ | | | |
8 | _ | __/ | |_) | | | | | __/ | | | |_| |
9 |_| |_| ___|_| .__/ |_| |_| ___|_| |_| __,_|

10 |_|
11

12 Access the menu with . /menu . sh
13

14 Simple args are −m − i −h
15 For in fo , run . /menu . sh − i
16 For menu , run . /menu . sh −m
17 For help , run . /menu . sh −h
18

19 More s p e c i f i c args with −x
20 For s i n g l e−use menu , run . /menu . sh −x menu
21 For help , run . /menu . sh −x help
22 For in fo , run . /menu . sh −x help
23 MainUsers−iMac :BASH Programs mainuser$

Running the program with the -i or the -info options will give the same results as we’ve previously
defined. This is done for redundancy because evidently there is a split of people who want to use
full names for the options and abbreviations for the options. Either one seems valid for me and it
seems reasonable to support both possibilities.

1 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh − i
2

3 Menu . sh ve r s i on 2 .0
4 Created by Steven E. Bopp on March 17 , 2019 :
5 For a curses− l i k e text−based user i n t e r f a c e
6 Mater i a l s Sc i ence & Engineer ing
7 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh − i n f o
8

9 Menu . sh ve r s i on 2 .0
10 Created by Steven E. Bopp on March 17 , 2019 :
11 For a curses− l i k e text−based user i n t e r f a c e
12 Mater i a l s Sc i ence & Engineer ing
13 MainUsers−iMac :BASH Programs mainuser$

You can also pass the -m option which here I have set to just enter the main portion of the
program. This option here is indistinguishable from just running the program without any options.

1 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −m

1 ==
2 ============= menu func t i on ==============
3 ==
4 Enter 1 : What happens when you pre s s 1?
5 Enter 2 : What happens when you pre s s 2?
6 Enter q to e x i t t h i s menu
7

8

9 Enter your s e l e c t i o n

Another interesting consideration is if we try to pass an option to getopts that we haven’t
defined. For simplicity, I am calling this unknown command ’command’. Passing an unknown

93

command with the -x option will return an error (which we have defined as ’unknown action’) and
then reach an exit condition. This is very handy because it allows you to see what exactly has
brought you to an exit condition in your script. If we try to just run our script as ./getopts.sh
-command, then getopts will only consider the first character following the argument of the hyphen
-. Also, we could technically be weird and run with an option like -i_command and, since getopts
will only recognize the first character of the options following a hyphen, it will technically follow as
if we have run with the -i command.

1 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −x command
2 e r r o r : unkwown ac t i on = command
3 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −command
4 e r r o r : unkwown opt ion u
5 MainUsers−iMac :BASH Programs mainuser$. / ge topt s . sh −i_command
6

7 Menu . sh ve r s i on 2 .0
8 Created by Steven E. Bopp on March 17 , 2019 :
9 For a curses− l i k e text−based user i n t e r f a c e

10 Mater i a l s Sc i ence & Engineer ing
11 MainUsers−iMac :BASH Programs mainuser$

5.6 Automate installation (sort of) with redirects and shell scripts
Another use of shell scripting is to automate the setup of programs and directories, as well as to
quickly manipulate the locations of items within a file tree. This can be especially handy when
you frequently reinstall or swap operating systems (this may be the case if you just like trying
new varieties of Linux, if you’re constantly purging your system and fresh-installing bleeding-edge
copies of your OS, or maybe you just need to automate the building of file trees on a virtual machine
system.

What follows is an admittedly very simple script but it is just intended to show you that you
can easily manipulate programs when you are setting up a new system. The program we are going
to use as an example is VESTA which I use all the time in my own research. At the time if this
writing, it was supplied for Linux as an archive called VESTA-x86_64.tar.bz2

One of the most useful parts of this script I believe is that it shows you how to create new and
executable files using cat, a redirect, and then chmod. I use this constantly in my own work to
make executables on remote machines and dump code into them using ssh and vim and copy/paste
off of my local machine. This functionality is used heavily throughout. The code is mostly self
explanatory and just relies on past lessons from this text.

1 #!/ bin /bash
2

3 # ’ I n s t a l l ’ VESTA into a c e r t a i n d i r e c t o r y in Ubuntu
4 touch VESTA. sh
5 echo "cd VESTA/VESTA−x86_64 ; . /VESTA" > VESTA. sh
6 chmod 755 VESTA. sh
7 mkdir VESTA
8 mv VESTA−x86_64 . ta r . bz2 VESTA
9 cd VESTA

10 ta r −xv j f VESTA−x86_64 . ta r . bz2
11 rm −r VESTA−x86_64 . ta r . bz2

94

5.7 Normalize and ’fix’ data sets using dos2unix or tr, sed, grep, sort,
wc, awk, for, eval, and bc

One common use case of BASH and the shell that I find is to manipulate data sets without the use
of a spreadsheet editor. With big sets of data, spreadsheet editors just ends up being cumbersome
and slow me down with the tedious copying, pasting, scrolling, and selecting. We can use command
line tools to automate the manipulation of data for us so we don’t have to bother with the tedium
of manual data manipulation! An important caveat is to make sure that the file you are trying to
manipulate is compatible with the UNIX system. That is to say, line endings (which the reader
can research on their own time as an exercise) vary between the dos, UNIX, and Mac standards.
This variation can frustrate implementation of shell-based automatic text editing and manipulation
programs like awk if the line endings that they expect to find are not there or if they encounter
unknown characters. An example of awk not knowing a certain character is with the dos carriage
return character ^M. In the following section we will make a script called x-ray_data_normalizer.sh.
At the risk of getting ahead of ourselves a bit, see the output if we run it on a file that is dos-
formatted:

1 ubuntu−budgie@ubuntu−budgie :~/Desktop$. / x−ray_data_normalizer . sh
2 The maximum i n t e n s i t y i s 3026941
3 There are 800 l i n e s in the d a t a f i l e
4 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
5 1 0 .0050 52007.0
6 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
7 2 0 .0150 267845.0
8 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
9 3 0 .0250 897316.0

10 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
11 4 0 .0350 1855880.0
12 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
13 5 0 .0450 2202698.0
14 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
15 6 0 .0550 1894395.0
16 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
17 7 0 .0650 1827316.0
18 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
19 8 0 .0750 1822011.0
20 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
21 9 0 .0850 1836177.0
22 (standard_in) 1 : i l l e g a l cha rac t e r : M̂
23 10 0 .0950 1842389.0

Clearly BASH doesn’t like something that’s going on here and it turns out it’s that pesky ^M
carriage return character. If we view part (truncated because there are lots of data points) of the
original .csv data file (one made by the X’Pert Epitaxy program on a Windows XP machine), there
is no indication that there is anything out of the ordinary:

1 [Measurement cond i t i on s]
2 Sample i d e n t i f i c a t i o n ,
3 Comment ,
4 Anode mater ia l ,Cu
5 K−Alpha1 wavelength ,1 . 5405980
6 K−Alpha2 wavelength ,1 . 5444260
7 Ratio K−Alpha2/K−Alpha1 , 0 . 5 0 0
8 Monochromator used ,NO
9 Generator vo l tage , 45

95

10 Tube current , 40
11 F i l e date and time ,06−Aug−2021 04 :52
12 Unit c e l l ,
13 h k l , 0 0 0
14 Scan axis , 2 Theta−Omega
15 Scan range , 0 . 0 000 , 8 . 0 000
16 Scan step s i z e , 0 . 0100000
17 Omega o f f s e t , 0 . 8 530
18 No . o f po ints , 800
19 Scan type ,CONTINUOUS
20 Phi , 0 . 0
21 Psi , 0 . 0
22 X, 0 . 0
23 Time per step , 2 . 0 0
24 [Scan po in t s]
25 Angle , I n t e n s i t y
26 0 .0050 ,52007 .0
27 0 .0150 ,267845 .0
28 0 .0250 ,897316 .0
29 0 .0350 ,1855880 .0
30 0 .0450 ,2202698 .0
31 0 .0550 ,1894395 .0
32 0 .0650 ,1827316 .0
33 0 .0750 ,1822011 .0
34 0 .0850 ,1836177 .0
35 0 .0950 ,1842389 .0

This file concludes with the following pesky 0.0 values placed randomly between 1.0 values.
1 MainUsers−iMac :BASH mainuser$ t a i l ∗ . csv
2 ==> Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub . csv <==
3 7 . 9050 , 1 . 0
4 7 . 9150 , 0 . 0
5 7 . 9250 , 0 . 0
6 7 . 9350 , 0 . 0
7 7 . 9450 , 0 . 0
8 7 . 9550 , 0 . 0
9 7 . 9650 , 1 . 0

10 7 . 9750 , 1 . 0
11 7 . 9850 , 0 . 0
12 7 . 9950 , 0 . 0
13

The measurement data you are seeing above is from an X-ray reflectometry (XRR) measurement
and includes an angle at which the X-rays are shining on a thin film, as well as the intensity of
X-rays that are measured by a detector. There are many things about the formatting of this data
file that I don’t care for and are not useful to me. Examples include all of the header text, the
comma data separator character, and the fact that the data set isn’t normalized to the maximum
intensity (a requirement for a program I use to analyze the data). Additionally, there are some
values that are counted as 0.0 near the end. This is significantly frustrating to the use of another
program called GenX which I use to analyze this data.

So, to demonstrate how I like to extract all of this data and insert it automatically with only
what I want into a new file of the proper UNIX formatting, we will create a script that can do the
following: 1) remove unwanted text and labels, 2) change the data file separator from a comma to
a space, 3) normalize the data set to the maximum intensity, 4) remove zero values and replace
them with the smallest significant value, and 5) change the dos format of the original .csv file to

96

the UNIX format so that awk can operate on it without getting angry and telling us that we’re
issuing illegal commands.

Please consider the following script (and note that, for technical reasons concerning the sed
program, an empty string ” needs to be inserted into the beginning of the command if you are
trying to run this program on OS X, that empty string should be deleted if you are trying to
run this program on UNIX or Linux. We will start by creating three variables, the first of which
being the original data set named "Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub.csv" and
the second and third being storage variables for when we write the new data set after each step
with the tr, awk, sed, and bc commands.

Our first major operation on the data is to create a new file where we will store the properly
UNIX-formatted data set. Then we use the tr (translate) command to delete (with the -d option) the
carriage return character by redirecting the original dos-formatted file into tr and then redirecting
the output into a new file that will contain the properly UNIX formatted output. Thanks to Lee
Mendelowitz on Github where the inspiration for this translation came from.

Next I copy the UNIX-formatted file into a new temporary file (since I like to keep the UNIX
file unaltered for archival purposes) so that I can perform some text deletion with sed. In the next
three four commands I search for and delete all lines before the line containing ’Angle,Intensity’
to trim unwanted text. Then I change all instances of 0.0 to 1.0 (the smallest value recorded by
the detector that is still usable by an analysis program I use called GenX). After that, I continue
using sed to swap all of the commas (which are used as the data point separators) with a space
(my preferred data separator). Finally, I use sed to delete the first line of the file which contains
the unwanted text ’Angle,Intensity’.

Next, we want to normalize the data set to the maximum intensity. What we do to begin is to
search for the maximum value in the entire text file (since the intensity values are much larger than
the angle values) using grep. The first part of the grep command is to print numerical values found
in the data file into a new temporary file. grep passes the operation to another program called sort
where we use -rn for a reverse numerical sort of the temp file’s contents, and then we pipe that
output file into the program called head (for more on the program called head, see section 2.2.2)
where we give it the -n 1 option to just return the top line of the temp file (which will be our largest
value of the intensities). Thanks very much to an old post from fedorqui from unix.stackexchange
for the inspiration for this command.

After all of that, we are ready to begin setting up our variables for the data normalization. We
are going to use a for loop to do the normalization and for that we need a counter variable. That
counter variable will be the total number of data points in the data set which we can extract using
the wc (word count) command with the -l (number of lines in a file) option and passing that off with
a pipe to awk which will cut out unwanted text output that comes with the wc command. We will
also create a new variable which tells the script what data point we want to be the beginning of our
normalization (the first data point in this case). Finally, before the loop of the main calculation,
we print some values to the terminal like the number of lines and the starting data point.

Now we will begin creating our loop to calculate the normalized data set from the original data
set: We start a for loop based on all lines in a range of numbers. That range of numbers uses the
eval command so that it is pre-computed before the for loop is called and will be a linearly spaced
array from the starting line number incremented up by 1 every data point until the number of the
last line is hit. That array is echoed into the for loop as a variable and then we start the loop with
the do command. At each step of the loop we create two new variables with awk: the first is just
pulling the first field from the nth line in the loop, the second is pulling the second field from the

97

nth line in the loop. Next we use a pipe with the bc calculator program to divide the number in
the second field of the nth line by the maximum value in the data file (this is the normalization
step, we also choose scale=8 in the bc command because we want a lot of significant figures). And
finally, at every step, the program will append the new line (consisting of the first field from the
original data set and then the second field normalized to the maximum value of the original data
set) to an output file.

1 #!/ bin /bash
2

3 Dos_Input_File_Name="Steven_P4_0720_Gonio_AlN_1_Aug_6_Si_Sub . csv "
4 Output_File_Name="x−ray_data_normalized . dat"
5

6 Temp_File_Name="tmp . dat" ; touch ${Temp_File_Name}
7

8 UNIX_Input_File_Name="UNIX_${Dos_Input_File_Name}" ; touch ${UNIX_Input_File_Name}
9 t r −d ’ \ r ’ < ${Dos_Input_File_Name} > ${UNIX_Input_File_Name}

10 # t r an s l a t e dos to UNIX (thanks to Lee Mendelowitz on Github)
11 #tr ’\ r ’ ’\n ’ < f i l e .mac . csv > f i l e . unix . csv
12 # t r an s l a t e mac to UNIX, r ep l a c e M̂ w/ UNIX l i n e endings
13 #tr −d ’\ r ’ < f i l e . windows . csv > f i l e . unix . csv
14 # t r an s l a t e dos to UNIX, r ep l a c e c a r r i a g e re turn w/ UNIX endings
15

16 cp ${UNIX_Input_File_Name} ${Temp_File_Name}
17 sed −n ’ /Angle , I n t e n s i t y / , $p ’ ${UNIX_Input_File_Name} > ${Temp_File_Name}
18 # Search f o r l i n e conta in ing "Angle , I n t e n s i t y " and d e l e t e eve ry t ing be f o r e that
19 sed − i ’ ’ ’ s / , 0 . 0 / , 1 . 0 / g ’ ${Temp_File_Name}
20 # change 0 .0 i n t e n s i t y to 1 .0 i n t e n s i t y
21 sed − i ’ ’ ’ s / ,/ /g ’ ${Temp_File_Name}
22 # add empty s t r i n g ’ ’ in command f o r OS X (thanks Choon−Chern Lim)
23 sed − i ’ ’ ’ 1d ’ ${Temp_File_Name}
24 # remove f i r s t l i n e ("Angle , I n t e n s i t y ")
25

26 Maximum_Intensity=$ (grep −Eo ’ [0−9]+ ’ ${Temp_File_Name} | s o r t −rn | head −n 1)
27 # grep −Eo ’[0−9]+ ’ p r i n t s a l l matches o f p o s i t i v e decimal i n t e g e r numbers in the

f i l e . Each match w i l l be pr in ted in a d i f f e r e n t l i n e , as per the −o f l a g . Sort −
rn s o r t s the l i s t numer i ca l ly and in reve r s e , so that the f i r s t number i s the
b i g g e s t . Head −n 1 p r i n t s the f i r s t l i n e (thanks to f edo rqu i from unix .
stackexchange)

28 echo " The maximum i n t e n s i t y i s $Maximum_Intensity"
29

30 Number_of_Lines=$ (wc − l ${Temp_File_Name} | awk ’ { p r i n t $1 } ’)
31 # wc − l to count number o f l i n e s , p ipe that in to awk to remove the unwanted wc

output (Thanks to user Aaron from askubuntu . com)
32 echo " There are $Number_of_Lines l i n e s in the d a t a f i l e "
33

34 Starting_Line_Number=1
35

36 echo " Writing normal ized data in to ${Output_File_Name} s t a r t i n g at l i n e ${
Starting_Line_Number } . . . "

37

38 f o r l i n e in $ (eva l echo "{$Starting_Line_Number . . $Number_of_Lines}") ; do
39 # eva l b u i l t i n concatenate s arguments in to one s i n g l e command (thanks to Vivek Gite

from c y b e r c i t i . b i z)
40

41 Column_1=$ (awk −v l i n e=" $ l i n e " ’ { i f (NR==l i n e) p r i n t $1} ’ ${Temp_File_Name})
42 # awk −v i n s e r t s v a r i a b l e in a way that ’ s l e g a l to the awk command (Thanks to

Jotne from StackOverf low)

98

43 Column_2=$ (awk −v l i n e=" $ l i n e " ’ { i f (NR==l i n e) p r i n t $2} ’ ${Temp_File_Name})
44

45 Column_2_Normalized=$ (echo " s c a l e =8;(($Column_2) /($Maximum_Intensity)) " | bc)
46

47 #echo $ l i n e $Column_1 $Column_2 $Column_2_Normalized
48

49 echo $Column_1 $Column_2_Normalized >> $Output_File_Name
50

51 done

We can run the above program with the following command and view its output (assuming that
you name your program the same as mine):

1 MainUsers−iMac :BASH mainuser$. / x−ray_data_normalizer . sh
2 The maximum i n t e n s i t y i s 3026941
3 There are 800 l i n e s in the d a t a f i l e
4 Writing normal ized data in to x−ray_data_normalized . dat s t a r t i n g at l i n e 1 . . .

The new data file generated by the script can be easily viewed with cat but that might be tedious
since it contains 800 lines (and that’s a relatively short data set compared to many that I use). An
alternative way to view the beginning and end of the data set is with the head and tail commands.
Please see their use below in viewing the first ten and final ten lines of the newly normalized data
file:

1 MainUsers−iMac :BASH mainuser$ head x−ray_data_normalized . dat
2 0 .0050 .01718137
3 0 .0150 .08848702
4 0 .0250 .29644317
5 0 .0350 .61312063
6 0 .0450 .72769769
7 0 .0550 .62584470
8 0 .0650 .60368404
9 0 .0750 .60193145

10 0 .0850 .60661142
11 0 .0950 .60866366

Additionally, if we look at the end of the new, normalized data file, we will see that we have
none of those pesky 0 values which would have bothered us before.

1 MainUsers−iMac :BASH mainuser$ t a i l x−ray_data_normalized . dat
2 7 .9050 .00000033
3 7 .9150 .00000033
4 7 .9250 .00000033
5 7 .9350 .00000033
6 7 .9450 .00000033
7 7 .9550 .00000033
8 7 .9650 .00000033
9 7 .9750 .00000033

10 7 .9850 .00000033
11 7 .9950 .00000033

I’d say that, every time I have to do X-ray measurements like these I need to normalized the data
set and remove pesky values like the 0.0s as well as trim unwanted text and (just for making my
like easier with Gnuplot) change the data separator characters from a comma to a space. Whenever
I do that manually with a spreadsheet editor program it maybe takes about five to ten minutes
because of fiddling with formatting, special copy and paste functions, and export settings. So doing
that several hundred times would have been a significant bore that can be saved with the little
BASH scripting tool that I outlined above!

99

To answer a question that may or may not be brewing in the mind of the more code veteran
reader: yes, of course there are many other ways of manipulating data automatically, this just fits
with my workflow, machines, and aesthetic as well and fits well into the scope of this text.

5.8 Convert obscure .xrdml files to two-column .dat with tr, awk, paste,
bc, and wc

As has been mentioned in this text, there are many times when a scientist will be using a legacy
measurement system or something similar and, due to the sensitive nature of those systems to
software updates, the computer and its software may be severely outdated. Additionally, it may be
the case that data are stored on obscure file formats or that the data might conventionally use a file
converter program that is supplied by a vendor with the measurement instrument. Unfortunately, it
is not always easy to convert these specific formats to ones that are more compatible with programs
like GNUplot, Octave, etc... without the use of the original software. However, it can sometimes
pay off to do some of your own searching into how the data are stored within that file format.

One such example is the .xrdml file format that is used with some X-ray measurement systems.
An example of one such output from a machine that’s from around the year 2002 is included (with
redacted information specific to the machine) in the following .xml formatted code (bear in mind
that this is a nonsense measurement and does not represent original or valuable research):

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <xrdMeasurements xmlns=" ht tp : //www. xrdml . com/XRDMeasurement/1 .0 " xmlns :x s i=" ht tp : //

www.w3 . org /2001/XMLSchema−i n s t anc e " xs i : s chemaLocat ion=" ht tp : //www. xrdml . com/
XRDMeasurement/1 .0 h t tp : //www. xrdml . com/XRDMeasurement/1 .0/XRDMeasurement . xsd"
s t a tu s="Completed">

3 <sample type="To be analyzed ">
4 <id></ id>
5 </sample>
6 <xrdMeasurement measurementType="Scan" s t a tu s="Completed">
7 <comment>
8 <entry>2Theta−Omega w/ o f f s e t</ entry>
9 </comment>

10 <usedWavelength intended="K−Alpha 1">
11 <kAlpha1 un i t="Angstrom">1.5405980</kAlpha1>
12 <kAlpha2 un i t="Angstrom">1.5444260</kAlpha2>
13 <kBeta un i t="Angstrom">1.3922500</kBeta>
14 <ratioKAlpha2KAlpha1>0.5000</ratioKAlpha2KAlpha1>
15 </usedWavelength>
16 <incidentBeamPath>
17 <rad iu s un i t="mm">200.00</ rad iu s>
18 <xRayTube id="xxxxxxx" name="xxxxxx/00 Cu LFF xxxxxxxx">
19 <tens i on un i t="kV">45</ tens i on>
20 <current un i t="mA">40</ cur rent>
21 <anodeMater ia l>Cu</anodeMater ia l>
22 <focus type="Point ">
23 <length un i t="mm">12 .0</ length>
24 <width un i t="mm">0.4</width>
25 <takeOffAngle un i t="deg">6 .0</ takeOffAngle>
26 </ focus>
27 </xRayTube>
28 </incidentBeamPath>
29 <dif fractedBeamPath>
30 <rad iu s un i t="mm">200.00</ rad iu s>

100

31 <det e c t o r id="xxxxxxx" name="xxxxxx/xx (Miniprop . l a r g e window) " x s i : t y p e="
pointDetectorType ">

32 <phd>
33 <lowerLeve l un i t="%">35 .0</ lowerLeve l>
34 <upperLevel un i t="%">80 .0</upperLevel>
35 </phd>
36 </ de t e c t o r>
37 </dif fractedBeamPath>
38 <scan appendNumber="0" mode="Continuous" scanAxis="2Theta−Omega" s t a tu s="

Completed">
39 <header>
40 <startTimeStamp>xxxxxxxxxxxxxxxxxxxxxxx</startTimeStamp>
41 <endTimeStamp>xxxxxxxxxxxxxxxxxxxxxxxxxxx</endTimeStamp>
42 <author>
43 <name>XRay</name>
44 </author>
45 <source>
46 <app l i c a t i onSo f twa r e ve r s i on=" 2 .0 d">X’ Pert Data Co l l e c to r </

app l i ca t i onSo f tware>
47 <instrumentContro lSo f tware ve r s i on ="2.8 ">XPERT−MPD</

instrumentContro lSoftware>
48 <instrumentID>xxxxxxxxxxxxxxxxx</instrumentID>
49 </source>
50 </header>
51 <dataPoints>
52 <po s i t i o n s ax i s="2Theta" un i t="deg">
53 <sta r tPo s i t i on >44.010</ s t a r tPo s i t i on >
54 <endPosit ion >46.010</ endPos it ion>
55 </pos i t i on s >
56 <po s i t i o n s ax i s="Omega" un i t="deg">
57 <sta r tPo s i t i on >22.0050</ s t a r tPo s i t i on >
58 <endPosit ion >23.0050</ endPos it ion>
59 </pos i t i on s >
60 <po s i t i o n s ax i s="Phi" un i t="deg">
61 <commonPosition>0.0</commonPosition>
62 </pos i t i on s >
63 <po s i t i o n s ax i s="Psi " un i t="deg">
64 <commonPosition>0.0</commonPosition>
65 </pos i t i on s >
66 <po s i t i o n s ax i s="X" uni t="mm">
67 <commonPosition>0.0</commonPosition>
68 </pos i t i on s >
69 <commonCountingTime uni t="seconds ">2.00</commonCountingTime>
70 <i n t e n s i t i e s un i t="counts ">216 191 205 183 211 201 199 189 204 181 184 187

192 196 209 208 203 174 181 221 202 208 200 209 200 188 208 186 192 191 212 195
175 201 193 192 182 193 197 195 197 202 199 201 192 173 185 188 202 173 192 222
203 191 181 198 189 192 183 183 189 188 203 192 176 193 204 192 176 181 187 198
176 185 191 203 172 183 178 201 169 207 155 196 207 190 183 171 172 199 203 167
182 205 187 182 167 202 184 179 169</ i n t e n s i t i e s >

71 </dataPoints>
72 </scan>
73 </xrdMeasurement>
74 </xrdMeasurements>

A careful observer may detect that there are data points held in the .xml file between the
<intensities> xml tags and that there are start and end positions for the 2θ values included in the
<startPosition> and <endPosition> tags. That’s something we can work with! Hooray! (Also
thanks to the original developers of this file format because, from the original documentation of

101

the format, it looks like they tried to make it readable and accessible without too much hassle or
obfuscation).

Included below is a highly annotated script that is intended to extract the intensity and 2θ
information out of this .xml file and then write it to a two-column data file that can be used
much more easily and without complicated file converter programs for plotting and reading of data.
The script is based heavily on the data normalization script given in section 5.7 so some of the
introductory parts of the explanation will be skipped.

First, like in the data normalizer script, variables for file names are given and some empty data
files are created. Next, a pair of awk commands are used to extract the lines pertaining to the 2θ
start and end positions as well as the block of text holding the intensity information into a new file
called tmp. From the tmp file, the actual 2θ start and 2θ end positions as well as the string of just
intensity values are copied into variables $a, $b, and $c. Additionally, the wc command is used to
count the number of data points in the intensity string and store that value as $d.

For plotting, we need two vectors of equal size (e.g. two strings of numbers each having equal
numbers of elements in the respective strings). To make a new vector that contains the angle
information, we need to know the 2θ spacing between the values that are given in the intensity
string. This value is calculated by simply subtracting the end angle from the start angle and
dividing that value by the number of data points that are in the intensity string. That math is
done with bc and stored in a variable called $step_size. Of key importance is that the number of
places after the decimal is large enough so as to not create round-off errors that would lead to a
miscount in the number of individual steps in the 2θ string. We can ward ourselves against this by
choosing a large number for the scale in bc like 20 (in some instances of using this script, a scale
of 6 can be too small and lead to a loss of a data point causing inaccuracies in plotting so choose a
large scale value).

Next, we use the str command to make a new string for the 2θ values corresponding to the
intensity values between a 2θ start and a 2θ end value with the $step_size variable we just calculated.
Wrapping up, we re-write the tmp file first with the 2θ values and use the translate command to
transpose that string (which is currently a row vector) into a column vector and store that column
vector in a new temporary file. This is done by transposing the data set with the tr command. The
same treatment is given to the intensity information.

To complete our data file with two column vectors, we use the paste command to combine the
individual column vectors from the two temporary files that we just created into a single data file
with two columns that have a single space for the data separator. We also add a title to each
of the columns of "2Theta" and "Intensity" for ease of reference. Finally, we delete unnecessary
temporary files and can use whatever plotting engine we so desire to make our data plots.

Please see the script included below:
1 #!/ bin /bash
2

3 xrdml_Input_File_Name="data . xrdml"
4 Output_File_Name="${xrdml_Input_File_Name}_converted . dat" ; touch ${Output_File_Name}
5

6 Temp_File_Name="tmp" ; touch ${Temp_File_Name}
7 #Scan_Parameters_File_Name="Scan_Parameters . txt " ; touch ${Scan_Parameters_File_Name}
8

9 UNIX_Input_File_Name="UNIX_${xrdml_Input_File_Name}" ; touch ${UNIX_Input_File_Name}
10 t r −d ’ \ r ’ < ${xrdml_Input_File_Name} > ${UNIX_Input_File_Name}
11 # t r an s l a t e dos to UNIX (thanks to Lee Mendelowitz on Github)
12 #tr ’\ r ’ ’\n ’ < f i l e .mac . csv > f i l e . unix . csv

102

13 # t r an s l a t e mac to UNIX, r ep l a c e M̂ w/ UNIX l i n e endings
14 #tr −d ’\ r ’ < f i l e . windows . csv > f i l e . unix . csv
15 # t r an s l a t e dos to UNIX, r ep l a c e c a r r i a g e re turn w/ UNIX endings
16

17 awk ’/<po s i t i o n s ax i s="2Theta" un i t="deg">/{x=NR+2; next }(NR<=x) { p r i n t } ’ ${
UNIX_Input_File_Name} >> ${Temp_File_Name}

18 # Print two l i n e s a f t e r the s t r i n g <po s i t i o n s ax i s="2Theta" un i t="deg"> (thanks to
Guru Prasad from UNIX School)

19 awk ’/< i n t e n s i t i e s un i t="counts">/{pr i n t } ’ ${UNIX_Input_File_Name} >> ${
Temp_File_Name}

20 # Print two l i n e s a f t e r the s t r i n g <po s i t i o n s ax i s="2Theta" un i t="deg"> (thanks to
Guru Prasad from UNIX School)

21

22 a=$ (awk ’NR==1{pr in t $1} ’ ${Temp_File_Name}) # a i s a dummy va r i ab l e to hold 2Theta
data

23 s t a r t=$ (echo $a | cut −c16− | rev | cut −c17− | rev) ; # echo $ s t a r t
24 # Ret r i eve s the s t a r t i n g 2Theta ang le and ex t r a c t s i t from the surrounding xml text

with rev and cut
25 b=$ (awk ’NR==2{pr in t $1} ’ ${Temp_File_Name}) # b i s a dummy va r i ab l e to hold 2Theta

data
26 end=$ (echo $b | cut −c14− | rev | cut −c15− | rev) ; # echo $end
27 # Ret r i eve s the ending 2Theta ang le and ex t r a c t s i t from the surrounding xml text

with rev and cut
28 c=$ (awk ’NR==3 ’ ${Temp_File_Name}) # c i s a dummy va r i ab l e to hold i n t e n s i t y data
29 i n t e n s i t i e s=$ (echo $c | cut −c28− | rev | cut −c15− | rev) ; # echo $ i n t e n s i t i e s
30 # Ret r i eve s the i n t e n s i t y data and ex t r a c t s i t from the surrounding xml text with

rev and cut
31 d=$ (echo $ i n t e n s i t i e s | wc −w) # d i s a dummy va r i ab l e to hold the number o f

i n t e n s i t y data po in t s
32 # Counts the number o f data po in t s s to r ed in the i n t e n s i t y s t r i n g
33

34 echo "2Theta range from $ s t a r t to $end degree s with $d data po in t s "
35

36 s t ep_s i ze=$ (echo " s c a l e =20;(($end)−($ s t a r t)) /($d) " | bc) ; echo "Step s i z e i s
$ s tep_s ize "

37 # Use the bc c a l c u l a t o r to c a l c u l a t e a s tep s i z e based on the d i f f e r e n c e from the
s t a r t to the end ang le and the numbre o f i n t e n s i t y data po in t s . The l a r g e value
o f s c a l e i s super important to not have rounding e r r o r s that cause a miscount o f
po in t s .

38 two_theta=$ (seq −w $s t a r t $s tep_s ize $end) ; e=$ (echo $two_theta | wc −w) # e i s a
dummy va r i ab l e to hold the number o f c r ea ted 2Theta data po in t s f o r comparison
with the number o f i n t e i s t y data po in t s (they should be equal , i f not somehting ’
s gone t e r r i b l y wrong)

39 # Create a sequence cor re spond ing to the 2Theta va lue s evenly spaced based on the
step s i z e v a r i a b l e we j u s t c r ea ted

40

41 echo "Created step s i z e s t r i n g with $e s t ep s f o r $d data po in t s "
42

43 echo $two_theta > ${Temp_File_Name} # Re−wr i t e temp f i l e with the two_theta data
44 t r ’ ’ ’ \n ’ < tmp > tmp_two_theta_transposed # Use t r command to t ranspose the data

and then wr i t e i t i n to a temp f i l e
45 echo $ i n t e n s i t i e s > ${Temp_File_Name} # Re−wr i t e temp f i l e with the i n t e n s i t y data
46 t r ’ ’ ’ \n ’ < tmp > tmp_intens i t i e s_transposed # Use t r command to t ranspose the

data and then wr i t e i t i n to a temp f i l e
47

48 echo ’ "2Theta" " I n t e n s i t y " ’ > ${Output_File_Name}
49

50 paste −d" " tmp_two_theta_transposed tmp_intens i t i e s_transposed >> ${

103

Output_File_Name}
51 # Use the paste command to combine the transposed data s e t s i n to one f i l e with two

columns with a s i n g l e space s epa ra t ing them
52

53 rm ${Temp_File_Name} ; rm tmp_two_theta_transposed ; rm tmp_intens i t i e s_transposed #
c lean up f i l e s

An example terminal output of this script may be the following:
1 MainUsers−iMac : Desktop mainuser$. / xrdml_converter . sh
2 2Theta range from 44.010 to 46 .010 degree s with 101 data po in t s
3 Step s i z e i s .01980198019801980198
4 Created step s i z e s t r i n g with 102 s t ep s f o r 101 data po in t s
5 MainUsers−iMac : Desktop mainuser$

And the head of a resulting output file may be the following:
1 MainUsers−iMac : Desktop mainuser$ head data . xrdml_converted . dat
2 "2Theta" " I n t e n s i t y "
3 44.010000 216
4 44.029802 191
5 44.049604 205
6 44.069406 183
7 44.089208 211
8 44.109010 201
9 44.128812 199

10 44.148614 189
11 44.168416 204
12 MainUsers−iMac : Desktop mainuser$

104

6 Shell Scripts for DFT Calculations with Quantum ESPRESSO
(PWscf)

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Quantum Espresso (QE) [2, 3] is an open-source and fully-featured code for DFT, molecular
dynamics, and more all for absolutely free (I was going to say ’no charge’ here but someone would
definitely made a joke haha). For all its capabilities, Quantum Espresso has its quirks (at least at
the time of this writing) and I found it to have a steep learning curve when I was just starting out.
Here, to alleviate some of that learning curve, I intend to supply some of my scripts for whoever
may need them as a reference for their own calculations.

In Quantum Espresso, unlike in VASP and some others, you need to very carefully supply each
and every parameter for every calculation in every step. This is done with a variety of executables
that you run for different parts of your calculations and with different parts of the input files which
include sections like &control, &system, and &electrons. Plotting of the data is most frequently
done in GNUplot; for a refresher on that program, please refer to section 3.8.

That being said, as with all of my other code supplied in this book or elsewhere, everything is
supplied with absolutely zero guarantee or warranty. Even though every effort is made to have code
supplied here work out of the box, some things here and there may require tinkering on the part
of the user to get working as they intend or as new developments or releases in DFT packages are
introduced. However, the value that I see in supplying this code is to reduce the overall activation
energy (see, haha I can make jokes!) for someone to get started with calculations of this type.

Included below are several example scripts as well as usage of supporting programs called
Cif2Cell [4] and Firmi which can be used with Quantum Espresso to make the reader’s life just a
bit easier. In most cases, I owe huge thanks to the people who have created the example scripts
that some of these files are based around. I also make attempts to explain potential error sources
and some ways of correcting those errors. However, all burden is placed squarely on the reader for
verifying the quality of their calculations.

Also, a quick word on pseudopotentials in general. There are many that are supplied by many
organizations or individuals. For Quantum Espresso there are some that are supplied on their
website. However, it seems to be consensus from members of the community that the Vanderbilt
pseudopotentials are very trustworthy and may be a good replacement for those supplied by Quan-
tum Espresso. Additionally, in my experience, some pseudopotentials that I have downloaded did
not come readable by Quantum Espresso because the had some extraneous characters at the header
of the file(s). Be aware of this, my recommendation is to check the text of all of your pseudopoten-
tial files before you use them. Additionally, it is wise to seek verification that the specific potential
files that you are using do actually give an accurate representation of reality.

6.1 Compiling Quantum Espresso
Compiling Quantum Espresso should be fairly straightforward just based on the instructions in-
cluded with their code distributions. However, one stumbling block that I encountered when trying
to compile their code on my Ubuntu system was with the installation of Open MPI so that I could
parallelize the calculations.

At the time of this writing, installation of OpenMPI can be done using the following commands
on the vanilla release of Ubuntu:

1 sudo apt−get i n s t a l l openmpi−bin openmpi−doc libopenmpi−dev

105

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

Downloading Quantum Espresso is also straightforward and can be done easily with wget or
curl (as is described in section 3.6) directly from the terminal. Running a parallel computation
with quantum espresso can be done (as a general template) with the following (after setting up all
of the proper environment variables and things like they tell you do do in the documentation):

Run a parallel calculation:
1 mpirun ’ /home/qe/bin /pw . x ’ −in s c f . in > s c f . out

As repositories in Linux are not the same over all time, and Quantum Espresso packages may
vary slightly from one distribution to the next, the code supplied above or as follows in this section
may require some modification on the part of the reader to suit their specific systems or to reflect
the current way(s) that Open MPI should be installed on their system(s).

6.2 Some common error sources in Quantum ESPRESSO
I usually encounter all sorts of errors when I run calculations, especially when I am trying a new-
to-me code. Here is a partial list of some error sources and potential solutions that I have found
for use with Quantum Espresso. I am including these items with the presentation first of the error
you may see, and then a way you may attempt to resolve the error.

Error Potential Resolution
NSCF calculation halts unexpectedly with
an error like "Error condition encountered
during test: exit status = 1 Aborting"

try increasing nbnd to a larger number

.out file returns an error with ’Bad Fermi En-
ergy’

try to increase the value of nbnd to a larger
number and that may resolve the error (do
this sparingly though and try to not stray
from a reasonable number for nbnd)

Gnuplot misbehaves in instances where nx
and ny values have been changed from their
defaults

check that the nx, and ny are not the cul-
prit of any misbehavior before worrying that
there is some catastrophic error with the
script

epsilon.x returns an error regarding division
by zero

there is likely an issue with the intersmear
parameter being too small which leads to
strange infinities

6.3 Quantum Espresso file headers and environment variables
Because I’d prefer to not include the header file (for the sake of space and redundancy) in every one
of the following scripts, and since I have done some tinkering with the layout and items included
in the headers, I will include it here as a separate file. Specifically, for the sake of brevity and
convenience, I am including the header file for the script in section 6.6 directly following this
exposition. The epsilon.x script, which we will discuss more in section 6.6, is intended to calculating
the complex dielectric function of Au. We will see however in that section, there are many more
considerations which need to be taken into account to get an accurate calculation of permittivity
from first principles.

106

Overall, the below script is separated into several parts. The first is a simple header which
reminds the user (in a similar way to what I describe in sections 12.3, and 12.2) of several things
like how it is necessary to have GNUplot installed and to make sure that all of the pseudopotentials
are readable by the system. Next, sed is used to extract the name of the path and the test command
is issued to see if we can use the echo -e option. This is a nice part of the script because it also
accounts for the case where the echo -e option is not present and, in that case, sets ECHO as a
variable with options for the positive and negative cases. I thought that was cool!

Next, we set up the environment variables path which will be specific to each user. The environ-
ment variables path should link the script to the directory containing all of the quantum espresso
binaries as well as the directory containing all of your pseudopotentials. The program checks to
see if GNUplot is installed in the system (this chunk is actually the exact inspiration and credit for
where I describe a use case of the if command in section 4.3.4). All of the normal directories and
binaries are also checked in the same way, as well as the pseudopotentials. The pseudopotential
checking block also has a clever (as designed by the Quantum Espresso developers so all credit to
them) functionality that, in the case it does not find the potential you are directing it to look for,
it will automatically download it from their pseudopotential repository and place it into the correct
directory.

The final chunk of this script is a list of executable locations. Because I really don’t like waste
time re-doing work that can be automatically performed when I can avoid it, I prefer to include
links and variables relating to all of the executables that I generally use within every script. Another
benefit of this is that it’s one less thing you need to worry about checking in your script every time
that you run it (it’s wise to eliminate as many sources of silly errors as is reasonably feasible). All
of these executables are stored as variables which can be called from within the script. Finally, the
script concludes with the start of a timer program that I find useful for benchmarking CPU hours
spent on the individual parts of a calculation.

1 #−:−
2 #−:−:−:−:−:−:−:−:−:−:−:−:−:Begin Environment Di r ec t i ons −:−:−:−:−:−:−:−:−:−:−:−:−:−
3 #−:−
4 #−:−:−:−:−:−:−:−Make Certa in That Al l Pseudopotent ia l s are Readable−:−:−:−:−:−:−:−
5 #−:−:−:−:−:−:−:−:−:−:−and That a l l Executables are Cal led Below−:−:−:−:−:−:−:−:−:−
6 #−:−:−:−:−:−:−Make Certa in That Al l S t a t i c Di rec to ry Links are Correct :−:−:−:−:−:−
7 #−:−:−:−:−:−:−: I n s t a l l GNUPlot and Inkscape to Have Fu l l Func t i ona l i t y :−:−:−:−:−:−
8 #−:−:−:−:−:−:Make that the s h e l l i s s e t to BASH, remove t imer otherwise −:−:−:−:−:−
9 #−:−

10

11 # run from d i r e c t o r y where t h i s s c r i p t i s
12 cd ‘ echo $0 | sed ’ s / \ (.∗\) \/.∗/\1/ ’ ‘ # ex t r a c t path name
13 EXAMPLE_DIR=‘pwd ‘
14

15 # check whether echo has the −e opt ion
16 i f t e s t " ‘ echo −e ‘ " = "−e" ; then ECHO=echo ; e l s e ECHO="echo −e" ; f i
17

18 $ECHO
19 $ECHO "$EXAMPLE_DIR : s t a r t i n g "
20 $ECHO
21 $ECHO "This code shows how to use ep s i l o n . x to c a l c u l a t e the p e rm i t t i v i t y o f Au"
22 $ECHO "Permi t t i v i t y i s c a l c u l a t ed a f t e r SCF and NSCF c a l c u l a t i o n s "
23 $ECHO "and then p l o t t ed with l i t e r a t u r e va lue s us ing Gnuplot"
24

25 # se t the needed environment v a r i a b l e s
26 . /home/uname/Documents/Quantum_Espresso/qe−6.0/ environment_var iables

107

27

28 # requ i r ed execu tab l e s and pseudopot en t i a l s
29 BIN_LIST="pw. x pp . x p lo t rho . x bands . x plotband . x dos . x pro jwfc . x f s . x ep s i l o n . x"
30 PSEUDO_LIST="Au. r e l−pbesol−n−nc .UPF"
31

32 $ECHO
33 $ECHO " executab l e s d i r e c t o r y : $BIN_DIR"
34 $ECHO " pseudo d i r e c t o r y : $PSEUDO_DIR"
35 $ECHO " temporary d i r e c t o r y : $TMP_DIR"
36 $ECHO
37 $ECHO " check ing that needed d i r e c t o r i e s and f i l e s e x i s t . . . \ c"
38

39 # check f o r gnuplot
40 GP_COMMAND=‘which gnuplot 2>/dev/ nul l ‘
41 i f ["$GP_COMMAND" = ""] ; then
42 $ECHO
43 $ECHO "gnuplot not in PATH"
44 $ECHO "Resu l t s w i l l not be p l o t t ed "
45 f i
46

47 # check f o r d i r e c t o r i e s
48 f o r DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do
49 i f t e s t ! −d $DIR ; then
50 $ECHO
51 $ECHO "ERROR: $DIR not e x i s t e n t or not a d i r e c t o r y "
52 $ECHO "Aborting "
53 e x i t 1
54 f i
55 done
56 f o r DIR in "$TMP_DIR" "$EXAMPLE_DIR/ r e s u l t s " ; do
57 i f t e s t ! −d $DIR ; then
58 mkdir $DIR
59 f i
60 done
61 cd $EXAMPLE_DIR/ r e s u l t s
62

63 # check f o r execu tab l e s
64 f o r FILE in $BIN_LIST ; do
65 i f t e s t ! −x $BIN_DIR/$FILE ; then
66 $ECHO
67 $ECHO "ERROR: $BIN_DIR/$FILE not e x i s t e n t or not executab l e "
68 $ECHO "Aborting "
69 e x i t 1
70 f i
71 done
72

73 # check f o r p s eudopot en t i a l s
74 f o r FILE in $PSEUDO_LIST ; do
75 i f t e s t ! −r $PSEUDO_DIR/$FILE ; then
76 $ECHO
77 $ECHO "Downloading $FILE to $PSEUDO_DIR . . . \ c"
78 $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> /dev/ nu l l
79 f i
80 i f t e s t $? != 0 ; then
81 $ECHO
82 $ECHO "ERROR: $PSEUDO_DIR/$FILE not e x i s t e n t or not readab le "
83 $ECHO "Aborting "
84 e x i t 1

108

85 f i
86 done
87 $ECHO " done"
88

89 # Executable l o c a t i on s , run i n s t r u c t i o n s (s to r ed as v a r i a b l e s) , and termina l t ex t to
be returned when run

90 FS_COMMAND="$BIN_DIR/ f s . x "
91 PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw. x $PARA_POSTFIX"
92 PP_COMMAND="$PARA_PREFIX $BIN_DIR/pp . x $PARA_POSTFIX"
93 DOS_COMMAND="$PARA_PREFIX $BIN_DIR/dos . x $PARA_POSTFIX"
94 EPS_COMMAND="$PARA_PREFIX $BIN_DIR/ ep s i l o n . x $PARA_POSTFIX"
95 BANDS_COMMAND="$PARA_PREFIX $BIN_DIR/bands . x $PARA_POSTFIX"
96 PROJWFC_COMMAND="$PARA_PREFIX $BIN_DIR/ pro jwfc . x $PARA_POSTFIX"
97 PLOTRHO_COMMAND="$BIN_DIR/ p lo t rho . x"
98 PLOTBAND_COMMAND="$BIN_DIR/plotband . x"
99 $ECHO

100 $ECHO " running pw. x as : $PW_COMMAND"
101 $ECHO " running pp . x as : $PP_COMMAND"
102 $ECHO " running f s . x as : $FS_COMMAND"
103 $ECHO " running dos . x as : $DOS_COMMAND"
104 $ECHO " running bands . x as : $BANDS_COMMAND"
105 $ECHO " running gnuplot as : $GP_COMMAND"
106 $ECHO " running ep s i l o n . x as : $EPS_COMMAND"
107 $ECHO " running p lo t rho . x as : $PLOTRHO_COMMAND"
108 $ECHO " running pro jwfc . x as : $PROJWFC_COMMAND"
109 $ECHO " running plotband . x as : $PLOTBAND_COMMAND"
110 $ECHO
111

112 START_TIME=$SECONDS # Begin e lapsed time measurement (thanks Tom Anderson from
StackOverf low)

Additionally, I am including in the following a sample of the environment_variables file that I
used for a long time in one of my own installs of Quantum Espresso. I think that including this,
while it is perhaps not as important to the experienced user, would have been helpful to me when
I was just starting out. For that reason, I am including it briefly.

As a reader can see, there are very few changes that need to be made compared to the as-supplied
environment_variables file. All I did was to change the PREFIX, BIN_DIR, PSEUDO_DIR, and
TMP_DIR locations based on where they were located in my specific system. If you are having
trouble with determining the location of a specific directory to give to Quantum Espresso, then at
any time in the command prompt you can type ’pwd’ and find the full path to that directory. This
command is very handy for saving time with copying and pasting full file paths directly from the
terminal into a script.

Please see the following environment_variables file below:
1 # environment_var iables −− s e t t i n g s f o r running Quantum ESPRESSO examples
2

3 LC_ALL=C
4 export LC_ALL
5

6 ######## YOU MAY NEED TO EDIT THIS FILE TO MATCH YOUR CONFIGURATION ########
7

8 # BIN_DIR = path o f compiled execu tab l e s
9 # Usual ly t h i s i s $PREFIX/bin , where $PREFIX i s the root o f the

10 # Quantum ESPRESSO source t r e e .
11 # PSEUDO_DIR = path o f p s eudopo t en t i a l s r equ i r ed by the examples
12 # i f r equ i r ed ps eudopot en t i a l s are not found in $PSEUDO_DIR,

109

13 # example s c r i p t s w i l l t ry to download them from NETWORK_PSEUDO
14 # TMP_DIR = temporary d i r e c t o r y to be used by the examples
15 # Make sure that i t i s wr i t ab l e by you and that i t doesn ’ t conta in
16 # any va luab l e data (EVERYTHING THERE WILL BE DESTROYED)
17

18 # The f o l l ow i n g should be good f o r most ca s e s
19

20 PREFIX=‘/home/ steven /Documents/qe −6.4.1/ ; pwd ‘
21 BIN_DIR=/home/ steven /Documents/qe −6.4.1// bin
22 PSEUDO_DIR=~/Documents/Quantum_Espresso/qe−6.0/ pseudo
23 # Beware : everyth ing in $TMP_DIR w i l l be destroyed !
24 TMP_DIR=/home/ steven /Documents/qe −6.4.1// tempdir
25

26 # There should be no need to change anything below t h i s l i n e
27

28 NETWORK_PSEUDO=http ://www. quantum−e sp r e s s o . org /wp−content / uploads / up f_ f i l e s /
29

30

31 # wget or cu r l needed i f some PP has to be downloaded from web s i t e
32 # s c r i p t wizard w i l l s u r e l y f i nd a be t t e r way to f i nd what i s a v a i l a b l e
33 i f t e s t " ‘ which cur l ‘ " = "" ; then
34 i f t e s t " ‘ which wget ‘ " = "" ; then
35 echo "wget or cu r l not found : w i l l not be ab le to download miss ing PP"
36 e l s e
37 WGET="wget −O"
38 # echo "wget found"
39 f i
40 e l s e
41 WGET=" cu r l −o"
42 # echo " cu r l found"
43 f i
44

45 # To run the ESPRESSO programs on a p a r a l l e l machine , you may have to
46 # add the appropr ia t e commands (poe , mpirun , mpprun . . .) and/ or opt ions
47 # (sp e c i f y i n g number o f p roce s so r s , poo l s . . .) b e f o r e and a f t e r the
48 # executable ’ s name . That depends on how your machine i s con f i gu r ed .
49 # For example on an IBM SP4 :
50 #
51 # poe pw. x −procs 4 < f i l e . in > f i l e . out
52 # ^^^ PARA_PREFIX ^^^^^^^^ PARA_POSTFIX
53 #
54 # To run on a s i n g l e proces sor , you can usua l l y l eave them empty .
55 # BEWARE: most t e s t s and examples are dev i sed to be run s e r i a l l y or on
56 # a smal l number o f p r o c e s s o r s ; do not use t e s t s and examples to benchmark
57 # para l l e l i sm , do not run on too many p ro c e s s o r s
58

59 PARA_PREFIX=" "
60 PARA_PREFIX="mpirun −np 4"
61 #
62 # ava i l a b l e f l a g s :
63 # −ni n number o f images (or −nimage)
64 # (only f o r NEB; f o r PHonon , s ee below)
65 # −nk n number o f poo l s (or −npool , −npools)
66 # −nb n number o f band groups (or −nbgrp ,−nband_group)
67 # −nt n number o f task groups (or −ntg , −ntask_groups)
68 # −nd n number o f p r o c e s s o r s f o r l i n e a r a lgebra
69 # (or −ndiag , −northo)
70 #

110

71 PARA_POSTFIX=" −nk 1 −nd 1 −nb 1 −nt 1 "
72 #
73 # The f o l l ow i n g v a r i a b l e s are used f o r image p a r a l l e l i z a t i o n o f PHonon
74 # (see example in PHonon/examples /Image_example)
75 # NB: the number o f p r o c e s s o r s in PARA_IMAGE_PREFIX i s the product o f the
76 # number o f p r o c e s s o r s in PARA_PREFIX and the number o f images in
77 # PARA_IMAGE_POSTFIX
78 #
79 PARA_IMAGE_POSTFIX="−ni 2 $PARA_POSTFIX"
80 PARA_IMAGE_PREFIX="mpirun −np 4"
81

82 # func t i on to t e s t the e x i t s t a tu s o f a job
83 check_fa i lu r e () {
84 # usage : check_fa i lu r e $?
85 i f t e s t $1 != 0
86 then
87 echo "Error cond i t i on encountered during t e s t : e x i t s t a tu s = $1"
88 echo "Aborting "
89 e x i t 1
90 f i
91 }

6.4 Charge density and the electron localization Function (ELF)
Quantum Espresso (QE) can be used to calculate many different properties of materials, two of
which being the charge density and the electron localization function (ELF) over a given surface in
the unit cell. The charge density is self explanatory and the ELF more or less gives an explanation
of the spatial extent over which an electron is localized within a crystal. These properties are very
useful in that the ELF gives a visual basis to pair with intuition for the understanding of some of the
electronic properties of a crystal. Additionally, and to an admittedly somewhat shallow extent, it an
also be used to make very appealing-looking scientific visualizations. Below is the body (since the
header is left out and explained in section 6.3) of a Quantum Espresso input script for calculating
the change density and the ELF in a TiN crystal.

The following script is separated into eleven separate sections, reader don’t beware however
because many of these are either repetitive or very easy to understand (at least at the surface level)
and will be explained section-by-section but briefly in the following paragraphs.

The script begins with the implementation of a timer so that the user can see a timestamp
printed to the terminal at every time that a major portion of the calculation has concluded. The
first major section of this script begins immediately after the timer is begun and is used to calculate
the self consistent field (SCF) for the TiN crystal that we are considering. We give the familiar
input parameters for QE and tell the program to calculate in the following order: Γ→ X →W →
K → L→ Γ. The crystal is given in terms of a cell dimension and the fractional atomic positions of
the two basis atoms: one for Ti, and one for N (since the rocksalt structure of TiN can be thought
of as roughly two interleaved simple cubic structures where the corner of one cube is located at the
center of the other cube and all faces of the interleaved cubes are orthogonal or parallel to each
other.

Section two uses the code PP.x (Post-Processing FORTRAN program) to compute the charge
density using the SCF output from above as its own input. There are several notes for running this
calculation which follow here: Make sure that the vectors e1 and e2, which the user must define
for QE, are orthogonal. Make sure that the isovalue is large enough for your calculations and also

111

make sure to set x0(...) at the origin of your crystal system. Setting iflag = 2 will yield data for
latter creating a 2D plot. The output format setting can be changed based on which program you
want to be able to natively read the data: 3 will be formatted for xcrysden, and 2 will be natively
formatted for plotrho. The option nfile will tell QE the number of data files that you want to read,
and plot_num = 0 is the option to set the electron (pseudo-) charge density.

In section three, we begin using plotrho (which is part of PostProc and produces PostScript 2D
plots) to create some plots. The first argument in this section is the input file defined by fileout=...
in the PP.x code. The second argument is the output file name that you want to assign to the
newly created file. The third argument gives yes (y) or no (n) for logarithmic scaling on the plot.
And, finally, the fourth argument gives rho_min rho_max and the number of contour plot levels.

In section four, we calculate the charge density with PP.x for the (110) plane. Here again we
need to make sure that e1 and e2 are orthogonal, that the isoval is large enough, that x0(...) is at
the origin, and that we set iflag=2 for a 2D plot. We also set output_format = 7 for gnuplot, and
plot_num=0 for electron (pseudo-)charge density. The values of nx and ny can be increased for a
smoother (more detailed and at the expense of additional 1) storage and 2) computation expense)
plot of TiN.charge.png. The original values of nx and ny are 141 and 100 respectively and yield
coarse results. Beware however that changing nx and ny may cause the plot TiN.contour.ps to
misbehave so if it does, then check that the nx, and ny are not the culprit of any misbehavior
before worrying that there is some catastrophic error with the script. Section five plots the output
of section four with Gnuplot. For more information on Gnuplot, see some of the specific examples
and commentary included in this text in sections 3.8, and 10.5.

Sections six and seven are more or less an identical retelling of sections four and five; however,
instead of calculating the charge density on the (110) plane, we calculate on the (100) plane.
Likewise, we plot the results of section six with the Gnuplot commands given in section seven. For
simplicity, we are only considering a cubic system and therefore we can set alat = celldm(1). The
option pm3d is for a 3D Gnuplot file. The script expects that you will set xra (xrange) and yra
(yrange) based on the direction that you are simulating; so, for example, in a cubic system, in the
(110) direction of a cubic system, set x-range = [0 : alat ∗ sqrt(2)]. Alternatively, you could set xra
= [0:alat] for (100). Do not forget to end the if statement with fi when editing this portion.

Section eight begins a calculation of the electron localization function with PP.x for the (100)
plane. Like before, make sure that e1 and e2 are orthogonal, that the isoval is large enough, that
x0(...) is at the origin, and that we set iflag=2 for a 2D plot. We also set output_format = 7 for
gnuplot, and plot_num=0 for electron (pseudo-)charge density. The most important part of this
section of the script is to set plot_num=8 which is the PP.x input flag for calculating the ELF. As
before, you can change the values of nx and ny to give a more or less coarse plot of the ELF. As
with other pairs of sections, section nine plots the results of section eight in a familiar way using
Gnuplot.

Section ten calculates the electron pseudo charge density using PP.x for the (100) plane. We use
similar commands here to many of the other sections previously given. The option spin_component
is slightly unique here and is set to 0 which is the option for including the total charge (e.g.,
contributions of both the spin-up and spin-down charge). Additionally, setting plot_num = 0 is
the option to calculate the electron (pseudo-)charge density. Finally, section eleven plots the results
of section ten using the familiar Gnuplot commands.

A sample plot of the charge density (this time for ZrN instead of TiN) is given below:

112

Additionally, a sample plot of the electron localization function (again, for ZrN instead of TiN)
is given below:

113

Please see the following Quantum Espresso calculation script. Remember that the header of
the file has been removed and can be added in by copying and pasting (with the application of the
appropriate pseudopotential files as well) the header file given in section 6.3.

1 #!/ bin /bash
2

3 START_TIME=$SECONDS # Begin e lapsed time measurement (thanks Tom Anderson from
StackOverf low)

4

5 #−:−
6 #−:−:−:−:−:−:−:−:−:−:−:−:Begin Se l f−Cons i s t ent Ca l cu l a t i on :−:−:−:−:−:−:−:−:−:−:−:−
7 #−:−

114

8 cat > TiN . s c f . in << EOF
9 &con t r o l

10 c a l c u l a t i o n = ’ s c f ’
11 restart_mode = ’ from_scratch ’ ,
12 p r e f i x = ’TiN ’
13 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
14 outd i r = ’$TMP_DIR/ ’
15 /
16 &system
17 i b rav = 0 ,
18 ce l ldm (1) = 8.00299 ,
19 nat = 2 ,
20 ntyp = 2 ,
21 ecutwfc = 18 .0 ,
22 occupat ions = ’ smearing ’ ,
23 smearing = ’mv ’ ,
24 degauss = 0 .02 ,
25 /
26 &e l e c t r o n s
27 conv_thr = 1 .0d−8
28 mixing_beta = 0 .7
29 /
30 CELL_PARAMETERS { a l a t }
31 0.500000000000000 0.500000000000000 0.000000000000000
32 0.500000000000000 0.000000000000000 0.500000000000000
33 0.000000000000000 0.500000000000000 0.500000000000000
34 ATOMIC_SPECIES
35 Ti 47.86700 Ti . pz−n−nc .UPF
36 N 14.00650 N. pz−nc .UPF
37 ATOMIC_POSITIONS { c r y s t a l }
38 Ti 0.000000000000000 0.000000000000000 0.000000000000000
39 N 0.500000000000000 0.500000000000000 0.500000000000000
40 K_POINTS {automatic }
41 20 20 20 0 0 0
42 EOF
43 $ECHO " running an s c f c a l c u l a t i o n f o r TiN . . . \ c"
44 $PW_COMMAND < TiN . s c f . in > TiN . s c f . out
45 check_fa i lu r e $?
46 $ECHO " done"
47

48 ELAPSED_TIME1=$ (($SECONDS − $START_TIME))
49 echo " I t has been $ELAPSED_TIME1 seconds "
50

51

52 #−:−
53 #−:−:−:−:−:−:−:−:−:−Begin Charge Density Ca l cu l a t i on with PP. x:−:−:−:−:−:−:−:−:−:−
54 #−:−
55 cat > TiN . pp_rho . in << EOF
56 &inputpp
57 p r e f i x = ’TiN ’
58 outd i r = ’$TMP_DIR/ ’
59 f i l p l o t = ’ TiNcharge ’
60 plot_num = 0
61 /
62 &plo t
63 n f i l e = 1
64 f i l e p p (1) = ’ TiNcharge ’
65 weight (1) = 1 .0

115

66 i f l a g = 2
67 output_format = 2
68 f i l e o u t = ’TiN . rho . dat ’
69 e1 (1) = 1 . 0 , e1 (2) = 1 . 0 , e1 (3) = 0 . 0 ,
70 e2 (1) = 0 . 0 , e2 (2) = 0 . 0 , e2 (3) = 1 . 0 ,
71 nx=56, ny=40
72 /
73 EOF
74 $ECHO " running pp . x to make a 2−d p lo t o f the charge dens i ty . . . \ c"
75 $PP_COMMAND < TiN . pp_rho . in > TiN . pp_rho . out
76 check_fa i lu r e $?
77 $ECHO " done"
78

79 ELAPSED_TIME2=$ (($SECONDS − $START_TIME))
80 echo " I t has been $ELAPSED_TIME2 seconds "
81

82

83 #−:−
84 #−:−:−:−:−:−Begin Plotrho Commands f o r e l e c t r on (pseudo−)charge dens i ty −:−:−:−:−:−
85 #−:−
86 cat > TiN . p lo t rho . in << EOF
87 TiN . rho . dat
88 TiN . rho . ps
89 n
90 0 0 .09 6
91 EOF
92

93 $ECHO " running p lo t rho . x to generate rho . ps from the pp . x c a l c u l a t i o n . . . \ c"
94 $PLOTRHO_COMMAND < TiN . p lo t rho . in > TiN . p lo t rho . out
95 $ECHO " done"
96

97 ELAPSED_TIME3=$ (($SECONDS − $START_TIME))
98 echo " I t has been $ELAPSED_TIME3 seconds "
99

100

101 #−:−
102 #−:−:−:−:−:−:−:Begin Charge Density Ca l cu l a t i on with PP. x f o r (110)−:−:−:−:−:−:−:−
103 #−:−
104 cat > TiN . pp_rho_110 . in << EOF
105 &inputpp
106 p r e f i x = ’TiN ’
107 outd i r = ’$TMP_DIR/ ’
108 f i l p l o t = ’ TiNcharge110 ’
109 plot_num = 0
110 /
111 &plo t
112 n f i l e = 1
113 f i l e p p (1) = ’ TiNcharge110 ’
114 weight (1) = 1 .0
115 i f l a g = 2
116 output_format = 7
117 f i l e o u t = ’TiN . rho_110 . dat ’
118 e1 (1) = 1 . 0 , e1 (2) = 1 . 0 , e1 (3) = 0 . 0 ,
119 e2 (1) = 0 . 0 , e2 (2) = 0 . 0 , e2 (3) = 1 . 0 ,
120 nx=56, ny=40
121 /
122 EOF
123

116

124 $ECHO
125 $ECHO " running pp . x f o r a (110) p l o t o f the charge dens i ty . . . \ c"
126 $PP_COMMAND < TiN . pp_rho_110 . in > TiN . pp_rho_110 . out
127 check_fa i lu r e $?
128 $ECHO " done"
129

130 ELAPSED_TIME4=$ (($SECONDS − $START_TIME))
131 echo " I t has been $ELAPSED_TIME4 seconds "
132

133 #−:−
134 #−:−:−:−:−:−:−:−Begin P lo t t i ng with GNUPlot f o r the (110) d i r e c t i on −:−:−:−:−:−:−:−
135 #−:−
136

137 i f ["$GP_COMMAND" = ""] ; then
138 break
139 e l s e
140 cat > gnuplot . tmp <<EOF
141 #!$GP_COMMAND
142 #
143 s e t term png font " ,18 " enh s i z e 1000 ,707
144 s e t pm3d
145 s e t p a l e t t e model HSV func t i on s gray ∗0 .75 , 1 , 0 . 9
146 s e t view 0 ,0
147 #
148 a l a t =8.00299
149 s e t xra [0 : 1 . 4 142136∗ a l a t]
150 s e t yra [0 . : a l a t]
151 s e t s i z e r a t i o 1 ./1 .4142136
152 s e t x t i c s out nomirror
153 s e t y t i c s ax i s in o f f s e t −4.0 ,0 nomirror
154 s e t l a b e l " r (a . u) " at 6.8 , −2.2 c en te r
155 s e t l a b e l " r (a . u) " at −1.7 ,5 .0 r o t a t e by 90 cente r
156 unset z t i c s
157 unset key
158 s e t co lorbox
159 #
160 s e t out ’TiN . charge110 . png ’
161 s e t t i t l e "TiN charge along 110"
162 s p l o t ’TiN . rho_110 . dat ’ u 1 : 2 : 3 w pm3d
163 EOF
164

165 $ECHO " gene ra t ing TiN . charge110 . png . . . \ c"
166 $GP_COMMAND < gnuplot . tmp
167 $ECHO " done"
168 #rm gnuplot . tmp
169

170 f i
171

172 ELAPSED_TIME5=$ (($SECONDS − $START_TIME))
173 echo " I t has been $ELAPSED_TIME5 seconds "
174

175 #−:−
176 #−:−:−:−:−:−:−:Begin Charge Density Ca l cu l a t i on with PP. x f o r (100)−:−:−:−:−:−:−:−
177 #−:−
178 cat > TiN . pp_rho_100 . in << EOF
179 &inputpp
180 p r e f i x = ’TiN ’
181 outd i r = ’$TMP_DIR/ ’

117

182 f i l p l o t = ’ TiNcharge100 ’
183 plot_num = 0
184 /
185 &plo t
186 n f i l e = 1
187 f i l e p p (1) = ’ TiNcharge100 ’
188 weight (1) = 1 .0
189 i f l a g = 2
190 output_format = 7
191 f i l e o u t = ’TiN . rho_100 . dat ’
192 e1 (1) = 1 . 0 , e1 (2) = 0 . 0 , e1 (3) = 0 . 0 ,
193 e2 (1) = 0 . 0 , e2 (2) = 0 . 0 , e2 (3) = 1 . 0 ,
194 nx=56, ny=40
195 /
196 EOF
197

198 $ECHO
199 $ECHO " running pp . x f o r a (100) 2D p lo t o f the charge dens i ty . . . \ c"
200 $PP_COMMAND < TiN . pp_rho_100 . in > TiN . pp_rho_100 . out
201 check_fa i lu r e $?
202 $ECHO " done"
203

204 ELAPSED_TIME6=$ (($SECONDS − $START_TIME))
205 echo " I t has been $ELAPSED_TIME6 seconds "
206

207 #−:−
208 #−:−:−:−:−:−Begin P lo t t i ng with GNUPlot (Assuming That I t i s I n s t a l l e d)−:−:−:−:−:−
209 #−:−
210

211 i f ["$GP_COMMAND" = ""] ; then
212 break
213 e l s e
214 cat > gnuplot . tmp <<EOF
215 #!$GP_COMMAND
216 #
217 s e t term png font " ,18 " enh s i z e 1000 ,1000
218 s e t pm3d
219 s e t p a l e t t e model HSV func t i on s gray ∗0 .75 , 1 , 0 . 9
220 s e t view 0 ,0
221 #
222 a l a t =8.00299
223 s e t xra [0 : a l a t]
224 s e t yra [0 . : a l a t]
225 s e t s i z e r a t i o 1 . / 1 .
226 s e t x t i c s out nomirror
227 s e t y t i c s ax i s in o f f s e t −4.0 ,0 nomirror
228 s e t l a b e l " r (a . u) " at 6.8 , −2.2 c en te r
229 s e t l a b e l " r (a . u) " at −1.7 ,5 .0 r o t a t e by 90 cente r
230 unset z t i c s
231 unset key
232 s e t co lorbox
233 #
234 s e t out ’TiN . charge100 . png ’
235 s e t t i t l e "TiN charge along 100"
236 s p l o t ’TiN . rho_100 . dat ’ u 1 : 2 : 3 w pm3d
237 EOF
238

239 $ECHO " gene ra t ing TiN . charge100 . png . . . \ c"

118

240 $GP_COMMAND < gnuplot . tmp
241 $ECHO " done"
242 #rm gnuplot . tmp
243

244 f i
245

246 ELAPSED_TIME7=$ (($SECONDS − $START_TIME))
247 echo " I t has been $ELAPSED_TIME7 seconds "
248

249

250 #−:−
251 #−:−:−:Begin Elect ron Lo ca l i z a t i on Function Ca l cu l a t i on with PP. x f o r (100)−:−:−:−
252 #−:−
253 cat > TiN .pp_ELF_100 . in << EOF
254 &inputpp
255 p r e f i x = ’TiN ’
256 outd i r = ’$TMP_DIR/ ’
257 f i l p l o t = ’TiN_ELF_100 ’
258 plot_num = 8
259 /
260 &plo t
261 n f i l e = 1
262 f i l e p p (1) = ’TiN_ELF_100 ’
263 weight (1) = 1 .0
264 i f l a g = 2
265 output_format = 7
266 f i l e o u t = ’TiN .ELF_100 . dat ’
267 e1 (1) = 1 . 0 , e1 (2) = 0 . 0 , e1 (3) = 0 . 0 ,
268 e2 (1) = 0 . 0 , e2 (2) = 0 . 0 , e2 (3) = 1 . 0 ,
269 nx=56, ny=40
270 /
271 EOF
272

273 $ECHO
274 $ECHO " running pp . x f o r a 2D p lo t o f ELF . . . \ c"
275 $PP_COMMAND < TiN .pp_ELF_100 . in > TiN . pp_ELF_100 . out
276 check_fa i lu r e $?
277 $ECHO " done"
278

279 ELAPSED_TIME8=$ (($SECONDS − $START_TIME))
280 echo " I t has been $ELAPSED_TIME8 seconds "
281

282

283 #−:−
284 #−:−:−:−:−:−:−:−Begin P lo t t i ng with GNUPlot (ELF 100 2D Data Plot) :−:−:−:−:−:−:−:−
285 #−:−
286

287 i f ["$GP_COMMAND" = ""] ; then
288 break
289 e l s e
290 cat > gnuplot . tmp <<EOF
291 #!$GP_COMMAND
292 #
293 s e t term png font " ,18 " enh s i z e 1000 ,1000
294 s e t pm3d
295 s e t p a l e t t e model HSV func t i on s gray ∗0 .75 , 1 , 0 . 9
296 s e t view 0 ,0
297 #

119

298 a l a t =8.00299
299 s e t xra [0 : a l a t]
300 s e t yra [0 . : a l a t]
301 s e t s i z e r a t i o 1 . / 1 .
302 s e t x t i c s out nomirror
303 s e t y t i c s ax i s in o f f s e t −4.0 ,0 nomirror
304 s e t l a b e l " r (a . u) " at 6.8 , −2.2 c en te r
305 s e t l a b e l " r (a . u) " at −1.7 ,5 .0 r o t a t e by 90 cente r
306 unset z t i c s
307 unset key
308 s e t co lorbox
309 #
310 s e t out ’TiN . ELF100 . png ’
311 s e t t i t l e "TiN ELF along 100"
312 s p l o t ’TiN .ELF_100 . dat ’ u 1 : 2 : 3 w pm3d
313 EOF
314

315 $ECHO " gene ra t ing TiN . charge100 . png . . . \ c"
316 $GP_COMMAND < gnuplot . tmp
317 $ECHO " done"
318 #rm gnuplot . tmp
319

320 f i
321

322 ELAPSED_TIME9=$ (($SECONDS − $START_TIME))
323 echo " I t has been $ELAPSED_TIME9 seconds "
324

325

326 #−:−
327 #−:−:−:Begin Elect ron Pseudo Charge Density Ca l cu l a t i on with PP. x f o r (100)−:−:−:−
328 #−:−
329 cat > TiN .pp_EpCD_100 . in << EOF
330 &inputpp
331 p r e f i x = ’TiN ’
332 outd i r = ’$TMP_DIR/ ’
333 f i l p l o t = ’TiN_EpCD_100 ’
334 plot_num = 0
335 spin_component = 0
336 /
337 &plo t
338 n f i l e = 1
339 f i l e p p (1) = ’TiN_EpCD_100 ’
340 weight (1) = 1 .0
341 i f l a g = 2
342 output_format = 7
343 f i l e o u t = ’TiN .EpCD_100 . dat ’
344 e1 (1) = 1 . 0 , e1 (2) = 0 . 0 , e1 (3) = 0 . 0 ,
345 e2 (1) = 0 . 0 , e2 (2) = 0 . 0 , e2 (3) = 1 . 0 ,
346 nx=56, ny=40
347 /
348 EOF
349

350 $ECHO
351 $ECHO " running pp . x f o r a 2D p lo t o f ELF . . . \ c"
352 $PP_COMMAND < TiN .pp_EpCD_100 . in > TiN .pp_EpCD_100 . out
353 check_fa i lu r e $?
354 $ECHO " done"
355

120

356 ELAPSED_TIME10=$ (($SECONDS − $START_TIME))
357 echo " I t has been $ELAPSED_TIME10 seconds "
358

359

360 #−:−
361 #−:−:−:−:−:−:−:−Begin P lo t t i ng with GNUPlot (ELF 100 2D Data Plot) :−:−:−:−:−:−:−:−
362 #−:−
363

364 i f ["$GP_COMMAND" = ""] ; then
365 break
366 e l s e
367 cat > gnuplot . tmp <<EOF
368 #!$GP_COMMAND
369 #
370 s e t term png font " ,18 " enh s i z e 1000 ,1000
371 s e t pm3d
372 s e t p a l e t t e model HSV func t i on s gray ∗0 .75 , 1 , 0 . 9
373 s e t view 0 ,0
374 #
375 a l a t =8.00299
376 s e t xra [0 : a l a t]
377 s e t yra [0 . : a l a t]
378 s e t s i z e r a t i o 1 . / 1 .
379 s e t x t i c s out nomirror
380 s e t y t i c s ax i s in o f f s e t −4.0 ,0 nomirror
381 s e t l a b e l " r (a . u) " at 6.8 , −2.2 c en te r
382 s e t l a b e l " r (a . u) " at −1.7 ,5 .0 r o t a t e by 90 cente r
383 unset z t i c s
384 unset key
385 s e t co lorbox
386 #
387 s e t out ’TiN .EpCD100 . png ’
388 s e t t i t l e "TiN EpCD along 100"
389 s p l o t ’TiN .EpCD_100 . dat ’ u 1 : 2 : 3 w pm3d
390 EOF
391

392 $ECHO " gene ra t ing TiN . charge100 . png . . . \ c"
393 $GP_COMMAND < gnuplot . tmp
394 $ECHO " done"
395 #rm gnuplot . tmp
396

397 f i
398

399 ELAPSED_TIME11=$ (($SECONDS − $START_TIME))
400 echo " I t has been $ELAPSED_TIME11 seconds "
401

402

403 #−:−
404 #−:−:−:−:−:−:−:−:−:−:−:−:−:−Begin Cleaning Temp Directory −:−:−:−:−:−:−:−:−:−:−:−:−
405 #−:−
406

407 $ECHO " c l ean ing $TMP_DIR . . . \ c"
408 rm −r f $TMP_DIR/TiN .∗
409

410 $ECHO
411 $ECHO "$EXAMPLE_DIR: done"
412

413 #−:−

121

414 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
415 #−:−
416

417 ELAPSED_TIME=$ (($SECONDS − $START_TIME))
418 echo " I t has been $ELAPSED_TIME seconds "
419

420 echo "Job Completed"

6.5 K-resolved projected density of states (KPDOS) and the Fermi sur-
face

As shown in the previous section 6.4, Quantum Espresso (QE) can perform a large variety of calcu-
lations. Another useful calculation is that of the k-resolved projected density of states (KPDOS).
In broad terms, the projected density of states (PDOS) is the contribution (or the projection) of
any one of n orbitals in any one of m atoms to the total density of states (DOS). So, the KPDOS
allows us to separate the individual contributions of orbitals to the overall DOS, giving a clear and
intuitive picture as to the origin of electronic properties in a system.

In addition to the KPDOS, QE can calculate the Fermi surface. To review some physics, the
Fermi surface is the surface in reciprocal space which separates occupied and unoccupied states at
zero temperature. In the case that electrons are completely free, the Fermi surface will take the
shape of a circle (in the 2D case), or a sphere (in the 3D case). The Fermi surface, like many of the
other tools that we discuss in this text, allows the viewer to rapidly gain an intuitive understanding
of where some of the electronic properties of a material are coming from. Additionally (and, again
somewhat shallowly, the Fermi surface can be very beautiful and can be made into exceptional
scientific visualizations with the aid of other codes that will be discussed in section 6.8.

The following script will calculate the KPDOS as well as the Fermi surface of TiN and is divided
into nine separate sections which will be described individually (but briefly and as accessibly as
reasonable) in the following paragraphs. It is important with these calculations to have a reasonable
idea of what the Fermi level is in the material you are calculating. In TiN, I estimate that the Fermi
level should be approximately 17.2470 eV. The following script has also been stripped of its header
file to be more economical in terms of space; please see section 6.3 for a header file that can (with
just a few tweaks of the pseudopotential files) be copied and pasted into the header of the following
to make a usable script. Before beginning trying to run the script, make sure that all of your
pseudopotentials are readable and that all of the executables you wish to use are called in the
header file.

True to the normal form of my QE scripts, I begin here by calculating the SCF in section 1; in
this specific instance, I am using kjpaw pseudopotentials. Additionally, part of the input file for this
section was generated using the program Cif2Cell which is discussed at length in section 6.7. We
create a crystal similar to what was described in 6.4. The option mv Smearing is the 1999 Marzari-
Vanderbilt Cold Smearing. The option starting_magnetization gives the starting spin polarization
on atom i and is set here, for the sake of the example, to 1 which means that all spins are up.
In reality, it is more likely that there will be little to no net magnetic component to TiN. This
starting_magnetization is usually more important in SCF calculations than in NSCF calculations.
We also set an automatically-defined grid of k-points for the calculation for convenience.

In section two, we begin the band structure calculation. Cell parameters here are not needed
and instead just the fractional coordinates of the atoms in the cell are needed. In this case, we
manually define 97 k-points along the ∆, and Σ lines. It is important to make sure that ecutwfc, and

122

ecutrho settings are consistent across calculations. Make sure that the value of the degauss setting
(which is the Rydberg (Ry) energy value of the gaussian spreading for brillouin-zone integration in
metals) is reasonable and realistic.

In section three, we finally begin the k-resolved PDOS calculation. The calculation of the
KPDOS will be performed along the lines computed in the band structure calculation in section
two (the ∆, and Σ lines here). The option ngauss Is Gaussian Broadening Type, 0 Simple Default.
Remember that degauss Is Gaussian Broadening in Ry (not eV). The setting DeltaE Is Energy
Grid Step Size in eV and needs to be chosen to be relatively fine but this is (as always) at the
expense of increased computational intensity. The heavy lifting here is done with the setting
kresolveddos=.true. which informs QE of what type of calculation is being performed specifically.

Section four uses the KPDOS output as its input for plotting all of the results with Gnuplot. For
more specific coverage of Gnuplot, please see sections 3.8, and 10.5. This is a somewhat advanced
usage of Gnuplot and the script overall uses the multiple plotting engine (called multiplot) to create
the graphics of the KPDOS. Make sure to set your specific Fermi energy here as the ef variable.
This specific instance of a Gnuplot script will create six plots corresponding to the states that were
previously calculated. Depending on the system, there may be more or less states that need to be
calculated and therefore the reader may need to modify this part of the script to suit their own
needs. Beware however that it can be irritating at this step, in the case that there is a mistake
made in one of the edits, the script can terminate and make you begin your calculations again (QE
can however restart without calculating everything from scratch). Gnuplot here is set to create
.png images because of the png enhanced terminal that was set at the beginning of the script.

In section five, we begin density of states (DOS) calculations with the calculation of a non-self-
consistent field (NSCF). Similarly to section three, the calculation here does not need the specific
cell parameter. Like the calculation in section one, this NSCF will be calculated with automatic
k-points. We also set occupations to Bloechl’s tetrahedral method. The parameter nbnd here is
very important and tells QE the number of electronic states that need to be calculated. Choosing
a proper value of nbnd is somewhat involved and beyond the scope of this text. However, if you
are seeing that one of the .out files returns an error with ’Bad Fermi Energy’, then try to increase
the value of nbnd to a larger number and that may resolve the error (do this sparingly though and
try to not stray from a reasonable number for nbnd).

Section five also runs two additional calculations on top of the NSCF: one for the DOS, and
one for the PDOS. In both of these calculations, it is important to specify reasonable values for
Emin (the minimum energy to calculate), Emax (the maximum energy to calculate), and DeltaE
(the step size to calculate). This DeltaE parameter is very important as it specifies the coarseness
of the calculation set, reducing this number comes at the expense of a more intense calculation
but obviously yields a finer calculation space. It is up to the reader to determine a value of this
parameter that is most reasonable for them; however, here I set it as 0.1 which is a common value
in these situations.

In sections six and seven, we begin the SCF calculation for the spin-polarized (SP) case and
then use the output of that calculation to calculate the Fermi surface for the spin-polarized case.
Here I choose to use a less coarse grid for the sake of time savings and use an 8x8x8 automatic
grid of k-points. The occupations setting is set as smearing which gives gaussian smearing that is
suited to metals. This is chosen because TiN is a very good conductor of electricity and has optical
properties similar to gold in the visible bandwidth. An NSCF calculation for the SP case is then
run in a similar way as before but this time using a much finer grid of k-points. The choice of which
calculations can stand to have more or less coarse grids of k-points is important and can be learned

123

but is beyond the scope of this text. If the NSCF calculation halts unexpectedly with an error like
"Error condition encountered during test: exit status = 1 Aborting", then try increasing nbnd to
a larger number. After the SCF and NSCF for the SP case are calculated, the script will run the
Fermi surface calculation using the fs.x FORTRAN code from Quantum Espresso.

Sections eight and nine do the same sort of thing as sections six and seven, however they calculate
the SCF and NSCF of the non-spin-polarized (NSP). The resulting Fermi surfaces will be stored in
files with the .bxsf extension and can be visualized rapidly with the program called XCrySDen [5].
These output files will be named in a way similar to the following: TiN_fsXX.bxsf where the XX
will be substituted for up or dw (for the up and down cases).

For the TiN up-KPDOS calculations, the results should look something like the following:

124

125

Additionally, for the TiN Fermi surface calculation, the results (after some tinkering with Firmi,
a program described in section 6.8, and a 3D graphics program called Blender) should look some-
thing like the following:

Please see the following script for the calculation of the KPDOS as well as the Fermi surface.
Additionally, see section 6.8 for a quick discussion on how to visualize Fermi surfaces and how to
turn them into .stl files for use in 3D graphics programs.

1 #!/ bin / sh
2

3 #−:−
4 #−:−:−:−:−:−:−:−:−:−:−:−:Begin Se l f−Cons i s t ent Ca l cu l a t i on :−:−:−:−:−:−:−:−:−:−:−:−
5 #−:−
6

126

7 cat > TiN . s c f . in << EOF
8 &con t r o l
9 c a l c u l a t i o n=’ s c f ’

10 restart_mode=’ from_scratch ’ ,
11 p r e f i x=’TiN ’
12 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
13 outd i r=’$TMP_DIR/ ’
14 /
15 &SYSTEM
16 i b rav = 0 ,
17 ce l ldm (1) = 8.00299 ,
18 nat = 2 ,
19 ntyp = 2 ,
20 ecutwfc = 40 ,
21 ecutrho = 160 ,
22 occupat ions = ’ smearing ’ ,
23 smearing = ’mv ’ ,
24 degauss = 0 .02 ,
25 nspin = 2 ,
26 s tar t ing_magnet i zat ion (1) = 1 ,
27 s tar t ing_magnet i zat ion (2) = 1 ,
28 tot_magnet izat ion = −1 ,
29 /
30 &ELECTRONS
31 conv_thr = 1 .0d−8 ,
32 mixing_beta = 0 .7 ,
33 /
34 CELL_PARAMETERS { a l a t }
35 0.500000000000000 0.500000000000000 0.000000000000000
36 0.500000000000000 0.000000000000000 0.500000000000000
37 0.000000000000000 0.500000000000000 0.500000000000000
38 ATOMIC_SPECIES
39 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
40 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
41 ATOMIC_POSITIONS { c r y s t a l }
42 Ti 0.000000000000000 0.000000000000000 0.000000000000000
43 N 0.500000000000000 0.500000000000000 0.500000000000000
44

45 # k−space r e s o l u t i o n ~0.2/A.
46 K_POINTS automatic
47 12 12 12 0 0 0
48

49 EOF
50 $ECHO "running the s c f c a l c u l a t i o n . . . \ c"
51 $PW_COMMAND < TiN . s c f . in > TiN . s c f . out
52 check_fa i lu r e $?
53 $ECHO "done"
54

55 #−:−
56 #−:−:−:−:−:−:−:−:−:−:−:−:Begin Band Struc ture Ca lcu lat ion −:−:−:−:−:−:−:−:−:−:−:−:−
57 #−:−
58

59 cat > TiN . band . in << EOF
60 &con t r o l
61 c a l c u l a t i o n=’ bands ’
62 restart_mode=’ from_scratch ’ ,
63 p r e f i x=’TiN ’ ,
64 pseudo_dir = ’$PSEUDO_DIR/ ’ ,

127

65 outd i r=’$TMP_DIR/ ’
66 /
67 &SYSTEM
68 i b rav = 2 ,
69 ce l ldm (1) = 8.00299 ,
70 nat = 2 ,
71 ntyp = 2 ,
72 ecutwfc = 40 ,
73 ecutrho = 160 ,
74 occupat ions = ’ smearing ’ ,
75 smearing = ’mv ’ ,
76 degauss = 0 .02 ,
77 nspin = 2 ,
78 s tar t ing_magnet i zat ion (1) = 1 ,
79 s tar t ing_magnet i zat ion (2) = 1 ,
80 tot_magnet izat ion = −1 ,
81 /
82 &ELECTRONS
83 conv_thr = 1 .0d−8 ,
84 mixing_beta = 0 .7 ,
85 /
86 ATOMIC_SPECIES
87 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
88 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
89 ATOMIC_POSITIONS { c r y s t a l }
90 Ti 0.000000000000000 0.000000000000000 0.000000000000000
91 N 0.500000000000000 0.500000000000000 0.500000000000000
92 K_POINTS
93 97
94 1.000000000 0.000000000 0.000000000 1
95 0.975000000 0.000000000 0.000000000 2
96 0.950000000 0.000000000 0.000000000 3
97 0.925000000 0.000000000 0.000000000 4
98 0.900000000 0.000000000 0.000000000 5
99 0.875000000 0.000000000 0.000000000 6

100 0.850000000 0.000000000 0.000000000 7
101 0.825000000 0.000000000 0.000000000 8
102 0.800000000 0.000000000 0.000000000 9
103 0.775000000 0.000000000 0.000000000 10
104 0.750000000 0.000000000 0.000000000 11
105 0.725000000 0.000000000 0.000000000 12
106 0.700000000 0.000000000 0.000000000 13
107 0.675000000 0.000000000 0.000000000 14
108 0.650000000 0.000000000 0.000000000 15
109 0.625000000 0.000000000 0.000000000 16
110 0.600000000 0.000000000 0.000000000 17
111 0.575000000 0.000000000 0.000000000 18
112 0.550000000 0.000000000 0.000000000 19
113 0.525000000 0.000000000 0.000000000 20
114 0.500000000 0.000000000 0.000000000 21
115 0.475000000 0.000000000 0.000000000 22
116 0.450000000 0.000000000 0.000000000 23
117 0.425000000 0.000000000 0.000000000 24
118 0.400000000 0.000000000 0.000000000 25
119 0.375000000 0.000000000 0.000000000 26
120 0.350000000 0.000000000 0.000000000 27
121 0.325000000 0.000000000 0.000000000 28
122 0.300000000 0.000000000 0.000000000 29

128

123 0.275000000 0.000000000 0.000000000 30
124 0.250000000 0.000000000 0.000000000 31
125 0.225000000 0.000000000 0.000000000 32
126 0.200000000 0.000000000 0.000000000 33
127 0.175000000 0.000000000 0.000000000 34
128 0.150000000 0.000000000 0.000000000 35
129 0.125000000 0.000000000 0.000000000 36
130 0.100000000 0.000000000 0.000000000 37
131 0.075000000 0.000000000 0.000000000 38
132 0.050000000 0.000000000 0.000000000 39
133 0.025000000 0.000000000 0.000000000 40
134 0.000000000 0.000000000 0.000000000 41
135 0.017857142 0.017857142 0.000000000 42
136 0.035714285 0.035714285 0.000000000 43
137 0.053571428 0.053571428 0.000000000 44
138 0.071428571 0.071428571 0.000000000 45
139 0.089285714 0.089285714 0.000000000 46
140 0.107142857 0.107142857 0.000000000 47
141 0.125000000 0.125000000 0.000000000 48
142 0.142857142 0.142857142 0.000000000 49
143 0.160714285 0.160714285 0.000000000 50
144 0.178571428 0.178571428 0.000000000 51
145 0.196428571 0.196428571 0.000000000 52
146 0.214285714 0.214285714 0.000000000 53
147 0.232142857 0.232142857 0.000000000 54
148 0.250000000 0.250000000 0.000000000 55
149 0.267857142 0.267857142 0.000000000 56
150 0.285714285 0.285714285 0.000000000 57
151 0.303571428 0.303571428 0.000000000 58
152 0.321428571 0.321428571 0.000000000 59
153 0.339285714 0.339285714 0.000000000 60
154 0.357142857 0.357142857 0.000000000 61
155 0.375000000 0.375000000 0.000000000 62
156 0.392857142 0.392857142 0.000000000 63
157 0.410714285 0.410714285 0.000000000 64
158 0.428571428 0.428571428 0.000000000 65
159 0.446428571 0.446428571 0.000000000 66
160 0.464285714 0.464285714 0.000000000 67
161 0.482142857 0.482142857 0.000000000 68
162 0.500000000 0.500000000 0.000000000 69
163 0.517857142 0.517857142 0.000000000 70
164 0.535714285 0.535714285 0.000000000 71
165 0.553571428 0.553571428 0.000000000 72
166 0.571428571 0.571428571 0.000000000 73
167 0.589285714 0.589285714 0.000000000 74
168 0.607142857 0.607142857 0.000000000 75
169 0.625000000 0.625000000 0.000000000 76
170 0.642857142 0.642857142 0.000000000 77
171 0.660714285 0.660714285 0.000000000 78
172 0.678571428 0.678571428 0.000000000 79
173 0.696428571 0.696428571 0.000000000 80
174 0.714285714 0.714285714 0.000000000 81
175 0.732142857 0.732142857 0.000000000 82
176 0.750000000 0.750000000 0.000000000 83
177 0.767857142 0.767857142 0.000000000 84
178 0.785714285 0.785714285 0.000000000 85
179 0.803571428 0.803571428 0.000000000 86
180 0.821428571 0.821428571 0.000000000 87

129

181 0.839285714 0.839285714 0.000000000 88
182 0.857142857 0.857142857 0.000000000 89
183 0.875000000 0.875000000 0.000000000 90
184 0.892857142 0.892857142 0.000000000 91
185 0.910714285 0.910714285 0.000000000 92
186 0.928571428 0.928571428 0.000000000 93
187 0.946428571 0.946428571 0.000000000 94
188 0.964285714 0.964285714 0.000000000 95
189 0.982142857 0.982142857 0.000000000 96
190 1.000000000 1.000000000 0.000000000 97
191

192 EOF
193 $ECHO " running the band−s t r u c tu r e c a l c u l a t i o n f o r TiN . . . \ c"
194 $PW_COMMAND < TiN . band . in > TiN . band . out
195 check_fa i lu r e $?
196 $ECHO " done"
197

198 #−:−
199 #−:−:−:−:−:−Begin K−r e s o l v ed PDOS ca l c u l a t i o n along l i n e s computed above :−:−:−:−:−
200 #−:−
201

202 cat > TiN . kpdos . in << EOF
203 &projwfc
204 outd i r=’$TMP_DIR/ ’
205 p r e f i x=’TiN ’
206 ngauss=0, degauss =0.036748
207 DeltaE=0.01
208 kre so lveddos=. t rue .
209 f i l p d o s=’TiN . k ’
210 /
211 EOF
212 $ECHO " running k−r e s o l v ed PDOS ca l c u l a t i o n f o r TiN . . . \ c"
213 $PROJWFC_COMMAND < TiN . kpdos . in > TiN . kpdos . out
214 check_fa i lu r e $?
215 $ECHO " done"
216

217 #−:−
218 #−:−:−:−:−:−Begin P lo t t i ng with GNUPlot (Assuming That I t i s I n s t a l l e d)−:−:−:−:−:−
219 #−:−
220

221 i f ["$GP_COMMAND" = ""] ; then
222 break
223 e l s e
224 cat > gnuplot . tmp <<EOF
225 #!$GP_COMMAND
226 #
227 s e t term png enh s i z e 1000 ,500
228 s e t pm3d
229 s e t view 0 ,0
230 #
231 f (z)=z ∗∗ (0 . 7) # tune image con t ra s t
232 e f =17.2470
233 #
234 unset x t i c s
235 s e t x t i c s out nomirror ("X" 1 , "Gamma" 41 , "K" 83 , "X" 97)
236 s e t xra [1 : 9 7]
237 s e t l a b e l 1 "E−E_F(eV) " at 98 ,2 . 5
238 s e t y t i c s out nomirror

130

239 s e t yra [−20 :7]
240 unset z t i c s
241 unset key
242 unset co lorbox
243

244 #
245 s e t out ’ kpdos_up1 . png ’
246 s e t o r i g i n 0 ,0
247 s e t s i z e 1 ,1
248 s e t mu l t ip l o t
249 dx=.1 ; dy=.30 # reduce margins
250 s e t t i t l e o f f s e t 0,−7
251 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
252 s e t o r i g i n 0./3−dx,0−dy
253 s e t t i t l e "Total DOS"
254 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
255 s e t o r i g i n 1./3−dx,0−dy
256 s e t t i t l e "Ti_s1−DOS"
257 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#1(s) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
258 s e t o r i g i n 2./3−dx,0−dy
259 s e t t i t l e "Ti_s2−DOS"
260 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#2(s) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
261 unset mu l t ip l o t
262

263 #
264 s e t out ’ kpdos_up2 . png ’
265 s e t o r i g i n 0 ,0
266 s e t s i z e 1 ,1
267 s e t mu l t ip l o t
268 dx=.1 ; dy=.30 # reduce margins
269 s e t t i t l e o f f s e t 0,−7
270 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
271 s e t o r i g i n 0./3−dx,0−dy
272 s e t t i t l e " Total DOS"
273 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
274 s e t o r i g i n 1./3−dx,0−dy
275 s e t t i t l e "Ti_p1−DOS"
276 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#3(p) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
277 s e t o r i g i n 2./3−dx,0−dy
278 s e t t i t l e "Ti_d1−DOS"
279 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#4(d) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
280 unset mu l t ip l o t
281

282 #
283 s e t out ’ kpdos_up3 . png ’
284 s e t o r i g i n 0 ,0
285 s e t s i z e 1 ,1
286 s e t mu l t ip l o t
287 dx=.1 ; dy=.30 # reduce margins
288 s e t t i t l e o f f s e t 0,−7
289 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
290 s e t o r i g i n 0./3−dx,0−dy
291 s e t t i t l e "Total DOS"
292 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
293 s e t o r i g i n 1./3−dx,0−dy
294 s e t t i t l e "N_s1−DOS"
295 s p l o t ’TiN . k . pdos_atm#2(N)_wfc#1(s) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
296 s e t o r i g i n 2./3−dx,0−dy

131

297 s e t t i t l e "N_p1−DOS"
298 s p l o t ’TiN . k . pdos_atm#2(N)_wfc#2(p) ’ u 1 : (\ $2−e f) : (f (\ $3)) w pm3d
299 unset mu l t ip l o t
300

301 #
302 s e t out ’ kpdos_dw1 . png ’
303 s e t o r i g i n 0 ,0
304 s e t s i z e 1 ,1
305 s e t mu l t ip l o t
306 dx=.1 ; dy=.30 # reduce margins
307 s e t t i t l e o f f s e t 0,−7
308 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
309 s e t o r i g i n 0./3−dx,0−dy
310 s e t t i t l e "Total DOS"
311 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
312 s e t o r i g i n 1./3−dx,0−dy
313 s e t t i t l e "Ti_s1−DOS"
314 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#1(s) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
315 s e t o r i g i n 2./3−dx,0−dy
316 s e t t i t l e "Ti_s2−DOS"
317 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#2(s) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
318 unset mu l t ip l o t
319

320 #
321 s e t out ’ kpdos_dw2 . png ’
322 s e t o r i g i n 0 ,0
323 s e t s i z e 1 ,1
324 s e t mu l t ip l o t
325 dx=.1 ; dy=.30 # reduce margins
326 s e t t i t l e o f f s e t 0,−7
327 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
328 s e t o r i g i n 0./3−dx,0−dy
329 s e t t i t l e " Total DOS"
330 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
331 s e t o r i g i n 1./3−dx,0−dy
332 s e t t i t l e "Ti_p1−DOS"
333 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#3(p) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
334 s e t o r i g i n 2./3−dx,0−dy
335 s e t t i t l e "Ti_d1−DOS"
336 s p l o t ’TiN . k . pdos_atm#1(Ti)_wfc#4(d) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
337 unset mu l t ip l o t
338

339 #
340 s e t out ’ kpdos_dw3 . png ’
341 s e t o r i g i n 0 ,0
342 s e t s i z e 1 ,1
343 s e t mu l t ip l o t
344 dx=.1 ; dy=.30 # reduce margins
345 s e t t i t l e o f f s e t 0,−7
346 s e t s i z e 1./3+1.4∗dx ,1.+2∗dy
347 s e t o r i g i n 0./3−dx,0−dy
348 s e t t i t l e "Total DOS"
349 s p l o t ’TiN . k . pdos_tot ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
350 s e t o r i g i n 1./3−dx,0−dy
351 s e t t i t l e "N_s1−DOS"
352 s p l o t ’TiN . k . pdos_atm#2(N)_wfc#1(s) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
353 s e t o r i g i n 2./3−dx,0−dy
354 s e t t i t l e "N_p1−DOS"

132

355 s p l o t ’TiN . k . pdos_atm#2(N)_wfc#2(p) ’ u 1 : (\ $2−e f) : (f (\ $4)) w pm3d
356 unset mu l t ip l o t
357

358 EOF
359 $ECHO
360 $ECHO " p l o t t i n g k−r e s o l v ed DOS . . . \ c"
361 $GP_COMMAND < gnuplot . tmp
362 $ECHO " done"
363 rm gnuplot . tmp
364 f i
365

366 #−:−
367 #−:−:−:−:−:−:−:−:−:−:−:−Begin Density o f S ta t e s Ca lcu lat ion −:−:−:−:−:−:−:−:−:−:−:−
368 #−:−
369

370 cat > TiN . dos . in << EOF
371 &con t r o l
372 c a l c u l a t i o n=’ n s c f ’
373 p r e f i x=’TiN ’ ,
374 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
375 outd i r=’$TMP_DIR/ ’
376 /
377 &SYSTEM
378 i b rav = 2 ,
379 ce l ldm (1) = 8.00299 ,
380 nat = 2 ,
381 ntyp = 2 ,
382 ecutwfc = 40 ,
383 ecutrho = 160 ,
384 occupat ions = ’ t e t rahedra ’ ,
385 degauss = 0 .02 ,
386 nspin = 2 ,
387 s tar t ing_magnet i zat ion (1) = 1 ,
388 s tar t ing_magnet i zat ion (2) = 1 ,
389 tot_magnet izat ion = −1 ,
390 nbnd = 10 ,
391 /
392 &e l e c t r o n s
393 conv_thr = 1 .0d−8 ,
394 mixing_beta = 0 .7 ,
395 /
396 ATOMIC_SPECIES
397 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
398 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
399 ATOMIC_POSITIONS { c r y s t a l }
400 Ti 0.000000000000000 0.000000000000000 0.000000000000000
401 N 0.500000000000000 0.500000000000000 0.500000000000000
402 K_POINTS {automatic }
403 12 12 12 0 0 0
404 EOF
405

406 cat > TiN . dos2 . in << EOF
407 &dos
408 outd i r=’$TMP_DIR/ ’
409 p r e f i x=’TiN ’
410 f i l d o s=’TiN . dos ’ ,
411 Emin=5.0 , Emax=25.0 , DeltaE=0.1
412 /

133

413 EOF
414

415 $ECHO " running DOS c a l c u l a t i o n f o r TiN . . . \ c"
416 $PW_COMMAND < TiN . dos . in > TiN . dos . out
417 check_fa i lu r e $?
418 $DOS_COMMAND < TiN . dos2 . in > TiN . dos2 . out
419 check_fa i lu r e $?
420 $ECHO " done"
421

422 cat > TiN . pdos . in << EOF
423 &projwfc
424 outd i r=’$TMP_DIR/ ’
425 p r e f i x=’TiN ’
426 Emin=5.0 , Emax=25.0 , DeltaE=0.1
427 ngauss=1, degauss =0.02
428 /
429 EOF
430 $ECHO " running PDOS ca l c u l a t i o n f o r TiN . . . \ c"
431 $PROJWFC_COMMAND < TiN . pdos . in > TiN . pdos . out
432 check_fa i lu r e $?
433 $ECHO " done"
434

435 #−:−
436 #−:−:−:−:−:−:−:−:−:−:−:Update User f o r Fermi Sur face Sec t i on :−:−:−:−:−:−:−:−:−:−:−
437 #−:−
438

439 $ECHO
440 $ECHO " Beginning Ca l cu l a t i on s f o r the Fermi Sur face plot , "
441 $ECHO " Spin−Po la r i z ed case . . . "
442

443 #−:−
444 #−:−:−:−:Begin Se l f−Cons i s t ent Ca l cu l a t i on f o r the Spin−Po la r i z ed (SP) Case−:−:−:−
445 #−:−
446

447 cat > TiN . scf_SP . in << EOF
448 &con t r o l
449 c a l c u l a t i o n=’ s c f ’
450 restart_mode=’ from_scratch ’ ,
451 p r e f i x=’TiN ’ ,
452 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
453 outd i r=’$TMP_DIR/ ’
454 /
455 &SYSTEM
456 i b rav = 2 ,
457 ce l ldm (1) = 8.00299 ,
458 nat = 2 ,
459 ntyp = 2 ,
460 ecutwfc = 40 ,
461 ecutrho = 160 ,
462 occupat ions = ’ smearing ’ ,
463 smearing = ’ meth fe s se l−paxton ’ ,
464 degauss = 0 .02 ,
465 nspin = 2 ,
466 s tar t ing_magnet i zat ion (1) = 1 ,
467 s tar t ing_magnet i zat ion (2) = 1 ,
468 tot_magnet izat ion = −1 ,
469 /
470 &e l e c t r o n s

134

471 conv_thr = 1 .0d−8 ,
472 mixing_beta = 0 .7 ,
473 /
474 ATOMIC_SPECIES
475 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
476 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
477 ATOMIC_POSITIONS { c r y s t a l }
478 Ti 0.000000000000000 0.000000000000000 0.000000000000000
479 N 0.500000000000000 0.500000000000000 0.500000000000000
480 K_POINTS {automatic }
481 8 8 8 0 0 0
482 EOF
483 $ECHO " running the s c f c a l c u l a t i o n f o r the spin−po l a r i z ed case . . . \ c"
484 $PW_COMMAND < TiN . scf_SP . in > TiN . s c f 0 . SP . out
485 check_fa i lu r e $?
486 $ECHO " done"
487

488 #−:−
489 #−:−:−:−:−Begin Fermi Sur face Ca l cu l a t i on f o r the Spin−Po la r i z ed (SP) Case :−:−:−:−
490 #−:−
491

492 cat > TiN . fs_SP . in << EOF
493 &con t r o l
494 c a l c u l a t i o n=’ n s c f ’
495 p r e f i x=’TiN ’ ,
496 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
497 outd i r=’$TMP_DIR/ ’
498 /
499 &SYSTEM
500 i b rav = 2 ,
501 ce l ldm (1) = 8.00299 ,
502 nat = 2 ,
503 ntyp = 2 ,
504 ecutwfc = 40 ,
505 ecutrho = 160 ,
506 occupat ions = ’ t e t rahedra ’ ,
507 nbnd = 10 ,
508 nspin = 2 ,
509 s tar t ing_magnet i zat ion (1) = 1 ,
510 s tar t ing_magnet i zat ion (2) = 1 ,
511 tot_magnet izat ion = −1 ,
512 /
513 &e l e c t r o n s
514 conv_thr = 1 .0d−8 ,
515 mixing_beta = 0 .7 ,
516 /
517 ATOMIC_SPECIES
518 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
519 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
520 ATOMIC_POSITIONS { c r y s t a l }
521 Ti 0.000000000000000 0.000000000000000 0.000000000000000
522 N 0.500000000000000 0.500000000000000 0.500000000000000
523 K_POINTS {automatic }
524 16 16 16 0 0 0
525 EOF
526

527 $ECHO " running the Fermi Sur face c a l c u l a t i o n . . . \ c"
528 $PW_COMMAND < TiN . fs_SP . in > TiN . fs_SP . out

135

529 check_fa i lu r e $?
530 $ECHO " done"
531

532 cat > FS . in <<EOF
533 &fermi
534 outd i r=’$TMP_DIR/ ’
535 p r e f i x=’TiN ’
536 /
537 EOF
538 $FS_COMMAND < FS . in > FS . out
539 check_fa i lu r e $?
540

541 $ECHO
542 $ECHO " Use ’ xcrysden −−bxs f r e s u l t s /TiN_fsXX . bxsf ’ , XX=up ,dw to p l o t the Fermi

Sur face \c"
543 $ECHO " done"
544

545 #−:−
546 #−:−:−:−:−:−:−:−:−:−:−:Update User f o r Fermi Sur face Sec t i on :−:−:−:−:−:−:−:−:−:−:−
547 #−:−
548

549 $ECHO
550 $ECHO " Beginning Ca l cu l a t i on s f o r the Fermi Sur face plot , "
551 $ECHO " Non−Spin−Po la r i z ed case . . . "
552

553 #−:−
554 #−:−:−Begin Se l f−Cons i s t ent Ca l cu l a t i on f o r the Non−Spin−Po la r i z ed (NSP) Case−:−:−
555 #−:−
556

557 cat > TiN . scf_NSP . in << EOF
558 &con t r o l
559 c a l c u l a t i o n=’ s c f ’
560 restart_mode=’ from_scratch ’ ,
561 p r e f i x=’TiN ’ ,
562 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
563 outd i r=’$TMP_DIR/ ’
564 /
565 &SYSTEM
566 i b rav = 2 ,
567 ce l ldm (1) = 8.00299 ,
568 nat = 2 ,
569 ntyp = 2 ,
570 ecutwfc = 40 ,
571 ecutrho = 160 ,
572 occupat ions = ’ smearing ’ ,
573 smearing = ’ meth fe s se l−paxton ’ ,
574 degauss = 0 .02 ,
575 nbnd = 10 ,
576 nspin = 2 ,
577 s tar t ing_magnet i zat ion (1) = 1 ,
578 s tar t ing_magnet i zat ion (2) = 1 ,
579 tot_magnet izat ion = −1 ,
580 /
581 &e l e c t r o n s
582 conv_thr = 1 .0d−8 ,
583 mixing_beta = 0 .7 ,
584 /
585 ATOMIC_SPECIES

136

586 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
587 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
588 ATOMIC_POSITIONS { c r y s t a l }
589 Ti 0.000000000000000 0.000000000000000 0.000000000000000
590 N 0.500000000000000 0.500000000000000 0.500000000000000
591 K_POINTS {automatic }
592 8 8 8 0 0 0
593 EOF
594 $ECHO " running the s c f c a l c u l a t i o n non spin−po l a r i z ed case . . . \ c"
595 $PW_COMMAND < TiN . scf_NSP . in > TiN . s c f 0 .NSP. out
596 check_fa i lu r e $?
597 $ECHO " done"
598

599 #−:−
600 #−:−:−:−:−Begin Fermi Sur face Ca l cu l a t i on f o r the Spin−Po la r i z ed (NSP) Case−:−:−:−
601 #−:−
602

603 cat > TiN . fs_NSP . in << EOF
604 &con t r o l
605 c a l c u l a t i o n=’ n s c f ’
606 p r e f i x=’TiN ’ ,
607 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
608 outd i r=’$TMP_DIR/ ’
609 /
610 &SYSTEM
611 i b rav = 2 ,
612 ce l ldm (1) = 8.00299 ,
613 nat = 2 ,
614 ntyp = 2 ,
615 ecutwfc = 40 ,
616 ecutrho = 160 ,
617 occupat ions = ’ t e t rahedra ’ ,
618 nbnd = 10 ,
619 /
620 &e l e c t r o n s
621 conv_thr = 1 .0d−8 ,
622 mixing_beta = 0 .7 ,
623 /
624 ATOMIC_SPECIES
625 Ti 47.86700 Ti . pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF
626 N 14.00650 N. pbe−n−kjpaw_psl . 1 . 0 . 0 .UPF
627 ATOMIC_POSITIONS { c r y s t a l }
628 Ti 0.000000000000000 0.000000000000000 0.000000000000000
629 N 0.500000000000000 0.500000000000000 0.500000000000000
630 K_POINTS automatic
631 16 16 16 0 0 0
632 EOF
633

634 $ECHO " running the Fermi Sur face c a l c u l a t i o n . . . \ c"
635 $PW_COMMAND < TiN . fs_NSP . in > TiN . fs_NSP . out
636 check_fa i lu r e $?
637 $ECHO " done"
638

639 cat > FS . in <<EOF
640 &fermi
641 outd i r=’$TMP_DIR/ ’
642 p r e f i x=’TiN ’
643 /

137

644 EOF
645 $FS_COMMAND < FS . in > FS . out
646 check_fa i lu r e $?
647

648 $ECHO
649 $ECHO " Use ’ xcrysden −−bxs f r e s u l t s /TiN_fs . bxsf ’ to p l o t the Fermi Sur face \c"
650 $ECHO " done"
651

652 #−:−
653 #−:−:−:−:−:−:−:−:−:−:−:−:−:−Begin Cleaning Temp Directory −:−:−:−:−:−:−:−:−:−:−:−:−
654 #−:−
655

656 $ECHO " c l ean ing $TMP_DIR . . . \ c"
657 rm −r f $TMP_DIR/TiN .∗
658

659 $ECHO
660 $ECHO "$EXAMPLE_DIR: done"

6.6 The complex dielectric function with epsilon.x
My interest in calculating complex dielectric functions stems from my own Ph.D. research work on
engineering the optical properties of materials and metasurfaces using chemistry and structuring to
enhance the tunability of permittivity. Experimentally, there are two common ways of determining
the permittivity of a material: one is to use ellipsometry and subsequent mathematical fitting;
another means is to measure reflection and transmission of light through a film and, with precise
knowledge of the thickness of the film, you use something like the reverse Newton’s method to
iteratively determine an n, and k that will suit the R, and T values that you give your code for
every data point in your measurement bandwidth based on some model like the Drude model.

Calculating the complex dielectric function of an arbitrary structure based on DFT is difficult
and needs to be paired generally with a very rigorous GW calculation to get reasonable results.
However, as a starting point for the user, one can attempt this calculation (as it is described here I
do not include the GW calculation but the user can do that on their own time with a suitable code
like BerkeleyGW on a supercomputer of sufficient power) just based on the self consistent and non
self consistent fields (denoted as SCF and NSCF respectively herein).

Quantum espresso has an executable for calculating the complex dielectric function that is called
epsilon.x. The minutia of how exactly this is calculation done and how epsilon.x works is supplied
within the epsilon.x documentation with distributions of Quantum Espresso and is best left to
the authors to describe. As a word of warning, be sure to verify that the results of calculations
match reasonably with reality. Without the GW calculation corrections here, the results will not
be representative of a realistic material in most cases. That being said, I believe the utility of
supplying this script is to add some documentation to the implementation of epsilon.x and the
potential sources of errors that can occur with its use. This calculation is light-weight in terms of
computational resources and obviously anemic when it comes to the density of the grid over which
the calculation is performed as well as having not very stringent requirements for the convergence
threshold. The user will have to tune these parameters to suit their own individual needs.

The following script is separated into five general sections. For the sake of brevity, I have omitted
the header of the file which includes operations like locating the environment variables and other
things. The exact header file that I used for this script is included above in section 6.3 and can be
copied and pasted into the header of the following script.

138

Before working lots on Quantum Espresso (or at leas concurrently with starting), I highly
recommend reading selections from the documentation to make sure that you know exactly what
every step within your calculation is doing.

Section one of this script runs the SCF calculation using a norm-conserving pseudopotential
(because, at least at the time of this writing, epsilon.x will only work on SCF and NSCF calculations
run with norm-conserving pseudopotentials. In the case of epsilon.x, we need to set the number
of processors as constant so we include the command wf_collect=.TRUE. Additionally, make sure
that the ecutwfc and ecutrho (energy terms) values are consistent between the SCF and NSCF
calculations. At the time of this writing, epsilon.x does not support an irreducible unit cell and, in
this case, I am using a single atom unit cell with one Au atom centered at the origin.

The unit cell is given ibrav = 0 and celldm(1) = 5.44951 which means that we can define our unit
cell and atomic positions within the script: all of that is handled in terms of the lattice constant.
60 points in reciprocal space are given and manually-defined (with the aid of a computer program,
of course) for the calculation in the order of Γ → X → W → K → L → Γ. Finally, the script is
ended and the cat command is used to write the script into a file. We then redirect the script into
an executable that we defined in the header of the file and stored in a variable and redirect the
output of that variable into another file called Au.scf.out and check to see if there was a failure.

Section two is very similar to section one but instead we are calculating the NSCF instead of the
SCF. Like in the SCF instructions, we give pertinent parameters for the NSCF at the beginning in
the &control, the &system, and the &electrons sections. We have also made sure that the ecutwfc
and ecutrho are consistent with the SCF calculation. Other parameters can be perused at the
leisure of the reader within the documentation of Quantum Espresso. Finally, we define the same
crystal as in the SCF calculation with the same pseudopotential and give the same k-points for
calculation steps as in the SCF calculation. We also submit the calculation to the computer in the
same way as before in the SCF calculation but this time we redirect the executable’s output into a
new file named Au.nscf.out.

In section three, we’re finally ready to run the epsilon.x calculation. Several pertinent terms
within the calculation are as follows: intrasmear is the broadening parameter for the intraband i.e.,
Drude-like term in eV; intersmear is the broadening parameter (in eV) for the interband contribution
and its default is 0.136d0 (eV); nw is the number of points in the frequency mesh. This calculation
will be performed on the interval [-wmax,wmax], wmax units of eV; shift is number of eV for rigid
shift of the imaginary part of the wavefunction. For Au, I have estimated that the threshold for
interband transitions is approximately 2.5 eV.

The epsilon.x program has input and output following the same standard as other Quantum
Espresso executables and we will run it, as well as write its output in a more or less identical manner
to what I have described above. In the event that epsilon.x returns an error regarding division by
zero, then there is likely an issue with the intersmear parameter being too small which leads to
strange infinities.

In the fourth section, I include a data file that I call Au.dat which is automatically written to the
directory and includes the wavelength in nm, n, k, energy (eV), and the real, and imaginary parts of
the complex dielectric function of Au as given in P. B. Johnson and R. W. Christy. Optical constants
of the noble metals, Phys. Rev. B 6, 4370-4379 (1972). This is included for comparison purposes of
the calculated values with real, experimentally-measured values of the complex dielectric function
of Au. Having a comparison data set like this is very important because it helps to rationalize
results and have a good comparison to an actual, physical result so that you can more rapidly judge
the relative accuracy of these calculations.

139

Finally, in the fifth section, we create several plots using GNUplot and write them to various
png files for comparison with the Johnson and Christy values of the measured Au permittivity.
This is done by setting up a script that will be interpreted by GNUplot and then passing that
script to GNUplot so it can create all of its nice graphics for you. This is done in a similar way to
other scripts I list in this text. Again, for reference, see section 3.8 for more regarding the use of
GNUplot.

Additionally, at every step along this calculation, I include a timer program that prints the time
that each step in the calculation has taken to reach its completion to the terminal. I think that
this little bit of functionality is very nice to have on hand for benchmarking purposes but also just
for the purpose of monitoring the calculation and what stage it is currently working on. Make sure
that you are running this script in the BASH environment or the timer functionality will not work
properly.

1 START_TIME=$SECONDS # Begin e lapsed time measurement (thanks Tom Anderson from
StackOverf low)

2

3 #−:−
4 #−:−:−:−:−:−:−:−:−:−:−:−:−:Begin Ca l cu l a t i on Di r ec t i ons −:−:−:−:−:−:−:−:−:−:−:−:−:−
5 #−:−
6

7 #−:−
8 #−:−:−:−:−:−:−:−:−:−:−:−:Begin Se l f−Cons i s t ent Ca l cu l a t i on :−:−:−:−:−:−:−:−:−:−:−:−
9 #−:−

10 #−:−:−:. in F i l e p a r t i a l l y Generated with C i f 2Ce l l f o r the Au B1 System−:−:−:−:−:−
11 #−:−:−:−:−:−:−:−:−:−:−Gaussian Smearing i s Sui ted f o r Metals :−:−:−:−:−:−:−:−:−:−:−
12 #−:−:−:−:−:−mv Smearing i s the 1999 Marzari−Vanderb i l t Cold Smearing :−:−:−:−:−:−:−
13 #−:−:−:−:−:−:−:−:−:−:−: f o r the SCF and the NSCF c a l c u l a t i o n s :−:−:−:−:−:−:−:−:−:−:−
14 #−:−
15 cat > Au. s c f . in << EOF
16 &con t r o l
17 c a l c u l a t i o n=’ s c f ’
18 restart_mode=’ from_scratch ’ ,
19 p r e f i x=’Au ’
20 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
21 outd i r=’$TMP_DIR/ ’
22 wf_co l l e c t=.TRUE,
23 /
24 &SYSTEM
25 i b rav = 0 ,
26 ce l ldm (1) = 5.44951 ,
27 nat = 1 ,
28 ntyp = 1 ,
29 ecutwfc = 65 ,
30 ecutrho = 260 ,
31 occupat ions = ’ smearing ’ ,
32 smearing = ’mv ’ ,
33 degauss = 0 .02 ,
34 /
35 &ELECTRONS
36 conv_thr = 1 .0d−8 ,
37 mixing_beta = 0 .7 ,
38 /
39 CELL_PARAMETERS { a l a t }
40 0.577350269189626 0.000000000000000 0.816496580927725
41 −0.288675134594812 −0.500000000000000 0.816496580927725
42 −0.288675134594812 0.500000000000000 0.816496580927725

140

43 ATOMIC_SPECIES
44 Au 196.96600 Au. r e l−pbesol−n−nc .UPF
45 ATOMIC_POSITIONS { c r y s t a l }
46 Au 0.000000000000000 0.000000000000000 0.000000000000000
47

48 K_POINTS c r y s t a l
49 60
50 0.0000000000 0.0000000000 0.0000000000 1 .0
51 0.0000000000 0.0277777778 0.0277777778 1 .0
52 0.0000000000 0.0555555556 0.0555555556 1 .0
53 0.0000000000 0.0833333333 0.0833333333 1 .0
54 0.0000000000 0.1111111111 0.1111111111 1 .0
55 0.0000000000 0.1388888889 0.1388888889 1 .0
56 0.0000000000 0.1666666667 0.1666666667 1 .0
57 0.0000000000 0.1944444444 0.1944444444 1 .0
58 0.0000000000 0.2222222222 0.2222222222 1 .0
59 0.0000000000 0.2500000000 0.2500000000 1 .0
60 0.0000000000 0.2777777778 0.2777777778 1 .0
61 0.0000000000 0.3055555556 0.3055555556 1 .0
62 0.0000000000 0.3333333333 0.3333333333 1 .0
63 0.0000000000 0.3611111111 0.3611111111 1 .0
64 0.0000000000 0.3888888889 0.3888888889 1 .0
65 0.0000000000 0.4166666667 0.4166666667 1 .0
66 0.0000000000 0.4444444444 0.4444444444 1 .0
67 0.0000000000 0.4722222222 0.4722222222 1 .0
68 0.0000000000 0.5000000000 0.5000000000 1 .0
69 0.0277777778 0.5277777778 0.5000000000 1 .0
70 0.0555555556 0.5555555556 0.5000000000 1 .0
71 0.0833333333 0.5833333333 0.5000000000 1 .0
72 0.1111111111 0.6111111111 0.5000000000 1 .0
73 0.1388888889 0.6388888889 0.5000000000 1 .0
74 0.1666666667 0.6666666667 0.5000000000 1 .0
75 0.1944444444 0.6944444444 0.5000000000 1 .0
76 0.2222222222 0.7222222222 0.5000000000 1 .0
77 0.2500000000 0.7500000000 0.5000000000 1 .0
78 0.2708333333 0.7500000000 0.4791666667 1 .0
79 0.2916666667 0.7500000000 0.4583333333 1 .0
80 0.3125000000 0.7500000000 0.4375000000 1 .0
81 0.3333333333 0.7500000000 0.4166666667 1 .0
82 0.3541666667 0.7500000000 0.3958333333 1 .0
83 0.3750000000 0.7500000000 0.3750000000 1 .0
84 0.3863636364 0.7272727273 0.3863636364 1 .0
85 0.3977272727 0.7045454545 0.3977272727 1 .0
86 0.4090909091 0.6818181818 0.4090909091 1 .0
87 0.4204545455 0.6590909091 0.4204545455 1 .0
88 0.4318181818 0.6363636364 0.4318181818 1 .0
89 0.4431818182 0.6136363636 0.4431818182 1 .0
90 0.4545454545 0.5909090909 0.4545454545 1 .0
91 0.4659090909 0.5681818182 0.4659090909 1 .0
92 0.4772727273 0.5454545455 0.4772727273 1 .0
93 0.4886363636 0.5227272727 0.4886363636 1 .0
94 0.5000000000 0.5000000000 0.5000000000 1 .0
95 0.4666666667 0.4666666667 0.4666666667 1 .0
96 0.4333333333 0.4333333333 0.4333333333 1 .0
97 0.4000000000 0.4000000000 0.4000000000 1 .0
98 0.3666666667 0.3666666667 0.3666666667 1 .0
99 0.3333333333 0.3333333333 0.3333333333 1 .0

100 0.3000000000 0.3000000000 0.3000000000 1 .0

141

101 0.2666666667 0.2666666667 0.2666666667 1 .0
102 0.2333333333 0.2333333333 0.2333333333 1 .0
103 0.2000000000 0.2000000000 0.2000000000 1 .0
104 0.1666666667 0.1666666667 0.1666666667 1 .0
105 0.1333333333 0.1333333333 0.1333333333 1 .0
106 0.1000000000 0.1000000000 0.1000000000 1 .0
107 0.0666666667 0.0666666667 0.0666666667 1 .0
108 0.0333333333 0.0333333333 0.0333333333 1 .0
109 0.0000000000 0.0000000000 0.0000000000 1 .0
110

111 EOF
112 $ECHO "running the s c f c a l c u l a t i o n . . . \ c"
113 $PW_COMMAND < Au. s c f . in > Au. s c f . out
114 check_fa i lu r e $?
115 $ECHO "done"
116

117 ELAPSED_TIME1=$ (($SECONDS − $START_TIME))
118 echo " I t has been $ELAPSED_TIME1 seconds "
119

120 #−:−
121 #−:−:−:−:−:−:−:−:−:−:−:Begin Non−Se l f−Cons i s t ent Ca l cu l a t i on :−:−:−:−:−:−:−:−:−:−:−
122 #−:−
123 #−:−:−:−:−:−:Use Norm−Conserving Pseudopotent ia l s f o r e p s i l o n . x to work−:−:−:−:−:−
124 #−:−:−:−:−:−:−:−:−:Run NSCF to c a l c u l a t e unoccupied bands because −:−:−:−:−:−:−:−:−
125 #−:−:−:−:−metals may not have a gap in the range over which QE ca l c u l a t e s −:−:−:−:−
126 #−:−:−:−:−:−Reduced number o f K_POINTS to reduce computat ional i n t e n s i t y :−:−:−:−:−
127 #−:−
128 cat > Au. n s c f . in << EOF
129 &con t r o l
130 c a l c u l a t i o n = ’ n s c f ’
131 restart_mode = ’ from_scratch ’ ,
132 p r e f i x = ’Au ’ ,
133 tp rn f o r = . t rue .
134 pseudo_dir = ’$PSEUDO_DIR/ ’ ,
135 outd i r = ’$TMP_DIR/ ’
136 /
137 &system
138 i b rav = 2 ,
139 ce l ldm (1) = 5.44951 ,
140 nat = 1 ,
141 ntyp = 1 ,
142 l s p i no rb = . t rue . ,
143 nonco l in = . t rue . ,
144 s tar t ing_magnet i zat ion = 0 . 0 ,
145 occupat ions = ’ smearing ’ ,
146 degauss = 0 .02 ,
147 smearing = ’mp ’ ,
148 ecutwfc = 65 ,
149 ecutrho = 260 ,
150 /
151 &e l e c t r o n s
152 mixing_beta = 0 . 7 ,
153 conv_thr = 1 .0d−8
154 /
155 ATOMIC_SPECIES
156 Au 196.96600 Au. r e l−pbesol−n−nc .UPF
157 ATOMIC_POSITIONS { c r y s t a l }
158 Au 0.000000000000000 0.000000000000000 0.000000000000000

142

159

160 K_POINTS c r y s t a l
161 60
162 0.0000000000 0.0000000000 0.0000000000 1 .0
163 0.0000000000 0.0277777778 0.0277777778 1 .0
164 0.0000000000 0.0555555556 0.0555555556 1 .0
165 0.0000000000 0.0833333333 0.0833333333 1 .0
166 0.0000000000 0.1111111111 0.1111111111 1 .0
167 0.0000000000 0.1388888889 0.1388888889 1 .0
168 0.0000000000 0.1666666667 0.1666666667 1 .0
169 0.0000000000 0.1944444444 0.1944444444 1 .0
170 0.0000000000 0.2222222222 0.2222222222 1 .0
171 0.0000000000 0.2500000000 0.2500000000 1 .0
172 0.0000000000 0.2777777778 0.2777777778 1 .0
173 0.0000000000 0.3055555556 0.3055555556 1 .0
174 0.0000000000 0.3333333333 0.3333333333 1 .0
175 0.0000000000 0.3611111111 0.3611111111 1 .0
176 0.0000000000 0.3888888889 0.3888888889 1 .0
177 0.0000000000 0.4166666667 0.4166666667 1 .0
178 0.0000000000 0.4444444444 0.4444444444 1 .0
179 0.0000000000 0.4722222222 0.4722222222 1 .0
180 0.0000000000 0.5000000000 0.5000000000 1 .0
181 0.0277777778 0.5277777778 0.5000000000 1 .0
182 0.0555555556 0.5555555556 0.5000000000 1 .0
183 0.0833333333 0.5833333333 0.5000000000 1 .0
184 0.1111111111 0.6111111111 0.5000000000 1 .0
185 0.1388888889 0.6388888889 0.5000000000 1 .0
186 0.1666666667 0.6666666667 0.5000000000 1 .0
187 0.1944444444 0.6944444444 0.5000000000 1 .0
188 0.2222222222 0.7222222222 0.5000000000 1 .0
189 0.2500000000 0.7500000000 0.5000000000 1 .0
190 0.2708333333 0.7500000000 0.4791666667 1 .0
191 0.2916666667 0.7500000000 0.4583333333 1 .0
192 0.3125000000 0.7500000000 0.4375000000 1 .0
193 0.3333333333 0.7500000000 0.4166666667 1 .0
194 0.3541666667 0.7500000000 0.3958333333 1 .0
195 0.3750000000 0.7500000000 0.3750000000 1 .0
196 0.3863636364 0.7272727273 0.3863636364 1 .0
197 0.3977272727 0.7045454545 0.3977272727 1 .0
198 0.4090909091 0.6818181818 0.4090909091 1 .0
199 0.4204545455 0.6590909091 0.4204545455 1 .0
200 0.4318181818 0.6363636364 0.4318181818 1 .0
201 0.4431818182 0.6136363636 0.4431818182 1 .0
202 0.4545454545 0.5909090909 0.4545454545 1 .0
203 0.4659090909 0.5681818182 0.4659090909 1 .0
204 0.4772727273 0.5454545455 0.4772727273 1 .0
205 0.4886363636 0.5227272727 0.4886363636 1 .0
206 0.5000000000 0.5000000000 0.5000000000 1 .0
207 0.4666666667 0.4666666667 0.4666666667 1 .0
208 0.4333333333 0.4333333333 0.4333333333 1 .0
209 0.4000000000 0.4000000000 0.4000000000 1 .0
210 0.3666666667 0.3666666667 0.3666666667 1 .0
211 0.3333333333 0.3333333333 0.3333333333 1 .0
212 0.3000000000 0.3000000000 0.3000000000 1 .0
213 0.2666666667 0.2666666667 0.2666666667 1 .0
214 0.2333333333 0.2333333333 0.2333333333 1 .0
215 0.2000000000 0.2000000000 0.2000000000 1 .0
216 0.1666666667 0.1666666667 0.1666666667 1 .0

143

217 0.1333333333 0.1333333333 0.1333333333 1 .0
218 0.1000000000 0.1000000000 0.1000000000 1 .0
219 0.0666666667 0.0666666667 0.0666666667 1 .0
220 0.0333333333 0.0333333333 0.0333333333 1 .0
221 0.0000000000 0.0000000000 0.0000000000 1 .0
222

223 EOF
224 $ECHO " running the non−s c f c a l c u l a t i o n f o r Au with norm−conse rv ing PP . . . \ c"
225 $PW_COMMAND < Au. n s c f . in > Au. n s c f . out
226 check_fa i lu r e $?
227 $ECHO " done"
228

229 ELAPSED_TIME2=$ (($SECONDS − $START_TIME))
230 echo " I t has been $ELAPSED_TIME2 seconds "
231

232 #−:−
233 #−:−:−:−:−:−:−:−:−:−:−:−:−:−Begin ep s i l o n . x Ca lcu lat ion −:−:−:−:−:−:−:−:−:−:−:−:−:−
234 #−:−
235 #−:−:−:−:−:−:Use Norm−Conserving Pseudopotent ia l s f o r e p s i l o n . x to work−:−:−:−:−:−

#−:−

236 cat > Au. eps . in << EOF
237 &inputpp
238 outd i r = ’$TMP_DIR/ ’
239 p r e f i x = ’Au ’
240 c a l c u l a t i o n = ’ eps ’
241 /
242 &energy_grid
243 smeartype = ’ l o r e n t z ’
244 i n te r smear = 2.30 d0
245 int rasmear = 0.00 d0
246 wmax = 6 .5 d0
247 wmin = 0 .0 d0
248 nw = 500
249 s h i f t = 0 .0 d0
250 /
251 EOF
252 $ECHO "running the p e rm i t t i v i t y c a l c u l a t i o n . . . \ c"
253 $EPS_COMMAND < Au. eps . in > Au. eps . out
254 check_fa i lu r e $?
255 $ECHO "done"
256

257 ELAPSED_TIME3=$ (($SECONDS − $START_TIME))
258 echo " I t has been $ELAPSED_TIME3 seconds "
259

260

261 #−:−
262 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:Create Au_Permittivity . dat−:−:−:−:−:−:−:−:−:−:−:−:−:−
263 #−:−
264 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:Values taken from:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
265 #−:−:P . B. Johnson and R. W. Chr i s ty . Opt ica l cons tant s o f the noble metals ,:−:−:−
266 #−:−:−:−:−:−:−:−:−:−:−:−:−Phys . Rev . B 6 , 4370−4379 (1972) :−:−:−:−:−:−:−:−:−:−:−:−
267 #−:−:Values so r t ed as Wavelength (nm) , n , k , energy (eV) , r ea l , and imaginary−:−:−
268 #−:−
269 $ECHO "Creat ing Au_Permittivity . dat from Johnson Chr i s ty Data . . . \ c"
270

271 cat > Au. dat << EOF
272

144

273 1.93700000 0.92000000 13.78000000 0.64016520 −189.04200000 25.35520000
274 1.61000000 0.56000000 11.21000000 0.77018634 −125.35050000 12.55520000
275 1.39300000 0.43000000 9.51900000 0.89016511 −90.42646100 8.18634000
276 1.21600000 0.35000000 8.14500000 1.01973684 −66.21852500 5.70150000
277 1.08800000 0.27000000 7.15000000 1.13970588 −51.04960000 3.86100000
278 0.98400000 0.22000000 6.35000000 1.26016260 −40.27410000 2.79400000
279 0.89200000 0.17000000 5.66300000 1.39013453 −32.04066900 1.92542000
280 0.82110000 0.16000000 5.08300000 1.51016929 −25.81128900 1.62656000
281 0.75600000 0.14000000 4.54200000 1.64021164 −20.61016400 1.27176000
282 0.70450000 0.13000000 4.10300000 1.76011356 −16.81770900 1.06678000
283 0.65950000 0.14000000 3.69700000 1.88021228 −13.64820900 1.03516000
284 0.61680000 0.21000000 3.27200000 2.01037613 −10.66188400 1.37424000
285 0.58210000 0.29000000 2.86300000 2.13021818 −8.11266900 1.66054000
286 0.54860000 0.43000000 2.45500000 2.26029894 −5.84212500 2.11130000
287 0.52090000 0.62000000 2.08100000 2.38049530 −3.94616100 2.58044000
288 0.49590000 1.04000000 1.83300000 2.50050413 −2.27828900 3.81264000
289 0.47140000 1.31000000 1.84900000 2.63046245 −1.70270100 4.84438000
290 0.45090000 1.38000000 1.91400000 2.75005544 −1.75899600 5.28264000
291 0.43050000 1.45000000 1.94800000 2.88037166 −1.69220400 5.64920000
292 0.41330000 1.46000000 1.95800000 3.00024195 −1.70216400 5.71736000
293 0.39740000 1.47000000 1.95200000 3.12028183 −1.64940400 5.73888000
294 0.38150000 1.46000000 1.93300000 3.25032765 −1.60488900 5.64436000
295 0.36790000 1.48000000 1.89500000 3.37048111 −1.40062500 5.60920000
296 0.35420000 1.50000000 1.86600000 3.50084698 −1.23195600 5.59800000
297 0.34250000 1.48000000 1.87100000 3.62043796 −1.31024100 5.53816000
298 0.33150000 1.48000000 1.88300000 3.74057315 −1.35528900 5.57368000
299 0.32040000 1.54000000 1.89800000 3.87016230 −1.23080400 5.84584000
300 0.31070000 1.53000000 1.89300000 3.99098809 −1.24254900 5.79258000
301 0.30090000 1.53000000 1.88900000 4.12097042 −1.22742100 5.78034000
302 0.29240000 1.49000000 1.87800000 4.24076607 −1.30678400 5.59644000
303 0.28440000 1.47000000 1.86900000 4.36005626 −1.33226100 5.49486000
304 0.27610000 1.43000000 1.84700000 4.49112640 −1.36650900 5.28242000
305 0.26890000 1.38000000 1.80300000 4.61137970 −1.34640900 4.97628000
306 0.26160000 1.35000000 1.74900000 4.74006116 −1.23650100 4.72230000
307 0.25510000 1.33000000 1.68800000 4.86083889 −1.08044400 4.49008000
308 0.24900000 1.33000000 1.63100000 4.97991968 −0.89126100 4.33846000
309 0.24260000 1.32000000 1.57700000 5.11129431 −0.74452900 4.16328000
310 0.23710000 1.32000000 1.53600000 5.22986082 −0.61689600 4.05504000
311 0.23130000 1.30000000 1.49700000 5.36100303 −0.55100900 3.89220000
312 0.22620000 1.31000000 1.46000000 5.48187445 −0.41550000 3.82520000
313 0.22140000 1.30000000 1.42700000 5.60072267 −0.34632900 3.71020000
314 0.21640000 1.30000000 1.38700000 5.73012939 −0.23376900 3.60620000
315 0.21190000 1.30000000 1.35000000 5.85181689 −0.13250000 3.51000000
316 0.20730000 1.30000000 1.30400000 5.98166908 −0.01041600 3.39040000
317 0.20330000 1.33000000 1.27700000 6.09936055 0.13817100 3.39682000
318 0.19930000 1.33000000 1.25100000 6.22177622 0.20389900 3.32766000
319 0.19530000 1.34000000 1.22600000 6.34920635 0.29252400 3.28568000
320 0.19160000 1.32000000 1.20300000 6.47181628 0.29519100 3.17592000
321 0.18790000 1.28000000 1.18800000 6.59925492 0.22705600 3.04128000
322

323 EOF
324

325 $ECHO "done"
326

327 ELAPSED_TIME4=$ (($SECONDS − $START_TIME))
328 echo " I t has been $ELAPSED_TIME4 seconds "
329

330 #−:−

145

331 #−:−:−:−:−:−Begin P lo t t i ng with GNUPlot (Assuming That I t i s I n s t a l l e d)−:−:−:−:−:−
332 #−:−
333 i f ["$GP_COMMAND" = ""] ; then
334 break
335 e l s e
336 cat > gnuplot . tmp <<EOF
337 #!$GP_COMMAND
338

339 s e t term png s i z e 1920 ,1080
340 s e t xrange [0 : 6 . 5]
341

342 s e t out ’ epsi_Au . png ’
343 s e t timestamp
344 s e t t i t l e ’ epsi_Au ’
345 s e t y l ab e l ’ e p s i l o n ’
346 s e t x l ab e l ’ Energy (eV) ’
347 s e t yrange [−50 :50]
348 p lo t "epsi_Au . dat" us ing 1 :2 t i t l e ’ epsi_x ’ ps 0 . 5 , "epsi_Au . dat" us ing 1 :3 t i t l e ’

epsi_y ’ ps 0 . 5 , "epsi_Au . dat" us ing 1 :4 t i t l e ’ epsi_z ’ ps 0 . 5 , "Au. dat" us ing
4 :6 ps 0 .5

349

350 s e t out ’ epsr_Au . png ’
351 s e t timestamp
352 s e t t i t l e ’ epsr_Au ’
353 s e t y l ab e l ’ e p s i l o n ’
354 s e t x l ab e l ’ Energy (eV) ’
355 s e t yrange [−50 :50]
356 p lo t "epsr_Au . dat" us ing 1 :2 t i t l e ’ epsr_x ’ ps 0 . 5 , "epsr_Au . dat" us ing 1 :3 t i t l e ’

epsr_y ’ ps 0 . 5 , "epsr_Au . dat" us ing 1 :4 t i t l e ’ epsr_z ’ ps 0 . 5 , "Au. dat" us ing
4 :5 ps 0 .5

357

358 s e t out ’ eps_combined_Au . png ’
359 s e t timestamp
360 s e t t i t l e ’ eps_combined_Au ’
361 s e t y l ab e l ’ e p s i l o n ’
362 s e t x l ab e l ’ Energy (eV) ’
363 s e t yrange [−50 :50]
364 p lo t "epsi_Au . dat" us ing 1 :2 t i t l e ’ epsi_x ’ ps 0 . 5 , "epsi_Au . dat" us ing 1 :3 t i t l e ’

epsi_y ’ ps 0 . 5 , "epsi_Au . dat" us ing 1 :4 t i t l e ’ epsi_z ’ ps 0 . 5 , "epsr_Au . dat"
us ing 1 :2 t i t l e ’ epsr_x ’ ps 0 . 5 , "epsr_Au . dat" us ing 1 :3 t i t l e ’ epsr_y ’ ps
0 . 5 , "epsr_Au . dat" us ing 1 :4 t i t l e ’ epsr_z ’ ps 0 . 5 , "Au. dat" us ing 4 :6 t i t l e ’
Aui ’ ps 0 . 5 , "Au. dat" us ing 4 :5 t i t l e ’Aur ’ ps 0 . 5

365

366 s e t out ’ eps_combined_averaged_Au . png ’
367 s e t timestamp
368 s e t t i t l e ’ eps_combined_averaged_Au ’
369 s e t y l ab e l ’ e p s i l o n ’
370 s e t x l ab e l ’ Energy (eV) ’
371 s e t yrange [−50 :50]
372 p lo t "epsi_Au . dat" u 1 : (($2+$3+$4) /3) ps 0 . 5 , "epsr_Au . dat" u 1 : (($2+$3+$4) /3) ps

0 . 5 , "Au. dat" u 4 :5 ps 0 . 5 , "Au. dat" u 4 :6 ps 0 .5
373

374 EOF
375 $ECHO
376 $ECHO " Plo t t i ng Real and Imaginary Parts o f Calcu lated Pe rm i t t i v i e s . . . \ c"
377 $GP_COMMAND < gnuplot . tmp
378 $ECHO " done"
379 rm gnuplot . tmp

146

380 f i
381

382 ELAPSED_TIME5=$ (($SECONDS − $START_TIME))
383 echo " I t has been $ELAPSED_TIME5 seconds "
384

385 #−:−
386 #−:−:−:−:−:−:−:−:−:−:−:−:−:−Begin Cleaning Temp Directory −:−:−:−:−:−:−:−:−:−:−:−:−
387 #−:−
388

389 $ECHO " c l ean ing $TMP_DIR . . . \ c"
390 rm −r f $TMP_DIR/Au.∗
391

392 $ECHO
393 $ECHO "$EXAMPLE_DIR: done"
394

395 #−:−
396 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
397 #−:−
398

399 ELAPSED_TIME=$ (($SECONDS − $START_TIME))
400 echo " I t has been $ELAPSED_TIME seconds "
401

402 echo "Job Completed"

6.7 Cif2Cell: create an interactive BASH script for crystal-making
This menu program was partially inspired by an underappreciated YouTube BASH tutorial called
"Creating Command Line Menus with Shell Scripts" by theurbanpenguin and the general form of a
script like this is discussed at greater length in sections 5.1, and 5.4 of this text. This script has been
heavily modified to be based on functions by myself however so that it has increased functionality
and is more compatible with the shell program called getopts (discussed in section 5.5 of this text).

This set of menus is superfluous to the point of the program that they command, however I
thought that it would be a nice way of wrapping up sever commands into a neat little teaching
tool (being the menu program). That being said however, I am generally loathe to remember
long commands and I either will use an alias (see section 2.6.2 for more information on the alias
command and how to use it) or I’ll put all of the commands into a well-formatted menu program
like the following.

In this section I show a menu program with several common operations that can be executed
easily on a .cif file in the program called Cif2Cell. Cif2Cell is a very nice program that has all sorts
of functionality which is beyond the scope of this text. However, I do find some of its commands
extremely useful and I’m including them for reference here. The script is broken up into three parts,
each of which occupy a separate case in the switch/case list.

In the first case, we use Cif2Cell to generate a crystal that is oriented such that the crystal’s
(100) direction is parallel to the z-axis of the space. In the second case, we use Cif2Cell to create a
crystal that is oriented such that the crystal’s (111) direction is parallel to the z-axis of the space.
And, in the third case, we create a 2x2x2 supercell with the crystal’s (100) direction parallel to
the z-axis of the space from a .cif file. I find that these are all common operations which I use
frequently. Another program with similar capabilities that I find myself using more often these
days than Cif2Cell is named Atomsk and can be seen more starting in section 8 of this text. Please
see the below script and how it can be used to run Cif2Cell: it is recommended that you supply

147

a simple .cif file for the program at first just so that you can see more easily what operations the
program has performed on the data within the file(s).

1 #! /bin /bash
2

3 f unc t i on s e l e c t i o n () {
4 echo −e "\n" # Add a new l i n e with \n
5 echo −e "Enter your s e l e c t i o n \c" # Suppress a new l i n e with \c
6

7 f unc t i on menu () {
8 # This block launches an i n t e r a c t i v e C i f 2Ce l l ope ra t i on s menu
9 c l e a r

10 echo "=="
11 echo "====== Ci f 2Ce l l Program Launch Menu ======"
12 echo "=="
13 echo "Enter 1 to run z−(100) C i f 2Ce l l on a . c i f f i l e f o r pwscf "
14 echo "Enter 2 to run z−(111) C i f 2Ce l l on a . c i f f i l e f o r pwscf "
15 echo "Enter 3 to run z−(100) 2x2x2 s u p e r c e l l C i f 2Ce l l on a . c i f f i l e f o r pwscf "
16 echo "Enter q to e x i t the menu"
17 s e l e c t i o n
18 read answer_one
19 case $answer_one in
20 1) # Executes the C i f 2Ce l l python program on a . c i f f i l e
21 cwd=$ (pwd) # Store cur rent working d i r e c t o r y as cwd
22 cd /home/ steven /Documents/Programs/ c i f 2 c e l l
23 echo −e "Enter the name and f i l e path o f the . c i f f i l e \c"
24 read c i f f i l e n ame # Read user input and s t o r e as $ c i f f i l e n ame
25 . / c i f 2 c e l l −p pwscf −−setup−a l l −−pr int−symmetry−ope ra t i on s −−pwscf−atomic−un i t s

−−pwscf−pseudos t r ing=.pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF −f $ c i f f i l e n ame
26 mv ∗ . in $cwd
27 cd $cwd
28 echo −e "Check your cur rent d i r e c t o r y f o r the new . in f i l e "
29 ; ;
30 2) # Executes the C i f 2Ce l l python program on a . c i f f i l e
31 cwd2=$ (pwd) # Store cur rent working d i r e c t o r y as cwd2
32 cd /home/ steven /Documents/Programs/ c i f 2 c e l l
33 echo −e "Enter the name and f i l e path o f the . c i f f i l e \c"
34 read c i f f i l e n ame2 # Read user input , s t o r e as $ c i f f i l e n ame2
35 . / c i f 2 c e l l −p pwscf −−setup−a l l −−pr int−symmetry−ope ra t i on s −−pwscf−atomic−un i t s

−−cubic−diagonal−z −−pwscf−pseudos t r ing=.pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF −f
$ c i f f i l e n ame2

36 mv ∗ . in $cwd2
37 cd $cwd2
38 echo −e "Check your cur rent d i r e c t o r y f o r the new . in f i l e "
39 ; ;
40 3) # Executes the C i f 2Ce l l python program on a . c i f f i l e
41 cwd=$ (pwd) # Store cur rent working d i r e c t o r y as cwd
42 cd /home/ steven /Documents/Programs/ c i f 2 c e l l
43 echo −e "Enter the name and f i l e path o f the . c i f f i l e \c"
44 read c i f f i l e n ame # Read user input , s t o r e as $ c i f f i l e n ame
45 echo −e "Enter the s u p e r c e l l s i z e as [x , y , z] "
46 read s u p e r c e l l
47 . / c i f 2 c e l l −p pwscf −−setup−a l l −−pr int−symmetry−ope ra t i on s −−pwscf−atomic−un i t s

−−pwscf−pseudos t r ing=.pbe−spn−kjpaw_psl . 1 . 0 . 0 .UPF −f $ c i f f i l e n ame −−no−reduce
−−s u p e r c e l l=$ s up e r c e l l

48 mv ∗ . in $cwd
49 cd $cwd
50 echo −e "Check your cur rent d i r e c t o r y f o r the new . in f i l e "

148

51 ; ;
52 q) # Executes the e x i t command from th i s menu app l i c a t i o n
53 e x i t
54 ; ;
55 esac # End program launch sub−menu switch case block
56 read input_one
57 ; ; # End program launcher
58

59 } # end o f menu func t i on
60

61 whi le [1] ; do menu ; done # Run menu func t i on

6.8 Firmi: create Fermi surface .stl files from Quantum Espresso output
Firmi is a delightful piece of code written by David Strubbe (also a co-author of Berkeley GW)
which has the capability of turning a Fermi surface file from Quantum Espresso (one with the .bxsf
file extension) into a format that is readable by openscad. This is very special because, to the
best of my knowledge, the program called XCrySDen is the main one people use for reading .bxsf
formatted files. However, for as good as XCrySDen is, it does not appear at the time of this writing
to be able to export the Fermi surface files into anything resembling a modern 3D file.

As far as I can tell, Firmi was originally designed ’to prepare Fermi surfaces for 3D printing’.
Apparently the most suitable format for the Firmi program author for this purpose was openscad.
However, if one is intending to create 3D graphics of the Fermi surface, this format may not be
so useful; instead of openscad, I greatly prefer the .stl format for its ease of use and universality.
The workaround is to use the openscad tool in the terminal to convert the openscad Fermi surface
converted with the Firmi code into the .stl format.

In order to do this, we first need to compile the Firmi code so that we can run a specific program
inside Firmi called bxsf2scad.x. You will need a FORTRAN compiler of your choice here but I’ve
never had any problems compiling the code.

Run the following code to get the Firmi program and unpack it:
1 wget https : // f a c u l t y . ucmerced . edu/dstrubbe /Firmi / f irmi_v1 . 0 . ta r . gz
2 ta r −xz f f irmi_v1 . 0 . ta r . gz
3 cd firmi_v1 . 0

Listing out the contents of the new directory should give the following:
1 MainUsers−iMac : f irmi_v1 . 0 mainuser$ l s
2 LICENCE bxs f2scad . f90 marching_cubes_edges . data
3 Makef i l e example_copper marching_cubes_triangles . data
4 README example_lead polyhedron . f90

Run the following to compile Firmi:
1 MainUsers−iMac : f irmi_v1 . 0 mainuser$ make

If the compilation was successful, you should have a FORTRAN program called bxsf2scad.x
that has been compiled into the directory. Now copy and paste the .bxsf file that you wish to turn
into a .scad file into the directory with your bxsf2scad.x program. Change the name of your .bxsf
file to be explicitly ’bxsf’ e.g. without a file extension. Then in the terminal run the following after
making sure that bxsf2scad.x is executable:

1 MainUsers−iMac : f irmi_v1 . 0 mainuser$. / bxs f2scad . x

149

The resulting file will be called bxsf.scad and may be opened in openscad. Render and export
the resulting .scad file in openscad as a .stl file. Import the .stl file into Blender and recalculate
normals in edit mode (I do find that recalculating the normals is very important and leads to much
cleaner looking rendering results). It is also usually helpful to use Blender’s tools to smooth and
decimate the mesh to some extent to make sure that it looks decent in rendering.

150

7 Shell Scripts for DFT Calculations with Exciting

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Exciting [6, 7, 8, 9, 10] is a DFT code that, in my opinion, has gotten a lot more interesting
since the release of its version code-named Oxygen. It’s very...exciting... The name is perhaps
apt because its main claim to fame seems to be that it is good at simulating excited states. Ex-
citing.Oxygen has several attractive features like TD-DFT, second harmonic generation (SHG),
pump-probe spectroscopy, and Raman spectroscopy as built-ins.

However, it’s clever name does actually make it exceedingly difficult to search the internet for
help and/or example scripts for use with the program. Additionally, I do find that it is difficult to
compile, much more-so than many other codes like VASP, and Quantum Espresso. That being said,
the appeal of its new and fun functionality made it worth the effort to compile the pure mpi version
for myself to give it a shot to see how it worked. Long story short, I enjoy using Exciting and
think that its user base will continue to grow in the coming years, especially if they keep releasing
interesting and useful features like they did with their most recent (at the time of this writing)
version.

7.1 Compiling Exciting Oxygen
Compiling Exciting has always been tricky in my estimation, however newer packages seem to be
slightly more forgiving and come pre-packaged with some libraries which makes things easier for
us. The most important thing when it comes to compiling is that you actually have the proper files
in the locations that the compilers and the shell program called make are expecting. If you are
working on a cluster system, it is equivalently important to have the correct module files loaded.
In this case, we need a FORTRAN compiler and a C compiler and in this specific case we will use
the Intel tools including ifort as the FORTRAN compiler.

Please see the following terminal session for the compilation of Exciting Oxygen including a list
of all module files that were loaded during the compilation:

1 uname@uname:~> l s
2 e x c i t i n g . oxygen . ta r . gz
3 uname@uname:~> untar e x c i t i n g . oxygen . ta r . gz
4 uname@uname:~> l s
5 e x c i t i n g e x c i t i n g . oxygen . ta r . gz
6 uname@uname:~> cd ex c i t i n g ; l s
7 uname@uname:~/ exc i t i ng> l s
8 COPYING README.md bu i ld s r c xml
9 INSTALL TODO docs t e s t

10 LICENSE bin ex t e rna l t o o l s
11 Makef i l e bsp l ine−f o r t ran−l i c e n c e s p e c i e s u t i l i t i e s
12 uname@uname:~/ exc i t i ng> module l i s t
13 Current ly Loaded Modu l e f i l e s :
14 1) modules / 3 . 2 . 1 1 . 4
15 2) a l td /2 .0
16 3) darshan /3 . 2 . 1
17 4) craype−network−a r i e s
18 5) craype−haswe l l
19 6) craype−hugepages2M
20 7) l i b f a b r i c / 1 . 8 . 1
21 8) impi /2020
22 9) i n t e l / 1 9 . 0 . 3 . 1 9 9
23 10) craype / 2 . 6 . 2

151

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

24 11) cray−mpich /7 . 7 . 1 0
25 12) cray− l i b s c i /19 . 06 . 1
26 13) udreg /2 . 3 . 2 −7 . 0 . 1 . 1_3.59__g8175d3d . a r i
27 14) ugni / 6 . 0 . 1 4 . 0 −7 . 0 . 1 . 1_7.61__ge78e5b0 . a r i
28 15) pmi /5 . 0 . 1 4
29 16) dmapp/7 . 1 . 1 −7 . 0 . 1 . 1_4.70 __g38cf134 . a r i
30 17) gni−headers / 5 . 0 . 1 2 . 0 −7 . 0 . 1 . 1_6.44__g3b1768f . a r i
31 18) xpmem/2 . 2 . 20 −7 . 0 . 1 . 1_4.27__g0475745 . a r i
32 19) job /2 . 2 . 4 −7 . 0 . 1 . 1_3.54__g36b56f4 . a r i
33 20) dvs /2 .12_2. 2 . 167 −7 . 0 . 1 . 1_17 .10__ge473d3a2
34 21) a lp s /6 . 6 . 58 −7 . 0 . 1 . 1_6.28__g437d88db . a r i
35 22) rca /2 . 2 . 20 −7 . 0 . 1 . 1_4.72__g8e3fb5b . a r i
36 23) atp / 2 . 1 . 3
37 24) PrgEnv− i n t e l / 6 . 0 . 5
38 25) nano /2 . 6 . 3
39 uname@uname:~/ exc i t i ng> cp bu i ld / p lat fo rms /make . inc . i f o r t bu i ld /make . inc
40 uname@uname:~/ exc i t i ng> make mpi

At this point, the program will begin to compile and you should see something like the following
begin to be written to your terminal:

1 cd bu i ld /mpi ; make
2 make [1] : Enter ing d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’
3 make −f . . /Make . common
4 make [2] : Enter ing d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’
5 . . / . . / bu i ld / u t i l i t i e s /mkmf −t . / template −f −m Makef i l e . l i b b z i n t −p l i b b z i n t . a \
6 . . / . . / s r c / s r c_ l i bb z i n t \
7 && make −f Make f i l e . l i b b z i n t l i b b z i n t . a
8 . Make f i l e .

l i b b z i n t i s ready .
9 make [3] : Enter ing d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’

After some time compiling, if there are no errors, then you should see the program exit suc-
cessfully after copying the Exciting executable into the /bin directory under the new name excit-
ing_purempi. There are several binaries that can be built with Exciting but since the program
is resource intensive to run useful simulations, the most practically useful to compile is the mpi
version.

1 make [3] : Leaving d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’
2 cp e x c i t i n g . . / . . / bin / excit ing_purempi
3 cd . . / . . / bin && . . / bu i ld / u t i l i t i e s / create_sym_link . sh excit ing_purempi
4 make [2] : Leaving d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’
5 make [1] : Leaving d i r e c t o r y ’~/ e x c i t i n g / bu i ld /mpi ’

If one were to create a log file of all that was printed to their terminal (see 4.2 for more on how
to do this automatically) we could use a redirect into the wc program (please see section 4.1 for
more on this functionality) to count the lines that have been printed to the terminal:

1 uname@uname:~/ exc i t i ng> wc − l < MAKE. out
2 1261

The amount of time that it will take to compile will vary from system to system; however, in
the case of this specific compilation, it took about 20 minutes to complete successfully.

We can check on the executable with the following (ignore the fatal error when trying to execute
the program here, this just comes about because the requirements for successfully running an
Exciting calculation have not been met in this directory, e.g., input files, etc... do not exist in this
directory):

152

1 uname@uname:~/ exc i t i ng> wc − l < MAKE. out
2 1261
3 uname@uname:~/ exc i t i ng> cd bin /
4 uname@uname:~/ e x c i t i n g /bin> l s
5 excit ing_purempi
6 uname@uname:~/ e x c i t i n g /bin> f i l e excit ing_purempi
7 excit ing_purempi : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) , dynamical ly

l inked , i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]=
bc3bx4fceax134545b966deac56d3f4005e3364 , f o r GNU/Linux 3 . 2 . 0 , with debug_info ,
not s t r i pped

8 uname@uname:~/ e x c i t i n g /bin> excit ing_purempi
9 Abort (1091471) on node 0 (rank 0 in comm 0) : Fata l e r r o r in PMPI_Init : Other MPI

er ror , e r r o r s tack :
10 MPIR_Init_thread (703) :
11 MPID_Init (958) :
12 MPIDI_OFI_mpi_init_hook (883) : OFI addr in fo () f a i l e d (o f i_ i n i t . c : 8 8 3 :

MPIDI_OFI_mpi_init_hook :No data a v a i l a b l e)
13 uname@uname:~/ e x c i t i n g /bin>

If you encounter strange errors saying something about a C compiler (or other compiler for that
matter) not being able to be found or used, check that your modules have been loaded correctly
and/or that your compilers are in the places that Exciting expects.

7.2 Some common error sources in Exciting
As is common with me, I encounter all sorts of errors when I run calculations, especially when I am
trying a new-to-me code. Here is a partial list of some error sources and potential solutions that I
have found for use with Exciting.Oxygen. I am including these items with the presentation first of
the error you may see, and then a way you may attempt to resolve the error.

Error Potential Resolution
Error(checkmt): muffin-tin spheres overlap try reducing rmt="..." in the species sec-

tion of your xml file, or try setting au-
tormt="true" at the end of the structure tag

if a large block of many repeating lines of
text shows up in the slurm...out files

try running the following (depending heav-
ily on what computer system you are us-
ing): module load impi; module load open-
mpi; module load gcc; module load cce

if a large number of files with names like
EVALFV1-3.OUT are created in the direc-
tory

your lattice vectors may be strange or with-
out enough places after the decimal, alterna-
tively your rmt value may be too high (try
perhaps 1.725 or 1.200)

Exciting quits without the ability to make
.xml files for species types

make sure you’ve run SETUP-
excitingroot.sh and that your environment
variables are correct

7.3 Ground state energy of NaCl
The Exciting code website has good documentation and quite a few example scripts for some of its
calculations. However, as is my custom, I vastly prefer to have a single script to handle everything

153

automatically for me so that I reduce the chance of forgetting some aspect of a calculation. In
the following section, I will explain a script that is used to calculate the ground state energy of a
rocksalt NaCl crystal using Exciting.

The following Exciting script is separated into three general sections. In the first section (ev-
erything before the creation of the input.xml file for Exciting), we set up what we’re going to need
for the calculation including several variables that will tell the program what to do during the
calculation and the locations of specific executables. For the executables, there are three main ways
to compile Exciting and I was testing the various builds for my own projects. So, in order to swap
quickly between the different executables, I set up a switch/case block where I can choose which
executable I want to use on the fly based on a variable at the beginning of the script. Additionally,
the script creates a README file, and a slurm script for queuing the program on a cluster.

Section two is a block of code which creates the input.xml file for Exciting, several important
considerations are discussed as follows: The crystal scale is synonymous with the lattice parameter
a0 and is given in Bohr radii (all values in angstroms are converted to Bohr radii by a factor of
1.88973), and I give the basis vectors in terms of their fractional coordinates within the cell. Next,
we define the specific species that are in the calculation: e.g., Na, and Cl. Assuming that your
environment variables are set up correctly, then Exciting will populate your directory with all of
the interatomic potential files that you need for the calculation. Following this, we give Exciting a
grid size, the type of interatomic potential that we want to use, the number of empty states (which
is an important parameter that you should explore for yourself, and rgkamx which determines the
number of basis functions. It is very important here that gmaxvr > 2*gkmax =2*(rgkmax/rmt),
for example gmaxvr="14". Also, for reference, rmt is an acronym in Exciting for ’radius muffin
tin’.

Finally, in section three, we submit the calculation to a computer. It is very important here
to run the SETUP-excitingroot.sh script, otherwise it’s very likely you’ll encounter a mountain of
errors and not have your potential files generated properly which will halt the program. The script
then submits the job using a slurm script generated in section one via sbatch and runs a while loop
to update the user about the status of the program on the computer which updates on a rolling
five second interval in perpetuity (which can be halted at any time with ctrl+c keystroke).

I also like to build in a small functionality where I copy and paste the following line into the
terminal:

1 File_Name="exciting_NaCl " ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${File_Name } .
sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a
README. txt

The trick here is that the terminal will (with just this single line of commands) create a shell
script file, make it executable, launch vim (see section 3.7 for more on vim) so that you can copy and
paste your script, execute the script, and then use tee to copy everything printed to the terminal
into a README file. This is especially useful on a remote system because it’s a hassle to make all of
the executables by hand and also to try and remember the specifics of each calculation. This small
part of the code handles all of that for you. The functionality with the tee command is inspired
by some commands that I found online in a comment by Byte Commander on Stack Exchange so
thanks to that person for the tee command inspiration functionality here.

Please see the following script:
1 #!/ bin /bash
2

3 #−:−

154

4 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Exciting_NaCl . sh −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
5 #−:−
6

7 # Make sure that a l l environment v a r i a b l e s have been added to the path in ~/. bashrc
f o r he lp see : http :// e x c i t i n g . wik idot . com/oxygen−t u t o r i a l −s c r i p t s −and−
environment−va r i a b l e s

8

9 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

10 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

11

12 # File_Name="exciting_NaCl " ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${File_Name
} . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a
README. txt

13

14 #−:−
15 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−
16 #−:−
17

18 Job_Name="excit ing_test_NaCl " # Give the name you want to apply to a l l f i l e s here
19

20 Job_Time=" 00 : 10 : 00 " # Give the run time in hh :mm: s s
21 Job_Nodes="8" # Number o f nodes that you want to use f o r the c a l c u l a t i o n
22 Job_Queue="debug" # Give c a l c u l a t i o n queue (e . g . , ’ debug ’ or ’ r egu la r ’)
23

24 Desc r ip t i on="a t e s t f o r NaCl" # Please g ive a shor t d e s c r i p t i o n o f the c a l c u l a t i o n
f o r the README. txt f i l e

25 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
26

27 Module_Version="mpi" # Give the ve r s i on that e x c i t i n g was compiled
with . Options f o r Exc i t ing : smp , mpi , or s e r i a l

28 Module_Name=" ex c i t i n g " # Give the name o f the module that you want to
load e . g . , vasp , lammps , e spre s so , ex c i t i ng , e t c . . .

29 Header="~/uname/ codes " # Give the module l o c a t i o n f o r the e x c i t i n g ve r s i on . For a l l
e x c i t i n g v e r s i o n s : ~/uname/ codes

30

31 #−:−
32 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Automated Var iab l e s :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
33 #−:−
34

35 echo " Loading Modules . . . " ; module load impi ; module load openmpi ; module load gcc ;
module load cce

36

37 echo " Finding Executable Locat ions f o r ${Module_Name} ${Module_Version } . . . "
38 case $Module_Version in
39 mpi) echo " us ing excit ing_mpi f o r c a l c u l a t i o n . . . "
40 Module_Location="${Header}/ excit ing_mpi /bin / excit ing_purempi " ; sp e c i e spa th="${

Header }/ excit ing_mpi / s p e c i e s " ; EXCITINGROOT="${Header}/ excit ing_mpi " ; ;
41 smp) echo " us ing exciting_smp f o r c a l c u l a t i o n . . . "
42 Module_Location="${Header}/ exciting_smp/bin / exciting_smp" ; spe c i e spa th="${

Header }/ exciting_smp/ s p e c i e s " ; EXCITINGROOT="${Header}/ exciting_smp" ; ;
43 s e r i a l) echo " us ing e x c i t i n g_ s e r i a l f o r c a l c u l a t i o n . . . "
44 Module_Location="${Header}/ e x c i t i n g_ s e r i a l / bin / e x c i t i n g_ s e r i a l " ; sp e c i e spa th="${

Header }/ e x c i t i n g_ s e r i a l / s p e c i e s " ; EXCITINGROOT="${Header}/ e x c i t i n g_ s e r i a l " ; ;
45 # Exc i t ing executab l e l o c a t i o n #

sp e c i e s path f o r Exc i t ing d i r e c t o r y # Locat ion o f Exc i t ing home
d i r e c t o r y

155

46 esac
47

48 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/
sec thanks user1293137 from https : // unix . stackexchange . com/

49

50 #−:−
51 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
52 #−:−
53

54 cat > README. txt << EOF
55 Job Name : ${Job_Name} . sh
56 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } .
57 Cal cu l a t ing with ${Job_Nodes} job nodes on the ${Job_Queue} queue by ${Author} on

$Date .
58

59 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
60

61 EOF
62

63 echo " Writing f i l e README. txt . . . "
64 echo " done"
65

66 #−:−
67 #−:−:−:−:−:−:−:−:−:−:−:−:− Begin Exc i t ing F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−
68 #−:−
69

70 echo " Running s c r i p t ${Job_Name} . sh . . . "
71 echo " The time i s cu r r en t l y $Date "
72

73 #−:−
74 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−
75 #−:−
76

77 cat > ${Job_Name} . sb << EOF
78 #!/ bin /bash
79 #SBATCH −−job−name=$Job_Name
80 #SBATCH −N ${Job_Nodes}
81 #SBATCH −C haswe l l
82 #SBATCH −q ${Job_Queue}
83 #SBATCH −t ${Job_Time}
84

85 module load impi
86 module load openmpi
87 module load gcc
88 module load cce
89

90 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
91

92 EOF
93

94 echo " Writing input f i l e ${Job_Name} . sb . . . "
95 echo " done"
96

97 #−:−
98 #−:−:−:−:−:−:−:−:−:−:− Create input . xml F i l e f o r Exc i t ing :−:−:−:−:−:−:−:−:−:−:−:−
99 #−:−

100

156

101 cat > input . xml << !
102 <input>
103

104 <t i t l e >NaCl</ t i t l e >
105

106 <st ru c tu r e spec i e spa th="$EXCITINGROOT/ sp e c i e s /">
107

108 <c r y s t a l s c a l e=" 10.658 ">
109 <basevect >0.0 0 .5 0.5</ basevect>
110 <basevect >0.5 0 .0 0.5</ basevect>
111 <basevect >0.5 0 .5 0.0</ basevect>
112 </c ry s t a l >
113

114 <sp e c i e s s p e c i e s f i l e="Na . xml">
115 <atom coord=" 0 .00 0 .00 0 .00 "/>
116 </spec i e s >
117

118 <sp e c i e s s p e c i e s f i l e="Cl . xml">
119 <atom coord=" 0 .50 0 .50 0 .50 "/>
120 </spec i e s >
121

122 </st ruc ture>
123

124 <groundstate
125 do=" fromscratch "
126 rgkmax=" 7 .0 "
127 ngr idk="4 4 4"
128 xctype="LDA_PW"
129 nempty="10"
130 >
131 </groundstate>
132

133 </input>
134 !
135

136 echo " Writing input f i l e input . xml . . . "
137 echo " done"
138

139 #−:−
140 #−:−:−:−:−:−:−:−:−:−:−:− Run Exc i t ing Ca l cu la t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−
141 #−:−
142

143 SETUP−e x c i t i n g r o o t . sh # Exc i t ing command , bu i l d s xml header ,
important f o r run

144

145 Calculat ion_Locat ion=$ (pwd) ; echo " Ca l cu l a t i on Locat ion : ${Calcu lat ion_Locat ion }"
146

147 echo " Submitting ${Job_Name} . sb v ia sbatch . . . "
148

149 sbatch ${Job_Name} . sb # Submit job to queue
150

151 echo " Running on the ${Job_Queue} queue with ${Job_Nodes} nodes "
152 echo " done"
153

154 #−:−
155 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Print Queue to the Terminal −:−:−:−:−:−:−:−:−:−:−:−:−
156 #−:−
157

157

158 echo " The time i s cu r r en t l y $Date "
159

160 echo " Dumping termina l s e s s i o n in to README. txt "
161

162 echo " Success , End o f Scr ipt , Running sqs on a 5 Second Loop"
163

164 whi le [1] ; do sqs ; date ; s l e e p 5 ; done # cont inue to update the squeue every
5 seconds

7.4 Second harmonic generation (SHG) of a TiN monolayer (relaxed by
VASP) with automatic lattice vector conversion to Bohr radii from
POSCAR

Second harmonic generation (SHG) is a nonlinear optical effect whereby some radiation (usually
monochromatic laser light from a single source) incident on a crystal with nonzero second order
susceptibility χ(2) may be transformed from the fundamental frequency ω to the doubled frequency
2ω. This is a very useful effect to measure when one wants to determine the magnitude of χ(2) in a
system relative to a crystal of known χ(2) and in many other arenas like the doubling of 1064 nm
lasers to 532 nm: an effect that you have probably seen demonstrated in green laser pointers. In
the release of Exciting Oxygen, calculation of SHG is a built-in function.

As with other examples of scripts for Exciting, there is reasonable documentation on their
website and the following is inspired by some of their tutorials. For in-depth coverage of all of their
features, refer to the Exciting-code’s website. In the following section, I will show a script that will
calculate the SHG spectrum for a monolayer of TiN which has been relaxed using VASP and given
1 nm of vacuum above its surface (this was done by directly manipulating the VASP POSCAR
file basis vectors). The following is not guaranteed to give good results as it stands because of the
low convergence thresholds as well as the standard choice of a k-points grid which is inefficient for
the vacuum (c-axis) direction. These parameters will need to be modified by the user to suit their
own system(s) and benchmarking and convergence criteria. Additionally, because TiN has inversion
symmetry in the case of bulk TiN with its rocksalt structure, the value of χ(2) will be very close to
zero.

The code below is separated into four main sections. The first section is similar to that of the
previous example (where we calculated the ground state energy of NaCl with Exciting in section
7.3) but has some important differences and extends until the comment in the script saying "Create
File POSCAR". In this section we define the elements for the input.xml file as variables at the
beginning of the script; I find this to be exceedingly useful so that I can 1) check that everything is
in order with the calculation without scrolling, which is very helpful in the case that you have many
calculations you are working with, and 2) it creates the script as a template which can be used for
mostly any two-element systems without lots of tedious tweaks. It’s my experience that trying to
make many tedious tweaks many times over many files makes my eyes hurt and I end up forgetting
things here and there which just cause trouble down the road. I also choose to neglect including a
switch/case block (as I did in section 7.3) to choose the executable and other locations in favor of
linking just to the Exciting pure mpi executable to save some space for the sake of brevity.

The second section extends from the comment saying "Create file POSCAR" (line 48) to the
comment saying "Begin Exciting File Creation" (line 92). In this section I supply the script with
a POSCAR file (in this case it is actually a CONTCAR file that I copied from a VASP calculation
to relax a (111) monolayer of TiN) and I have the script extract pertinent parameters from the

158

POSCAR file. All of the heavy lifting here is done under the comment saying "Create lattice vectors
from file POSCAR" (between lines 75 and 91). Here, the script uses awk to search through the
POSCAR file previously created and find the lattice vectors which I store in 9 variables represented
by the following matrix:

Å

ai aj ak
bi bj bk
ci cj ck

POSCAR

The script then uses the shell program bc to convert those lattice vectors into Bohr radii (which
are necessary for Exciting but I generally use angstroms so I find it cumbersome to do the conversions
by hand and instead automate them) which are represented by the following matrix (where Br
denotes the Bohr radius):

(1.88973Br
Å)Å

ai aj ak
bi bj bk
ci cj ck

POSCAR

=

ai,Br aj,Br ak,Br

bi,Br bj,Br bk,Br

ci,Br cj,Br ck,Br

Exciting

Because I choose also to have the POSCAR file with direct coordinates, I just opt to copy and
paste these values here since it is simpler than searching with awk and setting them as variables
and because I frequently change the number and species of atoms in my calculations.

The third section is similar to that of the previous example (where we calculated the ground
state energy of NaCl with Exciting section 7.3) but it does have some key differences. This section
begins after the comment in the script saying "Create input.xml File for Exciting" (after line 100)
and, as the name would suggest, creates the input.xml file. However, this time I opt to define
most of the items here as the previously defined variables for the basis vectors converted to Bohr
radii, the elements, and an attempt to make the script robust to forgetting to run the SETUP-
excitingroot.sh script at the start of the calculation. Additionally, we have a new block at the
end of the script (within the <properties> tag) that tells Exciting to calculate the SHG spectrum.
Breaking from the Exciting-supplied tutorial here, I include several <chicomp> tags to save time
on my calculation because I like to just have things done the way I’d like them to be done the first
time I do them (selfish, I know haha). This <chicomp> tag gives cartesian indices x, y, and z

for the second order susceptibility χ(2)
x,y,z(−2ω, ω, ω) and you can supply as many of those tags to

Exciting as you reasonably want (something that they don’t cover in the tutorial).
Finally, I lump together all of chunks of script after the comment "Create SBATCH Script" into

section four. Here, we just create the sbatch file for submitting the calculation to the computer,
we create a README file with some of the pertinent information about the calculation for future
reference, create a Gnuplot script (please see sections 3.8 10.5 for more on Gnuplot) for plotting
χ
(2)
x,y,z(−2ω, ω, ω) as a function of the spectrum, and then finally submit the job to the computer.

Within the Gnuplot script, I also build in the conversion factors from ESU (which are the default
units used by Exciting) to nm/V and from eV to nm because those are my unit preferences. This
script can be executed after the calculation(s) are completed by issuing the following command:

1 . / SHG_Gnuplot . sh

Just like before in section 7.3, I built in the small functionality where I copy and paste the
following line into the terminal:

159

1 File_Name="TiN_Monolayer_SHG_Exciting" ; mkdir ${File_Name } ; cd ${File_Name } ; touch $
{File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh
|& tee −a README. txt

These commands will have the terminal create a shell script file, make it executable, launch vim
(see section 3.7 for more on vim) so that you can copy and paste your script, execute the script,
and then use tee to copy everything printed to the terminal into a README file. I recommend
using this functionality on remote systems especially for the sake of convenience.

Please see the following script:
1

2 #!/ bin /bash
3

4 #−:−
5 #−:−:−:−:−:−:−:−:−:−:−:−: TiN_Monolayer_SHG_Exciting . sh :−:−:−:−:−:−:−:−:−:−:−:−:−
6 #−:−
7

8 # Make sure that a l l environment v a r i a b l e s have been added to the path in ~/. bashrc
f o r he lp see : http :// e x c i t i n g . wik idot . com/oxygen−t u t o r i a l −s c r i p t s −and−
environment−va r i a b l e s

9

10 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

11 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

12

13 # File_Name="TiN_Monolayer_SHG_Exciting " ; mkdir ${File_Name } ; cd ${File_Name } ; touch
${File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } .

sh |& tee −a README. txt
14

15 #−:−
16 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−
17 #−:−
18

19 Job_Name="TiN_Monolayer_SHG_Exciting" # Give the name you want to apply to a l l f i l e s
20

21 Job_Time=" 00 : 30 : 00 " # Give the run time in hh :mm: s s
22 Job_Nodes="32" # Give the number o f nodes to use f o r the c a l c u l a t i o n
23 Job_Queue="debug" # Give the c a l c u l a t i o n queue (e . g . , ’ debug ’ or ’ r egu la r ’)
24

25 Desc r ip t i on="a c a l c u l a t i o n o f the SHG spectrum in a re l axed monolayer o f TiN" #
Please g ive a shor t d e s c r i p t i o n o f the c a l c u l a t i o n f o r the README. txt f i l e

26 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
27

28 Number_of_Elements="2" # Number o f e lements that are in the s imu la t i on
29 Element_1="Ti" # Give the symbol o f the element 1 in your input . xml f i l e
30 Element_2="N" # Give the symbol o f the element 2 in your input . xml f i l e
31 System_Name="TiN" # Give a c a l c u l a t i o n t i t l e f o r Exc i t ing
32

33 RMT="1.7700 " # Give the muffin−t i n rad iu s f o r Exc i t ing to use
34

35 Module_Name=" ex c i t i n g " # Give the name o f the module that you want to load
36 Module_Location="~/uname/ codes / excit ing_mpi /bin / excit ing_purempi "
37 spe c i e spa th="~/uname/ codes / excit ing_mpi / s p e c i e s "
38 EXCITINGROOT="~/uname/ codes / excit ing_mpi "
39

40 #−:−
41 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Automated Var iab l e s :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−

160

42 #−:−
43

44 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/
sec thanks user1293137 from https : // unix . stackexchange . com/

45

46 echo " Loading Modules . . . " ; module load impi ; module load openmpi ; module load gcc ;
module load cce

47

48 #−:−
49 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POSCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
50 #−:−
51

52 cat > POSCAR << EOF
53 # Rocksalt TiN or i en t ed X=[1−10] Y=[11−2
54 1.00000000000000
55 3.2330470929544859 0.0000000000000000 0.0000000000000000
56 0.0000000000000000 5.5250037406813357 −0.0036091328639240
57 0.0000000000000000 −0.0101628995152523 10.0000000000000000
58 Ti N
59 2 2
60 S e l e c t i v e dynamics
61 Direc t
62 −0.0000000000000000 0.0014082830126670 0.0222836581243136 T T T
63 0.5000000000000000 0.5014082839766533 0.0222836581243136 T T T
64 0.5000000000000000 0.1652583846179835 0.0482397116489274 T T T
65 −0.0000000000000000 0.6652583836539973 0.0482397116489274 T T T
66 EOF
67

68 echo " Writing f i l e POSCAR . . . "
69 echo " done"
70

71 #−:−
72 #−:−:−:−:−:−:−:−:−:−: Create l a t t i c e v e c t o r s from f i l e POSCAR :−:−:−:−:−:−:−:−:−:−
73 #−:−
74

75 a i=$ (awk ’ { i f (NR==3) p r in t $1} ’ POSCAR) ; a j=$ (awk ’ { i f (NR==3) p r in t $2} ’ POSCAR) ; ak
=$ (awk ’ { i f (NR==3) p r i n t $3} ’ POSCAR)

76 bi=$ (awk ’ { i f (NR==4) p r in t $1} ’ POSCAR) ; bj=$ (awk ’ { i f (NR==4) p r i n t $2} ’ POSCAR) ; bk
=$ (awk ’ { i f (NR==4) p r i n t $3} ’ POSCAR)

77 c i=$ (awk ’ { i f (NR==5) p r i n t $1} ’ POSCAR) ; c j=$ (awk ’ { i f (NR==5) p r i n t $2} ’ POSCAR) ; ck
=$ (awk ’ { i f (NR==5) p r i n t $3} ’ POSCAR)

78

79 echo " La t t i c e v e c t o r s r e t r i e v e d from POSCAR"
80 echo $a i $a j $ak
81 echo $bi $bj $bk
82 echo $ c i $ c j $ck
83

84 ai_Br=$ (echo " s c a l e =10;($a i) ∗ (1 . 88973) " | bc) ; aj_Br=$ (echo " s c a l e =10;($a j)
∗ (1 . 88973) " | bc) ; ak_Br=$ (echo " s c a l e =10;($ak) ∗ (1 . 88973) " | bc)

85 bi_Br=$ (echo " s c a l e =10;($bi) ∗ (1 . 88973) " | bc) ; bj_Br=$ (echo " s c a l e =10;($bj)
∗ (1 . 88973) " | bc) ; bk_Br=$ (echo " s c a l e =10;($bk) ∗ (1 . 88973) " | bc)

86 ci_Br=$ (echo " s c a l e =10;($ c i) ∗ (1 . 88973) " | bc) ; cj_Br=$ (echo " s c a l e =10;($ c j)
∗ (1 . 88973) " | bc) ; ck_Br=$ (echo " s c a l e =10;($ck) ∗ (1 . 88973) " | bc)

87

88 echo " La t t i c e v e c t o r s converted to Bohr r a d i i "
89 echo $ai_Br $aj_Br $ak_Br
90 echo $bi_Br $bj_Br $bk_Br
91 echo $ci_Br $cj_Br $ck_Br

161

92

93 #−:−
94 #−:−:−:−:−:−:−:−:−:−:−:−:− Begin Exc i t ing F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−
95 #−:−
96

97 echo " Running s c r i p t ${Job_Name} . sh . . . "
98 echo " The time i s cu r r en t l y $Date "
99

100 #−:−
101 #−:−:−:−:−:−:−:−:−:−:− Create input . xml F i l e f o r Exc i t ing :−:−:−:−:−:−:−:−:−:−:−:−
102 #−:−
103

104 # rmt = rad iu s muff in tim
105 # Groundstate : It ’ s important that : gmaxvr > 2∗gkmax =2∗(rgkmax/rmt) , f o r example

gmaxvr="14"
106 # Al l un i t s are atomic , e . g . , make sure Bohr r a d i i i n s t ead o f angstroms , e t c . . .
107

108 cat > input . xml << !
109 <input>
110

111 <t i t l e >TiN SHG</t i t l e >
112

113 <st ru c tu r e spec i e spa th="$EXCITINGROOT/ sp e c i e s " autormt=" true ">
114 <cry s t a l >
115 <basevect>${ai_Br} ${aj_Br} ${ak_Br}</basevect>
116 <basevect>${bi_Br} ${bj_Br} ${bk_Br}</basevect>
117 <basevect>${ci_Br} ${cj_Br} ${ck_Br}</basevect>
118 </c ry s t a l >
119 <sp e c i e s chemicalSymbol="${Element_1}" s p e c i e s f i l e="${Element_1 } . xml" rmt="${

RMT}">
120 <atom coord=" −0.0000000000000000 0.0014082830126670 0.0222836581243136 "/>
121 <atom coord=" 0.5000000000000000 0.5014082839766533 0.0222836581243136 "/>
122 </spec i e s >
123 <sp e c i e s chemicalSymbol="${Element_2}" s p e c i e s f i l e="${Element_2 } . xml" rmt="${

RMT}">
124 <atom coord=" 0.5000000000000000 0.1652583846179835 0.0482397116489274 "/>
125 <atom coord=" −0.0000000000000000 0.6652583836539973 0.0482397116489274 "/>
126 </spec i e s >
127 </st ruc ture>
128

129 <groundstate
130 do=" fromscratch "
131 rgkmax=" 6 .0 "
132 ngr idk="8 8 8"
133 xctype="LDA_PW"
134 nempty="10"
135 >
136 </groundstate>
137

138 <prope r t i e s >
139 <momentummatrix/>
140 <shg
141 wmax=" 0 .3 "
142 wgrid="400"
143 swidth=" 0.004 "
144 e t o l=" 1 . d−4"
145 s c i s s o r=" 0.0423 "
146 tevout=" true "

162

147 >
148 <chicomp>1 2 3</chicomp>
149 <chicomp>1 1 2</chicomp>
150 <chicomp>2 2 3</chicomp>
151 <chicomp>2 1 3</chicomp>
152 </shg>
153 </prope r t i e s >
154

155 </input>
156 !
157

158 echo " Writing input f i l e input . xml . . . "
159 echo " done"
160

161 #−:−
162 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
163 #−:−
164

165 cat > ${Job_Name} . sb << EOF
166 #!/ bin /bash
167 #SBATCH −−job−name=$Job_Name
168 #SBATCH −N ${Job_Nodes}
169 #SBATCH −C haswe l l
170 #SBATCH −q ${Job_Queue}
171 #SBATCH −t ${Job_Time}
172

173 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
174

175 EOF
176

177 echo " Writing input f i l e ${Job_Name} . sb . . . "
178 echo " done"
179

180 #−:−
181 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
182 #−:−
183

184 cat > README. txt << EOF
185 Job Name : ${Job_Name} . sh
186 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } .
187 Cal cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , and ${Element_2}

f o r ${Job_Time} with ${Job_Nodes} job nodes on the ${Job_Queue} queue .
188 Calcu lated by ${Author} on $Date .
189

190 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
191

192 EOF
193

194 echo " Writing f i l e README. txt . . . "
195 echo " done"
196

197 #−:−
198 #−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e SHG_Gnuplot . sh −:−:−:−:−:−:−:−:−:−:−:−:−:−
199 #−:−
200

201 # ∗∗VERY IMPORTANT∗∗ EOF i s quoted so that $1 , $2 , e t c . . . w i l l be pr in ted in the
f i l e (thanks to dogbane from StackOverf low)

163

202 # This GNUPlot s c r i p t w i l l convert eV to nm via hv = 1240 eV∗nm, and a l s o cover t esu
un i t s to nm/V with 1 nm/V = 0.00431778929 esu

203

204 cat > SHG_Gnuplot . sh << "EOF"
205 gnuplot
206 s e t t e rmina l svg enhanced
207 s e t t i t l e "TiN X^(2) "
208 s e t x l ab e l ’Wavelength (nm) ’
209 s e t y l ab e l "X^(2) "
210 s e t xrange [1 5 0 : 1 0 0 0] ; # in p r i n c i p l e t h i s range can go past ~60000 nm
211 s e t out ’TiN_CHI−123. svg ’
212 p ’TiN_CHI−123. dat ’ u (1240/ $1) : ($2 ∗0.00431778929) t i t l e ’ Real ’ w l i n e s , ’TiN_CHI

−123. dat ’ u (1240/ $1) : ($3 ∗0.00431778929) t i t l e ’ Imag ’ w l i n e s , ’TiN_CHI−123. dat ’
u (1240/ $1) : ($4 ∗0.00431778929) t i t l e ’Modulus ’ w l i n e s

213 EOF
214

215 chmod +x SHG_Gnuplot . sh # Make the s c r i p t executab l e with +x
216

217 echo " Writing f i l e SHG_Gnuplot . sh . . . "
218 echo " done"
219

220 #−:−
221 #−:−:−:−:−:−:−:−:−:−:−: Run Exc i t ing Ca l cu l a t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−
222 #−:−
223

224 SETUP−e x c i t i n g r o o t . sh # Exc i t ing command , bu i l d s xml header , important f o r run
225

226 Calculat ion_Locat ion=$ (pwd) ; echo " Ca l cu l a t i on Locat ion : ${Calcu lat ion_Locat ion }"
227

228 echo " Submitting ${Job_Name} . sb v ia sbatch . . . "
229

230 sbatch ${Job_Name} . sb # Submit job to queue
231

232 echo " Running on the ${Job_Queue} queue with ${Job_Nodes} nodes "
233 echo " done"
234

235 #−:−
236 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Print Queue to the Terminal −:−:−:−:−:−:−:−:−:−:−:−:−
237 #−:−
238

239 echo " The time i s cu r r en t l y $Date "
240

241 echo " Dumping termina l s e s s i o n in to README. txt "
242

243 echo " Success , End o f Scr ipt , Running sqs on a 5 Second Loop"
244

245 whi le [1] ; do sqs ; date ; s l e e p 5 ; done # update the squeue every 5 seconds

164

8 Create Crystals and Heterostructures in the Shell with Atomsk

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Atomsk [11] is a free and open source software that is very useful for creating and manipulating
crystallographic files of all sorts through the command line. The Atomsk website has a large number
of useful tutorials and a great reference of all the commands and options that you might need for
creating and manipulating your files. In the following sections, I cover several use cases of Atomsk
as well as the the input and output of various commands that I find to be useful for my research.

8.1 Installing Atomsk on Linux
Installation of Atomsk, I find, is most useful when it can be added easily to the path. If it can’t
then there will be a lot of functionality missing from the install. Overall, I’d say its easiest (on
Linux) to install Atomsk from a .deb package. This can be done simply (assuming that you are
in the same directory as the package) by using the following command (edited for your personal
system and file name/location):

1 sudo dpkg − i /home/ubuntu−budgie /Desktop/atomsk_b0 .11_amd64 . deb

This will get you most of the way to a complete install of Atomsk, however some of the packages
that Atomsk depends on may not be installed (this will be apparent if you get a warning from
the terminal saying something to the effect of ’Atomsk depends on ...; however: package ... is not
installed ...’ At the time of this writing, this minor issue can be fixed easily by running the following
command in the terminal:

1 sudo apt i n s t a l l −f

After this operation completes, you should be able to launch Atomsk from the terminal in
interactive mode by using the following command:

1 atomsk

Running Atomsk like this will result in something like the following being printed to your
terminal screen:

1 uname@ubuntu :~/Desktop$ atomsk
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Atomsk i s a f r e e , Open Source so f tware .
11 To l ea rn more , ente r ’ l i c e n s e ’ .
12 >>> Atomsk command−l i n e i n t e r p r e t e r :
13 . . > Type " help " f o r a summary o f commands .
14

15 uname@atomsk : Desktop>

However, I almost never run Atomsk this way and will not throughout the remainder of this
text. Most often, it is easiest to run Atomsk by issuing the atomsk command followed by its options
all in one command within the terminal.

165

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

8.2 Compiling Atomsk from its source on Linux
In the case that you do not want to use a package like .deb, you can compile Atomsk from its source
code. And, very pleasantly, compiling Atomsk is thankfully pretty straightforward! Depending on
your system, the compilation may be a little bit more of a trick than just running ’make atomsk’
but shouldn’t be too complicated. For this example, we are compiling with the Intel ifort compiler
so we will need to select a specific make file that will utilize ifort. Please see the following terminal
session regarding the compilation of Atomsk in Linux:

1 uname@uname:~ atomsk> l s
2 atomsk_b0 . 1 1 . ta r . gz
3 uname@uname:~ atomsk> untar atomsk_b0 . 1 1 . ta r . gz
4 uname@uname:~ atomsk> atomsk_0 .11 atomsk_b0 . 1 1 . ta r . gz
5 uname@uname:~ atomsk> cd atomsk_0 .11
6 uname@uname:~ atomsk/atomsk_0.11> l s
7 CHANGELOG LICENSE README doc e tc examples man s r c t o o l s
8 uname@uname:~ atomsk/atomsk_0.11> cd s r c /
9 uname@uname:~ atomsk/atomsk_0 .11/ src> l s

10 Makef i l e Make f i l e . g95 Make f i l e . gfomp Make f i l e . i 686 Make f i l e . i f o r t Make f i l e .
l o c a l Make f i l e . macos Make f i l e . s e r i a l Make f i l e . s t a t i c Make f i l e . windows OBJ
atomsk . f90 in c lude input modes opt ions output

11 uname@uname:~ atomsk/atomsk_0 .11/ src> make −f Make f i l e . i f o r t atomsk

At this point the compilation should begin and something analogous to the following should
begin to be printed to the terminal:

1 o−−−o ___________
2 o−−−o | A T O M S K
3 | | o
4 o−−−o Vers ion 0 .11
5

6 mkdir −p OBJ
7 make −j 1 −C inc lude
8 make [1] : Enter ing d i r e c t o r y ’~atomsk/atomsk_0 .11/ s r c / inc lude ’

And after some time, the compilation should conclude successfully with the following message:
1 make [1] : Leaving d i r e c t o r y ’ / g l oba l /u2/u/uname/ codes / sour c e s / test_atomsk/atomsk_0

.11/ s r c /modes ’
2 i f o r t −O2 −DOPENMP −qopenmp −module . . /OBJ −f u n r o l l−l oops −cpp −o atomsk OBJ/∗ . o

atomsk . f90 −I OBJ −L /opt/ i n t e l / l i b / i n t e l 6 4 / −L /opt/ i n t e l /mkl/ l i b / i n t e l 6 4 / −
lmkl_inte l_lp64 −lmkl_inte l_thread −lmkl_lapack95_lp64 −lmkl_core −l iomp5

3

4 \o/ Compilation was s u c c e s s f u l !
5

6 <i> To i n s t a l l Atomsk system−wide , you may now run :
7 sudo make i n s t a l l

Finally, we can check that the executable has been compiled correctly:
1 uname@uname:~ atomsk/atomsk_0 .11/ src> l s
2 Makef i l e Make f i l e . g95 Make f i l e . gfomp Make f i l e . i 686 Make f i l e . i f o r t Make f i l e .

l o c a l Make f i l e . macos Make f i l e . s e r i a l Make f i l e . s t a t i c Make f i l e . windows OBJ
atomsk atomsk . f90 in c lude input modes opt ions output

3 uname@uname:~ atomsk/atomsk_0 .11/ src> f i l e atomsk
4 atomsk : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) , dynamical ly l inked ,

i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]=36 o f612543 fc9e2c281e635 f33115 f74da6xz4 j2 ,
f o r GNU/Linux 3 . 2 . 0 , with debug_info , not s t r i pped

166

Running the sudo make install command for Atomsk does add increased functionality, however
you can get away with some of the functionality without running that command when you are not
able to access administrator privileges.

8.3 Creating simple structures
With Atomsk, it is very straightforward to create all manner of structures with all sorts of formats.
One of my most commonly used formats (for sake of the ease with which they can be manipulated,
and of course that they’re directly compatible with VASP) is the VASP POSCAR format. Giving
the option -vasp at the end of an Atomsk command will format the output as a POSCAR file.

The following example is one of the quickest I can imagine for Atomsk, to create a face centered
cubic (FCC) Au crystal with lattice parameter a0 = 4.08Å which is done using the –create option
as well as the -frac option which formats the output in fractional coordinates.

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e f c c 4 .08 Au − f r a c vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Creat ing system :
11 . . > Fcc Au or i en t ed X=[100] Y=[010] Z=[001] .
12 . . > System was s u c c e s s f u l l y c r ea ted .
13 >>> Converting to f r a c t i o n a l c oo rd ina t e s . . .
14 . . > Coordinates were reduced .
15 >>> Writing output f i l e (s) (4 atoms) :
16 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
17 \o/ Program terminated s u c c e s s f u l l y !
18 Total time : 1 .066 s . ; CPU time : 0 .022 s .

The plain text output of this command will look like the following POSCAR file:
1 # Fcc Au or i en t ed X=[100] Y=[010] Z=[001] .
2 1.000000
3 4.08000000 0.00000000 0.00000000
4 0.00000000 4.08000000 0.00000000
5 0.00000000 0.00000000 4.08000000
6 Au
7 4
8 Direc t
9 0.00000000 0.00000000 0.00000000

10 0.50000000 0.50000000 0.00000000
11 0.00000000 0.50000000 0.50000000
12 0.50000000 0.00000000 0.50000000

This format of the POSCAR file makes sense because we a single atomic species, and the FCC
structure for a single species should have four atoms per unit cell (assuming a single atom basis).
So, the crystal, if we visualize it in a software like VESTA, will look like the following:

167

Atomsk can make all sorts of different crystal systems. We can use the following example to
create a hexagonal close packed (HCP) crystal of Zr with lattice parameters a = 3.232Å, and
c = 5.147Å. This time, instead of fractional coordinates, we leave the program to default into
providing cartesian coordinates.

1 atomsk −−c r e a t e hcp 3 .232 5 .147 Zr vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Creat ing system :
11 . . > Hcp Zr with box ve c to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
12 . . > System was s u c c e s s f u l l y c r ea ted .
13 >>> Writing output f i l e (s) (2 atoms) :
14 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
15 \o/ Program terminated s u c c e s s f u l l y !
16 Total time : 0 .999 s . ; CPU time : 0 .002 s .

Similarly, we can use Atomsk to make an HCP Ti crystal with lattice parameters a = 2.95111Å,
and c = 4.68433Å that will be output as a VASP POSCAR file with fractional coordinates using
the following command:

The plain text output of this command will look like the following POSCAR file:
1 # Zr2
2 1.000000
3 3.23923191 0.00000000 0.00000000
4 −1.61961595 2.80525712 0.00000000
5 0.00000000 0.00000000 5.17222000
6 Zr
7 2
8 Direc t
9 0.66666667 0.33333333 0.75000000

10 0.33333333 0.66666667 0.25000000

And the crystal, if we visualize it in a software like VESTA, will look like the following:

168

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e hcp 2.95111 4.68433 Ti − f r a c vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Creat ing system :
11 . . > Hcp Ti with box vec to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
12 . . > System was s u c c e s s f u l l y c r ea ted .
13 >>> Converting to f r a c t i o n a l c oo rd ina t e s . . .
14 . . > Coordinates were reduced .
15 >>> Writing output f i l e (s) (2 atoms) :
16 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
17 \o/ Program terminated s u c c e s s f u l l y !
18 Total time : 1 .367 s . ; CPU time : 0 .018 s .

The plain text output of this command (this time in fractional coordinates, in contrast to the
previous example for Zr) will look like the following POSCAR file:

1 # Hcp Ti with box vec t o r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 2.95111000 0.00000000 0.00000000
4 −1.47555500 2.55573623 0.00000000
5 0.00000000 0.00000000 4.68433000
6 Ti
7 2
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 0.00000000 1.70382415 2.34216500

And the crystal, if we visualize it in a software like VESTA, will look like the following:

169

The wurtzite structure can be easily handled by Atomsk as well. We can create a crystal of
aluminum nitride in the wurtzite structure with lattice parameters a = 3.1117Å, and c = 4.68433Å
that’s output as a fractional coordinate VASP POSCAR file using the following command:

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e wur t z i t e 3 .1117 4 .9778 Al N − f r a c vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Creat ing system :
11 . . > AlN with wur tz i t e s t r u c tu r e with box ve c to r s H1=[2−1−10] , H2=[−12−10] , H3

=[0001] .
12 . . > System was s u c c e s s f u l l y c r ea ted .
13 >>> Converting to f r a c t i o n a l c oo rd ina t e s . . .
14 . . > Coordinates were reduced .
15 >>> Writing output f i l e (s) (4 atoms) :
16 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
17 \o/ Program terminated s u c c e s s f u l l y !
18 Total time : 2 .683 s . ; CPU time : 0 .017 s .

The plain text output of this command (again in fractional coordinates) will look like the
following POSCAR file:

1 # AlN with wur tz i t e s t r u c tu r e with box vec to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 3.11170000 0.00000000 0.00000000
4 −1.55585000 2.69481125 0.00000000
5 0.00000000 0.00000000 4.97780000
6 Al N
7 2 2
8 Direc t
9 0.33333333 0.66666667 0.00000000

10 0.66666667 0.33333333 0.50000000

170

11 0.33333333 0.66666667 0.37500000
12 0.66666667 0.33333333 0.87500000

And the crystal, if we visualize it in a software like VESTA, will look like the following (Al
atoms are greenish-blue, N atoms are in gray in this figure):

Finally, and perhaps most commonly for my own research at the very least is the rocksalt
structure. Atomsk will handle this very nicely for a two-species crystal. Following is the command
to create a TiN crystal with lattice parameters a0 = 4.241Å using Atomsk:

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e r o c k s a l t 4 .241 Ti N − f r a c vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta 0 .11 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Creat ing system :
11 . . > Rocksa lt TiN or i en t ed X=[100] Y=[010] Z=[001] .
12 . . > System was s u c c e s s f u l l y c r ea ted .
13 >>> Converting to f r a c t i o n a l c oo rd ina t e s . . .
14 . . > Coordinates were reduced .
15 >>> Writing output f i l e (s) (8 atoms) :
16 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
17 \o/ Program terminated s u c c e s s f u l l y !
18 Total time : 1 .300 s . ; CPU time : 0 .016 s .

171

The plain text output of this command (again in fractional coordinates) will look like the
following POSCAR file:

1 # Rocksalt TiN or i en t ed X=[100] Y=[010] Z=[001] .
2 1.000000
3 4.24100000 0.00000000 0.00000000
4 0.00000000 4.24100000 0.00000000
5 0.00000000 0.00000000 4.24100000
6 Ti N
7 4 4
8 Direc t
9 0.00000000 0.00000000 0.00000000

10 0.50000000 0.50000000 0.00000000
11 0.00000000 0.50000000 0.50000000
12 0.50000000 0.00000000 0.50000000
13 0.50000000 0.00000000 0.00000000
14 0.00000000 0.50000000 0.00000000
15 0.00000000 0.00000000 0.50000000
16 0.50000000 0.50000000 0.50000000

And the crystal, if we visualize it in a software like VESTA, will look like the following (Ti
atoms are blue, N atoms are in gray in this figure):

Beware however that sometimes the crystals that Atomsk will generate using the above com-
mands will not be the most economical retelling of the crystallographic information. In fact, the
most economical retelling of a crystal is known as the primitive cell and can usually be found easily
on repositories of crystallographic information like the materials project.

For example, the primitive cell of TiN can be represented as the following (in VASP POSCAR
format):

1 # Ti1 N1
2 1.000000
3 3.00770274 0.00000000 0.00000000
4 1.50385137 2.60474698 0.00000000
5 1.50385137 0.86824899 2.45577900
6 Ti N
7 1 1

172

8 Direc t
9 0.50000000 0.50000000 0.50000000

10 0.00000000 0.00000000 0.00000000

And can be visualized as follows with Ti atoms being blue, and N atoms being in gray:

As is plain to see, the primitive cell of TiN has only 2 atoms as compared to the eight atoms
of the cell which Atomsk generated from the earlier command. This primitive cell can represent a
substantial savings of computational ’expense’ compared to the non-primitive cell since it has many
fewer atoms. It is therefore useful to consider carefully in what situations you can and cannot use
the primitive cell to reduce computational intensity of a crystallographic computation.

8.4 Creation of oriented and duplicated crystals
The goal of simulations is to create as accurate a retelling of a system as is reasonable within the
bounds of reasonably economical computational expense. An important component of that the is
to supply for the simulation with initial conditions that most accurately retell the specifications of
the system(s) you are trying to simulate.

Crystals will frequently have preferred orientations and these are usually kinetically driven and
highly dependent on the growth conditions, the substrate onto which the crystal was grown, and
other factors like temperature. For that reason, we need to consider the crystallographic orientation
which is most thermodynamically reasonable to exist in the real-world counterpart of a simulation.
Of course, how can you expect a simulation to give reasonable results if the simulation’s conditions
are unreasonable?

An example of this that is of particular interest to my own research is the crystallographic
growth orientation(s) of Au, and TiN. In many cases, it turns out that Au will favor growing (111)
facets, the same usually holds true for TiN. However, TiN has lots of variability in what orientation

173

will grow; for example, the (200) direction may be more favorable on substrates like MgO, whereas
the (111) direction may be more favorable on substrates like Al2O3. Suffice it to say, it’s important
to match the crystallographic orientation that is most likely to grow in reality to the orientation
that you include in your simulation because the properties of different crystallographic facets in
some systems can be wildly different.

Atomsk can handle the creation of oriented crystals and can re-orient crystals based on a series
of three vectors that you supply in the form of Miller indices. A review of Miller indices is beyond
the scope of this text but generally they are just a set of indices h, k, and l which denote a family of
parallel lattice planes in reciprocal space that intersect with the lattice’s basis vectors at coordinates
of 1/h, 1/k, and 1/l. For the transformation of one orientation to another, Atomsk needs to be
supplied a set of three vectors that are orthogonal to each other. There are obviously an infinite
number of these; however, since a very common transformation is from the (100) direction to the
(111) direction, we will consider that most carefully.

It is worthy of note here that (as given by the YouTube channel Nickel and Copper on several
occasions) there is a transformation matrix from (100) to (111). This is very useful if you are trying
to re-orient crystals using a program like VESTA. Even though the specifics of transformation
matrices are beyond the scope of what we need to go deep into here, I will supply the matrix so
that you can more clearly visualize (if that’s how your brain works) the transformation from (100)
to (111): 0.5 0.5 1

0.5 −0.5 1
−1 0 1

We can create a (111)-oriented crystal (that is the (111) direction will be aligned with the z-axis

of the space) of a structure like ZrN using the following command in Atomsk (reproduced here
without all of the text printed to the terminal for brevity):

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e r o c k s a l t 4 .5675 Zr N o r i e n t [1−10] [11−2]
[1 1 1] ZrN . c f g

Readers can verify for themselves that the vectors [1 − 10], [11 − 2], and [111] are orthogonal.
The order of these vectors is important and is given as the first vector will be oriented parallel to
the x-axis, the second vector will be oriented parallel to the y-axis, and the third vector will be
oriented parallel to the z-axis. In this way, the crystal we just created is ZrN with its (111) direction
parallel to the z-axis. In this case, the crystal was saved as a .cfg file. To convert that file to VASP
POSCAR format we can issue the following command:

1 uname@ubuntu :~/Desktop$ atomsk ZrN . c f g vasp

The resulting POSCAR file will look like the following:
1 # Rocksalt ZrN or i en t ed X=[1−10] Y=[11−2] Z=[111] .
2 1.000000
3 3.29334983 0.00000000 0.00000000
4 0.00000000 5.70424924 0.00000000
5 0.00000000 0.00000000 8.06702664
6 Zr N
7 6 6
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 0.00000000 3.80283285 5.37801779

174

11 0.00000000 1.90141639 2.68900885
12 1.64667491 4.75354101 2.68900885
13 1.64667491 0.95070823 5.37801779
14 1.64667491 2.85212462 0.00000000
15 1.64667491 0.95070823 1.34450447
16 1.64667491 4.75354101 6.72252217
17 1.64667491 2.85212462 4.03351332
18 0.00000000 1.90141639 6.72252217
19 0.00000000 3.80283285 1.34450447
20 0.00000000 0.00000000 4.03351332

We can visualize the c-axis projection of this crystal with VESTA as the following:

Another feature that Atomsk has is to create supercells in a crystal with the -duplicate option.
The -duplicate option needs to be followed by three integers that correspond respectively to the x,
y, and z directions in the crystal. For example, we can create a TiN crystal with its (111) direction
oriented along the z-axis, and then duplicate it along an axis to create a supercell:

First, create a (111)-oriented TiN crystal having the rocksalt structure with the following com-
mand:

1 uname@ubuntu :~/Desktop$ atomsk −−c r e a t e r o c k s a l t 4 .241 Ti N o r i e n t [11−2] [1−10]
[1 1 1] vasp

This will generate the following POSCAR file:
1 # Rocksalt TiN or i en t ed X=[11−2] Y=[1−10] Z=[111] .
2 1.000000
3 5.18679453 0.00000000 0.00000000

175

4 0.00000000 2.99459722 0.00000000
5 0.00000000 0.00000000 7.33523517
6 Ti N
7 6 6
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 3.45786302 0.00000000 4.89015678
11 1.72893151 0.00000000 2.44507839
12 4.32232878 1.49729861 2.44507839
13 0.86446576 1.49729861 4.89015678
14 2.59339727 1.49729861 0.00000000
15 0.86446576 1.49729861 1.22253920
16 4.32232878 1.49729861 6.11269598
17 2.59339727 1.49729861 3.66761759
18 1.72893151 0.00000000 6.11269598
19 3.45786302 0.00000000 1.22253920
20 0.00000000 0.00000000 3.66761759

Which can be visualized as:

Next, we can then duplicate this crystal (since the last command will have saved the crystal
into a file named POSCAR) with the following command. Reader make note of several things here.
First, Atomsk needs you to tell it which file named POSCAR you want to use, for us the first file
it lists is also the file that we want to use, enter 1 into the terminal. Next it asks if we want to
overwrite the file named POSCAR since we are trying to create another POSCAR file while one

176

already exists in the same place; select yes because we are trying to modify the POSCAR file and
will no longer need the original. Finally, Atomsk asks whether we want to ’pack’ atoms so that the
species are continuous. This is a quirk of VASP and in its POSCAR files, it needs all of the species
to be contiguous since the only way it knows what species are what in the atomic coordinates is
the two lines after the basis vectors which give the species in the crystal as well as the number of
atoms in the simulation belonging to each individual specie. Please see the following example:

1 uname@ubuntu :~/Desktop$ atomsk POSCAR −dup l i c a t e 1 2 1 POSCAR
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta −0.11.1 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 / !\ Both f i l e s e x i s t : POSCAR and POSCAR

10 <?> Please i nd i c a t e which one you want to use as input f i l e :
11 1− POSCAR
12 2− POSCAR
13 1
14 >>> Opening the input f i l e : POSCAR
15 . . > Input f i l e was read s u c c e s s f u l l y (12 atoms) .
16 >>> Dupl i cat ing the system : 1 x 2 x 1
17 . . > System was s u c c e s s f u l l y dup l i ca t ed (24 atoms) .
18 >>> Writing output f i l e (s) (24 atoms) :
19 <?> This f i l e a l r eady e x i s t s : POSCAR
20 Do you want to ove rwr i t e i t (y/n) (Y=overwr i t e a l l) ?
21 y
22 . . > OK, I w i l l ove rwr i t e POSCAR
23 / !\ WARNING: atom sp e c i e s are not cont iguous . Do you want to pack them? (y/n)
24 (t h i s w i l l a f f e c t only the POSCAR f i l e)
25 y
26 . . > Atom sp e c i e s were packed : Zr , N.
27 Check that t h i s i s c on s i s t e n t with the POTCAR f i l e .
28 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
29 \o/ Program terminated s u c c e s s f u l l y !
30 Total time : 11 .807 s . ; CPU time : 0 .005 s .
31 ___
32 | / ! \ WARNINGS: 1 |
33 |___|

The resulting POSCAR file will look like the following (note there are now double the number
of atoms in the crystal but that the stoichiometry has been maintained):

1 # Rocksalt TiN or i en t ed X=[11−2] Y=[1−10] Z=[111] .
2 1.000000
3 5.18679453 0.00000000 0.00000000
4 0.00000000 5.98919444 0.00000000
5 0.00000000 0.00000000 7.33523517
6 Ti N
7 12 12
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 3.45786302 0.00000000 4.89015678
11 1.72893151 0.00000000 2.44507839
12 4.32232878 1.49729861 2.44507839
13 0.86446576 1.49729861 4.89015678
14 2.59339727 1.49729861 0.00000000

177

15 0.00000000 2.99459722 0.00000000
16 3.45786302 2.99459722 4.89015678
17 1.72893151 2.99459722 2.44507839
18 4.32232878 4.49189583 2.44507839
19 0.86446576 4.49189583 4.89015678
20 2.59339727 4.49189583 0.00000000
21 0.86446576 1.49729861 1.22253920
22 4.32232878 1.49729861 6.11269598
23 2.59339727 1.49729861 3.66761759
24 1.72893151 0.00000000 6.11269598
25 3.45786302 0.00000000 1.22253920
26 0.00000000 0.00000000 3.66761759
27 0.86446576 4.49189583 1.22253920
28 4.32232878 4.49189583 6.11269598
29 2.59339727 4.49189583 3.66761759
30 1.72893151 2.99459722 6.11269598
31 3.45786302 2.99459722 1.22253920
32 0.00000000 2.99459722 3.66761759

We can visualize the duplicated structure with VESTA as the following:

8.5 Creation of monolayers and heterostructured slabs
Many emerging 2D materials are being simulated using DFT and other codes to see what their
approximate properties will be in many situations that may be difficult to replicate experimentally.
Creating monolayers of crystals for calculations, especially in an arbitrary orientation, can sound
daunting but this section is intended to dispel that notion and make the construction of arbitrary
numbers of atomic layers in oriented crystals and heterostructures simplified.

For the first example in this section, we will use Atomsk to create a (111)-oriented ZrN crystal
that we will later modify to be tri- bi- and monolayers (without any substrate crystals or layers) of
ZrN. We can begin with some simple Atomsk commands like those that we have discussed before:

178

1 uname@ubuntu :~ $ atomsk −−c r e a t e r o c k s a l t 4 .5675 Zr N o r i e n t [1−10] [11−2] [1 1 1] ZrN .
c f g

2 uname@ubuntu :~ $ atomsk ZrN . c f g vasp

The resulting POSCAR file will look like the following:
1 # Rocksalt ZrN or i en t ed X=[1−10] Y=[11−2] Z=[111] .
2 1.000000
3 3.22971022 0.00000000 0.00000000
4 0.00000000 5.59402220 0.00000000
5 0.00000000 0.00000000 7.91114206
6 Zr N
7 6 6
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 0.00000000 3.72934815 5.27409473
11 0.00000000 1.86467405 2.63704733
12 1.61485511 4.66168515 2.63704733
13 1.61485511 0.93233705 5.27409473
14 1.61485511 2.79701110 0.00000000
15 1.61485511 0.93233705 1.31852370
16 1.61485511 4.66168515 6.59261836
17 1.61485511 2.79701110 3.95557103
18 0.00000000 1.86467405 6.59261836
19 0.00000000 3.72934815 1.31852370
20 0.00000000 0.00000000 3.95557103

And can be visualized with VESTA:

As it stands, this is a bulk crystal of ZrN with its c-axis aligned with the z-axis of the space.
We can however turn this into a trilayer of ZrN very rapidly by just adding length to the z-lattice
vector in the POSCAR file. This is just done manually and a length that is ’large enough’ so that
there will be minimal or almost no interactions of atoms at the bottom of the unit cell (because of

179

periodicity) with the atoms on the topmost layer of atoms. In this case I just set the z-component
to 20:

1 # Rocksalt ZrN or i en t ed X=[1−10] Y=[11−2] Z=[111] .
2 1.000000
3 3.22971022 0.00000000 0.00000000
4 0.00000000 5.59402220 0.00000000
5 0.00000000 0.00000000 20.00000000
6 Zr N
7 6 6
8 Cartes ian
9 0.00000000 0.00000000 0.00000000

10 0.00000000 3.72934815 5.27409473
11 0.00000000 1.86467405 2.63704733
12 1.61485511 4.66168515 2.63704733
13 1.61485511 0.93233705 5.27409473
14 1.61485511 2.79701110 0.00000000
15 1.61485511 0.93233705 1.31852370
16 1.61485511 4.66168515 6.59261836
17 1.61485511 2.79701110 3.95557103
18 0.00000000 1.86467405 6.59261836
19 0.00000000 3.72934815 1.31852370
20 0.00000000 0.00000000 3.95557103

Like always, we can visualize the crystal using VESTA:

180

Now, just by inspection, we can see that there are three ZrN layers (note that this is distinct
from atomic layers because of the rocksalt structure and chemistry). Using the VESTA selection
tool, we can determine which atoms are in the top ZrN layer: these turn out to be atoms 5, 2, 8,
and 10 in the POSCAR file (please see the below two images showing how this is done in VESTA
as well as the VESTA terminal output returning the atom numbers):

181

Then, after deleting atoms 5, 2, 8, and 10 from the POSCAR file, we will be left with the
following POSCAR file:

1 # Rocksalt ZrN or i en t ed X=[1−10] Y=[11−2] Z=[111] .
2 1.000000
3 3.22971022 0.00000000 0.00000000
4 0.00000000 5.59402220 0.00000000
5 0.00000000 0.00000000 20.00000000
6 Zr N
7 4 4
8 s e l e c t i v e dynamics
9 Cartes ian

10 0.00000000 0.00000000 0.00000000
11 0.00000000 1.86467405 2.63704733
12 1.61485511 4.66168515 2.63704733
13 1.61485511 2.79701110 0.00000000
14 1.61485511 0.93233705 1.31852370
15 1.61485511 2.79701110 3.95557103
16 0.00000000 3.72934815 1.31852370
17 0.00000000 0.00000000 3.95557103

Which can be visualized with VESTA:

182

In the same way, we can create a monolayer by selectively deleting the unwanted top layer
of atoms (in this case atoms 8, 6, 3, and 2 in the POSCAR file as determined by VESTA). The
resulting POSCAR file will look like the following (note the T T T characters, which are known to
VASP as selective dynamics, following the atomic positions, this is the VASP means of saying that,
for specific types of calculations, those atoms are able to move in the x-, y-, and z-coordinates):

1 # Rocksalt ZrN or i en t ed X=[1−10] Y=[11−2] Z=[111] .
2 1.000000
3 3.22971022 0.00000000 0.00000000
4 0.00000000 5.59402220 0.00000000
5 0.00000000 0.00000000 20.00000000
6 Zr N
7 2 2
8 s e l e c t i v e dynamics
9 Cartes ian

10 0.00000000 0.00000000 0.00000000 T T T
11 1.61485511 2.79701110 0.00000000 T T T
12 1.61485511 0.93233705 1.31852370 T T T
13 0.00000000 3.72934815 1.31852370 T T T

183

The monolayer of ZrN can be visualized with VESTA:

Atomsk has quite a few useful tools, not the least of which is the merge tool. As its name may
imply, the merge tool allows a user to merge two or more crystal files along a certain direction and
in any ordering that the user desires. The Atomsk option is –merge and is usually done after using
the –create option to make at least two crystals. In practice it is most simple to create the initial
crystal files in the .cfg format, retain that format during the merge operation, and then convert to
your desired format at the end of the operations.

In the following example using the Atomsk code, we generate a crystallographic input file to
calculate the relaxation of a (111)-oriented monolayer of TiN as a slab on an AlN substrate that
is treated as immovable later on with VASP. A merged TiN/AlN slab was created in Atomsk with
the following commands:

1 uname@ubuntu :~ $ atomsk −−c r e a t e wur t z i t e 3 .1117 4 .9778 Al N AlN . c f g
2 uname@ubuntu :~ $ atomsk −−c r e a t e r o c k s a l t 4 .235 Ti N o r i e n t [1−10] [11−2] [1 1 1] TiN .

c f g
3 uname@ubuntu :~ $ atomsk −−merge Z 2 AlN . c f g TiN . c f g TiN−111_on_AlN . c f g

184

4 uname@ubuntu :~ $ atomsk TiN−111_on_AlN . c f g vasp

The resulting POSCAR file will look like the following:
1 # AlN with wur tz i t e s t r u c tu r e with box vec to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 3.11170000 0.00000000 0.00000000
4 −1.55585000 2.69481125 0.00000000
5 0.00000000 0.00000000 22.26863517
6 Al N Ti
7 6 9 3
8 Cartes ian
9 −0.00000002 1.79654084 0.00000000

10 1.55585002 0.89827041 2.48890011
11 −0.00000002 1.79654084 4.97779999
12 1.55585002 0.89827041 7.46670009
13 −0.00000002 1.79654084 9.95559998
14 1.55585002 0.89827041 12.44449986
15 −0.00000002 1.79654084 1.86667502
16 1.55585002 0.89827041 4.35557513
17 −0.00000002 1.79654084 6.84447501
18 1.55585002 0.89827041 9.33337490
19 −0.00000002 1.79654084 11.82227500
20 1.55585002 0.89827041 14.31117488
21 1.49729860 2.59339726 18.60101768
22 0.00000000 1.72893150 21.04609601
23 0.00000002 3.45786304 16.15593913
24 1.49729860 4.32232876 17.37847829
25 1.49729862 0.86446578 19.82355684
26 1.49729860 2.59339726 14.93339997

And the crystal itself can be visualized with a program like VESTA:

185

This may be an interesting place to stop if your desire is to make extremely tightly packed
quantum well layers. We can also take this a step further to making a monolayer of (111)-oriented
TiN on top of a AlN slab that has n nanometers of vacuum above the TiN surface. This can be
done by directly manipulating the POSCAR file that we just generated to the point that it becomes
the following:

1 # AlN with wur tz i t e s t r u c tu r e with box vec to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 3.11170000 0.00000000 0.00000000
4 −1.55585000 2.69481125 0.00000000
5 0.00000000 0.00000000 15.00000000
6 Al N Ti
7 2 2 1
8 Cartes ian
9 −0.00000002 1.79654084 0.00000000

10 1.55585002 0.89827041 2.48940005
11 −0.00000002 1.79654084 1.86704995
12 1.55585002 0.89827041 4.35645000
13 0.00000000 0.00000000 4.97879999

We have done several things here, all of which were performed by hand and require no compli-
cated figuring. First, we manipulated the c-axis lattice vector to be 15 as that will be ’large enough’
for a quantity of vacuum above the surface. Next, we searched for what atoms are where in VESTA
and deleted them from the POSCAR file coordinates list, making sure to not forget what species
appear where in the list of atomic coordinates. Finally, we changed the numbers following Al, N,
and Ti to represent the new quantities of atoms in the crystal after our manipulation.

The (111)-oriented TiN layer on top of the AlN crystal can be visualized using VESTA:

186

The same operations can be performed on a TiN/GaN heterostructure using Atomsk commands
and manual manipulation of POSCAR files with the following commands:

1 uname@ubuntu :~ $ atomsk −−c r e a t e wur t z i t e 3 .18 5 .166 Ga N −dup l i c a t e 1 1 2
GaN_bilayer . c f g

2 uname@ubuntu :~ $ atomsk −−c r e a t e r o c k s a l t 4 .235 Ti N o r i e n t [1−10] [11−2] [1 1 1] TiN .
c f g # th i s f i l e needs to be modi f i ed to remove the top two l a y e r s o f atoms so
convert to vasp POSCAR, ed i t , then back to . c f g

3 uname@ubuntu :~ $ atomsk −−merge Z 2 GaN_bilayer . c f g TiN_monolayer . c f g TiN_GaN. c f g
4 uname@ubuntu :~ $ atomsk TiN_GaN. c f g vasp

The resulting VASP POSCAR file of the unmodified TiN/GaN crystal heterostructure will look
like the following:

1 # GaN with wur tz i t e s t r u c tu r e with box ve c to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 3.18000000 0.00000000 0.00000000
4 −1.59000000 2.75396078 0.00000000
5 0.00000000 0.00000000 22.83323517
6 Ga N Ti
7 6 9 3
8 Cartes ian
9 −0.00000002 1.83597386 0.00000000

10 1.59000002 0.91798692 2.58300014
11 −0.00000002 1.83597386 5.16600005
12 1.59000002 0.91798692 7.74899996
13 −0.00000002 1.83597386 10.33200010
14 1.59000002 0.91798692 12.91500001
15 −0.00000002 1.83597386 1.93724999
16 1.59000002 0.91798692 4.52025013
17 −0.00000002 1.83597386 7.10325004
18 1.59000002 0.91798692 9.68624995
19 −0.00000002 1.83597386 12.26925009
20 1.59000002 0.91798692 14.85225000
21 1.49729860 0.86446578 16.72053928
22 1.49729861 2.59339727 19.16561754
23 0.00000002 1.72893148 21.61069604
24 −0.00000002 3.45786305 20.38815691

187

25 1.49729863 4.32232875 17.94307841
26 1.49729861 2.59339727 15.49799992

And can be visualized with VESTA (where the green atoms are Ga, the blue are Ti, and the
grey are N):

We can add selective dynamics and a vacuum above the crystal so that all of the Ti atoms are
movable, the N atoms bonded to the Ti atoms are movable, and the top layer of the GaN crystal
is also movable. Please see the following modified POSCAR file:

1 # GaN with wur tz i t e s t r u c tu r e with box ve c to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001] .
2 1.000000
3 3.18000000 0.00000000 0.00000000
4 −1.59000000 2.75396078 0.00000000
5 0.00000000 0.00000000 40.00000000
6 Ga N Ti
7 6 9 3
8 Cartes ian
9 −0.00000002 1.83597386 0.00000000 T T T

10 1.59000002 0.91798692 2.58300014 F F F
11 −0.00000002 1.83597386 5.16600005 F F F
12 1.59000002 0.91798692 7.74899996 F F F
13 −0.00000002 1.83597386 10.33200010 F F F
14 1.59000002 0.91798692 12.91500001 T T T
15 −0.00000002 1.83597386 1.93724999 T T T
16 1.59000002 0.91798692 4.52025013 F F F
17 −0.00000002 1.83597386 7.10325004 F F F

188

18 1.59000002 0.91798692 9.68624995 F F F
19 −0.00000002 1.83597386 12.26925009 T T T
20 1.59000002 0.91798692 14.85225000 F F F
21 1.49729860 0.86446578 16.72053928 F F F
22 1.49729861 2.59339727 19.16561754 F F F
23 0.00000002 1.72893148 21.61069604 T T T
24 −0.00000002 3.45786305 20.38815691 T T T
25 1.49729863 4.32232875 17.94307841 T T T
26 1.49729861 2.59339727 15.49799992 T T T

We expand upon the selective dynamics from before by adding the familiar T T T as well as F
F F for all atoms that we want to treat as immovable.

8.6 Adding randomness to a crystal
For several reasons like simulating disorder and its associated properties, and also in the creation
of scientific visualizations that convey disorder within a crystal, we sometimes desire to add ran-
domness to a crystal structure. Atomsk can handle this very quickly for all sorts of file formats.

As an example of this, I have selected Sb2S3 as an interesting example partially because it is
a material of interest to my own research, and partially because it has a relatively large unit cell
where we can readily visualize the impact of randomness and disorder. This crystal information
was collected from the Materials Project and is cataloged under mp-998972. The Materials Project
is a fantastic resource that I use very frequently for my own research. The file I collected is in the
.cif format and is the conventional standard given by the Materials Project.

Please see the following example of adding randomness to the structure of Sb2S3 with Atomsk:
The first step is to convert the .cif file to a VASP POSCAR file so that viewing what specific

changes were made to the structure are more simple. This can be done with the following:
1 uname@ubuntu :~/Desktop$ atomsk Sb2S3_mp−2809_conventional_standard . c i f vasp
2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta −0.11.1 |
6 | | | o (C) 2010 P i e r r e H i r e l |
7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Opening the input f i l e : Sb2S3_mp−2809_conventional_standard . c i f
11 . . > Input f i l e was read s u c c e s s f u l l y (20 atoms) .
12 >>> Writing output f i l e (s) (20 atoms) :
13 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
14 \o/ Program terminated s u c c e s s f u l l y !
15 Total time : 0 .008 s . ; CPU time : 0 .010 s .

This will create the following VASP POSCAR file for the Sb2S3 structure, note the atomic
positions in the undisturbed state:

1 # Sb8 S12
2 1.000000
3 3.87034000 0.00000000 0.00000000
4 0.00000000 11.23080100 0.00000000
5 0.00000000 0.00000000 12.13389700
6 Sb S
7 8 12
8 Cartes ian

189

9 2.90275500 5.24024682 10.42367275
10 0.96758500 5.99055418 1.71022425
11 0.96758500 10.85564732 7.77717275
12 2.90275500 0.37515368 4.35672425
13 0.96758500 1.92956392 11.72180559
14 2.90275500 9.30123708 0.41209141
15 2.90275500 7.54496442 6.47903991
16 0.96758500 3.68583658 5.65485709
17 2.90275500 0.64200874 10.62803185
18 0.96758500 10.58879226 1.50586515
19 0.96758500 6.25740924 7.57281365
20 2.90275500 4.97339176 4.56108335
21 2.90275500 4.21275207 0.54955633
22 0.96758500 7.01804893 11.58434067
23 0.96758500 9.82815257 5.51739217
24 2.90275500 1.40264843 6.61650483
25 0.96758500 2.11071674 3.64987622
26 2.90275500 9.12008426 8.48402078
27 2.90275500 7.72611724 2.41707228
28 0.96758500 3.50468376 9.71682472

Visualizing the crystal at this stage will result in the following perfect crystal. The polyhedra
are a good guide to the local symmetry. S atoms are yellow, Sb atoms are in brown in this figure:

Next, we can use the -disturb option with the value 1.0 to add a random displacement d in the
x, y, and z directions of a pseudo-random value in the range 0Å ≤ d ≤ 1Å:

1 uname@ubuntu :~/Desktop$ atomsk Sb2S3_mp−2809_conventional_standard . c i f −d i s tu rb 1 .0
vasp

2 ___
3 | ___________ |
4 | o−−−o A T O M S K |
5 | o−−−o | Vers ion Beta −0.11.1 |
6 | | | o (C) 2010 P i e r r e H i r e l |

190

7 | o−−−o https : // atomsk . univ− l i l l e . f r |
8 |___|
9 ∗∗∗ Working out o f o f f i c e hours ? You should s l e e p sometimes . :−)

10 >>> Opening the input f i l e : Sb2S3_mp−2809_conventional_standard . c i f
11 . . > Input f i l e was read s u c c e s s f u l l y (20 atoms) .
12 >>> Applying a per turbat i on to atom pos i t i on s ,
13 . . > maximum magnitude : 1 .000 A.
14 . . > Atom po s i t i o n s were d i s turbed .
15 >>> Writing output f i l e (s) (20 atoms) :
16 . . > Su c c e s s f u l l y wrote POSCAR f i l e : POSCAR
17 \o/ Program terminated s u c c e s s f u l l y !
18 Total time : 0 .009 s . ; CPU time : 0 .010 s .

Which will modify the previously given VASP POSCAR file for Sb2S3 to become the following
partially-randomized structure (this time, note that the atomic positions have changed slightly
compared to the previous):

1 # Sb8 S12
2 1.000000
3 3.87034000 0.00000000 0.00000000
4 0.00000000 11.23080100 0.00000000
5 0.00000000 0.00000000 12.13389700
6 Sb S
7 8 12
8 Cartes ian
9 2.93948807 4.85011933 10.84293948

10 0.33547413 5.99492757 1.11527381
11 0.58839192 10.95104558 8.51770903
12 2.78837768 −0.49382162 4.41095205
13 0.71348945 1.22749775 11.73497340
14 2.93948807 8.91110958 0.83135814
15 2.27064413 7.54933781 5.88408947
16 0.58839192 3.78123484 6.39539338
17 2.78837768 −0.22696656 10.68225964
18 0.71348945 9.88672609 1.51903296
19 1.00431807 5.86728174 7.99208038
20 2.27064413 4.97776516 3.96613291
21 2.52356192 4.30815033 1.29009262
22 0.85320768 6.14907363 11.63856847
23 0.71348945 9.12608640 5.53055998
24 2.93948807 1.01252093 7.03577156
25 0.33547413 2.11509013 3.05492578
26 2.52356192 9.21548252 9.22455707
27 2.78837768 6.85714195 2.47130008
28 0.71348945 2.80261759 9.72999252

Visualizing the crystal at this stage will result in the following defected, pseudo-randomized
crystal, note the major differences between this and the perfect crystal given earlier. S atoms are
yellow, Sb atoms are in brown in this figure:

191

192

9 Shell Scripts for DFT Calculations with VASP

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

VASP (the The Vienna Ab initio Simulation Package) [12, 13, 14] is a very popular closed-source,
commercially-available code that will perform DFT, molecular dynamics and much more. VASP
became a useful program for my own research but I found that attempting to manipulate the many
input files all manually was tedious and way beyond the scope of what I wanted to do. But hooray!
We have BASH and the shell to do most of the work for us!

VASP requires several input files in order to run including the POSCAR file which stores the
atomic positions and species with their lattice vectors and information about selective dynamics, the
POTCAR file which stores the pseudopotentials for the specific calculation, the INCAR file which
stores the specific directions that VASP will follow during the calculation(s), and the KPOINTS
file which stores information on how the space should be divided for the calculation.

It would be tedious to attempt creating these files all manually every time that you want to run
VASP, especially considering that frequently you want to perform many calculations with slightly
tweaked parameters. So, to circumvent this, we can create scripts that generate all (or at least
most) of the input files for us every time we want to run a calculation or series of calculations. This
can be especially handy when trying to mathematically manipulate the POSCAR file for every
point in a calculation, or when you are trying to create POTCAR files which are a chore to make
manually.

In the following sections, we will discuss shell scripting to automate VASP and make our lives
a little easier when running first principles calculations. We might even have some fun along the
way!

9.1 Compiling VASP 5.3
VASP is fairly straightforward to compile and has an easy to use build script associated with it.
Similar to compilation of the Exciting code covered in section 7.1 or the compilation of Quantum
ESPRESSO described in section 6.1, the main part of the heavy lifting is handled by the code and
the make files. The main burden on the user is to make sure that the appropriate packages are
available for VASP (or whatever code you are using for that matter) in the normal places that the
code will search for them.

After successfully running the build script, something to the effect of the following should be
printed to the terminal:

1 Elapsed time = 6m50s
2 Su c c e s s f u l l y b u i l t the vasp
3 −rwxrwx−−− 1 uname uname 117266472 Oct 21 06 :40 vasp
4 −rwxrwx−−− 1 uname uname 117266472 Oct 21 06 :40 vasp . kpt
5 −rw−rw−−−− 1 uname uname 15381 Oct 21 06 :33 vaspxml .mod

And, navigating into the executable directory, we can check to see that the file which has been
compiled is the executable that we want:

1 uname@uname:~/ vasp> cd vasp . 5 . 3 /
2 uname@uname:~/ vasp/vasp .5.3 > l s vasp
3 vasp
4 uname@uname:~/ vasp/vasp .5.3 > f i l e vasp
5 vasp : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) , dynamical ly l inked ,

i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]= ce6cf06f4d54cde6e6d6605834jh4d534a2029e6 ,
f o r GNU/Linux 3 . 2 . 0 , with debug_info , not s t r i pped

193

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

6 uname@uname:~/ vasp/vasp .5.3 > ./ vasp
7 [Thu Oct 21 08 : 05 : 02 2021] [unknown] Fata l e r r o r in MPI_Init : Other MPI er ror , e r r o r

s tack :
8 MPIR_Init_thread (537) :
9 MPID_Init (246) : channel i n i t i a l i z a t i o n f a i l e d

10 MPID_Init (647) : PMI2 i n i t f a i l e d : 1
11 f o r r t l : e r r o r (76) : Abort trap s i g n a l
12 Image PC Routine Line Source
13 vasp 0000000026650FA4 for__signal_handl Unknown Unknown
14 l ibpthread −2.26. s 00002AAAAC4E92D0 Unknown Unknown Unknown
15 l i b c −2.26. so 00002AAAACA66420 g s i g n a l Unknown Unknown
16 l i b c −2.26. so 00002AAAACA67A01 abort Unknown Unknown
17 l i bmpich_inte l . so 00002AAAABB77228 Unknown Unknown Unknown
18 l i bmpich_inte l . so 00002AAAABB00062 MPIR_Handle_fatal Unknown Unknown
19 l i bmpich_inte l . so 00002AAAABB00156 MPIR_Err_return_c Unknown Unknown
20 l i bmpich_inte l . so 00002AAAABA84994 MPI_Init Unknown Unknown
21 l i bdar shan . so 00002AAAAB524711 PMPI_Init Unknown Unknown
22 l i bmpich_inte l . so 00002AAAABAD1D67 MPI_INIT Unknown Unknown
23 vasp 000000002006481D Unknown Unknown Unknown
24 vasp 000000002007CCD0 Unknown Unknown Unknown
25 vasp 000000002000E38D Unknown Unknown Unknown
26 vasp 000000002000DB12 Unknown Unknown Unknown
27 l i b c −2.26. so 00002AAAACA5134A __libc_start_main Unknown Unknown
28 vasp 000000002000DA2A Unknown Unknown Unknown
29 Aborted

9.2 Some common error sources in VASP
As is common with me, I encounter all sorts of errors when I run calculations, especially when I am
trying a new-to-me code. Here is a partial list of some error sources and potential solutions that I
have found for use with VASP 5. I am including these items with the presentation first of the error
you may see, and then a way you may attempt to resolve the error.

194

Error Potential Resolution
Error: LAPACK: Routine ZPOTRF failed!
1 1 1

Several things could cause this issue, I’ve
found it can be resolved most reliably by in-
cluding ALGO = Fast or ALGO = Normal
in your INCAR file or by setting a constant
value for POTIM in your INCAR file and in-
creasing that value in steps of 20% from until
you calculation runs properly. Alternatively,
if nothing seems to be working, you can also
try to disable use of LAPACK in your calcu-
lation(s)

Error: You find in your log file many errors
with file locations pointing to your POSCAR
file

Make sure that you have a valid POSCAR
file, especially check to make sure that the
file’s header is readable by VASP

Error: VASP reports in the log file something
like the following: "Your highest band is oc-
cupied at some k-points! ... Please increase
the parameter NBANDS in file INCAR ..."

By default the value of NBANDS in your IN-
CAR file should be either the sum of half
the number of valence electrons and half the
number of ions in the calculation or 60% of
the number of valence electrons in the calcu-
lation, whichever value is larger. Try increas-
ing the value of NBANDS manually in your
INCAR file by making these calculations for
yourself and adding several percent to the
number of bands until the calculation runs
without the error. Additionally, the value of
NBANDS should be divisible by the number
of cores (per node) that you’re using to run
the calculation

9.3 Relaxation of a (111)-oriented TiN monolayer on AlN
Of interest to some of my research is the relaxation of thin crystalline films on top of distinct host
substrate crystals because the crystal structure of the substrate will influence the crystal structure
of the thin film that was deposited onto the substrate and therefore influence the film’s properties
in a variety of ways. VASP has the capability to calculate the relaxed (geometrically optimized to
have equilibrium energy) structure of crystal heterostructures in this way. A convenient means of
creating this crystal structure for computational simulation is with Atomsk (see section 8) using
the following commands:

1 atomsk −−c r e a t e wur t z i t e 3 .1117 4 .9778 Al N AlN . c f g
2 atomsk −−c r e a t e r o c k s a l t 4 .235 Ti N o r i e n t [1−10] [11−2] [1 1 1] TiN . c f g
3 atomsk −−merge Z 2 AlN . c f g TiN . c f g TiN−111_on_AlN . c f g
4 atomsk TiN−111_on_AlN . c f g vasp

Our calculation will focus on the following structure that was created using Atomsk (for more
details on Atomsk, please see section 8) (the following text has more enumeration than is normal
with specifically added labeling for clarity; it is a terminal output from VESTA [15] reading the
POSCAR file that Atomsk has created, and all of the text following the z-coordinate needs to be

195

removed if intended to be used in a calculation). I have labeled which atoms are where in the
calculation for ease of later reference when we considered which atoms will be able to move during
the structural relaxation and which will not. For the time being, we will want to see the relaxation
of the top Ti and N atoms, as well as the first layer of Al and N atoms. These were determined
by using the atom selection function in VESTA. The structure as well as the selected atoms for
determining which atoms we want to be movable in the relaxation are seen below as a screenshot
from the VESTA software (Ti atoms are light blue, N atoms are gray, Al atoms are greenish-blue):

196

Vesta also reports the structural parameters of this crystal as the following (with my annotations
of what atoms we want to be movable, that is):

1 a b c alpha beta gamma
2 3.11170 3.11170 17.29284 90.0000 90.0000 120.0000
3

4 Unit−c e l l volume = 145.008110 A^3

197

5

6 Struc ture parameters
7

8 x y z
9 1 Al Al1 0 .33333 0.66667 0.00000

10 2 Al Al2 0 .66667 0.33333 0.14396
11 3 Al Al3 0 .33333 0.66667 0.28791
12 4 Al Al4 0 .66667 0.33333 0.43187 <− AlN Top Layer
13 5 N N1 0.33333 0.66667 0.10797
14 6 N N2 0.66667 0.33333 0.25192
15 7 N N3 0.33333 0.66667 0.39588 <− AlN Top Layer
16 8 N N4 0.66667 0.33333 0.53983 <− Top TiN
17 9 Ti Ti1 0 .00000 0.00000 0.57582 <− Top TiN

A script for running this relaxation as a VASP calculation is included below and written in
several sections. The aim of the script is to eliminate much of the annoyance that one might face
when attempting to run these calculations on a remote system where you may have to handle lots
of scripts and potential files. This script builds all of the POTCAR (potential) files directly and
brand new every time that the script is run, as well as the INCAR, KPOINTS, and POSCAR files
and a README of what the script is doing and its important parameters.

The first section of this script (since it is intended to be run on a supercomputer system) asks
for parameters to create an SBATCH script including things like the calculation time and the
executable’s location in the system. Next, it asks for the number of elements that you want to use
as well as the location of the pseudopotential files that you want to use for the calculations, these
will be used near the end to create the POTCAR file based on the atoms that you have selected.
After that, we create a README file that stores some important notes about what the calculation
was doing, I find these sorts of README files useful when referring back to previous calculations.

The third section creates an SBATCH script for use in queuing on a supercomputer system that
has some variables inputting information from what we have defined above. I choose to follow this
route because it is tedious to always scroll through a length of text and change parameters that
you cherry-pick from different parts of the script. Instead, it is much simpler and leads to fewer
forgotten parameter changes when you collate all of your parameters that you frequently change as
variables at the outset of your script.

Next, I create a POSCAR file based on the Atomsk commands that I discussed previously. The
POSCAR file has an option called ’selective dynamics’ which tells VASP that you want to calculate
the system allowing only selected atoms to move. Based on the VESTA screenshot of the Atomsk-
created crystal structure, we can see that we want atoms 4, 7, 8, and 9 to be movable in the x, y,
and z directions. In order to tell this to VASP, we enter T T T for all the atoms that we want to
be movable (one ’T’ for each direction in x, y, and z), and similarly F F F for all atoms that we
want to be immovable in all directions.

Next we use the cat command to create KPOINTS and INCAR files. These can be perused at
your own leisure based on the VASP documentation but together they tell VASP what to calculate
and how dense of a grid (with respect to the unit cell) to calculate over. A lot of the verbose
labeling within the INCAR file comes from various sources on the internet that have shared their
INCAR files and I want to thank all of those people very much for their contribution to the concise
labeling of what the various INCAR parameters mean and how they can be modified.

Next, we create the POTCAR file based on the atoms that were defined at the top of the script.
Here, we use a switch case statement that chooses how to handle the element variables (again
residing at the top of the script) based on the Number_of_Elements variable that we define. I

198

use this methodology of my own creation because I find it tedious to make the POTCAR files
every time I want to run a new calculation. To create each POTCAR file, the individual elements
are concatenated together using the cat command in the terminal. This script just automates
that based on parameters that you can set and forget until you change the system that you are
calculating. It is important to note here that you need to give the names of the elements in the
exact order that they appear in your POSCAR file.

The final portion of this script submits the job to the cluster’s queue using the sbatch command
on the SBATCH script that we created and then prints to the queue the status of the calculation
using the squeue command every 5 seconds until you terminate the script. The purpose of this is
to monitor when your calculation begins to run and how long it takes to run on the computer.

It is frequently convenient to run the script with the following string of commands by copying
and pasting the script into VIM and then running the script with ./script_name.sh in the normal
way:

1 File_Name="TiN_111_monolayer_on_AlN_vasp . sh" ; touch $File_Name ; chmod +x
$File_Name ; vim $File_Name

Please see the following script for running the relaxation of a TiN monolayer on top of an AlN
bulk substrate with VASP:

1 #!/ bin /bash
2

3 Job_Name="TiN_111_monolayer_on_AlN_vasp" # Give the name you want to apply to a l l
f i l e s here

4 Job_Time=" 00 : 30 : 00 " # Give the run time in hh :mm: s s
5 Module_Name="vasp" # Give the name o f the module
6

7 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp"
8 # Executable l o c a t i o n
9 Pseudo_Location="~/uname/ pseudopot en t i a l s /LDA/potpaw_LDA/"

10 # Locat ion o f pseudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
11

12 Number_of_Elements="3" # Number o f i nd i v i dua l e lements in the s imu la t i on
13 Element_1="Al" # Abbreviated name o f element 1 in POSCAR
14 Element_2="N" # Abbreviated name o f element 2 in POSCAR
15 Element_3="Ti" # Abbreviated name o f element 3 in POSCAR
16 Element_4="n/a" # Abbreviated name o f element 4 in POSCAR
17

18 #File_Name="TiN_111_monolayer_on_AlN_vasp . sh" ; touch $File_Name ; chmod +x
$File_Name ; vim $File_Name

19

20 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’)
21 # Give date in day/month/ year hr/min/ sec (thanks unix . stackexchange user1293137)
22

23 #−:−
24 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
25 #−:−
26

27 cat > README. txt << EOF
28

29 This i s a VASP ca l c u l a t i o n to c a l c u l a t e the r e l a x a t i o n o f a (111)−o r i en t ed monolayer
o f TiN as a s l ab on an AlN subs t r a t e that i s t r ea t ed as immovable

30 The TiN/AlN s l ab was c rea ted in Atomsk with the f o l l ow i n g commands :
31

32 atomsk −−c r e a t e wur t z i t e 3 .1117 4 .9778 Al N AlN . c f g
33 atomsk −−c r e a t e r o c k s a l t 4 .235 Ti N o r i e n t [1−10] [11−2] [1 1 1] TiN . c f g

199

34 atomsk −−merge Z 2 AlN . c f g TiN . c f g TiN−111_on_AlN . c f g
35 atomsk TiN−111_on_AlN . c f g vasp
36

37 The r e s u l t i n g f i l e c a l l e d POTCAR was modi f i ed by hand to add s e l e c t i v e dynamics to
some atoms and remove l a y e r s o f Ti and N atoms as we l l

38 Ordering o f the N atoms was a l s o done to make the f i l e r eadab le by VASP
39

40 EOF
41

42 echo " Creat ing f i l e README. txt . . . "
43 echo " done"
44

45 #−:−
46 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Begin VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−:−
47 #−:−
48

49 echo " Running s c r i p t in . ${Job_Name} . sh . . . "
50 echo " The time i s cu r r en t l y $Date "
51

52 #−:−
53 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
54 #−:−
55

56 cat > ${Job_Name} . sb << EOF
57 #!/ bin /bash
58 #SBATCH −−job−name=$Job_Name
59 #SBATCH −N 1
60 #SBATCH −C haswe l l
61 #SBATCH −q debug
62 #SBATCH −t $Job_Time
63

64 module load vasp
65 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
66

67 EOF
68

69 echo " Creat ing input f i l e ${Job_Name} . sb . . . "
70 echo " done"
71

72 #−:−
73 #−:−:−:−:−:−:−:−:−:−:−:−:− Create POSCAR F i l e f o r VASP −:−:−:−:−:−:−:−:−:−:−:−:−:−
74 #−:−
75

76 # s e l e c t i v e dynamics a l l ows you to f i x atom po s i t i o n s with T and F along s u p e r c e l l
b a s i s v e c t o r s

77 # F and T f o l l ow i n g ’ d i r e c t ’ in POSCAR ind i c a t e whether an atom can (T) or cannot (F
) move in a d i r e c t i o n (x y z)

78

79 cat > POSCAR << EOF
80 # AlN with wur tz i t e s t r u c tu r e with box vec to r s H1=[2−1−10] , H2=[−12−10] , H3=[0001]

and TiN o r i e n t x [1−10] y [11−2] z [1 1 1] .
81 1.000000
82 3.11170000 0.00000000 0.00000000
83 −1.55585000 2.69481125 0.00000000
84 0.00000000 0.00000000 17.29283517
85 Al N Ti
86 4 4 1
87 s e l e c t i v e dynamics

200

88 Cartes ian
89 −0.00000002 1.79654084 0.00000000 F F F
90 1.55585002 0.89827041 2.48939994 F F F
91 −0.00000002 1.79654084 4.97880006 F F F
92 1.55585002 0.89827041 7.46820000 T T T
93 −0.00000002 1.79654084 1.86705000 F F F
94 1.55585002 0.89827041 4.35644994 F F F
95 −0.00000002 1.79654084 6.84585006 T T T
96 1.55585002 0.89827041 9.33525001 T T T
97 0.00000000 0.00000000 9.95759995 T T T
98 EOF
99

100 echo " Creat ing input f i l e POSCAR . . . "
101 echo " done"
102

103 #−:−
104 #−:−:−:−:−:−:−:−:−:−:−:−:− Create KPOINTS F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−
105 #−:−
106

107 cat > KPOINTS << EOF
108 K−Points
109 0
110 Monkhorst−Pack
111 9 9 1
112 0 0 0
113 EOF
114

115 echo " Creat ing input f i l e KPOINTS . . . "
116 echo " done"
117

118 #−:−
119 #−:−:−:−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−:−
120 #−:−
121

122 cat > INCAR << EOF
123 # Ful l r e l a x a t i o n c e l l+ion
124

125 # General Setup
126 System = Sys_Name # System name f o r t i t l i n g c a l c u l a t i o n s
127 PREC = NORMAL # pr e c i s i o n l e v e l : NORMAL, MEDIUM, HIGH, LOW
128 ENCUT = 400 # Elect ron vo l t s f o r k i n e t i c energy c u t o f f va lue
129 ISTART = 0 # 0 : s t a r t a new job , 1 : cont inue a job
130 ICHARG = 2 # Charge dens i ty from atoms
131 ISPIN = 1 # 1 i f c a l c u l a t i o n i s sp in po la r i z ed , 2 i f not
132

133 # El e c t r on i c Relaxat ion (SCF)
134 NELM = 60 # Max no . o f s t ep s to c a l c u l a t e be f o r e ha l t i n g
135 NELMIN = 2 # Min " "
136 NELMDL = 10 # Number o f non−s e l f c o n s i s t e n t s t ep s at the beg inning
137 EDIFF = 1.0E−05 # Global break cond i t i on f o r the e l e c t r o n i c SC−loop
138 LREAL = .FALSE. # Pro j e c t i on ope ra to r s eva luated in r ea l−space
139 IALGO = 48 # El e c t r on i c a lgor i thm used to opt imize the o r b i t a l s .
140 VOSKOWN = 1 # Determines whether Vosko−Wilk−Nusair i n t e r p o l a t i o n i s used
141 ADDGRID = .TRUE. # Improve the g r id accuracy
142

143 # Ion i c Relaxat ion
144 EDIFFG = −1.0E−04 # Break cond i t i on f o r the i o n i c r e l a x a t i o n loop .
145 NSW = 25 # Sets the maximum number o f i o n i c s t ep s

201

146 IBRION = 2 # Relaxat ion Method : 0−MD 1−qNewton−RaphsonElectronic 2−CG
147 ISIF = 3 # Calcu la te f o r c e s S t r e s s t en so r p o s i t i o n s c e l l shape volume
148 ADDGRID = .TRUE. # Addit iona l support g r id i s used
149 SIGMA = 0.10 # In s u l a t o r s / semiconductors =0.1 metals =0.05
150 ISMEAR = 0 # Sets p a r t i a l occupanc i e s fnk f o r each o r b i t a l
151 # −1 Fermi Smear , 0 Gaussian Smear
152

153 EOF
154

155 echo " Creat ing input f i l e INCAR . . . "
156 echo " done"
157

158 #−:−
159 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POTCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
160 #−:−
161

162 # This switch / case w i l l automat i ca l l y generate a POTCAR f i l e based on the opt ions in
the header o f t h i s f i l e

163 # Create POTCAR with cat in the order that e lements appear in the POSCAR f i l e
164

165 case $Number_of_Elements in
166

167 1) echo " One element s e l e c t e d f o r s imu la t i on : $Element_1"
168 cat ${Pseudo_Location}${Element_1}/POTCAR > POTCAR ; ;
169 2) echo " Two elements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2"
170 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

> POTCAR ; ;
171 3) echo " Three e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

"
172 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR > POTCAR ; ;
173 4) echo " Four e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

$Element_4"
174 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR ${Pseudo_Location}${Element_4}/POTCAR >
POTCAR ; ;

175

176 esac
177

178 echo " Creat ing f i l e POTCAR. . . "
179 echo " done"
180

181 #−:−
182 #−:−:−:−:−:−:−:−:−:−:−:−:− Run VASP Ca l cu l a t i on with SBATCH :−:−:−:−:−:−:−:−:−:−:−
183 #−:−
184

185 echo " Submitting ${Job_Name} . sb v ia sbatch . . . "
186

187 sbatch ${Job_Name} . sb
188

189 echo " done"
190

191 #−:−
192 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
193 #−:−
194

195 squeue −u uname
196

202

197 echo " The time i s cu r r en t l y $Date "
198

199 echo " Success , End o f S c r i p t "
200

201 whi le [1] ; do squeue −u uname ; s l e e p 5 ; done # cont inue to update the squeue
every 5 seconds

9.4 Automating many simultaneous calculations with VASP: the O2 dimer,
and data analysis with MATLAB

An introductory and useful type of problem to solve with VASP is the ground state energy and
equilibrium bond length of a dimer in vacuum. Because it is hard to predict exactly what the
equilibrium bond length of a molecule will be, we can ’scan’ a space with an arbitrary number of
calculations of different atomic configurations and then use some subsequent mathematical analysis
to determine the atomic configuration which minimizes the energy of the system. Clever readers
may note that this can be done by molecular dynamics but in some cases with larger systems it
is more useful to report the energy at every step and run your own fitting of the energy and bulk
modulus for example. Here we will discuss a solution to this type of problem for the case of a
diatomic molecule using VASP.

Previously, in section 9.3, building and running a single computation in VASP was demonstrated.
However, in the case that you might want to run many calculations with slightly varied parameters
based on a general framework for a computation, trying to apply the same means of script-making
and running individual calculations would be tedious. However, since we are using the shell, we
can automate all sorts of things, including the creation and submission of scripts for calculations
with many slightly varied parameters to a computing cluster. We will cover means of collecting the
data from these multiple calculations in sections 9.8, and 9.9.

Running many computations for slightly tweaked structural parameters is important in the
generation of force field files like the EAM and MEAM standards which can be used with programs
like LAMMPS. One such code that will accept these series of computations for the generation of force
filed files is MEAMfit (discussed further in chapter 10); another such code is potfit (discussed further
in chapter 11). In the present section, we will discuss a means of iterating parameters of a system
in a shell script in order to create a series of input scripts that may used for running concurrent
calculations on similar but distinct systems. This is beneficial for finding many parameters of
systems like energy minimization for a given structure, as well as for the previously mentioned
generation of force field files.

In this section, we will discuss the generation of a large number of VASP input scripts to
calculate the ground state of a diatomic oxygen molecule. It is important to remember that, since
oxygen is a ground state triplet, our calculations will need to be spin-polarized (you will need to
verify for yourself whether your calculations need to be spin polarized based on the elements and
their arrangements you are considering). We will generate a script that is based off of that from
section 9.3 but will have different calculation directions for VASP to follow and use a for loop (more
information on for loops can be found in section 4.3.1) to generate an arbitrary number of distinct
input files based on a range of lattice parameters (which I will use in this section synonymously
with the bonding length in the diatomic molecule) that are automatically generated based on inputs
of an initial lattice parameter, a number of distinct calculations in the positive and negative bond
strain directions, and a maximum positive and negative strain percent for the system. As with
other examples in this text, this script is built to be run on a supercomputer system, however there

203

is nothing stopping it from being run on more or less any system with just minor tweaks to the
instructions for how to run the program.

Schematically, the general idea of the system that we will be covering is shown below (oxygen
atoms and bonds between oxygen atoms are illustrated in red). We will be calculating the ground
state energy for a variety of atomic configurations having increasing and decreasing bond length
from what is known as the literature value of the diatomic oxygen bond length. Following this
illustration is a discussion of how we can implement such a calculation.

The following is a script (divided into several sections to facilitate greater human-readability)
which will generate 41 distinct spin-polarized VASP calculations of the the diatomic oxygen system
and submit all of them to a supercomputer queue using sbatch commands. The script will generate
1 calculation for the initial guess given for the lattice parameter (e.g., the bonding length), 20
calculations for the case of compressive strain in the bond with 20 steps down to the maximum
compressive strain of 2%, and another 20 calculations for the case of tensile strain in the bond with
20 steps up to the maximum tensile strain in the bond. The script will automatically generate
a new set of VASP input files and subdirectories for each of the 41 calculations. The number of
calculations, maximum strain in the bond(s), and the accuracy thresholds for all of the calculations,
the initial guess for lattice parameter or bonding length, and even the individual elements can all
be quickly augmented to suit your needs.

In this script’s first section, we define a some variables. Much of this will look familiar to the
example given in section 9.3. In this case we are only populating a single atomic species and giving
the number of elements as 1. We use this section to set several INCAR file parameters including the
precision level and the NPAR value (which I have the script calculate automatically for me based on
the square root of the number of job nodes that the calculation will use) for parallel computations.
We set variables for an initial lattice parameter guess, and the number of calculation steps for the
compressive and tensile bond strain cases as well as the maximum strain in each direction. These
values are handled automatically by the script using the shell program bc (see section 3.12 for more
information on this particular program) to determine a maximum and minimum lattice parameter
(or bonding length) for the system as well as a step size between all of the calculation steps. These
are important parameters for the for loop that we will set up shortly. The date and the number of
jobs are also stored as variables here.

After this, a README file is generated that stores pertinent information about the calculation
set and the system that is being simulated. It is also set up so that (in the event that you choose
to use the tee command which is covered in section 4.2) the terminal session and all information
from the supercomputer queue including calculation times and concurrent jobs will be recorded to
the README file.

Next, we begin our main for loop. We use the sequence command here within backticks (please
make sure that whatever pdf interpreter you are using here is printing backticks and not apostrophes

204

for the for loop) iterate the remainder of the script for n times in a sequence between the minimum
lattice parameter to the maximum lattice parameter (or bonding length) in increments of the step
size variable that we had automatically calculated in the beginning of the script. The for loop stores
its current value in the variable called lat. For the sake of monitoring the script’s progress, I also
include a command to print the current lattice parameter and several other reports to the terminal
for every step of the for loop.

Inside of this for loop, we begin by creating a syntax for file creation that concatenates the
system name with the lattice parameter (stored in the lat variable). At each step of the loop,
we create a new directory for the specific lattice parameter that we are on, and navigate into that
directory. We then create an SBATCH file with all sorts of variable-stored information from the first
part of our script as well as KPOINTS, and INCAR files, and a POTCAR file that is automatically
generated based on the number of elements and the specific specie(s) of element that you chose at
the beginning of the script.

The main unique feature of the individual calculations handled here is in the POSCAR file
where we define a large box as well as the positions of two atoms. The first atom is at the origin
and is never modified. The location of the second atom has its z-coordinate defined by the value
of lat (the lattice parameter variable that we iterate with the for loop). At every step, a unique
POSCAR file is written for the bonding length that we care about at that instant. Finally, we
submit the calculation to the queue and then begin on the next step in the loop.

The script concludes by printing the date to the terminal and then updating the terminal with
the status of the queue using the squeue command and also printing the date and time. squeue and
the date command are run on an infinite loop, updating every five seconds until the user kills the
process.

The script can be run by entering the following command into the terminal and then copying and
pasting the text of this script into the vim editor that will be opened and passing the command :wq
to vim. Upon exiting vim, the script will be executed and calculations will begin to be submitted
to the supercomputer queue:

1 File_Name="O2_dimer_automated_vasp" ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${
File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh
|& tee −a README. txt

What follows is the script we have just discussed. Some of the inspiration for this script (in the
iteration of lattice parameters directly in the POSCAR file) came in part from the 2017 guides to
VASP located at icme.hpc.msstate.edu.

1 #!/ bin /bash
2

3 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

4 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

5

6 # File_Name="O2_dimer_automated_vasp " ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${
File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh
|& tee −a README. txt

7

8 #−:−
9 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−

10 #−:−
11

205

12 Job_Name="O2_dimer_automated_vasp" # Give the name you want to apply to a l l f i l e s
here

13

14 Desc r ip t i on=" en e r g i e s o f automat i ca l l y expanded and contracted bond l eng th s in an O2
dimer , spin−po l a r i z ed " # Please g ive a shor t d e s c r i p t i o n o f the c a l c u l a t i o n f o r
the README. txt f i l e

15 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
16

17 System_Name="O2_Dimer" # Give a c a l c u l a t i o n t i t l e f o r VASP
18 Number_of_Elements="1" # Give the number o f i nd i v i dua l e lements in the s imu la t i on
19 Element_1="O" # Give the symbol o f the element 1 in your POSCAR f i l e
20 Element_2="n/a" # Give the symbol o f the element 2 in your POSCAR f i l e
21 Element_3="n/a" # Give the symbol o f the element 3 in your POSCAR f i l e
22 Element_4="n/a" # Give the symbol o f the element 4 in your POSCAR f i l e
23

24 Prec i s ion_Leve l="HIGH" # VASP Pre c i s i on . Options are : NORMAL, MEDIUM, HIGH, LOW
25

26 Job_Time=" 00 : 05 : 00 " # Give the run time in hh :mm: s s
27 Job_Nodes="1" # Give the number o f nodes to use f o r the c a l c u l a t i o n
28 Job_Queue="debug" # Give the c a l c u l a t i o n queue (e . g . , ’ debug ’ or ’ r egu la r ’)
29 Computer_Name=" c l u s t e r " # Give the name o f the c l u s t e r
30

31 Lattice_Parameter=" 1 .208 "
32 # Give the i n i t i a l guess in t e ra tomic d i s t ance between oxygen atoms
33 Calculation_Steps_in_Each_Direction="20"
34 # Give the t o t a l number o f c a l c u l a t i o n po in t s in each d i r e c t i o n (e . g . 20 in the +

d i r e c t i on , 20 in the − d i r e c t i o n = 41 t o t a l i n c l ud ing a0)
35 Lattice_Parameter_Variation="2"
36 # Give upper and lower bounds o f % a0 change e . g . , a va lue o f 2 would mean that you

want a 2% va r i a t i o n which i s a0 +/− 0 .02∗ a0
37

38 echo " Running VASP c a l c u l a t i o n s on expanded and contracted l a t t i c e parameters o f ${
System_Name}"

39 echo " with a0=${Lattice_Parameter }A, a ${Lattice_Parameter_Variation}% maximum a0
var i a t i on , and +/− ${Calculation_Steps_in_Each_Direction} i nd i v i dua l
c a l c u l a t i o n s "

40

41 # Give the module name , as we l l as the executable , and pseudopotent i a l l o c a t i o n s
42 Module_Name="vasp"
43 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp"
44 Pseudo_Location="~/uname/ pseudopot en t i a l s /LDA/potpaw_LDA/"
45

46 #−:−
47 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
48 #−:−
49

50 Lat_Param_Max=$ (echo " s c a l e =2;($Lattice_Parameter) ∗(1 . 0
$Lattice_Parameter_Variation) " | bc)

51 # Use bc to c a l c u l a t e a0_max
52 Lat_Param_Min=$ (echo " s c a l e =2;($Lattice_Parameter) ∗(1 − 0 .0

$Lattice_Parameter_Variation) " | bc)
53 # Use bc to c a l c u l a t e a0_min
54 Step_Size=$ (echo " s c a l e =3;((($Lat_Param_Max) − ($Lat_Param_Min)) /(

$Calculation_Steps_in_Each_Direction ∗2)) " | bc)
55 # Use bc to c a l c u l a t e N_steps as s tep s i z e
56 # The above c a l c u l a t i o n s determine equal s tep s i z e s between a0_min and a0_max , and

are exp la ined diagrammat ica l ly in the f o l l ow i ng :
57 # a0_min a0 a0_max

206

58 # |<− N_steps −>|<− N_steps −>|
59 echo " Max La t t i c e Parameter i s ${Lat_Param_Max} , Min La t t i c e Parameter i s ${

Lat_Param_Min} , Step S i z e i s ${Step_Size }"
60

61 Number_of_Jobs=$ (echo " s c a l e =2;(($Calculation_Steps_in_Each_Direction ∗2)+1)" | bc)
62 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/

sec thanks user1293137 from https : // unix . stackexchange . com/
63 NPAR=$ (echo " s c a l e =0; s q r t ($Job_Nodes) " | bc) # Calcu la te NPAR to be i n s e r t e d in to

INCAR f i l e [~ sq r t (job co r e s)] ; uses BASH program bc ; s c a l e=0 s e t s bc to round to
nea r e s t i n t e g e r (nece s sa ry f o r VASP)

64

65 #−:−
66 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
67 #−:−
68

69 cat > README. txt << EOF
70 Job Name : ${Job_Name} . sh
71 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } .
72 Cal cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2} , ${

Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on the
${Job_Queue} queue .

73 Calcu lated with ${Computer_Name} by ${Author} on $Date .
74

75 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
76

77 EOF
78

79 echo " Writing f i l e README. txt . . . "
80 echo " done"
81

82 #−:−
83 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Begin VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−:−
84 #−:−
85 #−:−:−:−:−:−:−:−:−:−: Automatica l ly Generate VASP Input F i l e s :−:−:−:−:−:−:−:−:−:−
86 #−:−
87 #−:−:−:− What F i l e s Are Generated i s Contro l l ed by the Given La t t i c e Vars . −:−:−:−
88 #−:−
89

90 echo " Running s c r i p t ${Job_Name} . sh . . . "
91

92 echo " The time i s cu r r en t l y $Date "
93

94 echo " Automatica l ly gene ra t ing input f i l e s f o r ${Module_Name} "
95

96 #−:−
97 #−:−:−:−:−:−:−:−:− Begin Main f o r () Loop f o r VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−
98 #−:−
99

100 f o r l a t in ‘ seq −w ${Lat_Param_Min} ${Step_Size } ${Lat_Param_Max} ‘ ; do
101 # ‘ i s a backt i ck : Everything between backt i ck s i s executed by the s h e l l b e f o r e the

main command , output i s then used by that command
102

103 echo " The La t t i c e Constant Var iab le (l a t) at t h i s s tep = $ l a t "
104

105 mkdir ${System_Name}_a0_${ l a t } ; cd ${System_Name}_a0_${ l a t }
106 # Make and nav igate in to d i r e c t o r y f o r each i t e r a t i o n in the f o r () loop
107

207

108 #−:−
109 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
110 #−:−
111

112 cat > ${Job_Name}_a0_${ l a t } . sb << EOF
113 #!/ bin /bash
114 #SBATCH −−job−name=${Job_Name}_a0_${ l a t }
115 #SBATCH −N ${Job_Nodes}
116 #SBATCH −C haswe l l
117 #SBATCH −q ${Job_Queue}
118 #SBATCH −t ${Job_Time}
119

120 module load ${Module_Name}
121 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
122

123 EOF
124

125 echo " Writing input f i l e ${Job_Name}_a0_${ l a t } . sb . . . "
126 echo " done"
127

128 #−:−
129 #−:−:−:−:−:−:−:−:−:−:−:−:− Create POSCAR F i l e f o r VASP −:−:−:−:−:−:−:−:−:−:−:−:−:−
130 #−:−
131

132 cat > POSCAR << !
133 O atom in a box
134 1 .0
135 7 .0 0 .0 0 .0
136 0 .0 7 .5 0 .0
137 0 .0 0 .0 8 .0
138 2
139 c a r t e s i a n
140 0 0 0
141 0 0 $ l a t
142 !
143

144 echo " Writing input f i l e POSCAR . . . "
145 echo " done"
146

147 #−:−
148 #−:−:−:−:−:−:−:−:−:−:−:−:− Create KPOINTS F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−
149 #−:−
150

151 cat > KPOINTS << EOF
152 Gamma−point only
153 0
154 Monkhorst−Pack
155 1 1 1
156 0 . 0 . 0 .
157 EOF
158

159 echo " Writing input f i l e KPOINTS . . . "
160 echo " done"
161

162 #−:−
163 #−:−:−:−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−:−
164 #−:−
165

208

166 cat > INCAR << EOF
167 # General Setup
168 System = ${System_Name} # Ca l cu l a t i on T i t l e
169 PREC = ${Prec i s ion_Leve l } # Options : Normal , Medium , High , Low
170

171 ISMEAR = 0 # Gaussian smearing
172 ISPIN = 2 # Spin Po l a r i z e : 1−No 2−Yes
173 NSW = 5 # 5 i o n i c s t ep s
174 IBRION = 2 # use conjugate g rad i en t a lgor i thm
175

176 # Pa r a l l e l i z a t i o n
177 NPAR = ${NPAR} # approx . SQRT(number o f co r e s)
178 EOF
179

180 echo " Writing input f i l e INCAR . . . "
181 echo " done"
182

183 #−:−
184 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POTCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
185 #−:−
186

187 # This switch / case w i l l automat i ca l l y generate a POTCAR f i l e based on the opt ions in
the header o f t h i s s c r i p t

188 # Create POTCAR with cat in the exact order that e lements appear in the POSCAR f i l e
189

190 case $Number_of_Elements in
191

192 1) echo " One element s e l e c t e d f o r s imu la t i on : $Element_1"
193 cat ${Pseudo_Location}${Element_1}/POTCAR > POTCAR ; ;
194 2) echo " Two elements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2"
195 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

> POTCAR ; ;
196 3) echo " Three e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

"
197 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR > POTCAR ; ;
198 4) echo " Four e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

$Element_4"
199 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR ${Pseudo_Location}${Element_4}/POTCAR >
POTCAR ; ;

200

201 esac
202

203 echo " Writing input f i l e POTCAR. . . "
204 echo " done"
205

206 #−:−
207 #−:−:−:−:−:−:−:−:−:−:−:−:− Run VASP Ca l cu l a t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−:−
208 #−:−
209

210 echo " Submitting ${Job_Name}_a0_${ l a t } . sb v ia sbatch . . . "
211

212 sbatch ${Job_Name}_a0_${ l a t } . sb # Submit job to queue
213

214 echo " Running ${Number_of_Jobs} job (s) on the ${Job_Queue} queue with ${Job_Nodes}
node (s) per job f o r ${Job_Time} each"

215

209

216 echo " Begin : "
217

218 #−:−
219 #−:−:−:−:−:−:−:−:−:−:−:−:−:−: End VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−:−:−:−:−:−
220 #−:−
221 #−:−:−:−:−:−:−:−:−: End Main f o r () Loop f o r VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−
222 #−:−
223

224 cd . . # Navigate out o f newly c rea ted d i r e c t o r y
225

226 done # End o f main f o r () loop
227

228 #echo " The contents o f t h i s d i r e c t o r y are now the f o l l ow i n g : " ; l s # L i s t newly
c rea ted d i r e c t o r i e s

229

230 #−:−
231 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
232 #−:−
233

234 squeue −u uname
235

236 echo " The time i s cu r r en t l y $Date "
237

238 echo " Dumping termina l s e s s i o n in to README. txt "
239

240 echo " Success , End o f Scr ipt , Running squeue on a 5 Second Loop"
241

242 whi le [1] ; do squeue −u uname ; date ; s l e e p 5 ; done # update the squeue every 5
seconds

We can see a transcript of the output of this script in the following terminal session which
was collected in the README file (as discussed above). For the sake of brevity, some of the
README.txt contents have been truncated:

1 uname@uname:~/ test_O2_dimer_automated_vasp> head −n 25 README. txt
2 Job Name : O2_dimer_automated_vasp . sh
3 This i s a vasp c a l c u l a t i o n o f the O2_Dimer system to c a l c u l a t e e n e r g i e s o f

automat i ca l l y expanded and contracted bond l eng th s in an O2 dimer , spin−
po l a r i z ed .

4 Cal cu l a t ing with 1 element (s) : O, n/a , n/a , and n/a f o r 00 : 05 : 00 with 1 job nodes on
the debug queue .

5 Calcu lated with c l u s t e r by Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing on
08/08/2021 0 0 : 2 3 : 2 7 .

6

7 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
8

9 Writing f i l e README. txt . . .
10 done
11 Running s c r i p t O2_dimer_automated_vasp . sh . . .
12 The time i s cu r r en t l y 08/08/2021 00 : 23 : 27
13 Automatica l ly gene ra t ing input f i l e s f o r vasp
14 The La t t i c e Constant Var iab le (l a t) at t h i s s tep = 1.183
15 Writing input f i l e O2_dimer_automated_vasp_a0_1 . 1 8 3 . sb . . .
16 done
17 Writing input f i l e POSCAR . . .
18 done
19 Writing input f i l e KPOINTS . . .
20 done

210

21 Writing input f i l e INCAR . . .
22 done
23 One element s e l e c t e d f o r s imu la t i on : O
24 Writing input f i l e POTCAR. . .
25 done
26 Submitting O2_dimer_automated_vasp_a0_1 . 1 8 3 . sb v ia sbatch . . .

And from the center(ish) of the README.txt file, we can see the progression of some jobs on
the computer (this is also a nice use of the sed command where you can choose the specific lines in
a text file that you would like printed to the terminal):

1 uname@uname:~/ test_O2_dimer_automated_vasp> sed −n ’ 110 ,128p ;129 q ’ README. txt
2 JOBID NAME TIME_LIMIT TIME SUBMIT_TIME START_TIME
3 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
4 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
5 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
6 xxxxxxxx O2_dimer_aut 5 :00 0 :04 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9
7 xxxxxxxx O2_dimer_aut 5 :00 0 :04 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9
8 Sun Aug 8 00 : 23 : 33 PDT 2021
9 JOBID NAME TIME_LIMIT TIME SUBMIT_TIME START_TIME

10 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
11 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
12 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
13 xxxxxxxx O2_dimer_aut 5 :00 0 :09 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9
14 xxxxxxxx O2_dimer_aut 5 :00 0 :09 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9
15 Sun Aug 8 00 : 23 : 39 PDT 2021
16 JOBID NAME TIME_LIMIT TIME SUBMIT_TIME START_TIME
17 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
18 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
19 xxxxxxxx O2_dimer_aut 5 :00 0 :00 2021−08−08T00 : 2 3 : 2 8 N/A
20 xxxxxxxx O2_dimer_aut 5 :00 0 :15 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9
21 xxxxxxxx O2_dimer_aut 5 :00 0 :15 2021−08−08T00 : 2 3 : 2 8 2021−08−08T00 : 2 3 : 2 9

Using Gnuplot (for more information, see section 3.8), we can visualize what the results of a
sample calculation for this system would be as follows:

211

Using some mathematical analysis with MATLAB, we can also determine what the absolute
minimum energy value in the calculation set which corresponds to the equilibrium configuration. In
section 9.8 we will see how to automatically extract all of the pertinent data from these calculations,
suffice it to say here however that we have this data already collected and will import it into
MATLAB for analysis. Please see the following .dat file from which the above plot was created:

1 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
2 1.209143600 −.98231462E+01 −4.91157 256 .00
3 1.210377420 −.98254839E+01 −4.91274 256 .00
4 1.211611240 −.98276915E+01 −4.91385 256 .00
5 1.212845060 −.98297702E+01 −4.91489 256 .00
6 1.214078880 −.98317210E+01 −4.91586 256 .00
7 1.215312700 −.98335454E+01 −4.91677 256 .00
8 1.216546520 −.98352442E+01 −4.91762 256 .00
9 1.217780340 −.98368186E+01 −4.91841 256 .00

10 1.219014160 −.98382295E+01 −4.91911 256 .00
11 1.220247980 −.98393042E+01 −4.91965 256 .00
12 1.221481800 −.98405157E+01 −4.92026 256 .00
13 1.222715620 −.98416073E+01 −4.9208 256 .00
14 1.223949440 −.98425801E+01 −4.92129 256 .00

212

15 1.225183260 −.98434348E+01 −4.92172 256 .00
16 1.226417080 −.98441725E+01 −4.92209 256 .00
17 1.227650900 −.98447945E+01 −4.9224 256 .00
18 1.228884720 −.98453017E+01 −4.92265 256 .00
19 1.230118540 −.98456951E+01 −4.92285 256 .00
20 1.231352360 −.98459758E+01 −4.92299 256 .00
21 1.232586180 −.98461446E+01 −4.92307 256 .00
22 1.233820000 −.98462027E+01 −4.9231 256 .00
23 1.235053820 −.98461508E+01 −4.92308 256 .00
24 1.236287640 −.98459901E+01 −4.923 256 .00
25 1.237521460 −.98457215E+01 −4.92286 256 .00
26 1.238755280 −.98453460E+01 −4.92267 256 .00
27 1.239989100 −.98448644E+01 −4.92243 256 .00
28 1.241222920 −.98442777E+01 −4.92214 256 .00
29 1.242456740 −.98435869E+01 −4.92179 256 .00
30 1.243690560 −.98427928E+01 −4.9214 256 .00
31 1.244924380 −.98418963E+01 −4.92095 256 .00
32 1.246158200 −.98408986E+01 −4.92045 256 .00
33 1.247392020 −.98398007E+01 −4.9199 256 .00
34 1.248625840 −.98386035E+01 −4.9193 256 .00
35 1.249859660 −.98373093E+01 −4.91865 256 .00
36 1.251093480 −.98359161E+01 −4.91796 256 .00
37 1.252327300 −.98344279E+01 −4.91721 256 .00
38 1.253561120 −.98328423E+01 −4.91642 256 .00
39 1.254794940 −.98311620E+01 −4.91558 256 .00
40 1.256028760 −.98293878E+01 −4.91469 256 .00
41 1.257262580 −.98275207E+01 −4.91376 256 .00
42 1.258496400 −.98255615E+01 −4.91278 256 .00

Importing this data (the first and third columns) into MATLAB, we can use splines and the
find min functionality to find the minimum energy configuration based on interpolation:

1 %% Oxygen_Dimer_Bond_Length .m
2 % Written by Steven E. Bopp
3

4 %%
5 Lattice_Parameter =[1.209143600
6 1.210377420
7 1.211611240
8 1.212845060
9 1.214078880

10 1.215312700
11 1.216546520
12 1.217780340
13 1.219014160
14 1.220247980
15 1.221481800
16 1.222715620
17 1.223949440
18 1.225183260
19 1.226417080
20 1.227650900
21 1.228884720
22 1.230118540
23 1.231352360
24 1.232586180
25 1.233820000
26 1.235053820
27 1.236287640

213

28 1.237521460
29 1.238755280
30 1.239989100
31 1.241222920
32 1.242456740
33 1.243690560
34 1.244924380
35 1.246158200
36 1.247392020
37 1.248625840
38 1.249859660
39 1.251093480
40 1.252327300
41 1.253561120
42 1.254794940
43 1.256028760
44 1.257262580
45 1 . 258496400] ;
46

47 Energy_Per_Ion=[−4.91157
48 −4.91274
49 −4.91385
50 −4.91489
51 −4.91586
52 −4.91677
53 −4.91762
54 −4.91841
55 −4.91911
56 −4.91965
57 −4.92026
58 −4.9208
59 −4.92129
60 −4.92172
61 −4.92209
62 −4.9224
63 −4.92265
64 −4.92285
65 −4.92299
66 −4.92307
67 −4.9231
68 −4.92308
69 −4.923
70 −4.92286
71 −4.92267
72 −4.92243
73 −4.92214
74 −4.92179
75 −4.9214
76 −4.92095
77 −4.92045
78 −4.9199
79 −4.9193
80 −4.91865
81 −4.91796
82 −4.91721
83 −4.91642
84 −4.91558
85 −4.91469

214

86 −4.91376
87 −4.91278] ;
88

89 %%
90

91 E0=Energy_Per_Ion ’ ;
92 x=Lattice_Parameter ’ ; xx = [1 . 2 09143600 : . 0 001 : 1 . 2 58496400] ;
93 yy=sp l i n e (x , E0 , xx) ; % Create s p l i n e i n t e r p o l a t e f o r the l a t t i c e constant
94

95 f i g u r e (1) ;
96 p lo t (x , E0 , ’m∗ ’ , xx , yy , ’ g ’) ; % Plot s p l i n e i n t e r p o l a t e and Energy with La t t i c e

Parameter
97 x l ab e l (’Oxygen Dimer Bond Length ’) ; y l ab e l (’ Energy in eV ’) ;
98 t i t l e (’ Energy Minimizat ion f o r an Oxygen Dimer ’) ;
99 xlim ([1 . 209143600 1 .258496400])

100 % Pentagram p ; hexagram h ; diamond d ; square s ;
101

102 indexmin=f i nd (min (yy) == yy) ; % Def ine indexmin
103 xmin = xx (indexmin) ; ymin = yy (indexmin) ; % Ca lcu la te minimum va lues
104 A0 = xmin ;
105 f p r i n t f (’Bond Length f o r an Oxygen Dimer:%g \n ’ ,A0) % Display l a t t i c e constant and

e r r o r from expected value
106

MATLAB should report the following:
1 Bond Length f o r an Oxygen Dimer : 1 . 23394

MATLAB should also generate the following plot of what it has fit with the spline interpolation:

215

What this specifically means is that, from the spline interpolation, MATLAB has calculated
that 1.23394 angstroms should be the equilibrium bond length for an oxygen dimer.

9.5 Automating many simultaneous calculations with VASP: the Al2O3
system, and data analysis with MATLAB

A similar problem to what was discussed in section 9.4 which can also be solved with VASP is
determining the ground state energy and equilibrium lattice parameter of a crystal. Because it is
hard to predict exactly what the equilibrium lattice constant a0 of a crystal will be, we can ’scan’ a
space with an arbitrary number of calculations of different atomic configurations and then use some
subsequent mathematical analysis to determine the atomic configuration and/or lattice constant
which minimizes the energy of the system. In this section, we will solve this type of problem for
the case of an Al2O3 corundum crystal.

Diagrammatically, the below figure represents the general idea of what the following script
attempts to demonstrate. We are taking some crystal whose unit cell is defined with lattice vectors

216

originating at some arbitrary origin and then using BASH to automatically expand and contract
that crystal by an arbitrary fraction of its equilibrium lattice parameter with an arbitrary number
of calculation steps. In the figure, the black box with label a0i corresponds to the equilibrium
lattice parameter. The contracted and expanded lattice parameters are represented as boxes with
labels a0c in red and a0e in blue respectively. Since we are modifying the interatomic distances in
the crystal, we are therefore modifying the crystal’s polarizability which has large implications for
the optical properties of said crystal (a direction of my own Ph.D. research).

In this section, we discuss a script used to scan 41 unique lattice parameters in a crystal structure:
20 that represent contracted lattice parameters compared to the predicted equilibrium a0, one for
the predicted equilibrium value of a0, and another 20 that represent expanded lattice parameters
compared to the predicted equilibrium a0. That being said however, the script is set up to calculate
an arbitrary number of calculations with an arbitrary maximum and minimum identity distance for
interatomic bonding. As a matter of simplicity (especially useful here in the case of the corundum
structure which is actually somewhat complex), we will be modifying the bonding lengths of the
crystal all at once by modifying the universal scaling factor in the the POSCAR file. In later
sections (9.6, and 9.7) we will discuss iterating specific bonding lengths individually. Since there
exist several comprehensive databases of crystallographic structures and information, this technique
comes in very handy when you are attempting to predict new crystals, engineer atomic systems or
nanocomposites, or to generate data sets to which you can fit interatomic potentials for use with
molecular dynamics packages.

The following script is divided into three main sections. The first of these sections encompasses
everything from the beginning of the script up to the comment "Begin VASP File Creation". As
with other scripts in this text, the following line:

1 File_Name="Al2O3_automated_vasp" ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${
File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh
|& tee −a README. txt

Can be copied and pasted into the terminal and used to run the script after copying and pasting
all of the script’s text into the VIM editor that will be launched in the terminal. Following this,
the script requests several variables to be defined like the number and type of elements, locations of
executables and pseudopotentials, and parameters for running on a supercomputer cluster. In this
specific instance (we will be modifying how this is handled in subsequent examples), we are handling
the means of modifying individual atomic arrangements with three parameters: the initial guess

217

lattice parameter, the number of calculation steps in the compression and expansion directions,
and the maximum percent increase and decrease in the lattice parameter with respect to the initial
guess.

Following the creation of these variables in section one, we use bc (see section 3.12 for more on
the BASH program bc) to automatically calculate the values of three new variables: the maximum
lattice parameter (maximum value of the expanded lattice constant), the minimum lattice parameter
(the minimum value of the contracted lattice constant), and the step size in between each of the
individual steps of the calculation. In this example, the step size is uniform, however some more
sophisticated algorithms can automatically adjust the step size based on the instantaneous fineness
that you are seeking in a specific region of calculation space. A small text based diagram of how
this calculation is being carried out is also included after the calculations.

It is important here that bc uses a large enough number of significant figures so as to not cause
strangeness with the creation of files and names later on. In this instance, I use 9 as the bc precision
level. For convenience, items like the date, the number of jobs being submitted, and the value of
NPAR (a VASP command for parallelization which needs to be well tuned for your system but is
usually as simple as the square root of the number of computer cores that you are using) are also
set as variables here. Concluding section one of this script, we create a readme file that collects
most of the pertinent information from the variables that we’ve created for future reference.

Section two of this script encompasses all code and text following the comment "Begin VASP
File Creation" and up to the comment "Run VASP Calculation with SBATCH". First, we dump
some lines of text to the terminal to display the status and intentions of the calculation. Next, we
create a variable for the current job number, and then begin the main heavy-lifting of this script
where we create a for loop to iteratively generate and submit VASP calculation scripts. The for loop
we use here iterates a new variable called lat whose value at every step of the loop is determined
from a sequence (which is enclosed in backticks so that it will be evaluated before anything else)
starting at the minimum lattice parameter and ending at the maximum lattice parameter with a
uniform step size in between all based on the previously defined variables. Starting the commands
within this for loop, we create a new directory for the first step in the sequence and then navigate
into that directory.

Now within this new directory, we create an SBATCH script, and VASP POSCAR, KPOINTS,
INCAR, and POTCAR files using the cat command. The SBATCH script may need to be modified
based on the type of cluster that you intend to use and that must be left as an exercise for the
reader. Of great importance here is the POSCAR file. We are entirely handling the modification
of the lattice parameter (since the corundum structure is not cubic and somewhat complicated) by
setting the universal scaling factor (the second line in the POSCAR file) to be controlled by the
same variable lat from the for loop. This means that at every instant (since we set the initial lattice
parameter to be 1.000000 in section one of this script) the crystal’s size will be modified along every
basis vector by some factor between 0.98 and 1.02 with equal spacing based on the specific step in
the for loop and the variables defined at the outset of this script. In later examples (see sections
9.7 and 9.6), we will individually modify atomic positions with a similar method.

Concluding this section, we create the INCAR and KPOINTS files for this calculation. These
files have sensitive parameters which generally should be understood well before tinkering with.
In the INCAR file, it is important to match the ISMEAR type with the type of material you are
intending to calculate. Additionally, it is important to set the ENCUT value to be slightly greater
than the largest ENCUT value that is given in the pseudopotentials for the individual elements
that you are using. Finally in this section, we create a new POTCAR file for every step of the

218

calculation. I find this to be the easiest way compared to more tediously statically linking every
calculation to an external POTCAR file. The POTCAR file itself is created based on variables
defined in section one of this script before a switch case block which tells the computer what to do
in cases of 1, 2, 3, and 4 element simulations. It is straightforward to add more cases if you desire
to have n elements in the simulation.

The third section of this script extends from the comment "Run VASP Calculation with SBATCH"
to the end of the script. First, we print some text to the terminal that lets us know what step in
the loop we are currently on and that we are about to submit a job to the computer. We then
use the sbatch command to submit the job and increment the variable storing the number of the
current job up by one using the expr command. Ending the for loop, we navigate up one directory
and then let the loop continue until it exhausts its initial conditions upon which time the script
will pass the done command and progress to the final commands. Finally, we print the status of
the queue using the squeue command and set up a while loop that will run infinitely and tells the
user the current status (again with the squeue command) of the calculations.

The atomic arrangement of the primitive Al2O3 crystal defined in the POSCAR file we create
in this script can be visualized with VESTA as the following (note that this is the primitive cell and
may be a slightly different view from what is normal to see for the sapphire structure, however the
savings in number of atoms and therefore simplicity of calculation warrant the use of the primitive
vs. the conventional unit cell in this case):

1 #!/ bin /bash
2

3 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

4 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

5

6 # File_Name="Al2O3_automated_vasp " ; mkdir ${File_Name } ; cd ${File_Name } ; touch ${
File_Name } . sh ; chmod +x ${File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh
|& tee −a README. txt

7

219

8 #−:−
9 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−

10 #−:−
11

12 Job_Name="Al2O3_automated_vasp" # Give the name you want to apply to a l l f i l e s here
13

14 Desc r ip t i on=" en e r g i e s o f automat i ca l l y expanded and contracted bond l eng th s in a
Al2O3 c r y s t a l " # Please g ive a shor t d e s c r i p t i o n o f the c a l c u l a t i o n f o r the
README. txt f i l e

15 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
16

17 System_Name="Al2O3" # Give a c a l c u l a t i o n t i t l e f o r VASP
18 Number_of_Elements="2" # Number o f i nd i v i dua l e lements that are in the s imu la t i on
19 Element_1="Al" # Give the symbol o f the element 1 in your POSCAR f i l e
20 Element_2="O" # Give the symbol o f the element 2 in your POSCAR f i l e
21 Element_3="n/a" # Give the symbol o f the element 3 in your POSCAR f i l e
22 Element_4="n/a" # Give the symbol o f the element 4 in your POSCAR f i l e
23

24 Prec i s ion_Leve l="HIGH" # Give the l e v e l o f p r e c i s i o n that you want to use f o r the
VASP ca l c u l a t i o n . Options are : NORMAL, MEDIUM, HIGH, LOW

25

26 Job_Time=" 00 : 10 : 00 " # Give the run time in hh :mm: s s
27 Job_Nodes="1" # Number o f nodes to use f o r the c a l c u l a t i o n
28 Job_Queue=" r egu l a r " # Ca l cu l a t i on queue (e . g . , ’ debug ’ or ’ r egu la r ’)
29 Computer_Name=" c l u s t e r " # Clus te r name on which the c a l c u l a t i o n i s be ing run
30

31 Lattice_Parameter=" 1.000000 " # Give the r e a l or exper imenta l minimum
energy in t e ra tomic d i s t ance between oxygen atoms (or g ive 1 .000000 i f s c a l i n g
with POSCAR s c a l i n g f a c t o r)

32 Calculation_Steps_in_Each_Direction="20" # Give the t o t a l number o f c a l c u l a t i o n
po in t s in each d i r e c t i o n (e . g . 20 in the + d i r e c t i on , 20 in the − d i r e c t i o n = 41
t o t a l i n c l ud ing a0)

33 Lattice_Parameter_Variation="2" # Give upper and lower bounds o f % a0
change e . g . , a va lue o f 2 would mean that you want a 2% va r i a t i o n which i s a0
+/− 0 .02∗ a0

34

35 echo " Running VASP c a l c u l a t i o n s on expanded and contracted l a t t i c e parameters o f ${
System_Name}"

36 echo " with a0=${Lattice_Parameter }A, a ${Lattice_Parameter_Variation}% maximum a0
var i a t i on , and +/− ${Calculation_Steps_in_Each_Direction} i nd i v i dua l
c a l c u l a t i o n s "

37

38 Module_Name="vasp" # Give
the name o f the module that you want to load e . g . , vasp , lammps , e spre s so , e t c
. . .

39 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp" # Executable l o c a t i o n
40 Pseudo_Location="~/uname/ pseudopot en t i a l s /PBE/potpaw_PBE.54/ " # Locat ion o f

p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
41 #Pseudo_Location="~/uname/ pseudopot en t i a l s /LDA/potpaw_LDA/" # Locat ion o f

p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
42

43 #−:−
44 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
45 #−:−
46

47 Lat_Param_Max=$ (echo " s c a l e =9;($Lattice_Parameter) ∗(1 . 0
$Lattice_Parameter_Variation) " | bc) # Use bc to c a l c u l a t e
a0_max

220

48 Lat_Param_Min=$ (echo " s c a l e =9;($Lattice_Parameter) ∗(1 − 0 .0
$Lattice_Parameter_Variation) " | bc) # Use bc to c a l c u l a t e
a0_min

49 Step_Size=$ (echo " s c a l e =9;((($Lat_Param_Max) − ($Lat_Param_Min)) /(
$Calculation_Steps_in_Each_Direction ∗2)) " | bc) # Use bc to c a l c u l a t e N_steps
as s tep s i z e

50 # The above c a l c u l a t i o n s determine equal s tep s i z e s between a0_min and a0_max , and
are exp la ined diagrammat ica l ly in the f o l l ow i ng :

51 # a0_min a0 a0_max
52 # |<− N_steps −>|<− N_steps −>|
53 echo " Max La t t i c e Parameter i s ${Lat_Param_Max} , Min La t t i c e Parameter i s ${

Lat_Param_Min} , Step S i z e i s ${Step_Size }"
54

55 Number_of_Jobs=$ (echo " s c a l e =2;(($Calculation_Steps_in_Each_Direction ∗2)+1)" | bc)
56 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/

sec thanks user1293137 from https : // unix . stackexchange . com/
57 NPAR=$ (echo " s c a l e =0; s q r t ($Job_Nodes) " | bc) # Calcu la te NPAR to be i n s e r t e d in to

INCAR f i l e [~ sq r t (job co r e s)] ; uses BASH program bc ; s c a l e=0 s e t s bc to round to
nea r e s t i n t e g e r (nece s sa ry f o r VASP)

58

59 #−:−
60 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
61 #−:−
62

63 cat > README. txt << EOF
64 Job Name : ${Job_Name} . sh
65 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } .
66 Cal cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2} , ${

Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on the
${Job_Queue} queue .

67 Calcu lated with ${Computer_Name} by ${Author} on $Date .
68

69 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
70

71 EOF
72

73 echo " Writing f i l e README. txt . . . "
74 echo " done"
75

76 #−:−
77 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Begin VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−:−
78 #−:−
79 #−:−:−:−:−:−:−:−:−:− Automatica l ly Generate VASP Input F i l e s −:−:−:−:−:−:−:−:−:−:−
80 #−:−
81 #−:−:−:− What F i l e s Are Generated i s Contro l l ed by the Given La t t i c e Vars . −:−:−:−
82 #−:−
83

84 echo " Running s c r i p t ${Job_Name} . sh . . . "
85

86 echo " The time i s cu r r en t l y $Date "
87

88 echo " Automatica l ly gene ra t ing input f i l e s f o r ${Module_Name} "
89

90 #−:−
91 #−:−:−:−:−:−:−:−:− Begin Main f o r () Loop f o r VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−
92 #−:−
93

221

94 Current_Job_Number="1"
95

96 f o r l a t in ‘ seq −w ${Lat_Param_Min} ${Step_Size } ${Lat_Param_Max} ‘ ; do # ‘ i s a
backt i ck : Everything between back t i ck s i s executed by the s h e l l b e f o r e the main
command , output i s then used by that command

97

98 echo " The La t t i c e Constant Var iab le (l a t) at t h i s s tep = $ l a t "
99

100 mkdir ${System_Name}_a0_${ l a t } ; cd ${System_Name}_a0_${ l a t } # Make and nav igate in to
newly c rea ted d i r e c t l y f o r each i t e r a t i o n in the f o r () loop

101

102 #−:−
103 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
104 #−:−
105

106 cat > ${Job_Name}_a0_${ l a t } . sb << EOF
107 #!/ bin /bash
108 #SBATCH −−job−name=${Job_Name}_a0_${ l a t }
109 #SBATCH −N ${Job_Nodes}
110 #SBATCH −C haswe l l
111 #SBATCH −q ${Job_Queue}
112 #SBATCH −t ${Job_Time}
113

114 module load ${Module_Name}
115 srun −n32 −c2 −−cpu_bind=co r e s ${Module_Location}
116

117 EOF
118

119 echo " Writing input f i l e ${Job_Name}_a0_${ l a t } . sb . . . "
120 echo " done"
121

122 #−:−
123 #−:−:−:−:−:−:−:−:−:−:−:−:− Create POSCAR F i l e f o r VASP −:−:−:−:−:−:−:−:−:−:−:−:−:−
124 #−:−
125

126 cat > POSCAR << !
127 # Al2 O3 Mate r i a l s Project , Pr imi t ive
128 ${ l a t }
129 5.17795526 0.00000000 0.00000000
130 2.94847555 4.25649065 0.00000000
131 2.94847555 1.54436294 3.96644119
132 Al O
133 4 6
134 Direc t
135 0.14790400 0.14790400 0.14790400
136 0.35209600 0.35209600 0.35209600
137 0.64790400 0.64790400 0.64790400
138 0.85209600 0.85209600 0.85209600
139 0.94385400 0.55614600 0.25000000
140 0.44385400 0.75000000 0.05614600
141 0.55614600 0.25000000 0.94385400
142 0.25000000 0.94385400 0.55614600
143 0.75000000 0.05614600 0.44385400
144 0.05614600 0.44385400 0.75000000
145 !
146

147 echo " Writing input f i l e POSCAR . . . "
148 echo " done"

222

149

150 #−:−
151 #−:−:−:−:−:−:−:−:−:−:−:−:− Create KPOINTS F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−
152 #−:−
153

154 cat > KPOINTS << EOF
155 Automatic mesh
156 0 ! number o f k−po in t s = 0 −> automatic gene ra t i on scheme
157 M
158 11 11 11 ! s ubd i v i s i o n s N_1, N_2 and N_3 along r e c i p r . l a t . v e c t o r s
159 0 0 0 ! op t i ona l s h i f t o f the mesh (s_1 , s_2 , s_3)
160 EOF
161

162 echo " Writing input f i l e KPOINTS . . . "
163 echo " done"
164

165 #−:−
166 #−:−:−:−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−:−
167 #−:−
168

169 cat > INCAR << EOF
170 # General Setup
171 System = ${System_Name} # Ca l cu l a t i on T i t l e
172 PREC = ${Prec i s ion_Leve l } # Options : Normal , Medium , High , Low
173

174 ISMEAR = −5 # tet rahedron method with Bloch l c o r r e c t i o n s
175 SIGMA = 0.04 # s p e c i f i e s the width o f the smearing in eV
176 ENCUT = 425 # s p e c i f i e s the c u t o f f energy f o r the plane−wave−ba s i s s e t in eV
177 ALGO = FAST # mixture o f the Davidson and RMM−DIIS a lgor i thms
178

179 # Pa r a l l e l i z a t i o n
180 NPAR = ${NPAR} # approx . SQRT(number o f co r e s)
181 EOF
182

183 echo " Writing input f i l e INCAR . . . "
184 echo " done"
185

186

187 #−:−
188 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POTCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
189 #−:−
190

191 # This switch / case w i l l automat i ca l l y generate a POTCAR f i l e based on the opt ions in
the header o f t h i s s c r i p t

192 # Create POTCAR with cat in the exact order that e lements appear in the POSCAR f i l e
193

194 case $Number_of_Elements in
195

196 1) echo " One element s e l e c t e d f o r s imu la t i on : $Element_1"
197 cat ${Pseudo_Location}${Element_1}/POTCAR > POTCAR ; ;
198 2) echo " Two elements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2"
199 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

> POTCAR ; ;
200 3) echo " Three e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

"
201 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR > POTCAR ; ;
202 4) echo " Four e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

223

$Element_4"
203 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR ${Pseudo_Location}${Element_4}/POTCAR >
POTCAR ; ;

204

205 esac
206

207 echo " Writing input f i l e POTCAR. . . "
208 echo " done"
209

210 #−:−
211 #−:−:−:−:−:−:−:−:−:−:−:−: Run VASP Ca l cu la t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−:−
212 #−:−
213

214 echo " Submitting ${Job_Name}_a0_${ l a t } . sb v ia sbatch . . . "
215

216 echo " Running job ${Current_Job_Number} out o f ${Number_of_Jobs} job (s) on the ${
Job_Queue} queue with ${Job_Nodes} node (s) per job f o r ${Job_Time} each"

217

218 sbatch ${Job_Name}_a0_${ l a t } . sb # Submit job to queue
219

220 Current_Job_Number=$ (echo ‘ expr $Current_Job_Number + 1 ‘) # Add 1 to the
Current_Job_Number counter v a r i a b l e

221

222 echo " Begin : "
223

224 #−:−
225 #−:−:−:−:−:−:−:−:−:−:−:−:−:−: End VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−:−:−:−:−:−
226 #−:−
227 #−:−:−:−:−:−:−:−:−: End Main f o r () Loop f o r VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−
228 #−:−
229

230 cd . . # Navigate out o f newly c rea ted d i r e c t o r y
231

232 done # End o f main f o r () loop
233

234 #echo " The contents o f t h i s d i r e c t o r y are now the f o l l ow i n g : " ; l s # L i s t newly
c rea ted d i r e c t o r i e s

235

236 #−:−
237 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
238 #−:−
239

240 squeue −u uname
241

242 echo " The time i s cu r r en t l y $Date "
243

244 echo " Dumping termina l s e s s i o n in to README. txt "
245

246 echo " Success , End o f Scr ipt , Running squeue −u uname on a 5 Second Loop"
247

248 whi le [1] ; do Jobs=$ (squeue −u uname | wc − l) ; echo " ‘ expr ${Jobs} − 1 ‘ j obs in
the queue" ; squeue −u uname ; date ; s l e e p 5 ; done # cont inue to update the squeue
every 5 seconds

Using Gnuplot (for more information, see section 3.8), we can visualize what the results of a
sample calculation for this system would be as follows:

224

Using some mathematical analysis using MATLAB, we can also determine the absolute min-
imum energy value in the calculation set which corresponds to the crystal’s equilibrium atomic
configuration. In section 9.8 we will see how to automatically extract all of the pertinent data from
these calculations, suffice it to say here however that we have this data already collected and will
import it into MATLAB for analysis. Please see the following .dat file from which the above plot
was created:

1 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
2 0.980000000 −.74622815E+02 −7.46228 8 .23
3 0.981000000 −.74648247E+02 −7.46482 8 .25
4 0.982000000 −.74672660E+02 −7.46727 8 .28
5 0.983000000 −.74695513E+02 −7.46955 8 .30
6 0.984000000 −.74716822E+02 −7.47168 8 .33
7 0.985000000 −.74736787E+02 −7.47368 8 .35
8 0.986000000 −.74755492E+02 −7.47555 8 .38
9 0.987000000 −.74772922E+02 −7.47729 8 .41

10 0.988000000 −.74788903E+02 −7.47889 8 .43
11 0.989000000 −.74803654E+02 −7.48037 8 .46
12 0.990000000 −.74817090E+02 −7.48171 8 .48
13 0.991000000 −.74829533E+02 −7.48295 8 .51

225

14 0.992000000 −.74840696E+02 −7.48407 8 .53
15 0.993000000 −.74850368E+02 −7.48504 8 .56
16 0.994000000 −.74859072E+02 −7.48591 8 .59
17 0.995000000 −.74866401E+02 −7.48664 8 .61
18 0.996000000 −.74872434E+02 −7.48724 8 .64
19 0.997000000 −.74877908E+02 −7.48779 8 .66
20 0.998000000 −.74881481E+02 −7.48815 8 .69
21 0.999000000 −.74883964E+02 −7.4884 8 .72
22 1.000000000 −.74885214E+02 −7.48852 8 .74
23 1.001000000 −.74885396E+02 −7.48854 8 .77
24 1.002000000 −.74884605E+02 −7.48846 8 .79
25 1.003000000 −.74882780E+02 −7.48828 8 .82
26 1.004000000 −.74879680E+02 −7.48797 8 .85
27 1.005000000 −.74875675E+02 −7.48757 8 .87
28 1.006000000 −.74870372E+02 −7.48704 8 .90
29 1.007000000 −.74864067E+02 −7.48641 8 .93
30 1.008000000 −.74856399E+02 −7.48564 8 .95
31 1.009000000 −.74848102E+02 −7.48481 8 .98
32 1.010000000 −.74838383E+02 −7.48384 9 .01
33 1.011000000 −.74827426E+02 −7.48274 9 .03
34 1.012000000 −.74815929E+02 −7.48159 9 .06
35 1.013000000 −.74802749E+02 −7.48027 9 .09
36 1.014000000 −.74789288E+02 −7.47893 9 .11
37 1.015000000 −.74774771E+02 −7.47748 9 .14
38 1.016000000 −.74759273E+02 −7.47593 9 .17
39 1.017000000 −.74742507E+02 −7.47425 9 .20
40 1.018000000 −.74724506E+02 −7.47245 9 .22
41 1.019000000 −.74705980E+02 −7.4706 9 .25
42 1.020000000 −.74686281E+02 −7.46863 9 .28

Importing this data (the first and third columns) into MATLAB, we can use splines and the
’find min’ functionality to find the minimum energy configuration based on interpolation:

1 %% Al2O3_Lattice_Constant .m
2 % Written by Steven E. Bopp
3

4 %%
5 Lattice_Parameter =[0.980000000
6 0.981000000
7 0.982000000
8 0.983000000
9 0.984000000

10 0.985000000
11 0.986000000
12 0.987000000
13 0.988000000
14 0.989000000
15 0.990000000
16 0.991000000
17 0.992000000
18 0.993000000
19 0.994000000
20 0.995000000
21 0.996000000
22 0.997000000
23 0.998000000
24 0.999000000
25 1.000000000
26 1.001000000

226

27 1.002000000
28 1.003000000
29 1.004000000
30 1.005000000
31 1.006000000
32 1.007000000
33 1.008000000
34 1.009000000
35 1.010000000
36 1.011000000
37 1.012000000
38 1.013000000
39 1.014000000
40 1.015000000
41 1.016000000
42 1.017000000
43 1.018000000
44 1.019000000
45 1 . 020000000] ;
46

47 Energy_Per_Ion=[−7.46228
48 −7.46482
49 −7.46727
50 −7.46955
51 −7.47168
52 −7.47368
53 −7.47555
54 −7.47729
55 −7.47889
56 −7.48037
57 −7.48171
58 −7.48295
59 −7.48407
60 −7.48504
61 −7.48591
62 −7.48664
63 −7.48724
64 −7.48779
65 −7.48815
66 −7.4884
67 −7.48852
68 −7.48854
69 −7.48846
70 −7.48828
71 −7.48797
72 −7.48757
73 −7.48704
74 −7.48641
75 −7.48564
76 −7.48481
77 −7.48384
78 −7.48274
79 −7.48159
80 −7.48027
81 −7.47893
82 −7.47748
83 −7.47593
84 −7.47425

227

85 −7.47245
86 −7.4706
87 −7.46863] ;
88

89 %%
90

91 E0=Energy_Per_Ion ’ ;
92 x=Lattice_Parameter ’ ; xx = [0 . 9 80000000 : . 0 001 : 1 . 0 20000000] ;
93 yy=sp l i n e (x , E0 , xx) ; % Create s p l i n e i n t e r p o l a t e f o r the l a t t i c e constant
94

95 f i g u r e (1) ;
96 p lo t (x , E0 , ’m∗ ’ , xx , yy , ’ g ’) ; % Plot s p l i n e i n t e r p o l a t e and Energy with La t t i c e

Parameter
97 x l ab e l (’ La t t i c e Constant Mu l t i p l i c a t i o n Factor ’) ; y l ab e l (’ Energy in eV ’) ;
98 t i t l e (’ Energy Minimizat ion f o r an Al2O3 c r y s t a l ’) ;
99 xlim ([0 . 980000000 1 .020000000])

100 % Pentagram p ; hexagram h ; diamond d ; square s ;
101

102 indexmin=f i nd (min (yy) == yy) ; % Def ine indexmin
103 xmin = xx (indexmin) ; ymin = yy (indexmin) ; % Ca lcu la te minimum va lues
104 A0 = xmin ;
105 f p r i n t f (’ La t t i c e Constant Mu l t i p l i c a t i o n Factor f o r Al2O3:%g \n ’ ,A0) % Display

l a t t i c e constant and e r r o r from expected value
106

MATLAB should report the following:
1 Lat t i c e Constant Mu l t i p l i c a t i o n Factor f o r Al2O3 : 1 . 0 007

MATLAB should also generate the following plot of what it has fit with the spline interpolation:

228

What this specifically means is that, from the spline interpolation, MATLAB has calculated
that 1.0007 times the size (in all basis vectors) of the crystal given in the script’s POSCAR file
should be the equilibrium atomic configuration.

9.6 Adsorption of an AlO dimer on a c-axis oriented Al2O3 surface, and
data analysis with MATLAB

In a previous section (9.4), we discussed using the shell to automatically create an arbitrary number
of calculation scripts for the ground state energy of an O2 dimer with varying bond length. In the
present section of this text, we will extend this concept to a crystal of Al2O3 with the corundum
structure (which, recall, is trigonal and not hexagonal: a common misconception) where there is
an incoming AlO dimer which is being adsorbed onto the surface of the crystal.

At this point in the text, many of these scripts may be becoming somewhat familiarly con-
structed. This is true and a direct effect of my own efforts in creating scripts which are as quick
to modify, highly modular, and feature-packed as reasonable for a given application. I find that

229

this method of doing things assists greatly in dynamic and flexible multi-use tools for your own
research which can be quickly modified and then rapidly deployed to represent more or less any
atomic arrangement that you can reasonably imagine. In the following paragraphs, I will describe
the main parts of the included script whose intention is to calculate the ground state energy of
an arbitrary number of atomic configurations in the corundum Al2O3 system with an AlO dimer
approaching its surface.

In the beginning of the script, I include the small functionality where I copy and paste the
following line into the terminal:

1 File_Name="Slab_Al2O3_AlO_Dimer_vertical_Al_up_on_O_automated_vasp_11x11x1" ; mkdir $
{File_Name } ; cd ${File_Name } ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ;
vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README. txt

Just like in section 7.3, as well as many others, I built in this functionality in order to automate
the creation of a shell script file, making it executable, then launching vim (see section 3.7 for
more on vim) so that you can copy and paste your script into the newly creates shell script file,
execute the script, and then use tee to copy everything printed to the terminal into a README
file. Additionally, since I take large advantage of the flexibility of this general format of script,
modifying it hundreds of times with small tweaks, I also include a small graphic in ASCII text (see
more on these graphics in section 12.2) to remind myself at a glance exactly what the calculation
is attempting to do.

The first main section of the script encompasses everything following the comment "Give the
Following Variables" and up to the comment "Begin VASP File Creation". In this section, we begin
with defining many optional variables for things like VASP options (e.g., the precision level, the type
of pseudopotential I want to use, and the k-grid size), the cluster queue and processor architecture
that I select for my calculation, and a few other parameters like whether I want to submit the
calculations in chunks rather than all at once, how long I want to wait between requesting an
update on the calculation status on the cluster, and whether or not the calculations will actually
be submitted using squeue or if that step will be skipped (this is handy if you are just testing to
make sure that you are generating the proper number of files and that they are all placed where
you are expecting).

Continuing in the first section, we next use these previously defined variables as well as a few
switch/case statements and the bc program (for more on bc, see 3.12) to define the locations of our
executables, choose pertinent numbers of cores and threads that we want to use for our calculation,
defining what the script will do in the event of a test option vs. a full calculation (here I also
define sequences for the numbers of calculations that will be done, e.g., for the ’full’ calculation,
we will be running new calculations every 0.05 angstroms for diatomic molecule and crystal surface
separations between 0.05 and 3 angstroms), defining where the pseudopotential files are located,
defining what to do for the different queue options which can be given by the script, and defining
the date as well as the VASP INCAR option NPAR. NPAR is a parallelization parameter given
to VASP in the INCAR file which is usually given as the square root of the number of computer
cores you’re using and needs to be carefully defined and tested. In my own tests, this works best
for numbers of processors that are perfect squares. A properly defined NPAR will substantially
increase the speed of convergence for a calculation in most cases. Finally in this first section, we
create a readme file with much of the pertinent information given in the present section reiterated
for the sake of future reference.

Section two is everyting after the comment "Begin VASP File Creation" and before the comment
"Create SBATCH Script". Here, initially, we print lots of pertinent information to the terminal

230

based on what we are giving the program to calculate. We initially define a variable for the current
job number which will be useful later on in the calculations. After that, we begin the main, heavy-
lifting part of the script which is a for loop. This for loop creates an iterated variable called lat
which is based on the sequence given in the Calculation_Type variable. Everything after this for
loop and up to the "done" command is given later on will be iterated an arbitrary number of
times based on the sequences given in the Calculation_Type switch/case statement above. This
loop is kicked off by the creation of a new directory named with rules based on the current lattice
parameter in the sequence, and then the script enters that directory.

Directly after this, we begin section three of the script where we create create an SBATCH file,
as well as POSCAR, KPOINTS, INCAR, and POTCAR files for every point in the calculation.
Within the SBATCH script, I automate the placement of things like executable location(s), and
what queue, architecture, and job times to use based on the variables given in section one. In the
POSCAR file, I have used VESTA and Atomsk (for more on VESTA Atomsk see sections 8.3, and
8.5) to create a crystal where there are atoms located at distances a and b (defined by variables
lat_a, and lat_b above the surface. Here, lat_a, and lat_b are calculated automatically based
on the variable Aluminum_Oxygen_Dimer_Bond_Length which can be found in literature or
calculated for one’s self in a similar way to what is defined in section 9.4 where we calculated the
equilibrium bonding distance of an oxygen dimer. This arrangement of atoms is shown within the
ASCII text diagram following the file creation (again, I find these little diagrams extremely helpful
for reminding myself what is happening at different steps in a calculation).

Rounding out section three of the script, we create three more files. The first of these is the
KPOINTS VASP file which we make based on recommendations from the VASP documentation
and examples. Next, we create an INCAR file (note how we do not have the ISPIN defined since we
do not care about spin polarization in this case). Finally, completing section three here, we create
a POTCAR file. The POTCAR file is created based on the number of separate atomic species that
were defined previously and a switch/case statement governs what number of pseudopotentials will
be used in the POTCAR file. I find this to be substantially easier than trying to link to a static
POTCAR file or make the file by hand each time because I frequently change the ordering of atoms
when I tweak POSCAR files for slightly different systems, and reducing the number of things that I
actually need to modify for each calculation reduces the number of human-introduced errors (since
I’m not perfect and frequently make mistakes when it’s a question of tedious repetition or slight
tweaks on very large numbers of files).

Finally, section five encompasses everything following the comment "Run VASP Calculation
with SBATCH" through to the end of the script. Initially, we print some text to the terminal to
know that we have reached this section in the script without error. Next, we define what the script
should do in response to various user-defined variables given in section one of the script such as
whether the job will be submitted as a full calculation or a test, and whether the calculations will
be submitted all at once (you may use this if you are submitting to a normal calculation queue)
or submitted in chunks (useful if you are submitting to a queue which limits the number of total
concurrent jobs which you can run at a single time). After that, since we have only completed one
single step of the for loop up to this point, we navigate up one directory and then the for loop
begins again with the next element in the sequence. The for loop continues until its conditions have
been exhausted. Upon exhausting those conditions, the queue is printed to the terminal as well as
some text about the status of the calculation, and a while loop begins printing the status of the
calculations at a given time based on a variable defined in section one above.

The atomic arrangement defined in the POSCAR file we create in this script can be visualized

231

with VESTA as the following:

Please see the following script:
1 #!/ bin /bash
2

3 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

4 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

5

6 # File_Name="Slab_Al2O3_AlO_Dimer_vertical_Al_up_on_O_automated_vasp_11x11x1 " ; mkdir
${File_Name } ; cd ${File_Name } ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ;
vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README. txt

7

8 # +−−−−−−+
9 # | Al | ^ Dimer Atom 1

10 # +−−−−−−+ |
11 # | (1 .6337A)
12 # +−−−−−−+ |
13 # | O | < Dimer Atom 2
14 # +−−−−−−+ |
15 # | Var iab le z−coord .
16 # +−−−−−−+ |
17 # | O | v C− Sapphire Slab Sur face
18 # +−−−−−−+
19

20 #−:−
21 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−
22 #−:−
23

232

24 Job_Name="Slab_Al2O3_AlO_Dimer_Ti_up_on_O_automated_vasp_11x11x1" # Give the name
you want to apply to a l l f i l e s here

25

26 Desc r ip t i on=" en e r g i e s o f automat i ca l l y ranged and v e r t i c a l l y arranged AlO_Dimer with
the Ti atom fa c i n g up approaching an O atom (away from the su r f a c e) bond

l eng th s on a Al2O3 c−ax i s s u r f a c e " # Please g ive a shor t d e s c r i p t i o n o f the
c a l c u l a t i o n f o r the README. txt f i l e

27 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
28

29 System_Name="Slab_Al2O3_AlO_Dimer_Ti_up_on_O_11x11x1" # Give a c a l c u l a t i o n t i t l e
f o r VASP

30

31 Number_of_Elements="2" # Give the number o f i nd i v i dua l e lements that are in the
s imu la t i on

32 Element_1="Al" # Give the symbol o f the element 1 in your POSCAR f i l e
33 Element_2="O" # Give the symbol o f the element 2 in your POSCAR f i l e
34 Element_3="n/a" # Give the symbol o f the element 3 in your POSCAR f i l e
35 Element_4="n ’ a" # Give the symbol o f the element 4 in your POSCAR f i l e
36

37 Prec i s ion_Leve l="HIGH" # VASP l e v e l o f p r e c i s i o n : NORMAL, MEDIUM, HIGH, LOW
38 KPOINTS_Grid="11 11 1" # KGrid (g ive as wanted in the KPOINTS f i l e e . g . , ’9 9 9 ’)
39 Job_Time=" 02 : 01 : 00 " #Run time in hh :mm: s s
40 Job_Time_Min=" 00 : 39 : 59 " # Minimum run time o f the s c r i p t
41 Job_Nodes="1" # Nodes that you want to use f o r the c a l c u l a t i o n
42 Job_Queue=" f l e x " # Ca l cu la t i on queue (e . g . , ’ debug ’ , ’ r egu la r ’ , ’ f l e x ’ , or ’

low ’) low and f l e x queues have 50 and 75% di s count s r e s p e c t i v e l y f o r KNL
43 Arch i t e c tu r e="knl " # ’ haswel l ’ f o r Haswel l ch ips or ’ knl ’ f o r Knight ’ s Landing

)
44 Computer_Name=" c l u s t e r " # Give the name o f the c l u s t e r
45 Module_Name="vasp" # Module to load e . g . , vasp , lammps , e spre s so , e t c . . .
46 PP_Type="PBE" # Pseudopotent ia l type to load e . g . , PBE or LDA
47 Calculation_Type=" f u l l " # Ca l cu l a t i on type (e . g . , ’ t e s t ’ w i l l run 1 po int and ’ f u l l

’ w i l l run a l l o f the po in t s)
48 Submission_Type="1" # 0 w i l l NOT submit v ia sbatch and 1 WILL submit v ia sbatch
49 Piecewise_Submiss ion="0" # 0 w i l l NOT submit p i e c ew i s e and 1 w i l l submit p i ecewi se ,

s l e e p i n g f o r 15 seconds between submiss ions)
50 Piecewise_Sleep="15" # Give the number o f seconds between job submiss ion (s) f o r

the Piecewise_Submiss ion case (recommended to be ~30 to 50% of the run−time o f a
VASP ca l c u l a t i o n)

51 SQS_Update_Time="30" # Give the number o f seconds that you want the f i n a l squeue
update cy c l e to wait between updates (recommended value : ’ 30 ’)

52

53 #−:−
54 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
55 #−:−
56

57 case $Arch i t e c ture in # This switch / case w i l l au tomat i ca l l y switch the
environments and executab l e l o c a t i o n s f o r va r i ous a r c h i t e c t u r e s l i k e haswe l l and
knl

58 haswe l l) echo " Haswel l a r c h i t e c t u r e s e l e c t e d : r e qu i r e s I n t e l PrgEnv"
59 Processes_Per_Node="32" ; Threads_Per_Process="2"

Recommended Haswel l s e t t i n g s f o r 1 node and 32 MPI p ro c e s s e s per node with
2 threads each

60 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp" ; ; #
Executable l o c a t i o n f o r HSW

61 knl) echo " Knight ’ s Landing a r c h i t e c t u r e s e l e c t e d
62 Processes_Per_Node="64" ; Threads_Per_Process="4"

Recommended MPI s e t t i n g f o r 1 node . NPAR should be sq r t (Processes_Per_Node)

233

! ! NPAR = 8 g i v e s s ub s t an t i a l s av ings o f ~67% compared to NPAR = 1
63 Module_Location="~/uname/vasp_cray_compiled/vasp . 5 . 3 / vasp" ; ; #

Executable l o c a t i o n f o r KNL
64 esac
65

66 case $Calculation_Type in # This switch / case w i l l automat i ca l l y switch the
c a l c u l a t i o n sequence based on the $Calculation_Type va r i ab l e

67 t e s t) echo " Running a t e s t c a l c u l a t i o n "
68 Sequence=$ (seq −w 1 1 1) ; Number_of_Jobs=‘echo $Sequence | wc −w‘

; ; # S ing l e po int c a l c u l a t i o n sequence
69 f u l l) echo " Running a f u l l c a l c u l a t i o n "
70 Sequence=$ (seq −w 0.05 0 .05 3 . 0) ; Number_of_Jobs=‘echo $Sequence | wc −w‘

; ; # Mult ip l e po int c a l c u l a t i o n sequence
71 esac
72

73 case $PP_Type in # This switch / case w i l l au tomat i ca l l y switch the
pseudopotent i a l type based on the $PP_Type va r i ab l e

74 PBE) echo " Using the VASP PBE.54 pseudopo t en t i a l s "
75 Pseudo_Location="~/uname/ pseudopo t en t i a l s /PBE/potpaw_PBE.54/ " ; ; #

Locat ion o f p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
76 LDA) echo " Using the VASP LDA pseudopot en t i a l s "
77 Pseudo_Location="~/uname/ pseudopo t en t i a l s /LDA/potpaw_LDA/" ; ; #

Locat ion o f p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
78 esac
79

80 case $Job_Queue in # This switch / case w i l l automat i ca l l y i n s e r t
opt ions in to the sbatch f i l e

81 f l e x) Time_Min="#SBATCH −−time−min=${Job_Time_Min}" ; ; # I n s e r t s #SBATCH −−time
−min=0:30:00 in to sbatch

82 shared) Shared="#SBATCH −−shared " ; ; # I n s e r t s #SBATCH −−
shared in to sbatch

83 esac
84

85 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/ sec thanks
user1293137 from https : // unix . stackexchange . com/

86 NPAR=$ (echo " s c a l e =0; s q r t ($Processes_Per_Node) " | bc) # Calcu la te NPAR to be
i n s e r t e d in to INCAR f i l e [~ sq r t (job co r e s)] ; uses BASH program bc ; s c a l e=0 s e t s
bc to round to nea r e s t i n t e g e r (nece s sa ry f o r VASP)

87

88 #−:−
89 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
90 #−:−
91

92 cat > README. txt << EOF
93 Job Name : ${Job_Name} . sh
94 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } with ${PP_Type} pseudopot en t i a l s on a ${KPOINTS_Grid} g r id . .
95 Cal cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2} , ${

Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on the
${Job_Queue} queue .

96 Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node and ${
Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm: s s .

97 Calcu lated with ${Computer_Name} by ${Author} on $Date .
98

99 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
100

101 EOF
102

234

103 echo " Writing f i l e README. txt . . . "
104 echo " done"
105

106 #−:−
107 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Begin VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−:−
108 #−:−
109 #−:−:−:−:−:−:−:−:−:− Automatica l ly Generate VASP Input F i l e s −:−:−:−:−:−:−:−:−:−:−
110 #−:−
111 #−:−:−:− What F i l e s Are Generated i s Contro l l ed by the Given La t t i c e Vars . −:−:−:−
112 #−:−
113

114 echo " Running a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to
c a l c u l a t e ${Desc r ip t i on } with ${PP_Type} pseudopot en t i a l s on a ${KPOINTS_Grid}
g r id . "

115

116 echo " Ca l cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2
} , ${Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on
the ${Job_Queue} queue . "

117

118 echo " Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node
and ${Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm:
s s "

119

120 echo " Calcu lated with ${Computer_Name} by ${Author} on $Date . "
121

122 echo " Running s c r i p t ${Job_Name} . sh . . . "
123

124 echo " The time i s cu r r en t l y $Date "
125

126 echo " Automatica l ly gene ra t ing input f i l e s f o r ${Module_Name} "
127

128 #−:−
129 #−:−:−:−:−:−:−:−:− Begin Main f o r () Loop f o r VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−
130 #−:−
131

132 Current_Job_Number="1" # Begin a va r i ab l e to use in the f o r () loop to count the
cur rent job up to the f i n a l job

133

134 f o r l a t in ${Sequence } ; do # S ing l e c a l c u l a t i o n
135

136 echo " The La t t i c e Constant Var iab le (l a t) at t h i s s tep = $ l a t "
137

138 mkdir ${System_Name}_a0_${ l a t } ; cd ${System_Name}_a0_${ l a t } # Make and nav igate in to
newly c rea ted d i r e c t l y f o r each i t e r a t i o n in the f o r () loop

139

140 #−:−
141 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
142 #−:−
143

144 cat > ${Job_Name}_a0_${ l a t } . sb << EOF
145 #!/ bin /bash
146 #SBATCH −−job−name=${Job_Name}_a0_${ l a t }
147 #SBATCH −N ${Job_Nodes}
148 #SBATCH −C ${Arch i t e c tu r e }
149 #SBATCH −q ${Job_Queue}
150 #SBATCH −t ${Job_Time}
151 ${Time_Min}
152 ${Shared}

235

153

154 #OpenMP s e t t i n g s :
155 export OMP_NUM_THREADS=1
156 export OMP_PLACES=threads
157 export OMP_PROC_BIND=spread
158

159 module load ${Module_Name}
160 srun −n ${Processes_Per_Node} −c ${Threads_Per_Process} −−cpu_bind=co r e s ${

Module_Location}
161

162 EOF
163

164 echo " Writing input f i l e ${Job_Name}_a0_${ l a t } . sb . . . "
165 echo " done"
166

167 #−:−
168 #−:−:−:−:−:−:−:−:−:−:−:−:− Create POSCAR F i l e f o r VASP −:−:−:−:−:−:−:−:−:−:−:−:−:−
169 #−:−
170

171 Top_Atom="5.40425600 "
172 Aluminum_Oxygen_Dimer_Bond_Length=" 1.6337 "
173

174 lat_a=$ (echo " s c a l e =9; $Top_Atom + $ l a t " | bc)
175 lat_b=$ (echo " s c a l e =9; $lat_a + $Aluminum_Oxygen_Dimer_Bond_Length" | bc)
176

177 cat > POSCAR << !
178 # Al2O3 c−ax i s s l ab with v e r t i c a l l y −o r i en t ed O2 dimer approaching F i l e generated

with Atomsk by ubuntu−budgie on 2021−09−23 10 : 57 : 51
179 1.000000
180 4.75800000 0.00000000 0.00000000
181 −2.37900000 4.12054887 0.00000000
182 0.00000000 0.00000000 15.00000000
183 Al O
184 7 10
185 Cartes ian
186 0.00000000 0.00000000 4.57283200
187 0.00000000 0.00000000 1.92266800
188 2.38137900 1.37214277 6.24867100
189 2.38137900 1.37214277 2.40333500
190 0.00237900 2.74840610 0.23383800
191 0.00237900 2.74840610 4.07917400
192 0.73035300 1.48751814 ${ lat_b}
193 0.73035300 1.48751814 ${ lat_a}
194 1.45594800 0.00000000 3.24775000
195 −0.72797400 1.26088795 3.24775000
196 1.65102600 2.85966092 3.24775000
197 0.92543100 1.37214277 1.07825300
198 3.10935300 0.11125482 1.07825300
199 3.10935300 2.63303073 1.07825300
200 0.73035300 1.48751814 5.40425600
201 0.73035300 4.00929405 5.40425600
202 −1.45356900 2.74840610 5.40425600
203 !
204

205 echo " Writing input f i l e POSCAR . . . "
206 echo " done"
207

208 # +−−−−−−+

236

209 # |Atom_1 | ^ Dimer Atom 1 <−−− Ti in t h i s case i s po in t ing up
210 # +−−−−−−+ |
211 # | lat_b=lat_a + dimer equ i l i b r i um bond length
212 # +−−−−−−+ |
213 # |Atom_2 | v Dimer Atom 2 <−−− N in t h i s case i s po in t ing down
214 # +−−−−−−+ |
215 # | lat_a=Sur face z−coord . + va r i ab l e z−coord .
216 # +−−−−−−+ |
217 # |Atom_3 | v Slab Sur face
218 # +−−−−−−+
219

220 #−:−
221 #−:−:−:−:−:−:−:−:−:−:−:−:− Create KPOINTS F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−
222 #−:−
223

224 # ~ 1000 k−po in t s per atom f o r metals w i l l reduce e r r o r to approximately 10 meV; ~
100 k−po in t s per atom f o r i n s u l a t o r s

225

226 cat > KPOINTS << EOF
227 Automatic mesh
228 0 ! number o f k−po in t s = 0 −> automatic gene ra t i on scheme
229 M
230 ${KPOINTS_Grid} ! s ubd i v i s i o n s N_1, N_2 and N_3 along r e c i p r . l a t t . v e c t o r s
231 0 0 0 ! op t i ona l s h i f t o f the mesh (s_1 , s_2 , s_3)
232 EOF
233

234 echo " Writing input f i l e KPOINTS . . . "
235 echo " done"
236

237 #−:−
238 #−:−:−:−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−:−
239 #−:−
240

241 # This INCAR i s s p e c i f i c f o r semiconductors and i n s u l a t o r s !
242

243 cat > INCAR << EOF
244 # General Setup
245 System = ${System_Name} # Ca l cu l a t i on T i t l e
246 PREC = ${Prec i s ion_Leve l } # Options : Normal , Medium , High , Low
247

248 ISMEAR = −5 # tet rahedron method with Bloch l c o r r e c t i o n s
249 SIGMA = 0.04 # s p e c i f i e s the width o f the smearing in eV
250 ENCUT = 425 # s p e c i f i e s the c u t o f f energy f o r the plane−wave−ba s i s s e t in eV
251 ALGO = FAST # mixture o f the Davidson and RMM−DIIS a lgor i thms
252

253 # Pa r a l l e l i z a t i o n
254 NPAR = ${NPAR} # approx . SQRT(number o f co r e s)
255 EOF
256

257 echo " Writing input f i l e INCAR . . . "
258 echo " done"
259

260

261 #−:−
262 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POTCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
263 #−:−
264

265 # This switch / case w i l l automat i ca l l y generate a POTCAR f i l e based on the opt ions in

237

the header o f t h i s s c r i p t
266 # Create POTCAR with cat in the exact order that e lements appear in the POSCAR f i l e
267

268 case $Number_of_Elements in
269

270 1) echo " One element s e l e c t e d f o r s imu la t i on : $Element_1"
271 cat ${Pseudo_Location}${Element_1}/POTCAR > POTCAR ; ;
272 2) echo " Two elements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2"
273 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

> POTCAR ; ;
274 3) echo " Three e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

"
275 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR > POTCAR ; ;
276 4) echo " Four e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

$Element_4"
277 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR ${Pseudo_Location}${Element_4}/POTCAR >
POTCAR ; ;

278

279 esac
280

281 echo " Writing input f i l e POTCAR. . . "
282 echo " done"
283

284 #−:−
285 #−:−:−:−:−:−:−:−:−:−:−:−: Run VASP Ca l cu la t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−:−
286 #−:−
287

288 echo " Submitting ${Job_Name}_a0_${ l a t } . sb v ia sbatch . . . "
289

290 echo " Running job ${Current_Job_Number} out o f ${Number_of_Jobs} job (s) on the ${
Job_Queue} queue with ${Job_Nodes} node (s) per job f o r ${Job_Time} each"

291

292 case $Submission_Type in # This switch / case w i l l automat i ca l l y switch whether to or
not to submit job (s) to the queue

293 0) echo " Not submitt ing job (s) " ; ; # Not submitt ing jobs to queue
294 1) sbatch ${Job_Name}_a0_${ l a t } . sb ; ; # Submit job to queue
295 esac
296

297 Current_Job_Number=$ (echo ‘ expr $Current_Job_Number + 1 ‘) # Add 1 to the
Current_Job_Number counter v a r i a b l e

298

299 case $Piecewise_Submission in # This switch / case w i l l
automat i ca l l y switch whether to or not to submit job (s) to the queue

300 0) ; ; # Not submitt ing jobs to queue
301 1) squeue −u uname | head ; s l e e p ${Piecewise_Sleep } ; ; # Submit job to queue i f

t r y ing to run batches f o r debugging on debug queue
302 esac
303

304 echo " Begin : "
305

306 #−:−
307 #−:−:−:−:−:−:−:−:−:−:−:−:−:−: End VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−:−:−:−:−:−
308 #−:−
309 #−:−:−:−:−:−:−:−:−: End Main f o r () Loop f o r VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−
310 #−:−
311

238

312 cd . . # Navigate out o f newly c rea ted d i r e c t o r y
313

314 done # End o f main f o r () loop
315

316 #echo " The contents o f t h i s d i r e c t o r y are now the f o l l ow i n g : " ; l s # L i s t newly
c rea ted d i r e c t o r i e s

317

318 #−:−
319 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
320 #−:−
321

322 squeue −u uname
323

324 echo " The time i s cu r r en t l y $Date "
325

326 echo " Dumping termina l s e s s i o n in to README. txt "
327

328 echo " Success , End o f Scr ipt , Running squeue −u uname on a ${SQS_Update_Time}
Second Loop"

329

330 whi le [1] ; do Jobs=$ (squeue −u uname | wc − l) ; echo " ‘ expr ${Jobs} − 1 ‘ j obs in
the queue" ; squeue −u uname ; date ; s l e e p ${SQS_Update_Time} ; done # cont inue to
update the squeue every 5 seconds

Using Gnuplot (for more information, see section 3.8), we can visualize what the results of a
sample calculation for this system would be as follows:

239

Using some mathematical analysis with MATLAB, we can also determine what the absolute
minimum energy value in the calculation set which corresponds to the equilibrium configuration. In
section 9.8 we will see how to automatically extract all of the pertinent data from these calculations,
suffice it to say here however that we have this data already collected and we will import it into
MATLAB for analysis. Please see the following .dat file from which the above plot was created:

1 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
2 0 .05 0.46116276E+04 271.272 17 .30
3 0 .10 0.20243127E+04 119.077 17 .30
4 0 .15 0.11681642E+04 68.7155 17 .30
5 0 .20 0.74677299E+03 43.9278 17 .30
6 0 .25 0.50043335E+03 29.4373 17 .30
7 0 .30 0.34221275E+03 20.1302 17 .30
8 0 .35 0.23460743E+03 13.8004 17 .30
9 0 .40 0.15871279E+03 9.33605 17 .30

10 0 .45 0.10387018E+03 6.11001 17 .30
11 0 .50 0.63538060E+02 3.73753 17 .30
12 0 .55 0.33390952E+02 1.96417 17 .30
13 0 .60 0.10390932E+02 0.611231 17 .30
14 0 .65 −.76796481E+01 −0.451744 17 .30

240

15 0 .70 −.22501286E+02 −1.32361 17 .30
16 0 .75 −.35289600E+02 −2.07586 17 .30
17 0 .80 −.46756522E+02 −2.75038 17 .30
18 0 .85 −.57108427E+02 −3.35932 17 .30
19 0 .90 −.66313806E+02 −3.90081 17 .30
20 0 .95 −.74321297E+02 −4.37184 17 .30
21 1 .00 −.81151502E+02 −4.77362 17 .30
22 1 .05 −.86891251E+02 −5.11125 17 .30
23 1 .10 −.91662102E+02 −5.39189 17 .30
24 1 .15 −.95594064E+02 −5.62318 17 .30
25 1 .20 −.98811401E+02 −5.81244 17 .30
26 1 .25 −.10142729E+03 −5.96631 17 .30
27 1 .30 −.10354201E+03 −6.09071 17 .30
28 1 .35 −.10524328E+03 −6.19078 17 .30
29 1 .40 −.10660731E+03 −6.27102 17 .30
30 1 .45 −.10769932E+03 −6.33525 17 .30
31 1 .50 −.10857432E+03 −6.38672 17 .30
32 1 .55 −.10927762E+03 −6.4281 17 .30
33 1 .60 −.10984591E+03 −6.46152 17 .30
34 1 .65 −.11030856E+03 −6.48874 17 .30
35 1 .70 −.11068832E+03 −6.51108 17 .30
36 1 .75 −.11100348E+03 −6.52962 17 .30
37 1 .80 −.11126826E+03 −6.54519 17 .30
38 1 .85 −.11149297E+03 −6.55841 17 .30
39 1 .90 −.11168558E+03 −6.56974 17 .30
40 1 .95 −.11185189E+03 −6.57952 17 .30
41 2 .00 −.11199665E+03 −6.58804 17 .30
42 2 .05 −.11212320E+03 −6.59548 17 .30
43 2 .10 −.11223413E+03 −6.60201 17 .30
44 2 .15 −.11233160E+03 −6.60774 17 .30
45 2 .20 −.11241719E+03 −6.61278 17 .30
46 2 .25 −.11249227E+03 −6.61719 17 .30
47 2 .30 −.11255797E+03 −6.62106 17 .30
48 2 .35 −.11261511E+03 −6.62442 17 .30
49 2 .40 −.11266453E+03 −6.62733 17 .30
50 2 .45 −.11270721E+03 −6.62984 17 .30
51 2 .50 −.11274344E+03 −6.63197 17 .30
52 2 .55 −.11277475E+03 −6.63381 17 .30
53 2 .60 −.11280069E+03 −6.63533 17 .30
54 2 .65 −.11282122E+03 −6.63654 17 .30
55 2 .70 −.11283797E+03 −6.63753 17 .30
56 2 .75 −.11284984E+03 −6.63823 17 .30
57 2 .80 −.11285782E+03 −6.6387 17 .30
58 2 .85 −.11286205E+03 −6.63894 17 .30
59 2 .90 −.11286265E+03 −6.63898 17 .30
60 2 .95 −.11286000E+03 −6.63882 17 .30
61 3 .00 −.11285430E+03 −6.63849 17 .30

Importing this data (the first and third columns) into MATLAB, we can use splines and the
’find min’ functionality to find the minimum energy configuration based on interpolation:

1 %% AlO_Dimer_Approaching_Al2O3 .m
2 % Written by Steven E. Bopp
3

4 %%
5 Lattice_Parameter =[0.05
6 0 .10
7 0 .15
8 0 .20

241

9 0 .25
10 0 .30
11 0 .35
12 0 .40
13 0 .45
14 0 .50
15 0 .55
16 0 .60
17 0 .65
18 0 .70
19 0 .75
20 0 .80
21 0 .85
22 0 .90
23 0 .95
24 1 .00
25 1 .05
26 1 .10
27 1 .15
28 1 .20
29 1 .25
30 1 .30
31 1 .35
32 1 .40
33 1 .45
34 1 .50
35 1 .55
36 1 .60
37 1 .65
38 1 .70
39 1 .75
40 1 .80
41 1 .85
42 1 .90
43 1 .95
44 2 .00
45 2 .05
46 2 .10
47 2 .15
48 2 .20
49 2 .25
50 2 .30
51 2 .35
52 2 .40
53 2 .45
54 2 .50
55 2 .55
56 2 .60
57 2 .65
58 2 .70
59 2 .75
60 2 .80
61 2 .85
62 2 .90
63 2 .95
64 3 . 0 0] ;
65

66 Energy_Per_Ion=[271.272

242

67 119.077
68 68.7155
69 43.9278
70 29.4373
71 20.1302
72 13.8004
73 9.33605
74 6.11001
75 3.73753
76 1.96417
77 0.611231
78 −0.45174
79 −1.32361
80 −2.07586
81 −2.75038
82 −3.35932
83 −3.90081
84 −4.37184
85 −4.77362
86 −5.11125
87 −5.39189
88 −5.62318
89 −5.81244
90 −5.96631
91 −6.09071
92 −6.19078
93 −6.27102
94 −6.33525
95 −6.38672
96 −6.4281
97 −6.46152
98 −6.48874
99 −6.51108

100 −6.52962
101 −6.54519
102 −6.55841
103 −6.56974
104 −6.57952
105 −6.58804
106 −6.59548
107 −6.60201
108 −6.60774
109 −6.61278
110 −6.61719
111 −6.62106
112 −6.62442
113 −6.62733
114 −6.62984
115 −6.63197
116 −6.63381
117 −6.63533
118 −6.63654
119 −6.63753
120 −6.63823
121 −6.6387
122 −6.63894
123 −6.63898
124 −6.63882

243

125 −6.63849] ;
126

127 %%
128

129 E0=Energy_Per_Ion ’ ;
130 x=Lattice_Parameter ’ ; xx = [0 . 0 5 : . 0 0 0 1 : 3 . 0 0] ;
131 yy=sp l i n e (x , E0 , xx) ; % Create s p l i n e i n t e r p o l a t e f o r the l a t t i c e constant
132

133 f i g u r e (1) ;
134 p lo t (x , E0 , ’m∗ ’ , xx , yy , ’ g ’) ; % Plot s p l i n e i n t e r p o l a t e and Energy with La t t i c e

Parameter
135 x l ab e l (’ Distance Between Dimer and Slab Sur face (Angstroms) ’) ; y l ab e l (’ Energy in eV ’

) ;
136 t i t l e (’ Energy Ca l cu l a t i on s f o r an AlO Dimer Approaching a c−Sapphire Slab ’) ;
137 xlim ([0 . 0 5 3 . 0 0])
138 % Pentagram p ; hexagram h ; diamond d ; square s ;
139

140 indexmin=f i nd (min (yy) == yy) ; % Def ine indexmin
141 xmin = xx (indexmin) ; ymin = yy (indexmin) ; % Ca lcu la te minimum va lues
142 A0 = xmin ;
143 f p r i n t f (’Minimum Energy Conf igurat ion Length:%g \n ’ ,A0) % Display l a t t i c e constant

and e r r o r from expected value

MATLAB should report the following:
1 Minimum Energy Conf igurat ion Length : 2 . 8 852

MATLAB should also generate the following plot of what it has fit with the spline interpolation:

244

What this specifically means is that, from the spline interpolation, MATLAB has calculated
that a distance of 2.8852 angstroms for this atomic configuration of the Al-side of an Al-O dimer
approaching an O atom on a c-Sapphire surface is the minimum energy configuration and therefore
corresponds to where a bond will form.

9.7 Adsorption of a TiN dimer on a (111)-oriented TiN Surface, and
data analysis with MATLAB

Similar to section 9.6, here we will briefly discuss another orientation of dimer adsorption onto a
crystal surface, e.g., where a dimer is oriented parallel (instead of orthogonal like in section 9.6) to
the crystal’s surface. In this case, we will be considering a nitrogen terminated slab of 111-oriented
TiN with a horizontally-oriented TiN dimer approaching the slab. This calculation script is very
similar to that given in section 9.6 and I will not cover it in as much detail. Refer to section 9.6 for
more detail on the specific sections of this script if that is what you desire.

I will however cover the main differences in the POSCAR file since therein is the main difference
between this script and the one from section 9.6. This time we create a single variable called

245

lat_a which defines the distance that both atoms in the dimer have away from the crystal slab’s
surface. The distance between the two atoms is defined explicitly in the atomic positions (x, and y
in the POSCAR file) with knowledge of the dimer’s equilibrium bonding length from other VASP
calculations similar to those explained in section 9.4. As with before, small ASCII diagrams at the
beginning of the script and within the section responsible for writing the POSCAR file aid in quick
recognition of exactly what is being calculated at a glance.

The atomic arrangement defined in the POSCAR file we create in this script can be visualized
with VESTA as the following:

Please see the following script:
1 #!/ bin /bash
2

3 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

246

4 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

5

6 # File_Name="Slab_TiN_111_TiN_Dimer_horizontal_N_terminated_automated_vasp_11x11x1 " ;
mkdir ${File_Name } ; cd ${File_Name } ; touch ${File_Name } . sh ; chmod +x ${

File_Name } . sh ; vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README. txt
7

8 # +−−−−−−+ +−−−−−−+
9 # | N |<−−−>| Ti | Ti−N Dimer (1 .6467A)

10 # +−−−−−−+ +−−−−−−+ |
11 # | Var iab le z−coord .
12 # +−−−−−−+ +−−−−−−+ v
13 # | N |<−−−−−−−−−−>| N | TiN (111) s lab , N−Terminated
14 # +−−−−−−+ +−−−−−−+
15

16 #−:−
17 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−
18 #−:−
19

20 Job_Name="Slab_TiN_111_TiN_Dimer_horizontal_N_terminated_automated_vasp_11x11x1" #
Give the name you want to apply to a l l f i l e s here

21

22 Desc r ip t i on=" en e r g i e s o f automat i ca l l y ranged and ho r i z o n t a l l y arranged TiN_Dimer
bond l eng th s on a TiN (111) su r f a c e " # Please g ive a shor t d e s c r i p t i o n o f the
c a l c u l a t i o n f o r the README. txt f i l e

23 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
24

25 System_Name="Slab_TiN_111_TiN_Dimer_horizontal_N_terminated_11x11x1" # Give a
c a l c u l a t i o n t i t l e f o r VASP

26

27 Number_of_Elements="2" # Give the number o f i nd i v i dua l e lements that are in the
s imu la t i on

28 Element_1="Ti" # Give the symbol o f the element 1 in your POSCAR f i l e
29 Element_2="N" # Give the symbol o f the element 2 in your POSCAR f i l e
30 Element_3="n/a" # Give the symbol o f the element 3 in your POSCAR f i l e
31 Element_4="n/a" # Give the symbol o f the element 4 in your POSCAR f i l e
32

33 Prec i s ion_Leve l="HIGH" # VASP l e v e l o f p r e c i s i o n : NORMAL, MEDIUM, HIGH, LOW
34 KPOINTS_Grid="11 11 1" # KGrid (g ive as wanted in the KPOINTS f i l e e . g . , ’9 9 9 ’)
35 Job_Time=" 02 : 01 : 00 " #Run time in hh :mm: s s
36 Job_Time_Min=" 00 : 39 : 59 " # Minimum run time o f the s c r i p t
37 Job_Nodes="1" # Nodes that you want to use f o r the c a l c u l a t i o n
38 Job_Queue=" f l e x " # Ca l cu la t i on queue (e . g . , ’ debug ’ , ’ r egu la r ’ , ’ f l e x ’ , or ’

low ’) low and f l e x queues have 50 and 75% di s count s r e s p e c t i v e l y f o r KNL
39 Arch i t e c tu r e="knl " # ’ haswel l ’ f o r Haswel l ch ips or ’ knl ’ f o r Knight ’ s Landing

)
40 Computer_Name=" c l u s t e r " # Give the name o f the c l u s t e r
41 Module_Name="vasp" # Module to load e . g . , vasp , lammps , e spre s so , e t c . . .
42 PP_Type="PBE" # Pseudopotent ia l type to load e . g . , PBE or LDA
43 Calculation_Type=" f u l l " # Ca l cu l a t i on type (e . g . , ’ t e s t ’ w i l l run 1 po int and ’ f u l l

’ w i l l run a l l o f the po in t s)
44 Submission_Type="1" # 0 w i l l NOT submit v ia sbatch and 1 WILL submit v ia sbatch
45 Piecewise_Submiss ion="0" # 0 w i l l NOT submit p i e c ew i s e and 1 w i l l submit p i ecewi se ,

s l e e p i n g f o r 15 seconds between submiss ions)
46 Piecewise_Sleep="15" # Give the number o f seconds between job submiss ion (s) f o r

the Piecewise_Submiss ion case (recommended to be ~30 to 50% of the run−time o f a
VASP ca l c u l a t i o n)

47 SQS_Update_Time="30" # Give the number o f seconds that you want the f i n a l squeue

247

update cy c l e to wait between updates (recommended value : ’ 30 ’)
48

49 #−:−
50 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
51 #−:−
52

53 case $Arch i t e c ture in # This switch / case w i l l au tomat i ca l l y switch the
environments and executab l e l o c a t i o n s f o r va r i ous a r c h i t e c t u r e s l i k e haswe l l and
knl

54 haswe l l) echo " Haswel l a r c h i t e c t u r e s e l e c t e d : r e qu i r e s I n t e l PrgEnv"
55 Processes_Per_Node="32" ; Threads_Per_Process="2"

Recommended Haswel l s e t t i n g s f o r 1 node and 32 MPI p ro c e s s e s per node with
2 threads each

56 Module_Location="~/uname/ codes /vasp/vasp . 5 . 3 / vasp" ; ; #
Executable l o c a t i o n f o r HSW

57 knl) echo " Knight ’ s Landing a r c h i t e c t u r e s e l e c t e d
58 Processes_Per_Node="64" ; Threads_Per_Process="4"

Recommended MPI s e t t i n g f o r 1 node . NPAR should be sq r t (Processes_Per_Node)
! ! NPAR = 8 g i v e s s ub s t an t i a l s av ings o f ~67% compared to NPAR = 1

59 Module_Location="~/uname/vasp_cray_compiled/vasp . 5 . 3 / vasp" ; ; #
Executable l o c a t i o n f o r KNL

60 esac
61

62 case $Calculation_Type in # This switch / case w i l l automat i ca l l y switch the
c a l c u l a t i o n sequence based on the $Calculation_Type va r i ab l e

63 t e s t) echo " Running a t e s t c a l c u l a t i o n "
64 Sequence=$ (seq −w 1 1 1) ; Number_of_Jobs=‘echo $Sequence | wc −w‘

; ; # S ing l e po int c a l c u l a t i o n sequence
65 f u l l) echo " Running a f u l l c a l c u l a t i o n "
66 Sequence=$ (seq −w 0.05 0 .05 3 . 0) ; Number_of_Jobs=‘echo $Sequence | wc −w‘

; ; # Mult ip l e po int c a l c u l a t i o n sequence
67 esac
68

69 case $PP_Type in # This switch / case w i l l au tomat i ca l l y switch the
pseudopotent i a l type based on the $PP_Type va r i ab l e

70 PBE) echo " Using the VASP PBE.54 pseudopo t en t i a l s "
71 Pseudo_Location="~/uname/ pseudopo t en t i a l s /PBE/potpaw_PBE.54/ " ; ; #

Locat ion o f p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
72 LDA) echo " Using the VASP LDA pseudopot en t i a l s "
73 Pseudo_Location="~/uname/ pseudopo t en t i a l s /LDA/potpaw_LDA/" ; ; #

Locat ion o f p seudopotent i a l f i l e s f o r POTCAR, s e l e c t : LDA, PBE, PW91
74 esac
75

76 case $Job_Queue in # This switch / case w i l l automat i ca l l y i n s e r t
opt ions in to the sbatch f i l e

77 f l e x) Time_Min="#SBATCH −−time−min=${Job_Time_Min}" ; ; # I n s e r t s #SBATCH −−time
−min=0:30:00 in to sbatch

78 shared) Shared="#SBATCH −−shared " ; ; # I n s e r t s #SBATCH −−
shared in to sbatch

79 esac
80

81 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/ sec thanks
user1293137 from https : // unix . stackexchange . com/

82 NPAR=$ (echo " s c a l e =0; s q r t ($Processes_Per_Node) " | bc) # Calcu la te NPAR to be
i n s e r t e d in to INCAR f i l e [~ sq r t (job co r e s)] ; uses BASH program bc ; s c a l e=0 s e t s
bc to round to nea r e s t i n t e g e r (nece s sa ry f o r VASP)

83

84 #−:−

248

85 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
86 #−:−
87

88 cat > README. txt << EOF
89 Job Name : ${Job_Name} . sh
90 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } with ${PP_Type} pseudopot en t i a l s on a ${KPOINTS_Grid} g r id . .
91 Cal cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2} , ${

Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on the
${Job_Queue} queue .

92 Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node and ${
Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm: s s .

93 Calcu lated with ${Computer_Name} by ${Author} on $Date .
94

95 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
96

97 EOF
98

99 echo " Writing f i l e README. txt . . . "
100 echo " done"
101

102 #−:−
103 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Begin VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−:−:−:−:−:−
104 #−:−
105 #−:−:−:−:−:−:−:−:−:− Automatica l ly Generate VASP Input F i l e s −:−:−:−:−:−:−:−:−:−:−
106 #−:−
107 #−:−:−:− What F i l e s Are Generated i s Contro l l ed by the Given La t t i c e Vars . −:−:−:−
108 #−:−
109

110 echo " Running a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to
c a l c u l a t e ${Desc r ip t i on } with ${PP_Type} pseudopot en t i a l s on a ${KPOINTS_Grid}
g r id . "

111

112 echo " Ca l cu l a t ing with ${Number_of_Elements} element (s) : ${Element_1} , ${Element_2
} , ${Element_3} , and ${Element_4} f o r ${Job_Time} with ${Job_Nodes} job nodes on
the ${Job_Queue} queue . "

113

114 echo " Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node
and ${Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm:
s s "

115

116 echo " Calcu lated with ${Computer_Name} by ${Author} on $Date . "
117

118 echo " Running s c r i p t ${Job_Name} . sh . . . "
119

120 echo " The time i s cu r r en t l y $Date "
121

122 echo " Automatica l ly gene ra t ing input f i l e s f o r ${Module_Name} "
123

124 #−:−
125 #−:−:−:−:−:−:−:−:− Begin Main f o r () Loop f o r VASP F i l e Creat ion :−:−:−:−:−:−:−:−:−
126 #−:−
127

128 Current_Job_Number="1" # Begin a va r i ab l e to use in the f o r () loop to count the
cur rent job up to the f i n a l job

129

130 f o r l a t in ${Sequence } ; do # S ing l e c a l c u l a t i o n
131

249

132 echo " The La t t i c e Constant Var iab le (l a t) at t h i s s tep = $ l a t "
133

134 mkdir ${System_Name}_a0_${ l a t } ; cd ${System_Name}_a0_${ l a t } # Make and nav igate in to
newly c rea ted d i r e c t l y f o r each i t e r a t i o n in the f o r () loop

135

136 #−:−
137 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
138 #−:−
139

140 cat > ${Job_Name}_a0_${ l a t } . sb << EOF
141 #!/ bin /bash
142 #SBATCH −−job−name=${Job_Name}_a0_${ l a t }
143 #SBATCH −N ${Job_Nodes}
144 #SBATCH −C ${Arch i t e c tu r e }
145 #SBATCH −q ${Job_Queue}
146 #SBATCH −t ${Job_Time}
147 ${Time_Min}
148 ${Shared}
149

150 #OpenMP s e t t i n g s :
151 export OMP_NUM_THREADS=1
152 export OMP_PLACES=threads
153 export OMP_PROC_BIND=spread
154

155 module load ${Module_Name}
156 srun −n ${Processes_Per_Node} −c ${Threads_Per_Process} −−cpu_bind=co r e s ${

Module_Location}
157

158 EOF
159

160 echo " Writing input f i l e ${Job_Name}_a0_${ l a t } . sb . . . "
161 echo " done"
162

163 #−:−
164 #−:−:−:−:−:−:−:−:−:−:−:−:− Create POSCAR F i l e f o r VASP −:−:−:−:−:−:−:−:−:−:−:−:−:−
165 #−:−
166

167 Top_Atom="3.66761759 "
168 Titanium_Nitride_Dimer_Bond_Length=" 1.6467 "
169

170 lat_a=$ (echo " s c a l e =9; $Top_Atom + $ l a t " | bc)
171

172 cat > POSCAR << !
173 # Rocksalt TiN or i en t ed X=[11−2] Y=[1−10] Z=[111] .
174 1.000000
175 5.18679453 0.00000000 0.00000000
176 0.00000000 5.98919444 0.00000000
177 0.00000000 0.00000000 15.00000000
178 Ti N
179 9 9
180 Cartes ian
181 0.00000000 0.00000000 0.00000000
182 1.72893151 0.00000000 2.44507839
183 4.32232878 1.49729861 2.44507839
184 2.59339727 1.49729861 0.00000000
185 0.00000000 2.99459722 0.00000000
186 1.72893151 2.99459722 2.44507839
187 4.32232878 4.49189583 2.44507839

250

188 2.59339727 4.49189583 0.00000000
189 2.59339727 1.49729861 ${ lat_a}
190 2.59339727 3.14399861 ${ lat_a}
191 0.86446576 1.49729861 1.22253920
192 2.59339727 1.49729861 3.66761759
193 3.45786302 0.00000000 1.22253920
194 0.00000000 0.00000000 3.66761759
195 0.86446576 4.49189583 1.22253920
196 2.59339727 4.49189583 3.66761759
197 3.45786302 2.99459722 1.22253920
198 0.00000000 2.99459722 3.66761759
199 !
200

201 echo " Writing input f i l e POSCAR . . . "
202 echo " done"
203

204 # Dimer Equi l ibr ium Bond Length
205 # +−−−−−−+ +−−−−−−+
206 # |Atom_1|<−−−>|Atom_2 | |
207 # +−−−−−−+ +−−−−−−+ | Var iab le z−coord . = lat_a
208 # |
209 # +−−−−−−−−−−−−−−−−−−−+ v
210 # | Slab Sur face |
211 # +−−−−−−−−−−−−−−−−−−−+
212

213 #−:−
214 #−:−:−:−:−:−:−:−:−:−:−:−:− Create KPOINTS F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−
215 #−:−
216

217 # ~ 1000 k−po in t s per atom f o r metals w i l l reduce e r r o r to approximately 10 meV; ~
100 k−po in t s per atom f o r i n s u l a t o r s

218

219 cat > KPOINTS << EOF
220 Automatic mesh
221 0 ! number o f k−po in t s = 0 −> automatic gene ra t i on scheme
222 M
223 ${KPOINTS_Grid} ! s ubd i v i s i o n s N_1, N_2 and N_3 along r e c i p r . l a t t . v e c t o r s
224 0 0 0 ! op t i ona l s h i f t o f the mesh (s_1 , s_2 , s_3)
225 EOF
226

227 echo " Writing input f i l e KPOINTS . . . "
228 echo " done"
229

230 #−:−
231 #−:−:−:−:−:−:−:−:−:−:−:−:− Create INCAR F i l e f o r VASP :−:−:−:−:−:−:−:−:−:−:−:−:−:−
232 #−:−
233

234 # This INCAR i s s p e c i f i c f o r semiconductors and i n s u l a t o r s !
235

236 cat > INCAR << EOF
237 # General Setup
238 System = ${System_Name} # Ca l cu l a t i on T i t l e
239 PREC = ${Prec i s ion_Leve l } # Options : Normal , Medium , High , Low
240

241 ISMEAR = 1 # method o f Methfesse l−Paxton order N
242 SIGMA = 0.1 # s p e c i f i e s the width o f the smearing in eV
243 ENCUT = 425 # s p e c i f i e s the c u t o f f energy f o r the plane−wave−ba s i s s e t in eV
244 ALGO = FAST # mixture o f the Davidson and RMM−DIIS a lgor i thms

251

245

246 # Pa r a l l e l i z a t i o n
247 NPAR = ${NPAR} # approx . SQRT(number o f co r e s)
248 EOF
249

250 echo " Writing input f i l e INCAR . . . "
251 echo " done"
252

253

254 #−:−
255 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e POTCAR −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
256 #−:−
257

258 # This switch / case w i l l automat i ca l l y generate a POTCAR f i l e based on the opt ions in
the header o f t h i s s c r i p t

259 # Create POTCAR with cat in the exact order that e lements appear in the POSCAR f i l e
260

261 case $Number_of_Elements in
262

263 1) echo " One element s e l e c t e d f o r s imu la t i on : $Element_1"
264 cat ${Pseudo_Location}${Element_1}/POTCAR > POTCAR ; ;
265 2) echo " Two elements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2"
266 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

> POTCAR ; ;
267 3) echo " Three e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

"
268 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR > POTCAR ; ;
269 4) echo " Four e lements s e l e c t e d f o r s imu la t i on : $Element_1 $Element_2 $Element_3

$Element_4"
270 cat ${Pseudo_Location}${Element_1}/POTCAR ${Pseudo_Location}${Element_2}/POTCAR

${Pseudo_Location}${Element_3}/POTCAR ${Pseudo_Location}${Element_4}/POTCAR >
POTCAR ; ;

271

272 esac
273

274 echo " Writing input f i l e POTCAR. . . "
275 echo " done"
276

277 #−:−
278 #−:−:−:−:−:−:−:−:−:−:−:−:− Run VASP Ca l cu l a t i on with SBATCH −:−:−:−:−:−:−:−:−:−:−:−
279 #−:−
280

281 echo " Submitting ${Job_Name}_a0_${ l a t } . sb v ia sbatch . . . "
282

283 echo " Running job ${Current_Job_Number} out o f ${Number_of_Jobs} job (s) on the ${
Job_Queue} queue with ${Job_Nodes} node (s) per job f o r ${Job_Time} each"

284

285 case $Submission_Type in # This switch / case w i l l automat i ca l l y switch whether to or
not to submit job (s) to the queue

286 0) echo " Not submitt ing job (s) " ; ; # Not submitt ing jobs to queue
287 1) sbatch ${Job_Name}_a0_${ l a t } . sb ; ; # Submit job to queue
288 esac
289

290 Current_Job_Number=$ (echo ‘ expr $Current_Job_Number + 1 ‘) # Add 1 to the
Current_Job_Number counter v a r i a b l e

291

292 case $Piecewise_Submission in # This switch / case w i l l

252

automat i ca l l y switch whether to or not to submit job (s) to the queue
293 0) ; ; # Not submitt ing jobs to queue
294 1) squeue −u uname | head ; s l e e p ${Piecewise_Sleep } ; ; # Submit job to queue i f

t r y ing to run batches f o r debugging on debug queue
295 esac
296

297 echo " Begin : "
298

299 #−:−
300 #−:−:−:−:−:−:−:−:−:−:−:−:−:−: End VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−:−:−:−:−:−
301 #−:−
302 #−:−:−:−:−:−:−:−:−: End Main f o r () Loop f o r VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−
303 #−:−
304

305 cd . . # Navigate out o f newly c rea ted d i r e c t o r y
306

307 done # End o f main f o r () loop
308

309 #echo " The contents o f t h i s d i r e c t o r y are now the f o l l ow i n g : " ; l s # L i s t newly
c rea ted d i r e c t o r i e s

310

311 #−:−
312 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
313 #−:−
314

315 squeue −u uname
316

317 echo " The time i s cu r r en t l y $Date "
318

319 echo " Dumping termina l s e s s i o n in to README. txt "
320

321 echo " Success , End o f Scr ipt , Running squeue −u uname on a 5 Second Loop"
322

323 whi le [1] ; do Jobs=$ (squeue −u uname | wc − l) ; echo " ‘ expr ${Jobs} − 1 ‘ j obs in
the queue" ; squeue −u uname ; date ; s l e e p ${SQS_Update_Time} ; done # cont inue to
update the squeue every 5 seconds

Using Gnuplot (for more information, see section 3.8), we can visualize what the results of a
sample calculation for this system would be as follows:

253

And, like in other sections, using some mathematical analysis in MATLAB, we can also de-
termine what the absolute minimum energy value in the calculation set which corresponds to the
equilibrium configuration. In section 9.8 we will see how to automatically extract all of the per-
tinent data from these calculations, suffice it to say here however that we have this data already
collected and will import it into MATLAB for analysis. Please see the following .dat file from which
the above plot was created:

1 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
2 0 .05 0.52006751E+04 288.926 25 .89
3 0 .10 0.23243415E+04 129 .13 25 .89
4 0 .15 0.13703399E+04 76 .13 25 .89
5 0 .20 0.89852067E+03 49.9178 25 .89
6 0 .25 0.62055720E+03 34.4754 25 .89
7 0 .30 0.43998116E+03 24.4434 25 .89
8 0 .35 0.31504570E+03 17.5025 25 .89
9 0 .40 0.22443393E+03 12.4686 25 .89

10 0 .45 0.15586896E+03 8.65939 25 .89
11 0 .50 0.10213118E+03 5.67395 25 .89
12 0 .55 0.59017189E+02 3.27873 25 .89
13 0 .60 0.23908345E+02 1.32824 25 .89

254

14 0 .65 −.49428874E+01 −0.274605 25 .89
15 0 .70 −.28844958E+02 −1.6025 25 .89
16 0 .75 −.48799955E+02 −2.71111 25 .89
17 0 .80 −.65609699E+02 −3.64498 25 .89
18 0 .85 −.79848490E+02 −4.43603 25 .89
19 0 .90 −.91949856E+02 −5.10833 25 .89
20 0 .95 −.10224292E+03 −5.68016 25 .89
21 1 .00 −.11100109E+03 −6.16673 25 .89
22 1 .05 −.11846209E+03 −6.58123 25 .89
23 1 .10 −.12482409E+03 −6.93467 25 .89
24 1 .15 −.13023600E+03 −7.23533 25 .89
25 1 .20 −.13480058E+03 −7.48892 25 .89
26 1 .25 −.13859434E+03 −7.69969 25 .89
27 1 .30 −.14169456E+03 −7.87192 25 .89
28 1 .35 −.14417901E+03 −8.00995 25 .89
29 1 .40 −.14613653E+03 −8.1187 25 .89
30 1 .45 −.14765363E+03 −8.20298 25 .89
31 1 .50 −.14881189E+03 −8.26733 25 .89
32 1 .55 −.14968276E+03 −8.31571 25 .89
33 1 .60 −.15032905E+03 −8.35161 25 .89
34 1 .65 −.15080045E+03 −8.3778 25 .89
35 1 .70 −.15113533E+03 −8.39641 25 .89
36 1 .75 −.15136489E+03 −8.40916 25 .89
37 1 .80 −.15151354E+03 −8.41742 25 .89
38 1 .85 −.15159954E+03 −8.4222 25 .89
39 1 .90 −.15163737E+03 −8.4243 25 .89
40 1 .95 −.15163834E+03 −8.42435 25 .89
41 2 .00 −.15161094E+03 −8.42283 25 .89
42 2 .05 −.15156141E+03 −8.42008 25 .89
43 2 .10 −.15149510E+03 −8.41639 25 .89
44 2 .15 −.15141609E+03 −8.41201 25 .89
45 2 .20 −.15132742E+03 −8.40708 25 .89
46 2 .25 −.15123176E+03 −8.40176 25 .89
47 2 .30 −.15113038E+03 −8.39613 25 .89
48 2 .35 −.15102515E+03 −8.39029 25 .89
49 2 .40 −.15090103E+03 −8.38339 25 .89
50 2 .45 −.14935582E+03 −8.29755 25 .89
51 2 .50 −.14764123E+03 −8.20229 25 .89
52 2 .55 −.14627167E+03 −8.1262 25 .89
53 2 .60 −.14356170E+03 −7.97565 25 .89
54 2 .65 −.14113231E+03 −7.84068 25 .89
55 2 .70 −.13868309E+03 −7.70462 25 .89
56 2 .75 −.14196237E+03 −7.8868 25 .89
57 2 .80 −.13859814E+03 −7.6999 25 .89
58 2 .85 −.13527883E+03 −7.51549 25 .89
59 2 .90 −.13183631E+03 −7.32424 25 .89
60 2 .95 −.12797128E+03 −7.10952 25 .89
61 3 .00 −.13160835E+03 −7.31158 25 .89

Importing this data (the first and third columns) into MATLAB, we can use splines and the
’find min’ functionality to find the minimum energy configuration based on interpolation:

1 %% TiN_Dimer_Approaching_TiN .m
2 % Written by Steven E. Bopp
3

4 %%
5 Lattice_Parameter =[0.05
6 0 .10
7 0 .15

255

8 0 .20
9 0 .25

10 0 .30
11 0 .35
12 0 .40
13 0 .45
14 0 .50
15 0 .55
16 0 .60
17 0 .65
18 0 .70
19 0 .75
20 0 .80
21 0 .85
22 0 .90
23 0 .95
24 1 .00
25 1 .05
26 1 .10
27 1 .15
28 1 .20
29 1 .25
30 1 .30
31 1 .35
32 1 .40
33 1 .45
34 1 .50
35 1 .55
36 1 .60
37 1 .65
38 1 .70
39 1 .75
40 1 .80
41 1 .85
42 1 .90
43 1 .95
44 2 .00
45 2 .05
46 2 .10
47 2 .15
48 2 .20
49 2 .25
50 2 .30
51 2 .35
52 2 .40
53 2 .45
54 2 .50
55 2 .55
56 2 .60
57 2 .65
58 2 .70
59 2 .75
60 2 .80
61 2 .85
62 2 .90
63 2 .95
64 3 . 0 0] ;
65

256

66 Energy_Per_Ion=[271.272
67 119.077
68 68.7155
69 43.9278
70 29.4373
71 20.1302
72 13.8004
73 9.33605
74 6.11001
75 3.73753
76 1.96417
77 0.611231
78 −0.45174
79 −1.32361
80 −2.07586
81 −2.75038
82 −3.35932
83 −3.90081
84 −4.37184
85 −4.77362
86 −5.11125
87 −5.39189
88 −5.62318
89 −5.81244
90 −5.96631
91 −6.09071
92 −6.19078
93 −6.27102
94 −6.33525
95 −6.38672
96 −6.4281
97 −6.46152
98 −6.48874
99 −6.51108

100 −6.52962
101 −6.54519
102 −6.55841
103 −6.56974
104 −6.57952
105 −6.58804
106 −6.59548
107 −6.60201
108 −6.60774
109 −6.61278
110 −6.61719
111 −6.62106
112 −6.62442
113 −6.62733
114 −6.62984
115 −6.63197
116 −6.63381
117 −6.63533
118 −6.63654
119 −6.63753
120 −6.63823
121 −6.6387
122 −6.63894
123 −6.63898

257

124 −6.63882
125 −6.63849] ;
126

127 %%
128

129 E0=Energy_Per_Ion ’ ;
130 x=Lattice_Parameter ’ ; xx = [0 . 0 5 : . 0 0 0 1 : 3 . 0 0] ;
131 yy=sp l i n e (x , E0 , xx) ; % Create s p l i n e i n t e r p o l a t e f o r the l a t t i c e constant
132

133 f i g u r e (1) ;
134 p lo t (x , E0 , ’m∗ ’ , xx , yy , ’ g ’) ; % Plot s p l i n e i n t e r p o l a t e and Energy with La t t i c e

Parameter
135 x l ab e l (’ Distance Between Dimer and Slab Sur face (Angstroms) ’) ; y l ab e l (’ Energy in eV ’

) ;
136 t i t l e (’ Energy Ca l cu l a t i on s f o r a TiN Dimer Approaching a N−Terminated 111−Oriented

TiN Slab ’) ;
137 xlim ([0 . 0 5 3 . 0 0])
138 % Pentagram p ; hexagram h ; diamond d ; square s ;
139

140 indexmin=f i nd (min (yy) == yy) ; % Def ine indexmin
141 xmin = xx (indexmin) ; ymin = yy (indexmin) ; % Ca lcu la te minimum va lues
142 A0 = xmin ;
143 f p r i n t f (’Minimum Energy Conf igurat ion Length:%g \n ’ ,A0) % Display l a t t i c e constant

and e r r o r from expected value

MATLAB should report the following:
1 Minimum Energy Conf igurat ion Length : 1 . 9 258

MATLAB should also generate the following plot of what it has fit with the spline interpolation:

258

What this specifically means is that, from the spline interpolation, MATLAB has calculated that
a distance of 1.9258 angstroms for this atomic configuration of a horizontal TiN dimer approaching
the 111 surface of a TiN slab is the minimum energy configuration and therefore corresponds to
where a bond will form.

9.8 A script to collect and collate energy and volume parameters from
VASP calculations and notify the user for unconverged calculations
with for loops, awk, tail, and tput bel

As we will talk about in sections 9.9, and 9.7, it is often useful to run many VASP calculations
with slightly varied parameters. This can be done for a variety of reasons but one example is to
determine the bulk modulus from fitting with the Birch–Murnaghan equation of state. You can
use information like the ground state energy per ion and the volume per ion to determine many
optimal conditions for a crystal or atomic system such as minimum energy configurations that might
correspond to an equilibrium crystal structure for example.

However, like a discussion of vasprun.xml files that will follow in section 9.9, the files contain-

259

ing this information can be spread between many directories and contained within different files
within those directories. Additionally, it is not always apparent whether a calculation within a
series of calculations has been converged unless each of these files are either inspected by hand or
checked with an automated script. The shell is a great tool for extracting and collating all of that
information. One such means of doing so is with the script that is attached in this section.

This script is separated into four major sections. The first of these sections starts at the
comment "Create Data Storage File" and ends at the comment "Begin Main for() Loop for VASP
Data Collection". Section one creates naming variables by automatically extracting the system
name(s) from a series of VASP calculation output files so that the user does not need to manually
add this input and many series of calculations may be analyzed or extracted simultaneously. Awk
is used to search the input shell script used to generate the calculations and then extract the
system name. The extracted system name is then modified slightly with the cut and reverse (rev)
commands to remove several characters which were unwanted. Finally in section one, we create an
empty data file where the extracted vasp calculation data will be stored.

Section two of this script picks up where section one left off and continues up to the comment
"Echo terminal commands to create a datfile and plots in OS X". This section of the script uses a
for loop to do its heavy lifting. The for loop creates a variable named a that operates over every
sub-directory within the current directory. First, the loop checks to see whether the calculation it
is currently considering has converged by checking the OSCIZAR file by using awk to search for the
line where VASP reports "F=" followed by a text field. If that following text field is "1", then the
calculation has converged and the word ’converged’ will be printed to the terminal. In the case that
the following text field is anything other than "1", then the terminal uses the command tput bel
to ring a bell noise and print ’<!> Warning: Calculation Did Not Converge <!>’ to the terminal.
I find this to be extremely useful because you can scan thousands (or an arbitrary number) of
calculations for whether they have converged within the time limits that you have given to your
cluster for each calculation. This is useful when you are attempting to request a minimum amount of
time necessary to converge a specific variety of calculation so that calculations will start running on
supercomputer queues earlier rather than later because frequently calculations requesting a smaller
amount of computational resources will be submitted to computers earlier than those requesting a
large amount of resources.

Continuing in section two, we use awk heavily to extract (and store as variables) the number
of ions, the total energy E0, the energy per ion, and the volume per ion from the OUTCAR and
OSZICAR files. The lattice parameter at the current step is also stored as a variable at this step.
Completing the loop, we navigate up one directory and then append the variables that we have
just stored into the data file created earlier. The loop continues until all of the sub-directories have
been searched, exhausting the initial conditions.

Section three continues where section two has left off and ends at the comment "Create data
plotter program". This section of the script was made to ease the transition from a remote machine
to a local machine by echoing lots of information to the terminal (so that copy and paste can be
used instead of scp or some other protocol) as well as specific BASH commands. Overall, section
three is intended to concatenate all of the information to the shell that we have just collected in the
format of a series of BASH commands which can just be copied and pasted into a local terminal
that will automatically generate those same files on your local system. For the Mac OS users, there
is a special treat built into this section too in the form of a qlmanage command that generates
a .png format image from a Gnuplot .svg image which I find very nice for inserting into research
group meeting slides without having to fuss over converting the images from one format to another

260

by hand. Again, as said many times before, automating things in this manner makes all of these
operations much easier.

Finally, section four encompasses everything after the comment "Create data plotter program".
This final section of the script creates a Gnuplot script and then executes it to plot all of the
relevant data that we have just collected to the terminal for quick viewing. Plotting with the
’dumb’ terminal in Gnuplot (see section 3.8 for more on Gnuplot) allows us to plot headless in the
terminal and make sure that the general behavior of a series of data are at least reasonably aligned
with our expectations.

Please see the following script to collect and collate energy and volume information from many
VASP calculations and an example of its use on a remote cluster:

1 #!/ bin /bash
2

3 # The purpose o f t h i s code i s to c o l l e c t a l l o f the energy and volume data from a
s e r i e s o f d i r e c t o r i e s

4 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

5

6 # File_Name="VASP_EV_Collector_v3 " ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ;
vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README_EV_Collector . txt

7

8 #−:−
9 #−:−:−:−:−:−:−:−:−:−:−:−:−:− Create Data Storage F i l e :−:−:−:−:−:−:−:−:−:−:−:−:−:−

10 #−:−
11

12 System_Name=$ (awk ’ /System_Name=/{pr in t $1} ’ ∗vasp . sh | cut −c14− | rev | cut −c2− |
rev)

13

14 File_Name=${System_Name}_EV_data . dat
15

16 cat > ${File_Name} << EOF
17 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
18 EOF
19

20 #−:−
21 #−:−:−:−:−:−:−:−: Begin Main f o r () Loop f o r VASP Data Co l l e c t i on −:−:−:−:−:−:−:−:−
22 #−:−
23

24 f o r a in ∗/ ; do # Loop with in a s i n g l e c a l c u l a t i o n d i r e c t o r y
25 echo " Enter ing d i r e c t o r y $a"
26 cd "$a" #; pwd
27

28 Convergence=$ (awk ’ /F=/{pr in t $1} ’ OSZICAR)
29 i f [[$Convergence = 1]] ; then echo ’ Converged ’ ; e l s e tput be l && echo ’<!>

Warning : Ca l cu l a t i on Did Not Converge <!> ’ ; f i
30

31 Number_of_Ions=$ (awk ’ /NIONS/{ pr i n t $12} ’ OUTCAR) # Co l l e c t the number o f i on s
from the OSZICAR f i l e

32 t a i l −1 OSZICAR # Print the l a s t l i n e o f OSZICAR to the terminal , make sure that
the program terminated normally and converged

33 E0=$ (t a i l −n1 OSZICAR | awk ’ { p r i n t $5} ’) # Co l l e c t E0 from the f i n a l SCF
i t e r a t i o n

34 Energy_Per_Ion=$ (t a i l −n1 OSZICAR | awk −v Number_of_Ions="$Number_of_Ions" ’ {
p r i n t $5/Number_of_Ions} ’) # Co l l e c t E0 from the f i n a l SCF i t e r a t i o n and d iv id e
by number o f i on s

35 Volume_Per_Ion=$ (awk ’ / ion in A, a . u ./{ p r i n t $5} ’ OUTCAR) # Co l l e c t the volume

261

per ion by sea r ch ing f o r a truncated part o f the s t r i n g ’ volume/ ion in A, a . u . ’
36

37 a0=$ (echo $a | sed ’ s / .∗_a0_// ’ | rev | cut −c2− | rev)
38 # Extracts the va r i ab l e $a in to sed which trans forms (f o r example) Al2O3_a0_0

.980000000 in to (f o r example) 0.980000000 −> stored as $a0
39 # This command needs the rev and cut f unc t i on s because i t s t o r e s the a0 as

something l i k e 0.980000000/ and we need to remove the e r rant / as we l l
40

41 echo " For l a t t i c e parameter = ${a0 } , Total energy = ${E0} Energy per ion = ${
Energy_Per_Ion} Volume per ion = ${Volume_Per_Ion} "

42

43 cd . .
44 echo $a0 $E0 $Energy_Per_Ion $Volume_Per_Ion >> ${File_Name}
45

46 done # End o f main f o r () loop
47

48 #−:−
49 #−:−:−:−:−: Echo termina l commands to c r e a t e a d a t f i l e and p l o t s in OS X −:−:−:−:−
50 #−:−
51

52 SVG_Name=${System_Name}_EV_data . svg
53

54 echo "" ; echo "" ; echo ""
55 echo " cat > $File_Name << EOF"
56 cat $File_Name
57 echo "EOF"
58 echo ""
59 echo " gnuplot "
60 echo " s e t te rmina l svg enhanced"
61 echo " s e t x l ab e l ’ La t t i c e Parameter ’ " # Mu l t i p l i c a t i o n Factor
62 echo " s e t y l ab e l ’ Energy (eV) ’ "
63 echo " s e t out ’$SVG_Name’ ; p ’ $File_Name ’ u 1 :3 "
64 echo "q"
65 echo ""
66 echo "qlmanage −t −s 1000 −o . $SVG_Name" # Convert an svg to a png image on osx

thanks to superuse r . com user t s t
67 echo ""
68 echo " c l e a r "
69 echo "" ; echo "" ; echo ""
70

71 #−:−
72 #−:−:−:−:−:−:−:−:−:−:−:−:−: Create data p l o t t e r program :−:−:−:−:−:−:−:−:−:−:−:−:−
73 #−:−
74

75 cat > EV_Plotter . sh << "EOF"
76 #!/ bin /bash
77

78 Dat_File=$ (l s ∗ . dat)
79

80 ## Plot Data with GNUPlot
81 gnuplot <<!
82 s e t t e rmina l dumb s i z e 105 ,55
83 s e t x l ab e l " La t t i c e Parameter " # Mu l t i p l i c a t i o n Factor
84 s e t y l ab e l "Energy (eV) "
85 p "$Dat_File" u 1 :3 with l i n e s
86 !
87 EOF
88

262

89 echo ""
90 echo " Writing f i l e EV_Plotter . sh . . . " ; echo " done"
91 chmod +x EV_Plotter . sh
92

93 . / EV_Plotter . sh
94

95 #−:−
96 #−:−:−:−:−:−:−:−:−:−:−:−:−:−: End o f d i r e c t i o n s , ha l t :−:−:−:−:−:−:−:−:−:−:−:−:−:−
97 #−:−
98

99 echo " VASP data c o l l e c t i o n and compi la t ion completed"
100 echo " Success , End o f S c r i p t "

The output of this script can be seen below for a series of calculations based on the script
presented in section 9.7 which concerns the adsorption of a TiN dimer horizontally on the 111
surface of a TiN slab. Note that all of the calculations converged properly, if they had not then the
terminal would have made a bell sound and printed ’<!> Warning: Calculation Did Not Converge
<!>’ to the terminal before continuing to the next step in the for loop.

1 sbopp@cori08 : / g l oba l / c s c ra t ch1 /sd/sbopp/vasp_meam_calculations_PBE/Slabs_Ti−N/
Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_automated_vasp_11x11x1> cat
README_EV_Collector . txt

2 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .05/
3 Converged
4 1 F= 0.52006751E+04 E0= 0.52006751E+04 d E =0.000000E+00
5 For l a t t i c e parameter = 0 .05 , Total energy = 0.52006751E+04 Energy per ion =

288.926 Volume per ion = 25.89
6 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .10/
7 Converged
8 1 F= 0.23243415E+04 E0= 0.23243415E+04 d E =0.000000E+00
9 For l a t t i c e parameter = 0 .10 , Total energy = 0.23243415E+04 Energy per ion =

129.13 Volume per ion = 25.89
10 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .15/
11 Converged
12 1 F= 0.13703399E+04 E0= 0.13703399E+04 d E =0.000000E+00
13 For l a t t i c e parameter = 0 .15 , Total energy = 0.13703399E+04 Energy per ion = 76.13

Volume per ion = 25.89
14 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .20/
15 Converged
16 1 F= 0.89852067E+03 E0= 0.89852067E+03 d E =0.000000E+00
17 For l a t t i c e parameter = 0 .20 , Total energy = 0.89852067E+03 Energy per ion =

49.9178 Volume per ion = 25.89
18 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .25/
19 Converged
20 1 F= 0.62055720E+03 E0= 0.62055720E+03 d E =0.000000E+00
21 For l a t t i c e parameter = 0 .25 , Total energy = 0.62055720E+03 Energy per ion =

34.4754 Volume per ion = 25.89
22 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .30/
23 Converged
24 1 F= 0.43998116E+03 E0= 0.43998116E+03 d E =0.000000E+00
25 For l a t t i c e parameter = 0 .30 , Total energy = 0.43998116E+03 Energy per ion =

24.4434 Volume per ion = 25.89
26 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .35/
27 Converged
28 1 F= 0.31504570E+03 E0= 0.31504570E+03 d E =0.000000E+00
29 For l a t t i c e parameter = 0 .35 , Total energy = 0.31504570E+03 Energy per ion =

17.5025 Volume per ion = 25.89
30 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .40/

263

31 Converged
32 1 F= 0.22443393E+03 E0= 0.22443393E+03 d E =0.000000E+00
33 For l a t t i c e parameter = 0 .40 , Total energy = 0.22443393E+03 Energy per ion =

12.4686 Volume per ion = 25.89
34 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .45/
35 Converged
36 1 F= 0.15586896E+03 E0= 0.15586896E+03 d E =0.000000E+00
37 For l a t t i c e parameter = 0 .45 , Total energy = 0.15586896E+03 Energy per ion =

8.65939 Volume per ion = 25.89
38 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .50/
39 Converged
40 1 F= 0.10213118E+03 E0= 0.10213118E+03 d E =0.000000E+00
41 For l a t t i c e parameter = 0 .50 , Total energy = 0.10213118E+03 Energy per ion =

5.67395 Volume per ion = 25.89
42 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .55/
43 Converged
44 1 F= 0.59017189E+02 E0= 0.59017189E+02 d E =0.000000E+00
45 For l a t t i c e parameter = 0 .55 , Total energy = 0.59017189E+02 Energy per ion =

3.27873 Volume per ion = 25.89
46 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .60/
47 Converged
48 1 F= 0.23908345E+02 E0= 0.23908345E+02 d E =0.000000E+00
49 For l a t t i c e parameter = 0 .60 , Total energy = 0.23908345E+02 Energy per ion =

1.32824 Volume per ion = 25.89
50 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .65/
51 Converged
52 1 F= −.49428874E+01 E0= −.49428874E+01 d E =0.000000E+00
53 For l a t t i c e parameter = 0 .65 , Total energy = −.49428874E+01 Energy per ion =

−0.274605 Volume per ion = 25.89
54 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .70/
55 Converged
56 1 F= −.28844958E+02 E0= −.28844958E+02 d E =0.000000E+00
57 For l a t t i c e parameter = 0 .70 , Total energy = −.28844958E+02 Energy per ion =

−1.6025 Volume per ion = 25.89
58 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .75/
59 Converged
60 1 F= −.48799955E+02 E0= −.48799955E+02 d E =0.000000E+00
61 For l a t t i c e parameter = 0 .75 , Total energy = −.48799955E+02 Energy per ion =

−2.71111 Volume per ion = 25.89
62 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .80/
63 Converged
64 1 F= −.65609699E+02 E0= −.65609699E+02 d E =0.000000E+00
65 For l a t t i c e parameter = 0 .80 , Total energy = −.65609699E+02 Energy per ion =

−3.64498 Volume per ion = 25.89
66 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .85/
67 Converged
68 1 F= −.79848490E+02 E0= −.79848490E+02 d E =0.000000E+00
69 For l a t t i c e parameter = 0 .85 , Total energy = −.79848490E+02 Energy per ion =

−4.43603 Volume per ion = 25.89
70 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .90/
71 Converged
72 1 F= −.91949856E+02 E0= −.91949856E+02 d E =0.000000E+00
73 For l a t t i c e parameter = 0 .90 , Total energy = −.91949856E+02 Energy per ion =

−5.10833 Volume per ion = 25.89
74 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_0 .95/
75 Converged
76 1 F= −.10224292E+03 E0= −.10224292E+03 d E =0.000000E+00
77 For l a t t i c e parameter = 0 .95 , Total energy = −.10224292E+03 Energy per ion =

264

−5.68016 Volume per ion = 25.89
78 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .00/
79 Converged
80 1 F= −.11100109E+03 E0= −.11100109E+03 d E =0.000000E+00
81 For l a t t i c e parameter = 1 .00 , Total energy = −.11100109E+03 Energy per ion =

−6.16673 Volume per ion = 25.89
82 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .05/
83 Converged
84 1 F= −.11846209E+03 E0= −.11846209E+03 d E =0.000000E+00
85 For l a t t i c e parameter = 1 .05 , Total energy = −.11846209E+03 Energy per ion =

−6.58123 Volume per ion = 25.89
86 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .10/
87 Converged
88 1 F= −.12482409E+03 E0= −.12482409E+03 d E =0.000000E+00
89 For l a t t i c e parameter = 1 .10 , Total energy = −.12482409E+03 Energy per ion =

−6.93467 Volume per ion = 25.89
90 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .15/
91 Converged
92 1 F= −.13023600E+03 E0= −.13023600E+03 d E =0.000000E+00
93 For l a t t i c e parameter = 1 .15 , Total energy = −.13023600E+03 Energy per ion =

−7.23533 Volume per ion = 25.89
94 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .20/
95 Converged
96 1 F= −.13480058E+03 E0= −.13480058E+03 d E =0.000000E+00
97 For l a t t i c e parameter = 1 .20 , Total energy = −.13480058E+03 Energy per ion =

−7.48892 Volume per ion = 25.89
98 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .25/
99 Converged

100 1 F= −.13859434E+03 E0= −.13859434E+03 d E =0.000000E+00
101 For l a t t i c e parameter = 1 .25 , Total energy = −.13859434E+03 Energy per ion =

−7.69969 Volume per ion = 25.89
102 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .30/
103 Converged
104 1 F= −.14169456E+03 E0= −.14169456E+03 d E =0.000000E+00
105 For l a t t i c e parameter = 1 .30 , Total energy = −.14169456E+03 Energy per ion =

−7.87192 Volume per ion = 25.89
106 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .35/
107 Converged
108 1 F= −.14417901E+03 E0= −.14417901E+03 d E =0.000000E+00
109 For l a t t i c e parameter = 1 .35 , Total energy = −.14417901E+03 Energy per ion =

−8.00995 Volume per ion = 25.89
110 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .40/
111 Converged
112 1 F= −.14613653E+03 E0= −.14613653E+03 d E =0.000000E+00
113 For l a t t i c e parameter = 1 .40 , Total energy = −.14613653E+03 Energy per ion =

−8.1187 Volume per ion = 25.89
114 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .45/
115 Converged
116 1 F= −.14765363E+03 E0= −.14765363E+03 d E =0.000000E+00
117 For l a t t i c e parameter = 1 .45 , Total energy = −.14765363E+03 Energy per ion =

−8.20298 Volume per ion = 25.89
118 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .50/
119 Converged
120 1 F= −.14881189E+03 E0= −.14881189E+03 d E =0.000000E+00
121 For l a t t i c e parameter = 1 .50 , Total energy = −.14881189E+03 Energy per ion =

−8.26733 Volume per ion = 25.89
122 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .55/
123 Converged

265

124 1 F= −.14968276E+03 E0= −.14968276E+03 d E =0.000000E+00
125 For l a t t i c e parameter = 1 .55 , Total energy = −.14968276E+03 Energy per ion =

−8.31571 Volume per ion = 25.89
126 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .60/
127 Converged
128 1 F= −.15032905E+03 E0= −.15032905E+03 d E =0.000000E+00
129 For l a t t i c e parameter = 1 .60 , Total energy = −.15032905E+03 Energy per ion =

−8.35161 Volume per ion = 25.89
130 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .65/
131 Converged
132 1 F= −.15080045E+03 E0= −.15080045E+03 d E =0.000000E+00
133 For l a t t i c e parameter = 1 .65 , Total energy = −.15080045E+03 Energy per ion =

−8.3778 Volume per ion = 25.89
134 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .70/
135 Converged
136 1 F= −.15113533E+03 E0= −.15113533E+03 d E =0.000000E+00
137 For l a t t i c e parameter = 1 .70 , Total energy = −.15113533E+03 Energy per ion =

−8.39641 Volume per ion = 25.89
138 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .75/
139 Converged
140 1 F= −.15136489E+03 E0= −.15136489E+03 d E =0.000000E+00
141 For l a t t i c e parameter = 1 .75 , Total energy = −.15136489E+03 Energy per ion =

−8.40916 Volume per ion = 25.89
142 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .80/
143 Converged
144 1 F= −.15151354E+03 E0= −.15151354E+03 d E =0.000000E+00
145 For l a t t i c e parameter = 1 .80 , Total energy = −.15151354E+03 Energy per ion =

−8.41742 Volume per ion = 25.89
146 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .85/
147 Converged
148 1 F= −.15159954E+03 E0= −.15159954E+03 d E =0.000000E+00
149 For l a t t i c e parameter = 1 .85 , Total energy = −.15159954E+03 Energy per ion =

−8.4222 Volume per ion = 25.89
150 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .90/
151 Converged
152 1 F= −.15163737E+03 E0= −.15163737E+03 d E =0.000000E+00
153 For l a t t i c e parameter = 1 .90 , Total energy = −.15163737E+03 Energy per ion =

−8.4243 Volume per ion = 25.89
154 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_1 .95/
155 Converged
156 1 F= −.15163834E+03 E0= −.15163834E+03 d E =0.000000E+00
157 For l a t t i c e parameter = 1 .95 , Total energy = −.15163834E+03 Energy per ion =

−8.42435 Volume per ion = 25.89
158 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .00/
159 Converged
160 1 F= −.15161094E+03 E0= −.15161094E+03 d E =0.000000E+00
161 For l a t t i c e parameter = 2 .00 , Total energy = −.15161094E+03 Energy per ion =

−8.42283 Volume per ion = 25.89
162 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .05/
163 Converged
164 1 F= −.15156141E+03 E0= −.15156141E+03 d E =0.000000E+00
165 For l a t t i c e parameter = 2 .05 , Total energy = −.15156141E+03 Energy per ion =

−8.42008 Volume per ion = 25.89
166 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .10/
167 Converged
168 1 F= −.15149510E+03 E0= −.15149510E+03 d E =0.000000E+00
169 For l a t t i c e parameter = 2 .10 , Total energy = −.15149510E+03 Energy per ion =

−8.41639 Volume per ion = 25.89

266

170 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .15/
171 Converged
172 1 F= −.15141609E+03 E0= −.15141609E+03 d E =0.000000E+00
173 For l a t t i c e parameter = 2 .15 , Total energy = −.15141609E+03 Energy per ion =

−8.41201 Volume per ion = 25.89
174 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .20/
175 Converged
176 1 F= −.15132742E+03 E0= −.15132742E+03 d E =0.000000E+00
177 For l a t t i c e parameter = 2 .20 , Total energy = −.15132742E+03 Energy per ion =

−8.40708 Volume per ion = 25.89
178 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .25/
179 Converged
180 1 F= −.15123176E+03 E0= −.15123176E+03 d E =0.000000E+00
181 For l a t t i c e parameter = 2 .25 , Total energy = −.15123176E+03 Energy per ion =

−8.40176 Volume per ion = 25.89
182 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .30/
183 Converged
184 1 F= −.15113038E+03 E0= −.15113038E+03 d E =0.000000E+00
185 For l a t t i c e parameter = 2 .30 , Total energy = −.15113038E+03 Energy per ion =

−8.39613 Volume per ion = 25.89
186 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .35/
187 Converged
188 1 F= −.15102515E+03 E0= −.15102515E+03 d E =0.000000E+00
189 For l a t t i c e parameter = 2 .35 , Total energy = −.15102515E+03 Energy per ion =

−8.39029 Volume per ion = 25.89
190 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .40/
191 Converged
192 1 F= −.15090103E+03 E0= −.15090103E+03 d E =0.000000E+00
193 For l a t t i c e parameter = 2 .40 , Total energy = −.15090103E+03 Energy per ion =

−8.38339 Volume per ion = 25.89
194 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .45/
195 Converged
196 1 F= −.14935582E+03 E0= −.14935582E+03 d E =0.000000E+00
197 For l a t t i c e parameter = 2 .45 , Total energy = −.14935582E+03 Energy per ion =

−8.29755 Volume per ion = 25.89
198 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .50/
199 Converged
200 1 F= −.14764123E+03 E0= −.14764123E+03 d E =0.000000E+00
201 For l a t t i c e parameter = 2 .50 , Total energy = −.14764123E+03 Energy per ion =

−8.20229 Volume per ion = 25.89
202 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .55/
203 Converged
204 1 F= −.14627167E+03 E0= −.14627167E+03 d E =0.000000E+00
205 For l a t t i c e parameter = 2 .55 , Total energy = −.14627167E+03 Energy per ion =

−8.1262 Volume per ion = 25.89
206 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .60/
207 Converged
208 1 F= −.14356170E+03 E0= −.14356170E+03 d E =0.000000E+00
209 For l a t t i c e parameter = 2 .60 , Total energy = −.14356170E+03 Energy per ion =

−7.97565 Volume per ion = 25.89
210 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .65/
211 Converged
212 1 F= −.14113231E+03 E0= −.14113231E+03 d E =0.000000E+00
213 For l a t t i c e parameter = 2 .65 , Total energy = −.14113231E+03 Energy per ion =

−7.84068 Volume per ion = 25.89
214 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .70/
215 Converged
216 1 F= −.13868309E+03 E0= −.13868309E+03 d E =0.000000E+00

267

217 For l a t t i c e parameter = 2 .70 , Total energy = −.13868309E+03 Energy per ion =
−7.70462 Volume per ion = 25.89

218 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .75/
219 Converged
220 1 F= −.14196237E+03 E0= −.14196237E+03 d E =0.000000E+00
221 For l a t t i c e parameter = 2 .75 , Total energy = −.14196237E+03 Energy per ion =

−7.8868 Volume per ion = 25.89
222 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .80/
223 Converged
224 1 F= −.13859814E+03 E0= −.13859814E+03 d E =0.000000E+00
225 For l a t t i c e parameter = 2 .80 , Total energy = −.13859814E+03 Energy per ion =

−7.6999 Volume per ion = 25.89
226 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .85/
227 Converged
228 1 F= −.13527883E+03 E0= −.13527883E+03 d E =0.000000E+00
229 For l a t t i c e parameter = 2 .85 , Total energy = −.13527883E+03 Energy per ion =

−7.51549 Volume per ion = 25.89
230 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .90/
231 Converged
232 1 F= −.13183631E+03 E0= −.13183631E+03 d E =0.000000E+00
233 For l a t t i c e parameter = 2 .90 , Total energy = −.13183631E+03 Energy per ion =

−7.32424 Volume per ion = 25.89
234 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_2 .95/
235 Converged
236 1 F= −.12797128E+03 E0= −.12797128E+03 d E =0.000000E+00
237 For l a t t i c e parameter = 2 .95 , Total energy = −.12797128E+03 Energy per ion =

−7.10952 Volume per ion = 25.89
238 Enter ing d i r e c t o r y Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_a0_3 .00/
239 Converged
240 1 F= −.13160835E+03 E0= −.13160835E+03 d E =0.000000E+00
241 For l a t t i c e parameter = 3 .00 , Total energy = −.13160835E+03 Energy per ion =

−7.31158 Volume per ion = 25.89
242

243

244

245 cat > Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_EV_data . dat << EOF
246 " La t t i c e Parameter a0" "Total Energy E0" "Energy Per Ion" "Volume Per Ion in A"
247 0 .05 0.52006751E+04 288.926 25 .89
248 0 .10 0.23243415E+04 129 .13 25 .89
249 0 .15 0.13703399E+04 76 .13 25 .89
250 0 .20 0.89852067E+03 49.9178 25 .89
251 0 .25 0.62055720E+03 34.4754 25 .89
252 0 .30 0.43998116E+03 24.4434 25 .89
253 0 .35 0.31504570E+03 17.5025 25 .89
254 0 .40 0.22443393E+03 12.4686 25 .89
255 0 .45 0.15586896E+03 8.65939 25 .89
256 0 .50 0.10213118E+03 5.67395 25 .89
257 0 .55 0.59017189E+02 3.27873 25 .89
258 0 .60 0.23908345E+02 1.32824 25 .89
259 0 .65 −.49428874E+01 −0.274605 25 .89
260 0 .70 −.28844958E+02 −1.6025 25 .89
261 0 .75 −.48799955E+02 −2.71111 25 .89
262 0 .80 −.65609699E+02 −3.64498 25 .89
263 0 .85 −.79848490E+02 −4.43603 25 .89
264 0 .90 −.91949856E+02 −5.10833 25 .89
265 0 .95 −.10224292E+03 −5.68016 25 .89
266 1 .00 −.11100109E+03 −6.16673 25 .89
267 1 .05 −.11846209E+03 −6.58123 25 .89

268

268 1 .10 −.12482409E+03 −6.93467 25 .89
269 1 .15 −.13023600E+03 −7.23533 25 .89
270 1 .20 −.13480058E+03 −7.48892 25 .89
271 1 .25 −.13859434E+03 −7.69969 25 .89
272 1 .30 −.14169456E+03 −7.87192 25 .89
273 1 .35 −.14417901E+03 −8.00995 25 .89
274 1 .40 −.14613653E+03 −8.1187 25 .89
275 1 .45 −.14765363E+03 −8.20298 25 .89
276 1 .50 −.14881189E+03 −8.26733 25 .89
277 1 .55 −.14968276E+03 −8.31571 25 .89
278 1 .60 −.15032905E+03 −8.35161 25 .89
279 1 .65 −.15080045E+03 −8.3778 25 .89
280 1 .70 −.15113533E+03 −8.39641 25 .89
281 1 .75 −.15136489E+03 −8.40916 25 .89
282 1 .80 −.15151354E+03 −8.41742 25 .89
283 1 .85 −.15159954E+03 −8.4222 25 .89
284 1 .90 −.15163737E+03 −8.4243 25 .89
285 1 .95 −.15163834E+03 −8.42435 25 .89
286 2 .00 −.15161094E+03 −8.42283 25 .89
287 2 .05 −.15156141E+03 −8.42008 25 .89
288 2 .10 −.15149510E+03 −8.41639 25 .89
289 2 .15 −.15141609E+03 −8.41201 25 .89
290 2 .20 −.15132742E+03 −8.40708 25 .89
291 2 .25 −.15123176E+03 −8.40176 25 .89
292 2 .30 −.15113038E+03 −8.39613 25 .89
293 2 .35 −.15102515E+03 −8.39029 25 .89
294 2 .40 −.15090103E+03 −8.38339 25 .89
295 2 .45 −.14935582E+03 −8.29755 25 .89
296 2 .50 −.14764123E+03 −8.20229 25 .89
297 2 .55 −.14627167E+03 −8.1262 25 .89
298 2 .60 −.14356170E+03 −7.97565 25 .89
299 2 .65 −.14113231E+03 −7.84068 25 .89
300 2 .70 −.13868309E+03 −7.70462 25 .89
301 2 .75 −.14196237E+03 −7.8868 25 .89
302 2 .80 −.13859814E+03 −7.6999 25 .89
303 2 .85 −.13527883E+03 −7.51549 25 .89
304 2 .90 −.13183631E+03 −7.32424 25 .89
305 2 .95 −.12797128E+03 −7.10952 25 .89
306 3 .00 −.13160835E+03 −7.31158 25 .89
307 EOF
308

309 gnuplot
310 s e t t e rmina l svg enhanced
311 s e t x l ab e l ’ La t t i c e Parameter ’
312 s e t y l ab e l ’ Energy (eV) ’
313 s e t out ’Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_EV_data . svg ’ ; p ’

Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_EV_data . dat ’ u 1 :3
314 q
315

316 qlmanage −t −s 1000 −o . Slab_TiN_111_N−terminated_TiN_Dimer_Ti_down_11x11x1_EV_data
. svg

317

318 c l e a r
319

320

321

322 Writing f i l e EV_Plotter . sh . . .
323 done

269

324

325

326 300 +−−−+
327 |∗ + + + + + |
328 |∗ ∗∗∗∗∗∗∗ |
329 |∗ |
330 |∗ |
331 |∗ |
332 250 |∗+ +−|
333 |∗ |
334 |∗ |
335 |∗ |
336 |∗ |
337 200 |−∗ +−|
338 | ∗ |
339 | ∗ |
340 | ∗ |
341 | ∗ |
342 | ∗ |
343 150 |−∗ +−|
344 | ∗ |
345 | ∗ |
346 | ∗ |
347 | ∗ |
348 | ∗ |
349 100 |−+∗ +−|
350 | ∗ |
351 | ∗ |
352 | ∗ |
353 | ∗ |
354 | ∗ |
355 50 |−+ ∗ +−|
356 | ∗ |
357 | ∗∗ |
358 | ∗ |
359 | ∗∗ |
360 0 |−+ ∗∗∗∗∗∗∗ +−|
361 | ∗∗∗ |
362 | |
363 | |
364 | |
365 | + + + + + |
366 −50 +−−−+
367 0 0 .5 1 1 .5 2 2 .5 3
368 Lat t i c e Parameter
369

370

371 VASP data c o l l e c t i o n and compi la t ion completed
372 Success , End o f S c r i p t

9.9 A script to collect and collate many vasprun.xml files with for loops,
and a temporary counter file

As we talked about in section 9.8, VASP calculations create many files of output. One such file
is called vasprun.xml and contains a summary of what was used for the calculation input, forces,
stresses, charges, and other properties. Collections of many vasprun.xml files are used to generate

270

force field files with codes like MEAMfit.
MEAMfit requires a collection of vasprun.xml files all with individual names like vasprun1.xml,

vasprun2.xml, ... Since VASP by default outputs a single vasprun.xml file of exactly that name into
a calculation directory, we must collect, collate, and rename many of these vasprun.xml files into a
single directory that MEAMfit can access and use. This could be done manually but quickly becomes
tedious when the number of vasprun.xml files becomes large. This can be quickly automated with
a shell script. A sample of the contents of a directory containing several VASP calculations and the
contents of a single directory of those calculations is included as follows:

1 uname@uname:~O2> l s
2 O2_Dimer_a0_1.183 O2_Dimer_a0_1.195 O2_Dimer_a0_1.207 O2_Dimer_a0_1.219

O2_Dimer_a0_1.231 README. txt test_O2_dimer_automated_vasp . sh
3 uname@uname:~O2> cd O2_Dimer_a0_1.183/
4 uname@uname:~O2/O2_Dimer_a0_1.183> l s
5 CHG CONTCAR EIGENVAL INCAR OUTCAR POSCAR REPORT XDATCAR vasprun . xml CHGCAR

DOSCAR IBZKPT KPOINTS OSZICAR PCDAT POTCAR WAVECAR slurm −45241924. out

To achieve a script with this functionality, we will assume that many calculations with VASP
have been done and therefore rely on general automatic file naming conventions developed in the
previous examples from sections 9.5, and 9.4. The following script will collect the vasprun.xml
files from a number of calculation directories, automatically rename them, and place them into a
directory of your choosing.

As a warning, this is generally a super brute-force way of running this file collection! I am
including it for completeness of this text but a much more streamlined script to achieve similar
ends is included and discussed at length in section 10.4. For the more general case of collecting
many files across many levels of directories, please refer to the script in section 10.4.

In order to simplify the input parameters of the for loop that does the main work in this
calculation, we will be borrowing the header and input variables from the script given in section
9.4; as such, please refer to that section for a more in-depth discussion of how the header and initial
variables created in that script are working.

This script uses the file naming convention shown in section 9.4 in a for loop that iteratively en-
ters directories, refers to a temporary file that has a number stored inside it, copies the vasprun.xml
file to a target file and simultaneously renames it based on the contents of the temporary file, nav-
igates back to the parent directory, and then increases the number in the temporary file by 1. This
use of the temporary file is beneficial in some cases as compared to strictly using a variable to
contain this value because the temporary file can be referred to over many executions of this script.
That is to say we can continue the naming of these files picking up where we left off for many sets
of vasprun.xml files (which is exactly what frequently needs to be done when creating force field
files). This could also be achieved by modifying counter variable parameters in your scripts each
time you run them but I also find that to be tedious. Please see the following script:

1 System_Name="O2_Dimer" # Give a c a l c u l a t i o n t i t l e f o r VASP
2

3 Lattice_Parameter=" 1 .208 "
4 # Give the r e a l or exper imenta l minimum energy in t e ra tomic d i s t anc e between oxygen

atoms
5 Calculation_Steps_in_Each_Direction="2"
6 # Give the t o t a l number o f c a l c u l a t i o n po in t s in each d i r e c t i o n (e . g . 20 in the +

d i r e c t i on , 20 in the − d i r e c t i o n = 41 t o t a l i n c l ud ing a0)
7 Lattice_Parameter_Variation="2"
8 # Give upper and lower bounds o f % a0 change e . g . , a va lue o f 2 would mean that you

want a 2% va r i a t i o n which i s a0 +/− 0 .02∗ a0

271

9

10 File_Number_Start="1"
11 # Give the number that you want to begin appending to the vasprun . xml f i l e s : e . g . ,

vasprun1 . xml
12

13 #−:−
14 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
15 #−:−
16

17 Number_of_Jobs=$ (echo " s c a l e =2;(($Calculation_Steps_in_Each_Direction ∗2)+1)" | bc)
18 Lat_Param_Max=$ (echo " s c a l e =2;($Lattice_Parameter) ∗(1 . 0

$Lattice_Parameter_Variation) " | bc)
19 # Use bc to c a l c u l a t e a0_max
20 Lat_Param_Min=$ (echo " s c a l e =2;($Lattice_Parameter) ∗(1 − 0 .0

$Lattice_Parameter_Variation) " | bc)
21 # Use bc to c a l c u l a t e a0_min
22 Step_Size=$ (echo " s c a l e =3;((($Lat_Param_Max) − ($Lat_Param_Min)) /(

$Calculation_Steps_in_Each_Direction ∗2)) " | bc)
23 # Use bc to c a l c u l a t e N_steps as s tep s i z e
24

25 #−:−
26 #−:−:−:−:−:−:−:−: Begin Main f o r () Loop f o r VASP F i l e Co l l e c t i on −:−:−:−:−:−:−:−:−
27 #−:−
28

29 touch t emp f i l e ; echo ${File_Number_Start} > temp f i l e
30 # Create an empty temp f i l e and f i l l i t with the number s t a r t i n g f i l e number
31 mkdir ${System_Name}_vasprun_xml
32 # Create an empty ta r g e t d i r e c t o r y f o r copied and renamed f i l e s
33 echo " Co l l e c t i n g a t o t a l o f ${Number_of_Jobs} vasprun . xml f i l e s from the ${

System_Name} c a l c u l a t i o n s . . . "
34

35 f o r l a t in ‘ seq −w ${Lat_Param_Min} ${Step_Size } ${Lat_Param_Max} ‘ ; do
36 # ‘ i s a backt i ck : Everything between backt i ck s i s executed by the s h e l l b e f o r e the

main command , output i s then used by that command
37 f i le_number=$ (cat t emp f i l e) # Extract the cur rent number in the t emp f i l e
38 cd ${System_Name}_a0_${ l a t } # Navigate in to d i r e c t o r y f o r each loop i t e r a t i o n
39 cp vasprun . xml . . / ${System_Name}_vasprun_xml/vasprun${ fi le_number } . xml
40 # Copy and rename the vasprun . xml f i l e to the t a r g e t d i r e c t o r y based on the

cur rent number in the t emp f i l e
41 echo " Copied vasprun . xml to vasprun${ fi le_number } . xml"
42 cd . . # Navigate back to the parent d i r e c t o r y
43 counter=$ [$ (cat t emp f i l e) + 1]
44 # Increment the counter + 1 f o r the next s tep in the loop , i n s p i r a t i o n f o r t h i s

t emp f i l e implementation i s thanks to StackOverf low user bos
45 echo $counter > t emp f i l e
46 # Rewrite the temp f i l e with cat and a r e d i r e c t with the cur rent va lue o f the

counter
47 echo " Reset f i l e naming counter , new value i s ${ fi le_number }"
48 # I t e r a t e u n t i l f o r loop cond i t i on s are exhausted
49 done # End o f main f o r () loop
50

51 #−:−
52 #−:−:−:−:−:−:−:−:−: End Main f o r () Loop f o r VASP F i l e Creat ion −:−:−:−:−:−:−:−:−:−
53 #−:−
54

55 echo " vasprun . xml f i l e c o l l e c t i o n and renaming completed"
56 echo " Success , End o f S c r i p t "

272

A sample way to run this script, as well as the output printed to the terminal from running
this script, and the new contents of the directory after collecting, renaming, and collating all of
the vasprun.xml files is shown in the following. In this example, the script is run on the directory
shown above that contains several VASP calculation output directories. The calculations are for
the ground state energy in an O2 dimer for several different bonding lengths.

1 uname@uname:~/ c a l c /vasp_meam/test_O2_dimer_automated_vasp> File_Name="
VASP_Run_File_Collector" ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ; vim $
{File_Name } . sh ; . / ${File_Name } . sh

2 Co l l e c t i n g a t o t a l o f 5 vasprun . xml f i l e s from the O2_Dimer c a l c u l a t i o n s . . .
3 Copied vasprun . xml to vasprun1 . xml
4 Reset f i l e naming counter , new value i s 1
5 Copied vasprun . xml to vasprun2 . xml
6 Reset f i l e naming counter , new value i s 2
7 Copied vasprun . xml to vasprun3 . xml
8 Reset f i l e naming counter , new value i s 3
9 Copied vasprun . xml to vasprun4 . xml

10 Reset f i l e naming counter , new value i s 4
11 Copied vasprun . xml to vasprun5 . xml
12 Reset f i l e naming counter , new value i s 5
13 vasprun . xml f i l e c o l l e c t i o n and renaming completed
14 Success , End o f S c r i p t

1 uname@uname:~/ c a l c /vasp_meam/test_O2_dimer_automated_vasp/O2_Dimer_vasprun_xml> l s
2 vasprun1 . xml vasprun2 . xml vasprun3 . xml vasprun4 . xml vasprun5 . xml

9.10 A Gnuplot script for plotting OSZICAR and ignoring the file header
In many cases, the header line of a file contains information about what the data within is specifically
so there isn’t a bunch of ambiguity when someone reviews the contents of the file(s). However,
without telling Gnuplot that the file has a header or doing some tricks with covering all the text
with quotation marks, Gnuplot will not play nicely. This is especially apparently when you are
trying to plot many files in rapid succession without modifying them by hand. In order to do this
reasonably easily, you can tell Gnuplot to use the header of the file as if it were the titles of the
columns and Gnuplot will happily use the text as such.

This is immediately applicable when you are trying to plot the convergence criteria in an OS-
CIZAR file that VASP will create. Even more so, if you are trying to rapidly visualize the conver-
gence criteria for many of these OSZICAR files in rapid succession, then you’ll probably want to
automate as much as possible. Please see the following Gnuplot script:

1 # Shows i t e r a t i o n vs . E0 convergence from an OSZICAR f i l e in the working d i r e c t o r y
2 gnuplot
3 s e t t e rmina l dumb s i z e 105 ,55
4 s e t key a u t o t i t l e columnhead ; unset key # Ignore s f i r s t l i n e . Thanks to Matthew on

StackOverf low
5 s e t x l ab e l ’ La t t i c e Parameter ’ ; s e t y l ab e l ’ Energy (eV) ’
6 p ’OSZICAR ’ u 1 :3 with l i n e s
7 q

273

10 Shell Scripting for Force Field Creation with MEAMfit
and MEAMfit2

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

MEAMfit [16] and MEAMfit2 are programs that are capable of fitting an EAM or MEAM
potential to a set of vasprun.xml atomic configurations. This is especially useful in the case that
you cannot find a suitable interatomic potential to accurately describe the system that you are
considering or if you want to develop a custom force field for your own purposes. These force fields
are applicable in molecular dynamics calculations, especially with programs like Sandia National
Lab’s LAMMPS.

10.1 Compiling MEAMfit
MEAMfit, as compared with some other codes, is actually straightforward to compile and uses a
csh script to do all of the heavy lifting for you. Please see a terminal transcript of the compilation
and checking the compiled executable for MEAMfit version 1.02:

1 uname@uname:~MEAMfit> l s
2 MEAMfit . t a r . gz
3 uname@uname:~MEAMfit> untar MEAMfit . t a r . gz
4 uname@uname:~MEAMfit> l s
5 MEAMfit . t a r . gz MEAMfitUserGuide . pdf README SampleCalculat ion s r c
6 uname@uname:~MEAMfit> cd s r c /
7 uname@uname:~MEAMfit/ src> l s
8 insta l lmeam m_datapoints . f 90 m_filenames . f90 m_geometry . f90

m_neighbor l i st . f 90 m_plot f i l e s . f 90 m_screening . f90 source . f90
9 m_atomproperties . f 90 m_electrondens ity . f90 m_general_info . f90 m_meamparameters .

f90 m_optimization . f90 m_poscar . f90 o ld . f90
10 uname@uname:~MEAMfit/ src> csh insta l lmeam
11 compi le r : i f o r t
12 source : m_atomproperties . f 90 m_datapoints . f90 m_electrondens ity . f90 m_filenames .

f90 m_general_info . f90 m_geometry . f90 m_meamparameters . f 90 m_neighbor l i st . f 90
m_optimization . f90 m_plo t f i l e s . f 90 m_poscar . f90 m_screening . f90 source . f90

13 compi la t ion f l a g s : −g −assume by t e r e c l − f l t c o n s i s t e n c y −fpcons tant −r ea l−s i z e 64 −O3
14 l i b r a r i e s :
15 i f o r t m_atomproperties . f 90 m_datapoints . f90 m_electrondens ity . f90 m_filenames . f90

m_general_info . f90 m_geometry . f90 m_meamparameters . f 90 m_neighbor l i st . f 90
m_optimization . f90 m_plo t f i l e s . f 90 m_poscar . f90 m_screening . f90 source . f90 −g −
assume by t e r e c l − f l t c o n s i s t e n c y −fpcons tant −r ea l−s i z e 64 −O3 −o MEAMfit

16 source . f90 (10025) : remark #8291 : Recommended r e l a t i o n s h i p between f i e l d width ’W’
and the number o f f r a c t i o n a l d i g i t s ’D’ in t h i s e d i t d e s c r i p t o r i s ’W>=D+7 ’.

17 wr i t e (∗ , ’ (A9 , E10 . 5 ,A21) ’) ’ OPTDIFF=’ , op td i f f , ’ (from s e t t i n g s f i l e) ’
18 −−−−−−−−−−−−−−−−−−−−−−−−^
19 chmod ugo+r ∗
20 chmod ugo+x MEAMfit
21 uname@uname:~MEAMfit/ src> l s
22 MEAMfit m_atomproperties . f 90 m_datapoints .mod m_filenames . f90

m_general info .mod m_meamparameters . f 90 m_neighbor l i st .mod m_plot f i l e s . f 90
m_poscar .mod old . f90

23 Makef i l e m_atomproperties .mod m_electrondens ity . f90 m_filenames .mod
m_geometry . f90 m_meamparameters .mod m_optimization . f90 m_plo t f i l e s .mod
m_screening . f90 source . f90

24 insta l lmeam m_datapoints . f 90 m_electrondens ity .mod m_general_info . f90
m_geometry .mod m_neighbor l i st . f 90 m_optimization .mod m_poscar . f90

274

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

m_screening .mod
25 uname@uname:~MEAMfit/ src> f i l e MEAMfit
26 MEAMfit : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) , dynamical ly l inked ,

i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]=3 dd8xf2gge3a1f286fdbfc36g4309a8e6735436b ,
f o r GNU/Linux 3 . 2 . 0 , with debug_info , not s t r i pped

27 uname@uname:~MEAMfit/ src> ./MEAMfit
28

29 −−−−−−−−−−−−−− MEAMfit (v e r s i on 1 . 02) −−−−−−−−−−−−−−−
30 By Andrew I . Duff and Marcel H. F . S l u i t e r , 2006−2015
31 −−−
32 l s : cannot a c c e s s ’ vasprun ∗ . xml ’ : No such f i l e or d i r e c t o r y
33

34 Fin i shed wr i t i ng f i t d b s e f i l e , s topping .

10.2 Compiling MEAMfit2
Compiling MEAMfit2 is similar in complexity and method to compiling MEAMfit but perhaps
slightly more fiddly. Being the more difficult case, I will include the terminal transcript of my
experience here. Suffice it to say that the most up to date Intel FORTRAN compilers should do
the trick:

1 uname@uname:~/ codes /MEAMfit2/ src> module l i s t
2 Current ly Loaded Modu l e f i l e s :
3 1) modules / 3 . 2 . 1 1 . 4 2) a l td /2 .0 3) darshan /3 . 2 . 1 4) craype−network−a r i e s 5) craype

−haswe l l 6) craype−hugepages2M 7) i n t e l / 1 9 . 0 . 3 . 1 9 9 8) craype / 2 . 6 . 2 9) cray−mpich
/7 . 7 . 1 0 10) cray− l i b s c i /19 . 06 . 1 11) udreg /2 . 3 . 2 −7 . 0 . 1 . 1_3.57__g8175d3d . a r i 12)
ugni / 6 . 0 . 1 4 . 0 −7 . 0 . 1 . 1_7.59__ge78e5b0 . a r i 13) pmi /5 . 0 . 1 4 14) dmapp/7 . 1 . 1 −7 . 0 . 1 . 1
_4.68 __g38cf134 . a r i 15) gni−headers / 5 . 0 . 1 2 . 0 −7 . 0 . 1 . 1_6.44__g3b1768f . a r i 16)
xpmem/2 . 2 . 20 −7 . 0 . 1 . 1_4.26__g0475745 . a r i 17) job /2 . 2 . 4 −7 . 0 . 1 . 1_3.53__g36b56f4 . a r i
18) dvs /2 .12_2. 2 . 167 −7 . 0 . 1 . 1_17 . 9 __ge473d3a2 19) a lp s /6 . 6 . 58 −7 . 0 . 1 . 1_6.26

__g437d88db . a r i 20) rca /2 . 2 . 20 −7 . 0 . 1 . 1_4.70__g8e3fb5b . a r i 21) atp / 2 . 1 . 3 22)
PrgEnv− i n t e l / 6 . 0 . 5

4 uname@uname:~/ codes /MEAMfit2/ src> csh insta l lmeam
5 compi le r : i f o r t
6 source : m_atomproperties . f 90 m_datapoints . f90 m_electrondens ity . f90 m_filenames .

f90 m_general_info . f90 m_geometry . f90 m_meamparameters . f 90 m_neighbor l i st . f 90
m_optimization . f90 m_plo t f i l e s . f 90 m_poscar . f90 m_screening . f90
m_objectiveFunction . f90 m_observables . f 90 source . f90

7 compi la t ion f l a g s : −g −assume by t e r e c l − f l t c o n s i s t e n c y −fpcons tant −r ea l−s i z e 64 −O3
8 l i b r a r i e s :
9 i f o r t m_atomproperties . f 90 m_datapoints . f90 m_electrondens ity . f90 m_filenames . f90

m_general_info . f90 m_geometry . f90 m_meamparameters . f 90 m_neighbor l i st . f 90
m_optimization . f90 m_plo t f i l e s . f 90 m_poscar . f90 m_screening . f90
m_objectiveFunction . f90 m_observables . f 90 source . f90 −g −assume by t e r e c l −
f l t c o n s i s t e n c y −fpcons tant −r ea l−s i z e 64 −O3 −o MEAMfit

10 source . f90 (30679) : remark #8291 : Recommended r e l a t i o n s h i p between f i e l d width ’W’
and the number o f f r a c t i o n a l d i g i t s ’D’ in t h i s e d i t d e s c r i p t o r i s ’W>=D+7 ’.

11 i f (printSO) wr i t e (∗ , ’ (A9 , E10 . 5 ,A21) ’) ’ OPTDIFF=’ , op td i f f , ’ (from
s e t t i n g s f i l e) ’

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−^
13 chmod ugo+r ∗
14 chmod ugo+x MEAMfit
15 uname@uname:~/ codes /MEAMfit2/ src> l s
16 LICENSE . txt dev2d i s t . sh m_atomproperties . f 90 m_datapoints .mod m_filenames .

f90 m_general info .mod m_meamparameters . f 90 m_neighbor l i st .mod
m_observables . f90 m_optimization .mod m_poscar . f90 m_screening .mod

275

17 MEAMfit header . txt m_atomproperties .mod m_electrondens ity . f90 m_filenames .
mod m_geometry . f90 m_meamparameters .mod m_objectiveFunction . f90
m_observables .mod m_plot f i l e s . f 90 m_poscar .mod source . f90

18 Makef i l e insta l lmeam m_datapoints . f 90 m_electrondens ity .mod
m_general_info . f90 m_geometry .mod m_neighbor l i st . f 90 m_object ive funct ion
.mod m_optimization . f90 m_plo t f i l e s .mod m_screening . f90

19 uname@uname:~/ codes /MEAMfit2/ src> f i l e MEAMfit
20 MEAMfit : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) , dynamical ly l inked ,

i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]=a19aeaa772949d1d5594fa8f252d633317ce3078 ,
f o r GNU/Linux 3 . 2 . 0 , with debug_info , not s t r i pped

21 uname@uname:~/ codes /MEAMfit2/ src> ./MEAMfit
22 __ __ _____ _ __ __ __ _ _ ____
23 | \/ | ____| / \ | \/ | / _(_) |_|___ \
24 | | \ / | | _| / _ \ | | \ / | | |_| | __| __) |
25 | | | | |___ / ___ \ | | | | _| | |_ / __/
26 |_| |_|_____/_/ __| |_|_| |_| __|_____|
27 −−−−−−− Vers ion 1 .06 −−−−−−−
28

29 andrew . du f f@s t f c . ac . uk
30 Copyright 2018 STFC
31

32 Authors :
33 Andrew I . Duff
34 Marcel H. F . S l u i t e r
35

36 Contr ibut ing authors :
37 Prashanth Sr in ivasan , Thomas Mellan
38 Yuele i Bai , B laze j Grabowski
39

40 Please c i t e the f o l l ow i n g a r t i c l e i f
41 you use t h i s code in your pub l i c a t i on :
42

43 "MEAMfit : A r e f e r en c e−f r e e modi f i ed
44 embedded atom method (RF−MEAM) energy
45 and fo r ce− f i t t i n g code"
46 A. I . Duff , e t al , Comp. Phys . Comm.
47 196 439−445 (2015)
48

49 Scanning d i r e c t o r y with l s to f i nd vasprun . xml and . geom (castep) f i l e s
50 l s : cannot a c c e s s ’ vasprun ∗ . xml ’ : No such f i l e or d i r e c t o r y
51 l s : cannot a c c e s s ’ ∗ . geom ’ : No such f i l e or d i r e c t o r y
52 Cannot f i nd input DFT f i l e s (vasprun#. xml and #.geom accepted ,
53 where # i s any alphanumeric sequence) . Stopping .
54 uname@uname:~/ codes /MEAMfit2/ src>

10.3 Some common error sources in MEAMfit
As I’ve discusses before, I encounter all sorts of errors when I run calculations, especially when I am
trying a new-to-me code. Here is a partial list of some error sources and potential solutions that I
have found for use with MEAMfit and MEAMfit2. I am including these items with the presentation
first of the error you may see, and then a way you may attempt to resolve the error. Some of these
errors may be able to resolved in other ways, however this list comprises my best knowledge on how
to resolve the issues.

276

Error Potential Resolution
MEAMfit or MEAMfit2 halts unexpectedly
without an error report or any indication
that something unexpected has happened

MEAMfit or MEAMfit2 may have run out of
physical memory. This can be a serious issue
if you are trying to run multiple instances on
a single chip with limited memory. Try to in-
crease the memory allocated to each instance
of MEAMfit or MEAMfit2

If the Rfit value does not converge to a low
number (e.g. perhaps it stays near Rfit = 5
or something similarly large even after many
hours of fitting)

Check and see if your vasprun.xml files have
large energies, MEAMfit and MEAMfit2 do
not seem to like energies that are on the order
of anything greater than 103eV when your
equilibrium energies are closer to the 1eV or
0.1eV level. If you have energies on the order
of 105eV or so, you may find very sluggish
convergence

When trying to run a continued calculation,
MEAMfit or MEAMfit2 will halt with an er-
ror saying that some of the best optimization
function files are not readable or not existing

MEAMfit or MEAMfit2 may have halted un-
expectedly, it seems that continued calcula-
tions are only supported if the program halts
on its own accord (e.g., by timing out based
on the maximum calculation time given in
the settings file). Try to run MEAMfit or
MEAMfit2 for several hours less than the
maximum allotment that you can get so that
the program will not halt unexpectedly

MEAMfit2 will give huge numbers of errors
like ’negative electron density’ errors and
’Optimization failed: F cannot be evaluated
(F=NaN)’ printed to the terminal (or the
.out file)

The best workaround for this error, I have
found, is to switch back to the older version
MEAMfit 1.02 which does not seem to have
the same issue. There may be other fixes or
this could be related to a compilation issue,
however the original version seems to be ro-
bust to this particular problem and I there-
fore prefer it

10.4 Collecting many vasprun.xml files for use with MEAMfit by using
for loops and the expr command

MEAMfit requires input of vasprun.xml files in the standard use case. Collecting many of these
files, say several thousand, and renaming them all to reflect something usable by MEAMfit, is
impractical to do by hand. Being such, this is an excellent use case of automation with the shell!
What follows is a much more streamlined and more broadly applicable version of the script given
in section 9.9

The script what we’ll discuss in this section is nice because it will navigate into a series of
directories and extract all of the vasprun.xml files by copying them to a new location with a new
unique name that MEAMfit will be able to recognize. Note that this script, while flexible enough
to easily be re-written to suit individual needs, is set up with the following directory tree structure
in mind (please see the following plain text diagram of the directory tree that this script works for):

277

1 Top Direc to ry :
2 +−−−−−−−−−−+ +−−−−−−−−−−−+
3 | C ry s ta l s | | Molecules |
4 +−−−−−−−−−−+ +−−−−−−−−−−−+
5

6 Second Level D i r e c t o r i e s :
7 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+
8 | TiN | | Al2O3 | | TiO2 | |N2 | |O2 |
9 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+

10

11 Third Level D i r e c t o r i e s :
12 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
13 | I nd i v i dua l Ca l cu l a t i on s 1 . . . 2 . . . n |
14 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

For more coverage of this sort of all-text diagram, please see section 12.2.
The script expects that broad categories of calculations are all grouped into their own directories

e.g., Crystals, Molecules, Slabs, etc... Below that in the directory tree, the script expects that all
of the individual systems have their own directories e.g., one for TiN in the Crystals directory,
one for O2 in the Molecules directory, etc... And then finally, at the third level of the directory
tree, the script expects that all of the individual VASP calculations (which will contain their own
vasprun.xml file) are contained within their own directories inside of their parent directory.

Overall, the script uses a triplet of nested for loops to do the heavy lifting. In all of the for loops,
there is a single variable: a, b, and c defined: one for each loop. Then it says: for variable (e.g., a,
b, c) in all of the directories within the current directory, do... Then, within the center of all the
for loops, the program will copy the vasprun.xml file up three directories to the top of the file tree
within a new directory that is made to contain all of the vasprun.xml files. The final piece of the
puzzle is to rename the vasprun files so that they are not redundant and are also recognizable by
MEAMfit. This is done simply by creating a variable called File_Number at the beginning of the
script which we set to 1, and then for every iteration of the for loops, we add 1 to the number. That
functionality of adding one is done using the expr command in BASH. This is acceptable (since
expr doesn’t like to handle floating point arithmetic) because we only need to do this operation for
integers.

Please see the following script
1 mkdir vasprun_f i l e s
2 File_Number="1" # Begin a va r i ab l e to use in the f o r () loop to count the cur rent job

up to the f i n a l job
3

4 f o r a in ∗/ ; do # Loop s t a r t i n g at top d i r e c t o r y . Contents : Crysta l s , Molecules ,
e t c . . .

5 echo "Enter ing d i r e c t o r y $a"
6 cd "$a" ; pwd
7

8 f o r b in ∗/ ; do # Loop with in a major c a l c u l a t i o n category d i r e c t o r y
9 echo "Enter ing d i r e c t o r y $b"

10 cd "$b" ; pwd
11

12 f o r c in ∗/ ; do # Loop with in a s i n g l e c a l c u l a t i o n d i r e c t o r y
13 echo "Enter ing d i r e c t o r y $c"
14 cd "$c" ; pwd
15

16 cp vasprun . xml . . / . . / . . / va sprun_f i l e s /vasprun${File_Number } . xml # Copy
and rename the vasprun . xml f i l e to the t a r g e t d i r e c t o r y based on the cur rent

278

number in the t emp f i l e
17 echo " Copied vasprun . xml to vasprun${File_Number } . xml"
18 File_Number=$ (echo ‘ expr $File_Number + 1 ‘) # Add 1 to the

Current_Job_Number counter v a r i a b l e
19

20 cd . .
21 done # End o f s i n g l e c a l c u l a t i o n d i r e c t o r y f o r () loop
22

23 cd . .
24 done # End o f major c a l c u l a t i o n category d i r e c t o r y f o r () loop
25

26 cd . .
27 done # End o f main f o r () loop # I t e r a t e un t i l f o r loop cond i t i on s are exhausted
28

29 echo " vasprun . xml f i l e c o l l e c t i o n and renaming completed"
30 echo " Success , End o f S c r i p t "
31

10.5 Plotting a MEAMfit interatomic separations histogram in Gnuplot
For the purposes of this guide, I will be referring to MEAMfit2 because of its advantages in terms
of speed in some arenas compared to the original versions of MEAMfit.

Running MEAMfit2 for the first time in a directory containing a number of vasprun.xml files,
MEAMfit2 will generate a file called fitdbse. In the case that there are more than 1000 vasprun.xml
files, you will have to edit the fitdbse file’s first few characters to include the number of vasprun files
that you want MEAMfit2 to consider. Unlike the original MEAMfit program however, MEAMfit2
will automatically populate this with the number of files that you have in the case that there are
less than 1000.

In the case that you are trying to model a system that has directional bonding (like in covalent
materials), you will want to create a MEAM file instead of an EAM file. This option can be selected
when running MEAMfit2 for the second time which will create a file called settings. You will need to
edit the settings file to 1) uncomment (by removing the # sign) the CUTOFF_MAX= line and add
a suitable CUTOFF_MAX value. You can determine a suitable CUTOFF_MAX value from the
histogram of interatomic separations that MEAMfit2 will generate for you if you run the program
with the noopt (no-optimization) option. You will also need to add the string STOPTIME=24
(or some other relatively large amount of time where the number following STOPTIME is hours).
These edits can be made easily using vim as described in section 3.7.

If you are finding that your program is quitting earlier than you might expect, examine the
logs. If you find that there is an issue saying something like ’...there is no interatomic separation
information for species 2 and 4’ then you might have neglected to include vasprun.xml files for the
interactions of some of the species in your range of elements that you are including. For example,
if you are trying to make a MEAM file for Al, O, Ti, and N, you need interaction information for
all of the possible first order interactions.

For the reader’s reference, I am including here some notes on this histogram of interatomic
separations that MEAMfit2 will generate. The file will be of plain text data in columns, the
first being a distance unit and all remaining columns will be the interatomic interactions. These
interactions are split into series based on atom pair type. For example, if you had 2 species (A, and
B) then there would be three columns following the first, being the interaction of A with A, then
the interaction of A with B, and finally the interaction of B with B. For the case of this tutorial, I

279

ran calculations for Al, O, Ti, and N so my histogram of interatomic separations had 11 columns.
I have included below a plot of interatomic separations in the systems that I calculated for

Al, O, Ti, and N. The specific frequency of occurrence is slightly misleading because there are in
some cases more interactions of some species with others just based on the configurations that I
calculated. All that you need to consider is that each of the bins represents an order of nearest
neighbor interactions in your system. What you need to decide is where there is a good cutoff point
of diminishing returns for distance that you are calculating vs. accuracy you care about.

Following is a Gnuplot script (see section 3.8 for more on Gnuplot) for plotting the nearest-
neighbor histogram output of MEAMfit as is shown above. This is a slightly more advanced usage of
Gnuplot than I have shown in some places in this text because it fiddles with the column commands
that are actually being passed to Gnuplot. In this example, if it were not for the u 2:xtic(int($0)%10
== 0 ? stringcolumn(1) : ”) commands, then the x-axis would be over-populated with labels of the
data set. The 10% command in the following Gnuplot script tells the program that you only want
1 in 10 of the labels to be printed to the final graphic. Lines 3, and 4 tell Gnuplot that the data is
already in a histogram format and that we want to arrange the histogram bins as boxes that are
all stacked on top of each other. All of the strings saying lw 2 lc rgb ’#8F00E5’ tell a width of the
line that we want and then give the lines a specific hex color. For a table of hex colors that can
be used for data sets like this, please see section 3.8. This means of plotting can be applied to all
manner of data that is arranged as a histogram.

1 gnuplot
2 s e t t e rmina l svg enhanced s i z e 1929 ,1080 font ’Verdana ,32 ’
3 s e t s t y l e data histograms
4 s e t s t y l e histogram rowstacked
5 s e t x t i c s r o t a t e by 45 r i gh t
6 s e t key l e f t ; s e t key font " ,32 "

280

7 s e t x l ab e l ’ Atomic s epa ra t i on (A) ’ ; s e t y l ab e l ’ Frequency ’ ; s e t t i t l e ’ Histogram of
in t e ra tomic s epa ra t i on s f o r the TiN/Al203 system ’

8 s e t out ’ sepnHistogram . svg ’
9 # Thanks to Christoph from StackOverf low f o r the x t i c (. . .) example c . 2016

10 p ’ sepnHistogram . out ’ \
11 u 2 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’Al−Al ’ lw 2 l c rgb ’#8F00E5 ’

,\
12 ’ ’ u 3 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’Al−O’ lw 2 l c rgb ’#D800E0 ’

,\
13 ’ ’ u 4 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’Al−Ti ’ lw 2 l c rgb ’#DC009B ’

,\
14 ’ ’ u 5 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’Al−N’ lw 2 l c rgb ’#D8004F ’

,\
15 ’ ’ u 6 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’O−O’ lw 2 l c rgb ’#D40007 ’

,\
16 ’ ’ u 7 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’O−Ti ’ lw 2 l c rgb ’#CF3D00 ’

,\
17 ’ ’ u 8 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’O−N’ lw 2 l c rgb ’#CB8000 ’

,\
18 ’ ’ u 9 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’ Ti−Ti ’ lw 2 l c rgb ’#C7C000 ’

,\
19 ’ ’ u 10 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’ Ti−N’ lw 2 l c rgb ’#88C300 ’

,\
20 ’ ’ u 11 : x t i c (i n t ($0)%10 == 0 ? str ingco lumn (1) : ’ ’) t ’N−N’ lw 2 l c rgb ’#46BF00 ’

; q
21

The plain text data file for recreating the above plot is included below with columns of inter-
atomic separation followed by all of the possible first order interactions e.g., Al-Al, Al-O, Al-Ti,
Al-N, O-O, O-Ti, O-N, Ti-Ti, Ti-N, N-N:

1 # sepn no . sepns with in range , per s p e c i e s (e . g . (1 , 1) ; (1 , 2) ; (2 , 2))
2 0 .0500 0.00000 0.00000 0.00000 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
3 0 .1495 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
4 0 .2490 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
5 0 .3485 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
6 0 .4480 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
7 0 .5475 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
8 0 .6470 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
9 0 .7465 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001 0.00001

0.00002
10 0 .8460 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.00002
11 0 .9455 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002

0.00002
12 1 .0450 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002

0.00076
13 1 .1445 0.00001 0.00001 0.00001 0.00001 0.00070 0.00001 0.00011 0.00001 0.00002

0.00005
14 1 .2440 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00001 0.00002

0.00003

281

15 1 .3435 0.00001 0.00001 0.00001 0.00002 0.00001 0.00002 0.00003 0.00002 0.00003
0.00004

16 1 .4430 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002
0.00003

17 1 .5425 0.00001 0.00041 0.00001 0.00002 0.00001 0.00002 0.00002 0.00002 0.00003
0.00004

18 1 .6420 0.00004 0.00030 0.00004 0.00005 0.00001 0.00003 0.00004 0.00003 0.00071
0.00006

19 1 .7415 0.00003 0.00005 0.00002 0.00004 0.00001 0.00003 0.00004 0.00003 0.00004
0.00005

20 1 .8410 0.00003 0.01107 0.00002 0.00021 0.00005 0.00015 0.00005 0.00003 0.00004
0.00006

21 1 .9405 0.00003 0.00750 0.00002 0.00004 0.00006 0.00059 0.00006 0.00003 0.00007
0.00006

22 2 .0400 0.00003 0.00004 0.00005 0.00005 0.00006 0.00080 0.00008 0.00008 0.04175
0.00010

23 2 .1395 0.00003 0.00003 0.00007 0.00008 0.00008 0.00034 0.00013 0.00013 0.00034
0.00020

24 2 .2390 0.00002 0.00003 0.00006 0.00006 0.00009 0.00010 0.00012 0.00009 0.00013
0.00016

25 2 .3385 0.00003 0.00003 0.00005 0.00006 0.00008 0.00009 0.00011 0.00009 0.00014
0.00017

26 2 .4380 0.00003 0.00004 0.00005 0.00006 0.01114 0.00012 0.00012 0.00008 0.00013
0.00017

27 2 .5375 0.00004 0.00011 0.00006 0.00008 0.00768 0.00014 0.00015 0.00011 0.00024
0.00022

28 2 .6370 0.00148 0.00004 0.00039 0.00007 0.01505 0.00014 0.00015 0.00027 0.00017
0.00020

29 2 .7365 0.00834 0.00005 0.00088 0.00008 0.00130 0.00016 0.00017 0.00070 0.00018
0.00021

30 2 .8360 0.00195 0.00007 0.00057 0.00007 0.02306 0.00016 0.00017 0.00172 0.00016
0.00020

31 2 .9355 0.00018 0.00007 0.00016 0.00018 0.00111 0.00036 0.00039 0.07972 0.00044
0.07836

32 3 .0350 0.00041 0.00016 0.00025 0.00024 0.00062 0.00039 0.00043 0.00140 0.00052
0.00145

33 3 .1345 0.01111 0.01098 0.00020 0.00018 0.00023 0.00029 0.00035 0.00063 0.00037
0.00072

34 3 .2340 0.00025 0.00031 0.00015 0.00019 0.00031 0.00032 0.00040 0.00064 0.00039
0.00056

35 3 .3335 0.00007 0.00560 0.00015 0.00017 0.00046 0.00033 0.00037 0.00027 0.00035
0.00048

36 3 .4330 0.01473 0.00215 0.00017 0.00019 0.00033 0.00066 0.00042 0.00032 0.00040
0.00055

37 3 .5325 0.00036 0.00753 0.00018 0.00034 0.00028 0.00106 0.00041 0.00063 0.00058
0.00052

38 3 .6320 0.00009 0.00022 0.00018 0.00048 0.00038 0.00076 0.00041 0.00043 0.04265
0.00057

39 3 .7315 0.00009 0.00017 0.00019 0.00024 0.01539 0.00059 0.00045 0.00049 0.00090
0.00082

40 3 .8310 0.00291 0.00392 0.00020 0.00023 0.00112 0.00071 0.00044 0.00059 0.00057
0.00079

41 3 .9305 0.00122 0.00024 0.00019 0.00025 0.00810 0.00060 0.00044 0.00084 0.00046
0.00069

42 4 .0300 0.00069 0.00029 0.00026 0.00029 0.00059 0.00059 0.00047 0.00126 0.00053
0.00070

43 4 .1295 0.00020 0.01114 0.00029 0.00026 0.00066 0.00079 0.00050 0.00144 0.00046
0.00097

282

44 4 .2290 0.00104 0.00646 0.00030 0.00038 0.00211 0.00094 0.00062 0.03047 0.00082
0.03164

45 4 .3285 0.00046 0.02720 0.00024 0.00048 0.00499 0.00085 0.00060 0.00068 0.00087
0.00158

46 4 .4280 0.00037 0.00071 0.00025 0.00044 0.00106 0.00087 0.00061 0.00056 0.00055
0.00084

47 4 .5275 0.00015 0.00103 0.00024 0.00033 0.02285 0.00153 0.00061 0.00052 0.00154
0.00077

48 4 .6270 0.00022 0.00399 0.00027 0.00038 0.00112 0.00181 0.00060 0.00070 0.00192
0.00073

49 4 .7265 0.02421 0.00064 0.00136 0.00090 0.05067 0.00162 0.00092 0.00225 0.10803
0.00372

50 4 .8260 0.00318 0.00044 0.00170 0.00072 0.00278 0.00120 0.00088 0.00121 0.00138
0.00214

51 4 .9255 0.00264 0.00058 0.00115 0.00054 0.00962 0.00098 0.00085 0.00242 0.00117
0.00126

52 5 .0250 0.00199 0.00857 0.00076 0.00055 0.01377 0.00076 0.00085 0.00371 0.00174
0.00171

53 5 .1245 0.00705 0.00062 0.00067 0.00066 0.01070 0.00105 0.00108 0.10072 0.00116
0.09963

54 5 .2240 0.00053 0.00778 0.00059 0.00063 0.00508 0.00105 0.00112 0.00357 0.00116
0.00338

55 5 .3235 0.00071 0.00802 0.00059 0.00065 0.02367 0.00112 0.00116 0.00194 0.00115
0.00214

56 5 .4230 0.01558 0.00130 0.00059 0.00063 0.00204 0.00124 0.00119 0.00195 0.00167
0.00185

57 5 .5225 0.00179 0.00417 0.00047 0.00059 0.00176 0.00124 0.00113 0.00205 0.00109
0.00145

58 5 .6220 0.00212 0.00064 0.00062 0.00072 0.01227 0.00136 0.00105 0.00181 0.00112
0.00156

59 5 .7215 0.01209 0.02601 0.00067 0.00077 0.00208 0.00147 0.00108 0.00223 0.00107
0.00176

60 5 .8210 0.01547 0.01197 0.00061 0.00071 0.00975 0.00142 0.00107 0.00259 0.00120
0.00199

61 5 .9205 0.00212 0.00090 0.00054 0.00077 0.00496 0.00151 0.00138 0.05144 0.00128
0.05311

62 6 .0200 0.01505 0.00074 0.00062 0.00070 0.01719 0.00164 0.00134 0.00186 0.00139
0.00299

63 6 .1195 0.00130 0.00507 0.00113 0.00080 0.00905 0.00220 0.00122 0.00127 0.00242
0.00167

64 6 .2190 0.00247 0.00071 0.00147 0.00082 0.02352 0.00252 0.00126 0.00154 0.00255
0.00157

65 6 .3185 0.00276 0.00807 0.00141 0.00093 0.00204 0.00233 0.00140 0.00214 0.09880
0.00190

66 6 .4180 0.00206 0.01903 0.00087 0.00111 0.00968 0.00161 0.00138 0.00251 0.00241
0.00178

67 6 .5175 0.00427 0.00836 0.00078 0.00115 0.01769 0.00159 0.00143 0.00315 0.00153
0.00211

68 6 .6170 0.00054 0.01196 0.00084 0.00110 0.00343 0.00177 0.00161 0.07067 0.00160
0.06998

69 6 .7165 0.00087 0.00511 0.00084 0.00104 0.01859 0.00264 0.00173 0.00337 0.00201
0.00311

70 6 .8160 0.00124 0.01199 0.00103 0.00100 0.00467 0.00291 0.00165 0.00236 0.00193
0.00268

71 6 .9155 0.00898 0.01205 0.00114 0.00109 0.01342 0.00293 0.00170 0.00211 0.00256
0.00231

72 7 .0150 0.00135 0.00856 0.00113 0.00110 0.03233 0.00239 0.00183 0.00223 0.06993
0.00249

283

73 7 .1145 0.00086 0.01578 0.00085 0.00102 0.01864 0.00195 0.00173 0.00249 0.00250
0.00242

74 7 .2140 0.01575 0.00503 0.00125 0.00108 0.02601 0.00210 0.00181 0.00244 0.00210
0.00230

75 7 .3135 0.00310 0.00115 0.00191 0.00104 0.02496 0.00241 0.00176 0.02182 0.00177
0.02146

76 7 .4130 0.02704 0.00849 0.00232 0.00109 0.03219 0.00274 0.00172 0.00328 0.00180
0.00210

77 7 .5125 0.03397 0.00866 0.00195 0.00105 0.00373 0.00278 0.00178 0.00456 0.00223
0.00184

78 7 .6120 0.00370 0.01258 0.00155 0.00125 0.00553 0.00283 0.00204 0.00603 0.07966
0.00250

79 7 .7115 0.00164 0.00513 0.00103 0.00128 0.00580 0.00244 0.00209 0.00668 0.00251
0.00319

80 7 .8110 0.00115 0.00637 0.00095 0.00132 0.00505 0.00223 0.00197 0.00672 0.00205
0.00431

81 7 .9105 0.00327 0.00750 0.00126 0.00166 0.00669 0.00288 0.00273 0.14210 0.00283
0.14312

82 8 .0100 0.00182 0.00591 0.00118 0.00148 0.00385 0.00239 0.00253 0.00497 0.00307
0.00520

83 8 .1095 0.00556 0.00888 0.00118 0.00137 0.01819 0.00232 0.00246 0.00299 0.00206
0.00357

84 8 .2090 0.02549 0.00194 0.00181 0.00170 0.03921 0.00225 0.00248 0.00409 0.00190
0.00580

85 8 .3085 0.00313 0.01358 0.00198 0.00166 0.02026 0.00251 0.00234 0.00261 0.00271
0.00376

86 8 .4080 0.01936 0.02378 0.00206 0.00173 0.04248 0.00367 0.00237 0.01299 0.00227
0.01419

87 8 .5075 0.00411 0.01549 0.00188 0.00182 0.02033 0.00422 0.00228 0.00274 0.00265
0.00295

88 8 .6070 0.01082 0.00420 0.00121 0.00182 0.01260 0.00413 0.00220 0.00384 0.00392
0.00216

89 8 .7065 0.00334 0.02028 0.00151 0.00193 0.01989 0.00382 0.00253 0.00519 0.09971
0.00304

90 8 .8060 0.00299 0.00950 0.00140 0.00180 0.01289 0.00307 0.00248 0.00614 0.00371
0.00369

91 8 .9055 0.00347 0.03118 0.00161 0.00195 0.02705 0.00348 0.00287 0.09232 0.00308
0.09078

92 9 .0050 0.01737 0.00940 0.00172 0.00182 0.00548 0.00405 0.00306 0.00551 0.00349
0.00491

93 9 .1045 0.00264 0.00699 0.00182 0.00184 0.02414 0.00419 0.00291 0.00562 0.00355
0.00420

94 9 .2040 0.00292 0.00821 0.00203 0.00173 0.01376 0.00393 0.00286 0.00537 0.07093
0.00361

95 9 .3035 0.00652 0.00726 0.00206 0.00161 0.01366 0.00404 0.00272 0.00539 0.00333
0.00368

96 9 .4030 0.01192 0.00740 0.00199 0.00196 0.01635 0.00438 0.00294 0.06402 0.00310
0.06488

97 9 .5025 0.02635 0.00987 0.00190 0.00233 0.04594 0.00462 0.00308 0.00572 0.00401
0.00846

98 9 .6020 0.00312 0.02981 0.00179 0.00221 0.01311 0.00434 0.00304 0.00490 0.00603
0.00386

99 9 .7015 0.00371 0.01371 0.00202 0.00239 0.02795 0.00393 0.00342 0.00593 0.10036
0.00458

100 9 .8010 0.01119 0.01017 0.00206 0.00220 0.04813 0.00358 0.00356 0.00619 0.00408
0.00467

101 9 .9005 0.01902 0.00637 0.00283 0.00212 0.02424 0.00342 0.00346 0.04441 0.00302
0.04260

284

102

10.6 A MEAMfit input script for some automation, and a demonstration
of MEAMfit fitting and testing on an example data set

One area where I find myself making mistakes with MEAMfit (since most of the calculation is
automated after you give MEAMfit all of the vasprun.xml files that it can eat) is in handling the
settings file. This input script is similar to many that I include in sections 6, 7, and 9 so you can
refer to those if you want a denser point-by point coverage of all the things that this script is doing.
However, I will cover just a few here:

First in this script, we set up some variables, one of which being ’Continue’ that we give either
a value of T or F, this is dumped into the settings file which this script will create. I find that it
is exceeding helpful to create the settings file using a script like this because you can dodge having
to remember the names of specific options that you need to pass to MEAMfit.

After giving those several variables, the script will create a ’settings’ file for MEAMfit (which
means that you can skip running MEAMfit one of the three times that you generally need to in
order to have a computation begin. The settings file also will come pre-built with the time interval
over which you want the calculation to run and whether or not you are asking for a continued or a
from-scratch calculation. I think that this is valuable because it saves me time; make the tool once
and make it well and you won’t have to worry about it nearly as much in the future.

After that, under the comment "BASH and bc Calculated Variables for VASP Automation", I
give some switch/case statements for choosing which executable I want (e.g., MEAMfit or MEAM-
fit2 which each have their costs and benefits), which processor architecture to run the calculations
on, and to what queue I will submit the calculation. Since MEAMfit isn’t traditionally run with
multi-threading, I choose to run it in serial on a single processor on a single node which incidentally
saves lots in the way of machine hours compared to running over multiple processors on a node.

After creating a README file and printing parameters to the terminal for future reference, I
set up an if statement to choose how the SBATCH file will be created based on which queue in a
cluster I want to submit the calculation to. I find this methodology valuable when it ends up being
tedious to control all of those parameters with just variables. This is a valid means of scripting
where you just list things more explicitly. After that, finally, the job is submitted to the computer.
Remember however to run MEAMfit on the data set initially once to generate a fit database file.

Just like in section 7.3, I built in the small functionality where I copy and paste the following
line into the terminal:

1 File_Name="MEAMfit_Optimization" ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ;
vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README. txt

Please see the following script:
1 #!/ bin /bash
2

3 #−:−
4 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: MEAMfit . sh −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
5 #−:−
6

7 # Copy and paste the below l i n e in to the c l u s t e r te rmina l to make and run the s c r i p t
(paste in to vim and save with :wq)

8 # |& tee −a README. txt auto−cop i e s te rmina l outputs in to the README. txt f i l e (thanks
to Byte Commander on Stack Exchange)

285

9

10 # File_Name="MEAMfit_Optimization " ; touch ${File_Name } . sh ; chmod +x ${File_Name } . sh ;
vim ${File_Name } . sh ; . / ${File_Name } . sh |& tee −a README. txt

11

12 # __ __ ______ ______ __ __ ______ __ ______
13 # /\ "−./ \/\ ___\/\ __ \/\ "−./ \/\ ___/\ \/__ _\
14 # \ \ \−./\ \ \ __\\ \ __ \ \ \−./\ \ \ __\ \ \/_/\ \/
15 # \ _\ \ _\ _____\ _\ _\ _\ \ _\ _\ \ _\ \ _\
16 # \/_/ \/_/\/_____/\/_/\/_/\/_/ \/_/\/_/ \/_/ \/_/
17

18 #−:−
19 #−:−:−:−:−:−:−:−:−:−:−:−:−: Give the Fol lowing Var iab l e s −:−:−:−:−:−:−:−:−:−:−:−:−
20 #−:−
21

22 Job_Name="MEAMfit" # Give the name you want to apply to a l l f i l e s here
23

24 Desc r ip t i on="MEAMfit p o t e n t i a l f i t t i n g " # Please g ive a shor t d e s c r i p t i o n o f the
c a l c u l a t i o n f o r the README. txt f i l e

25 Author="Steven E. Bopp , Mate r i a l s Sc i ence & Engineer ing "
26

27 System_Name="MEAMfit" # Give a c a l c u l a t i o n t i t l e f o r MEAMfit
28

29 Job_Time=" 47 : 10 : 00 " # Run time in hh :mm: s s (f l e x queue , > 02 : 0 0 : 0 0)
30 Job_Time_Min=" 02 : 00 : 00 " # Minimum po s s i b l e run time o f the s c r i p t f o r f l e x queue
31 Job_Nodes="1" # Number o f nodes to use f o r the c a l c u l a t i o n
32 Job_Queue=" shared " # Give the queue (e . g . , ’ debug ’ , ’ r egu la r ’ , ’ f l e x ’ , or ’

low ’) low and f l e x queues have 50 and 75% di s count s r e s p e c t i v e l y f o r KNL
33 Arch i t e c tu r e=" haswe l l " # SLURM se t t i n g (s) : (e . g . , ’ haswel l ’ or ’ knl ’)
34 Module_Name="MEAMfit" # Give the name o f the module that you want to load
35 Continue="T" # (e . g . ’T’ f o r continued , ’F ’ f o r s t a r t from sc ra t ch)
36 SQS_Update_Time="15" # Give the number o f seconds f o r update cy c l e to wait
37 Calculation_Type="Test" # "Ful l " f o r MEAMfit or "Test " to t e s t a MEAM f i l e
38 Cutoff_Max=" 4 .4 " # Maximum cu t o f f d i s t anc e f o r the MEAMfit c a l c u l a t i o n
39

40 echo " Running MEAMfit c a l c u l a t i o n s on vasprun . xml f i l e s f o r ${System_Name}"
41

42 #−:−
43 #−:−:−:−:−:−:−:−:−:−:−:−:−: Create MEAMfit S e t t i n g s F i l e −:−:−:−:−:−:−:−:−:−:−:−:−
44 #−:−
45

46 echo " Creat ing s e t t i n g s f i l e f o r ${Module_Name}"
47

48 rm s e t t i n g s
49

50 i f [[$Calculation_Type = Ful l]]
51 then
52

53 echo " Creat ing s e t t i n g s f i l e f o r a f u l l $Module_Name c a l c u l a t i o n "
54

55 cat > s e t t i n g s << EOF
56 TYPE=MEAM
57 CUTOFF_MAX=$Cutoff_Max
58 NTERMS=2
59 NTERMS_EMB=3
60 STOPTIME=45
61 USEREF=F
62 CONT=${Continue}
63 EOF

286

64

65 e l s e
66

67 echo " Creat ing s e t t i n g s f i l e f o r a $Module_Name po t e n t i a l t e s t i n g c a l c u l a t i o n "
68

69 cp potparas_best1 potparas_MEAM
70

71 cat > s e t t i n g s << EOF
72 TYPE=MEAM
73 POTFILEIN=potparas_MEAM
74 CUTOFF_MAX=$Cutoff_Max
75 NTERMS=2
76 NTERMS_EMB=3
77 NOOPT=true
78 EOF
79

80 f i
81

82 echo " Writing input f i l e s e t t i n g s . . . "
83 echo " done"
84

85

86 #−:−
87 #−:−:−:−:−:−:− BASH and bc Calcu lated Var i ab l e s f o r VASP Automation :−:−:−:−:−:−:−
88 #−:−
89

90 case $Module_Name in # This switch / case w i l l automat i ca l l y i n s e r t opt ions in to the
sbatch f i l e

91 MEAMfit) Module_Location="~/codes /MEAMfit/ s r c /MEAMfit" ; ; # Executable l o c a t i o n
f o r HSW

92 MEAMfit2) Module_Location="~/codes /MEAMfit2/ s r c /MEAMfit" ; ; # Executable l o c a t i o n
f o r HSW

93 esac
94

95 case $Arch i t e c ture in # This switch / case w i l l automat i ca l l y switch the environments
and executab l e l o c a t i o n s f o r va r i ous a r c h i t e c t u r e s l i k e haswe l l and knl

96 haswe l l) echo " Haswel l a r c h i t e c t u r e s e l e c t e d "
97 Processes_Per_Node="32" ; Threads_Per_Process="2" ; ;

Recommended Haswel l s e t t i n g s f o r 1 node and 32 MPI p ro c e s s e s per node
with 2 threads each

98 knl) echo " Knight ’ s Landing a r c h i t e c t u r e s e l e c t e d "
99 Processes_Per_Node="64" ; Threads_Per_Process="4" ; ;

Recommended MPI s e t t i n g f o r 1 node . NPAR should be sq r t (
Processes_Per_Node) ! ! NPAR = 8 g i v e s s ub s t an t i a l sav ings o f ~67% compared to
NPAR = 1

100 esac
101

102 case $Job_Queue in # This switch / case w i l l automat i ca l l y i n s e r t opt ions in to the
sbatch f i l e

103 f l e x) Time_Min="#SBATCH −−time−min=${Job_Time_Min}" ; ; # I n s e r t s #SBATCH −−time
−min=0:30:00 in to sbatch

104 shared) Shared="#SBATCH −−shared " ; ; # I n s e r t s #SBATCH −−
shared in to sbatch

105 esac
106

107 Date=$ (date ’+%d/%m/%Y %H:%M:%S ’) # Give date in day/month/ year hr/min/ sec thanks
user1293137 from https : // unix . stackexchange . com/

108

287

109 #−:−
110 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:−: Create f i l e README −:−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
111 #−:−
112

113 cat > README. txt << EOF
114 Job Name : ${Job_Name} . sh
115 This i s a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to c a l c u l a t e ${

Desc r ip t i on } .
116 Cal cu l a t ing f o r ${Job_Time} with ${Job_Nodes} job nodes on the ${Job_Queue} queue .
117 Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node and ${

Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm: s s .
118 Calcu lated by ${Author} on $Date .
119

120 A t r an s c r i p t o f the c a l c u l a t i o n as seen from the te rmina l f o l l ow s :
121

122 EOF
123

124 echo " Writing f i l e README. txt . . . "
125 echo " done"
126

127 #−:−
128 #−:−:−:−:−:−:−:−:−:−:−:− Print Parameters to the Terminal :−:−:−:−:−:−:−:−:−:−:−:−
129 #−:−
130

131 echo " Running a ${Module_Name} c a l c u l a t i o n o f the ${System_Name} system to
c a l c u l a t e ${Desc r ip t i on }"

132 echo " Ca l cu l a t ing f o r ${Job_Time} with ${Job_Nodes} job nodes on the ${Job_Queue}
queue . "

133 echo " Using ${Arch i t e c tu r e } node (s) with ${Processes_Per_Node} p r o c e s s e s per node
and ${Threads_Per_Process} threads per node f o r a maximum of ${Job_Time} hh :mm:
s s "

134 echo " Calcu lated by ${Author} on $Date . "
135 echo " Running s c r i p t ${Job_Name} . sh . . . "
136 echo " The time i s cu r r en t l y $Date "
137

138 #−:−
139 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:− Create SBATCH Sc r i p t :−:−:−:−:−:−:−:−:−:−:−:−:−:−:−
140 #−:−
141

142 i f [[$Job_Queue = shared]]
143 then
144

145 echo " Creat ing sbatch f o r the ${Job_Queue} job queue"
146

147 cat > ${Job_Name} . sb << EOF
148 #!/ bin /bash
149 #SBATCH −−job−name=${Job_Name}
150 #SBATCH −q ${Job_Queue}
151 #SBATCH −C ${Arch i t e c tu r e }
152 #SBATCH −t ${Job_Time}
153 #SBATCH −−nodes=1
154 #SBATCH −−ntasks=1
155 #SBATCH −−cpus−per−task=8
156 #SBATCH −−mem=16GB
157

158 srun −−cpu_bind=co r e s ${Module_Location}
159

160 EOF

288

161

162 e l s e
163

164 echo " Creat ing sbatch f o r the ${Job_Queue} job queue"
165

166 cat > ${Job_Name} . sb << EOF
167 #!/ bin /bash
168 #SBATCH −−job−name=${Job_Name}
169 #SBATCH −N ${Job_Nodes}
170 #SBATCH −C ${Arch i t e c tu r e }
171 #SBATCH −q ${Job_Queue}
172 #SBATCH −t ${Job_Time}
173 ${Time_Min}
174

175 #OpenMP s e t t i n g s :
176 export OMP_NUM_THREADS=1
177 export OMP_PLACES=threads
178 export OMP_PROC_BIND=spread
179

180 module load ${Module_Name}
181 srun −n ${Processes_Per_Node} −c ${Threads_Per_Process} −−cpu_bind=co r e s ${

Module_Location}
182

183 EOF
184

185 f i
186

187 echo " Writing input f i l e ${Job_Name} . sb . . . "
188 echo " done"
189

190 #−:−
191 #−:−:−:−:−:−:−:−:−:−:−: Run MEAMfit Ca l cu l a t i on with SBATCH :−:−:−:−:−:−:−:−:−:−:−
192 #−:−
193

194 echo " Submitting ${Job_Name} . sb v ia sbatch . . . "
195 echo " Running job ${Job_Name} on the ${Job_Queue} queue with ${Job_Nodes} node (s)

per job f o r ${Job_Time} each"
196 sbatch ${Job_Name} . sb
197 echo " Begin : "
198

199 #−:−
200 #−:−:−:−:−:−:−:−:−:−:−:−:−:−:End Elapsed Time Measurement−:−:−:−:−:−:−:−:−:−:−:−:−
201 #−:−
202

203 sqs # cat out the job that has been submitted
204 echo " The time i s cu r r en t l y $Date "
205 echo " Dumping termina l s e s s i o n in to README. txt "
206 echo " Success , End o f Scr ipt , Running sqs on a ${SQS_Update_Time} Second Loop"
207 whi le [1] ; do Jobs=$ (sqs | wc − l) ; echo " ‘ expr ${Jobs} − 1 ‘ j obs in the queue" ;

sqs ; date ; t a i l slurm ∗ ; s l e e p ${SQS_Update_Time} ; done # Queue and Slurm update
loop

208

Determining the amount of time that MEAMfit will need to run to reach a good value of Rfit

is complicated and more or less unpredictable because of the random sampling that the program
uses to find an initial Rfit. However, after a suitable run time (which you will most likely have to
optimize based on your own experimentation with the code), you may end up with a file of best

289

optimization functions that looks similar to the following (a fitting of 1575 vasprun.xml files):
1 uname@uname:~/ vasprun_f i l e s> head f i t d b s e
2 1575 # F i l e s | Conf igs to f i t | Quantity to f i t | Weights
3 vasprun1 . xml 1−1 Fr 1
4 vasprun10 . xml 1−1 Fr 1
5 vasprun100 . xml 1−1 Fr 1
6 vasprun1000 . xml 1−1 Fr 1
7 vasprun1001 . xml 1−1 Fr 1
8 vasprun1002 . xml 1−1 Fr 1
9 vasprun1003 . xml 1−1 Fr 1

10 vasprun1004 . xml 1−1 Fr 1
11 vasprun1005 . xml 1−1 Fr 1

1 uname@uname:~/ vasprun_f i l e s> cat be s topt func s
2 Top 10 opt funcs :
3 1 : 7.659225012101019E−002 time : 35 hours
4 2 : 0.100229833269679 time : 18 hours
5 3 : 0.100435201178587 time : 30 hours
6 4 : 0.105494405779543 time : 25 hours
7 5 : 0.147677567956181 time : 5 hours
8 6 : 0.159451199802870 time : 13 hours
9 7 : 0.202641083389697 time : 10 hours

10 8 : 0.226031273316243 time : 19 hours
11 9 : 0.252660771132752 time : 1 hours
12 10 : 0.286501447533809 time : 0 hours
13

14 Total time taken 35h 22m 0 s .

1 uname@uname:~/ vasprun_f i l e s> cat s e t t i n g s
2 TYPE=MEAM
3 CUTOFF_MAX=4.4
4 NTERMS=2
5 NTERMS_EMB=3
6 STOPTIME=44
7 USEREF=F
8 CONT=F

1 uname@uname:~/ vasprun_f i l e s> l s
2 bes topt func s e l e cdens3 pa i rpo t13_fu l l potparas_best1
3 datapnts_best1 e l e cd en s 3_ fu l l pa i rpot14 potparas_best10
4 datapnts_best10 e l e cdens4 pa i rpo t14_fu l l potparas_best2
5 datapnts_best2 e l e cd en s 4_ fu l l pa i rpot22 potparas_best3
6 datapnts_best3 embfunc1 pa i rpo t22_fu l l potparas_best4
7 datapnts_best4 embfunc2 pa i rpot23 potparas_best5
8 datapnts_best5 embfunc3 pa i rpo t23_fu l l potparas_best6
9 datapnts_best6 embfunc4 pa i rpot24 potparas_best7

10 datapnts_best7 f i t d b s e pa i rpo t24_fu l l potparas_best8
11 datapnts_best8 i d s f o r sma l l e s t s e pn s pa i rpot33 potparas_best9
12 datapnts_best9 pa i rpot11 pa i rpo t33_fu l l sepnHistogram . out
13 e l e cdens1 pa i rpo t11_fu l l pa i rpot34 s e t t i n g s
14 e l e cd en s 1_ fu l l pa i rpot12 pa i rpo t34_fu l l sma l l e s t s epnv s s t ru c . dat
15 e l e cdens2 pa i rpo t12_fu l l pa i rpot44
16 e l e cd en s 2_ fu l l pa i rpot13 pa i rpo t44_fu l l

The relative ’goodness’ of the Rfit values do not always depend strictly on the time that the
program spends running (again, because of the random sampling) but generally the longer that
the program runs, the better the Rfit values will become. If, like explained in section ??, your

290

values of Rfit do not begin to approach a useful value of Rfit 0.06 then consider searching for
and removing very high energy atomic configurations because it seems that if there are many high
energy configurations then MEAMfit will have trouble reaching a reasonable Rfit value independent
of the run time.

Once the fitting has completed and converged to a sufficiently reasonable result, we can test
the MEAM file by evaluating the optimization function for a testing set of energies. By the way
that MEAMfit is set up, the best potential file will be named ’potparas_best1’. Run the following
commands:

1 cp potparas_best1 potparas_MEAM
2 cp s e t t i n g s s e t t i n g s_o r i g i n a l
3 vim s e t t i n g s

Copy and paste the following settings into the new settings file that you have just created using
vim:

1 TYPE=MEAM
2 POTFILEIN=potparas_MEAM
3 CUTOFF_MAX=4.4
4 NTERMS=2
5 NTERMS_EMB=3
6 NOOPT=true

Close vim by pressing the escape key and then :wq followed by enter (for more coverage of vim,
please see section 3.7). Run MEAMfit again to evaluate the potential against a testing set. Please
see the following standard output for my running MEAMfit against a testing set for the potential
I evaluated with 1575 vsprun.xml files that reached Rfit = 7.659225012101019E − 002:

1 −−−−−−−−−−−−−− MEAMfit (v e r s i on 1 . 02) −−−−−−−−−−−−−−−
2 By Andrew I . Duff and Marcel H. F . S l u i t e r , 2006−2015
3 −−−
4

5 I n i t i a l i z i n g F i t t i n g database
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 F i l e | Conf igs to f i t | Quantity to f i t | Weights
8 vasprun1 . xml 1−1 Free energy 1.00000000000000
9 vasprun10 . xml 1−1 Free energy 1.00000000000000

10 vasprun100 . xml 1−1 Free energy 1.00000000000000
11 vasprun1000 . xml 1−1 Free energy 1.00000000000000

I’m skipping some standard output lines here as they just list the large number of vasprun.xml
files. Interesting parts of the standard output follow:

1 vasprun995 . xml 1−1 Free energy 1.00000000000000
2 vasprun996 . xml 1−1 Free energy 1.00000000000000
3 vasprun997 . xml 1−1 Free energy 1.00000000000000
4 vasprun998 . xml 1−1 Free energy 1.00000000000000
5 vasprun999 . xml 1−1 Free energy 1.00000000000000
6 (f i t t i n g to 1575 atomic c on f i g u r a t i o n s a c r o s s a l l f i l e s)
7

8 General i n i t i a l i z a t i o n
9 −−−−−−−−−−−−−−−−−−−−−−

10 No SEED in s e t t i n g s f i l e , us ing time to seed random numbers .
11 No MUT_PROB in s e t t i n g s f i l e , us ing d e f au l t (0 . 3) .
12 No NOPTFUNCSTORE in s e t t i n g s f i l e , us ing d e f au l t (10) .
13 No OPTFUNCCG in s e t t i n g s f i l e , us ing d e f au l t (OPTFUNCCG=10) .
14 No OPTFUNC_ERR in s e t t i n g s f i l e , us ing d e f au l t f o r energy f i t (OPTFUNC_ERR=10^−

291

15 14) .
16 No OPTFUNCCG_GA in s e t t i n g s f i l e , us ing d e f au l t (OPTFUNCCG=
17 10∗OPTFUNCCG 100.0000000000) .
18 No OPTDIFF in s e t t i n g s f i l e , us ing d e f au l t (=10^−10)
19 No OPTACC in s e t t i n g s f i l e , us ing d e f au l t (=0.0005)
20 No STOPTIME in s e t t i n g s f i l e , us ing d e f au l t (=168 hours=1 week)
21 No MAXFUNCEVALS in s e t t i n g s f i l e , us ing d e f au l t (=2000)
22 POTFILEIN=potparas_MEAM (from s e t t i n g s)
23 No FIXPOTIN in s e t t i n g s f i l e : a l low input p o t e n t i a l to opt imize
24 NOOPT=TRUE (from s e t t i n g s f i l e)
25 CUTOFF_MAX= 4.40000 (from s e t t i n g s f i l e)
26 No CUTOFF_MIN in s e t t i n g s f i l e , us ing d e f au l t (CUTOFF_MIN=
27 1.50000000000000)
28 TYPE=MEAM (from s e t t i n g s f i l e)
29

30 Poten t i a l i n i t i a l i z a t i o n
31 −−−−−−−−−−−−−−−−−−−−−−−−
32 Reading in po t e n t i a l parameters from potparas_MEAM
33 Completed s t r u c tu r e i n i t i a l i z a t i o n
34 Prepar ing to read data from vasprun . xml f i l e s
35 Completed data read−in from vasprun . xml f i l e s
36 avgEn= −68.8679761438603 , avgFrc= 0.000000000000000E+000
37 varEn= 3200.92505263403 , varFrc= 0.000000000000000E+000
38

39 −−−
40 Optimizat ion func t i on= 0.100834984857534
41 −−−
42

43 rms e r r o r on en e r g i e s= 5.70491253221082
44 rms e r r o r on f o r c e s= 0.000000000000000E+000
45

46 Energ i e s :
47

48 Struc ture f i t d a t a truedata
49 −−
50 vasprun1 . xml_1 0.000000000000000000 0.000000000000000000
51 vasprun10 . xml_1 1.646281788326703577 −0.180839689999999109
52 vasprun100 . xml_1 64.398263877670515853 59.682770330000003867
53 vasprun1000 . xml_1 −9.071981776729828084 −13.408281660000000102
54 vasprun1001 . xml_1 −8.934956852083615786 −13.768509769999994319

I skip many lines from the standard output here since there are 1575 vasprun.xml files and this
section lists the fit data vs the true data for every one of them, that’s much too much to include
here. For brevity, I just include the tail end of the optimization energies and all the standard output
that follows:

1 vasprun995 . xml_1 −10.191290211528070131 −11.579342849999989085
2 vasprun996 . xml_1 −9.849236737160453004 −11.887335669999998800
3 vasprun997 . xml_1 −9.605878160690579648 −12.249370020000000636
4 vasprun998 . xml_1 −9.400435171991816219 −12.636695009999996842
5 vasprun999 . xml_1 −9.224844218213647196 −13.027656729999989693
6

7 −−−−−−−−−−−−−−−−−−−−−−
8 Optimizat ion completed
9 Total time taken 15 s .

10 −−−−−−−−−−−−−−−−−−−−−−
11

12 Camelion output :

292

13 −−−−−−−−−−−−−−−−
14 Subs t i tu t e the f o l l ow i n g l i n e s in to the goion s c r i p t (note , reduced un i t s) :
15

16 s e t AlAl_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
17 s e t AlO_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
18 s e t AlN_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
19 s e t AlTi_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
20 s e t OO_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
21 s e t ON_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
22 s e t OTi_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
23 s e t NN_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
24 s e t NTi_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
25 s e t TiTi_PV=(10000 1.63934426229508 0.268744961031981E−03 0 .0 0 .0 0 . 0)
26 s e t Al_EDV=(T 10000 1.63934426229508 0.268744961031981E−03 0 . 0)
27 s e t O_EDV=(T 10000 1.63934426229508 0.268744961031981E−03 0 . 0)
28 s e t N_EDV=(T 10000 1.63934426229508 0.268744961031981E−03 0 . 0)
29 s e t Ti_EDV=(T 10000 1.63934426229508 0.268744961031981E−03 0 . 0)
30 s e t Al_EB=(14000 96711.7988394584 6.90847909418233 −6.90847909418233)
31 s e t O_EB=(14000 96711.7988394584 6.90847909418233 −6.90847909418233)
32 s e t N_EB=(14000 96711.7988394584 6.90847909418233 −6.90847909418233)
33 s e t Ti_EB=(14000 96711.7988394584 6.90847909418233 −6.90847909418233)
34 s e t Al_TWH1=0.013392038853330
35 s e t Al_TWH2=−0.00106318765798
36 s e t Al_TWH3=40.14012998108759
37 s e t O_TWH1=6.9729513102705898
38 s e t O_TWH2=57.934329718367997
39 s e t O_TWH3=∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
40 s e t N_TWH1=−2.196854830390480
41 s e t N_TWH2=0.0005874172956921
42 s e t N_TWH3=0.0000885875701606
43 s e t Ti_TWH1=−13.4034321728207
44 s e t Ti_TWH2=−25.6340266491969
45 s e t Ti_TWH3=−0.39374397307126
46

47 ! ! ! Also change the POTENTIALDIRECTORY= l i n e to cur rent d i r e c t o r y ! ! !
48

49 Please a l s o add appropr ia te va lue s f o r :
50 s e t Al_MASS_FORCECONSTANT=(#num #num)
51 s e t O _MASS_FORCECONSTANT=(#num #num)
52 s e t N _MASS_FORCECONSTANT=(#num #num)
53 s e t Ti_MASS_FORCECONSTANT=(#num #num)
54 s e t OMEGA_Al=#num
55 s e t OMEGA_O=#num
56 s e t OMEGA_N=#num
57 s e t OMEGA_Ti=#num
58 (p l e a s e s ee Camelion documentation f o r f u r t h e r d e t a i l s)

Searching through the beginning half of the standard output, we can find that:
1 Optimizat ion func t i on= 0.100834984857534

From the MEAMfit documentation, we know that Rtest Rfit + 0.015 so then, in this instance,
Rtest −Rfit = 0.0242427347. You need to verify for yourself that the errors and the value of Rtest

vs. Rfit are reasonable for your own calculation(s).
The contents of the directory (minus all of the numerous vasprun.xml files) will look something

similar to the following:
1 uname@uname:~/ vasprun_f i l e s> l s

293

2 AlONTi_MEAM. eb datapnts_best9 pa i rpot11 pa i rpo t34_fu l l
3 AlONTi_MEAM. pv e l e cdens1 pa i rpo t11_fu l l pa i rpot44
4 AlONTi_MEAM0. edv e l e cd en s 1_ fu l l pa i rpot12 pa i rpo t44_fu l l
5 AlONTi_MEAM1. edv e l e cdens2 pa i rpo t12_fu l l potparas_MEAM
6 AlONTi_MEAM2. edv e l e cd en s 2_ fu l l pa i rpot13 potparas_best1
7 AlONTi_MEAM3. edv e l e cdens3 pa i rpo t13_fu l l potparas_best10
8 MEAMfit . sb e l e cd en s 3_ fu l l pa i rpot14 potparas_best2
9 bes topt func s e l e cdens4 pa i rpo t14_fu l l potparas_best3

10 datapnts_best1 e l e cd en s 4_ fu l l pa i rpot22 potparas_best4
11 datapnts_best10 embfunc1 pa i rpo t22_fu l l potparas_best5
12 datapnts_best2 embfunc2 pa i rpot23 potparas_best6
13 datapnts_best3 embfunc3 pa i rpo t23_fu l l potparas_best7
14 datapnts_best4 embfunc4 pa i rpot24 potparas_best8
15 datapnts_best5 f i t d b s e pa i rpo t24_fu l l potparas_best9
16 datapnts_best6 f i t t e d_quan t i t i e s . out pa i rpot33 sepnHistogram . out
17 datapnts_best7 i d s f o r sma l l e s t s e pn s pa i rpo t33_fu l l s e t t i n g s
18 datapnts_best8 l a r g e s t r h o . dat pa i rpot34 sma l l e s t s epnv s s t ru c . dat

The same set of vasprun.xml files may not always reproduce the same results between different
calculation runs of MEAMfit even with similar calculation times, this is a result again from the
random sampling that MEAMfit uses as initial guesses for atomic configurations. For example, we
can run MEAMfit again in a separate directory on the same set of vasprun.xml files and arrive at
a different set of optimization functions:

1 Top 10 opt funcs :
2 1 : 5.186846000366864E−002 time : 45 hours
3 2 : 8.378815249695254E−002 time : 37 hours
4 3 : 8.598895680046785E−002 time : 31 hours
5 4 : 8.642022938336989E−002 time : 41 hours
6 5 : 9.708726029563895E−002 time : 14 hours
7 6 : 0.107633313843299 time : 34 hours
8 7 : 0.130808288358416 time : 18 hours
9 8 : 0.134429701506718 time : 7 hours

10 9 : 0.167181936878481 time : 26 hours
11 10 : 0.197315169364415 time : 10 hours
12

13 Total time taken 45h 12m 0 s .

1 General i n i t i a l i z a t i o n
2 −−−−−−−−−−−−−−−−−−−−−−
3 No SEED in s e t t i n g s f i l e , us ing time to seed random numbers .
4 No MUT_PROB in s e t t i n g s f i l e , us ing d e f au l t (0 . 3) .
5 No NOPTFUNCSTORE in s e t t i n g s f i l e , us ing d e f au l t (10) .
6 No OPTFUNCCG in s e t t i n g s f i l e , us ing d e f au l t (OPTFUNCCG=10) .
7 No OPTFUNC_ERR in s e t t i n g s f i l e , us ing d e f au l t f o r energy f i t (OPTFUNC_ERR=10^−
8 14) .
9 No OPTFUNCCG_GA in s e t t i n g s f i l e , us ing d e f au l t (OPTFUNCCG=

10 10∗OPTFUNCCG 100.0000000000) .
11 No OPTDIFF in s e t t i n g s f i l e , us ing d e f au l t (=10^−10)
12 No OPTACC in s e t t i n g s f i l e , us ing d e f au l t (=0.0005)
13 No STOPTIME in s e t t i n g s f i l e , us ing d e f au l t (=168 hours=1 week)
14 No MAXFUNCEVALS in s e t t i n g s f i l e , us ing d e f au l t (=2000)
15 POTFILEIN=potparas_MEAM (from s e t t i n g s)
16 No FIXPOTIN in s e t t i n g s f i l e : a l low input p o t e n t i a l to opt imize
17 NOOPT=TRUE (from s e t t i n g s f i l e)
18 CUTOFF_MAX= 4.40000 (from s e t t i n g s f i l e)
19 No CUTOFF_MIN in s e t t i n g s f i l e , us ing d e f au l t (CUTOFF_MIN=
20 1.50000000000000)

294

21 TYPE=MEAM (from s e t t i n g s f i l e)
22

23 Poten t i a l i n i t i a l i z a t i o n
24 −−−−−−−−−−−−−−−−−−−−−−−−
25 Reading in po t e n t i a l parameters from potparas_MEAM
26 Completed s t r u c tu r e i n i t i a l i z a t i o n
27 Prepar ing to read data from vasprun . xml f i l e s
28 Completed data read−in from vasprun . xml f i l e s
29 avgEn= −68.8679761438603 , avgFrc= 0.000000000000000E+000
30 varEn= 3200.92505263403 , varFrc= 0.000000000000000E+000
31

32 −−−
33 Optimizat ion func t i on= 6.303620673965127E−002
34 −−−
35

36 rms e r r o r on en e r g i e s= 3.56638171087305
37 rms e r r o r on f o r c e s= 0.000000000000000E+000

In this case, we find that there is a much better fit function in the set of best optimization
functions and that the difference between the fit and test values Rtest − Rfit = 0.011352 which
constitutes a substantially superior result in the fitting set without a change in the set of supplied
vasprun.xml files.

It is recommended by the authors to run multiple parallel instances of MEAMfit all over rea-
sonably long time scales in order to maximize your chances of attaining a useful value of Rfit.

10.7 Removing selected calculations from a set with automation
Sometimes you may desire to remove certain files from a large set of automatically-created VASP
calculations. This may be because MEAMfit can have a hard time with very high energy values or
because you are just attempting to reduce the intensity of a calculation that MEAMfit will need
to perform. In either case, we can save a tremendous amount of hassle by using BASH to perform
this recursively.

For the sake of this example, we will assume that you have a directory tree similar to the
following figure (which is also given in section 10.4):

1 Top Direc to ry :
2 +−−−−−−−−−−+ +−−−−−−−−−−−+
3 | C ry s ta l s | | Molecules |
4 +−−−−−−−−−−+ +−−−−−−−−−−−+
5

6 Second Level D i r e c t o r i e s :
7 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+
8 | TiN | | Al2O3 | | TiO2 | |N2 | |O2 |
9 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+

10

11 Third Level D i r e c t o r i e s :
12 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
13 | I nd i v i dua l Ca l cu l a t i on s 1 . . . 2 . . . n |
14 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

And that you are currently located in one of the second level directories as shown in the figure
above. If, for example, you have a calculation set that you want to trim some of the vasprun.xml
files out of that all reside in the third level directories, then we can do this recursively with for
loops in BASH very simply. For the sake of this example, let’s assume that you have calculation

295

sets of dimers approaching slabs with distances from the top of the slab to the first atom ranging
from 0.05 to 3.00Å.

Because 0.05Å might be too close for a reasonable interaction, and 3.00Å might be too far away
to be interesting, we can consider a means of cutting out the vasprun files in a certain range. For
the sake of this demonstration, we will choose to cut out all of the vasprun.xml files that are less
than 0.50Å and greater than 2.50Å in separation.

The command that follows (all done in one single line) will run two levels of for loops. In the
first level of for loop, we create a variable called $a and loop that over every directory in the current
directory. We navigate into directory $a and then run two additional for loops where we delete
directories with parts of names matching a sequence that is given. In this case, the sequences corre-
spond to names that I assigned during VASP calculations which include the interatomic separation
(for more on how these VASP calculations were set up and run, see sections 9.4, and 9.5). Finally,
we terminate the for loops which operate in all of the third level directories, list the contents of the
directory, navigate up a level, enter the next directory, and do it all again until the conditions of
the for loop are exhausted.

Please see the following terminal command:
1 f o r a in ∗/ ; do cd $a ; Sequence1=$ (seq −w 0.05 0 .05 0 . 40) ; Sequence2=$ (seq −w 2.50

0 .05 3 . 00) ; f o r l a t in ${Sequence1 } ; do rm −r ∗${ l a t } ; done ; f o r l a t in ${
Sequence2 } ; do rm −r ∗${ l a t } ; done ; l s ; cd . . ; done

296

11 Shell Scripting for Force Field Creation with potfit

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

Potfit [17, 18, 19, 20] is a program capable of fitting a variety of interatomic potentials including
EAM or MEAM potentials to a set of atomic configurations. With its built in tools, it can convert
data from a variety of DFT output formats like castep and VASP into data that it can fit. Like
with MEAMfit (see chapter 10 for more), this functionality is especially useful in the case that
you cannot find a suitable interatomic potential to accurately describe the system that you are
considering or if you want to develop a custom force field for your own purposes. These force fields
are directly applicable in molecular dynamics calculations, especially with programs like Sandia
National Lab’s LAMMPS.

11.1 Compiling potfit
Potfit is straightforward to compile and uses the Python build automation tool WAF to do all of the
heavy lifting for you. Please see a terminal transcript of the compilation and checking the compiled
executable for potfit-20210702. In this case, we are compiling potfit for the generation of MEAM
force fields:

1 uname@uname:~/ codes/> wget https : //www. p o t f i t . net /download/ po t f i t −20210702. ta r . gz
2 −−2021−10−28 16:34:12−− https : //www. p o t f i t . net /download/ po t f i t −20210702. ta r . gz
3 Reso lv ing www. p o t f i t . net (www. p o t f i t . net) . . . 2a03 : 4 000 : 1 d : 3 4 5 : : 1 , 185 . 183 . 158 . 219
4 Connecting to www. p o t f i t . net (www. p o t f i t . net) | 2 a03 : 4 000 : 1 d : 3 4 5 : : 1 | : 4 4 3 . . . connected .
5 HTTP reques t sent , awai t ing re sponse . . . 200 OK
6 Length : 395930 (387K) [app l i c a t i on /x−gz ip]
7 Saving to : ’ p o t f i t −20210702. ta r . gz ’
8

9 po t f i t −20210702. ta r . gz
100%[===>] 386 .65K 624KB/ s in 0 .6 s

10

11 2021−10−28 16 : 34 : 14 (624 KB/ s) − ’ p o t f i t −20210702. ta r . gz ’ saved [395930/395930]
12

13 uname@uname:~/ codes/> untar po t f i t −20210702. ta r . gz
14 uname@uname:~/ codes> cd p o t f i t /
15 uname@uname:~/ codes / po t f i t > l s
16 CHANGELOG CONTRIBUTORS LICENSE Make f i l e Make f i l e . i nc bin bu i ld examples s r c

t e s t s u t i l waf wsc r ip t
17 uname@uname:~/ codes / po t f i t > . / waf −help
18 waf [commands] [opt i ons]
19

20 Main commands (example : . / waf bu i ld −j 4)
21 bu i ld : execute s the bu i ld
22 c l ean : c l e an s the p r o j e c t
23 c on f i gu r e : c on f i g u r e s the p r o j e c t
24 d i s t : makes a t a r b a l l f o r r e d i s t r i b u t i n g the sour c e s
25 d i s t check : checks i f the p r o j e c t compi les (t a r b a l l from ’ d i s t ’)
26 i n s t a l l : i n s t a l l s the t a r g e t s on the system
27 l i s t : l i s t s the t a r g e t s to execute
28 s tep : execute s ta sk s in a step−by−s tep fash ion , f o r debugging
29 un i n s t a l l : removes the t a r g e t s i n s t a l l e d
30

31 Options :
32 −−ve r s i on show program ’ s v e r s i on number and ex i t
33 −c COLORS, −−c o l o r=COLORS

297

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

34 whether to use c o l o r s (yes /no/auto) [d e f au l t : auto]
35 −j JOBS, −−j obs=JOBS amount o f p a r a l l e l j obs (64)
36 −k , −−keep cont inue de sp i t e e r r o r s (−kk to try harder)
37 −v , −−verbose ve rbo s i t y l e v e l −v −vv or −vvv [d e f au l t : 0]
38 −−zones=ZONES debugging zones (task_gen , deps , tasks , e t c)
39 −h , −−help show th i s he lp message and ex i t
40

41 Conf igurat ion opt ions :
42 −o OUT, −−out=OUT bui ld d i r f o r the p r o j e c t
43 −t TOP, −−top=TOP s r c d i r f o r the p r o j e c t
44 −−p r e f i x=PREFIX i n s t a l l a t i o n p r e f i x [d e f au l t : ’ / usr / l o c a l / ’]
45 −−b ind i r=BINDIR b ind i r
46 −− l i b d i r=LIBDIR l i b d i r
47 −−check−c−compi le r=CHECK_C_COMPILER
48 l i s t o f C compi l e r s to t ry [gcc c lang i c c]
49

50 Build and i n s t a l l a t i o n opt ions :
51 −p , −−prog r e s s −p : p rog r e s s bar ; −pp : ide output
52 −−t a r g e t s=TARGETS task generator s , e . g . " target1 , t a rg e t2 "
53

54 Step opt ions :
55 −− f i l e s=FILES f i l e s to process , by regexp , e . g . "∗/main . c ,∗/ t e s t /main . o"
56

57 I n s t a l l a t i o n and un i n s t a l l a t i o n opt ions :
58 −−de s t d i r=DESTDIR i n s t a l l a t i o n root [d e f au l t : ’ ’]
59 −f , −−f o r c e f o r c e f i l e i n s t a l l a t i o n
60 −−di s tcheck−args=ARGS
61 arguments to pass to d i s t che ck
62

63 p o t f i t g ene ra l opt ions :
64 Please check the exp lanat i ons on the p o t f i t homepage f o r more d e t a i l s .
65 −−enable−b i nd i s t Write a binned r a d i a l d i s t r i b u t i o n f i l e
66 −−enable−con t r i b Enable support f o r box o f c on t r i bu t i ng p a r t i c l e s
67 −−enable−ds f Use damped s h i f t e d f o r c e approach (coulomb−based

i n t e r a c t i o n s only)
68 −−enable−evo Use evo lu t i ona ry a lgor i thm ins t ead o f s imulated annea l ing
69 −−enable−fwe ight Use modi f i ed weights f o r the f o r c e s
70 −−enable−mpi Enable MPI p a r a l l e l i z a t i o n
71 −−enable−nopunish Disab le punishments
72 −−enable−r e s c Enable r e s c a l i n g (use with care !)
73 −−enable−s t r e s s Inc lude s t r e s s in f i t t i n g proce s s
74 −−enable−uq Generate p o t e n t i a l ensemble f o r unce r ta in ty qu an t i f i c a t i o n
75

76 p o t f i t p o t e n t i a l opt i ons :
77 av a i l a b l e i n t e r a c t i o n s in a l phab e t i c a l order are :
78 adp angular dependent p o t e n t i a l s
79 ang angular pa i r p o t e n t i a l s
80 ang_elstat angular pa i r p o t e n t i a l s with e l e t r o s t a t i c s
81 coulomb coulomb i n t e r a c t i o n s
82 d ipo l e d i po l e i n t e r a c t i o n s
83 eam embedded atom method
84 eam_coulomb embedded atom method with coulomb i n t e r a c t i o n s
85 eam_dipole embedded atom method with d ipo l e i n t e r a c t i o n s
86 meam modi f i ed embedded atom method
87 pa i r pa i r p o t e n t i a l s
88 st iweb S t i l l i n g e r −Weber p o t e n t i a l s
89 tbeam two−band embedded atom method
90 t e r s o f f Te r s o f f p o t e n t i a l s

298

91 t e r so f fmod modi f i ed Te r s o f f p o t e n t i a l s
92 − i INTERACTION, −− i n t e r a c t i o n=INTERACTION
93 one o f the i n t e r a c t i o n s l i s t e d above
94 −m MODEL, −−model=MODEL
95 support ana ly t i c , kim or tabu lated p o t e n t i a l s
96

97 p o t f i t math l i b r a r y opt ions :
98 av a i l a b l e math l i b r a r i e s are :
99 lapack Linear Algebra PACKage from n e t l i b . org

100 mkl I n t e l Math Kernel Library
101 − l MATHLIB, −−math−l i b=MATHLIB
102 Se l e c t math l i b r a r y to use (d e f au l t : mkl)
103 −−math−l i b−base−d i r=MATH_LIB_BASE_DIR
104 Base d i r e c t o r y o f s e l e c t e d math l i b r a r y
105

106 p o t f i t debugging opt ions :
107 −−debug Build binary with debug in fo rmat ion
108 −−asan Build binary with address s a n i t i z e r support
109 −−p r o f i l e Bui ld binary with p r o f i l i n g support
110 waf : e r r o r : no such opt ion : −e
111 uname@uname:~/ codes / po t f i t > . / waf c on f i gu r e − i meam −m apot
112 Se t t i ng top to : ~codes / p o t f i t
113 Se t t i ng out to : ~codes / p o t f i t / bu i ld
114 Checking f o r ’ gcc ’ (C compi le r) : / usr / bin / gcc
115 Checking f o r header mkl_vml . h : yes
116 Checking f o r header mkl_lapack . h : yes
117 Compiling MKL t e s t binary : OK
118

119 p o t f i t has been con f i gu r ed with the f o l l ow i ng opt ions :
120 po t en t i a l model = apot
121 i n t e r a c t i o n = meam
122 math l i b r a r y = mkl
123

124 Now run ’ . / waf ’ to s t a r t bu i l d ing p o t f i t
125

126 ’ c on f i gu r e ’ f i n i s h e d s u c c e s s f u l l y (1 . 274 s)
127 uname@uname:~/ codes / po t f i t > . / waf
128 Waf : Enter ing d i r e c t o r y ‘~ codes / p o t f i t / bu i ld ’
129 [1/30] Compiling s r c / funct ions_impl . c
130 [2/30] Compiling s r c / f unc t i on s . c
131 [3/30] Compiling s r c /potential_output_imd . c
132 [4/30] Compiling s r c /mpi_uti ls . c
133 [5/30] Compiling s r c / c on f i g . c
134 [6/30] Compiling s r c / potent ia l_output . c
135 [7/30] Compiling s r c / potent ia l_input_f5 . c
136 [8/30] Compiling s r c /memory . c
137 [9/30] Compiling s r c / potent ia l_input_f4 . c
138 [1 0 /30] Compiling s r c / potent ia l_input_f3 . c
139 [1 1 /30] Compiling s r c / e r r o r s . c
140 [1 2 /30] Compiling s r c / u t i l s . c
141 [1 3 /30] Compiling s r c / potent ia l_input . c
142 [1 4 /30] Compiling s r c / e lements . c
143 [1 5 /30] Compiling s r c /random_dsfmt . c
144 [1 6 /30] Compiling s r c /params . c
145 [1 7 /30] Compiling s r c /potential_output_lammps . c
146 [1 8 /30] Compiling s r c / s p l i n e s . c
147 [1 9 /30] Compiling s r c / potent ia l_input_f0 . c
148 [2 0 /30] Compiling s r c /random . c

299

149 [2 1 /30] Compiling s r c /force_meam . c
150 [2 2 /30] Compiling s r c /force_common . c
151 [2 3 /30] Compiling s r c /simann . c
152 [2 4 /30] Compiling s r c / opt imize . c
153 [2 5 /30] Compiling s r c / l inmin . c
154 [2 6 /30] Compiling s r c / brent . c
155 [2 7 /30] Compiling s r c / powel l_lsq . c
156 [2 8 /30] Compiling s r c / bracket . c
157 [2 9 /30] Compiling s r c / p o t f i t . c
158 [3 0 /30] Linking bu i ld / s r c /potfit_apot_meam_mkl
159 Waf : Leaving d i r e c t o r y ‘~ codes / p o t f i t / bu i ld ’
160

161 −−−> Suc c e s s f u l l y moved potfit_apot_meam_mkl to bin / f o l d e r <−−−
162

163 ’ bu i ld ’ f i n i s h e d s u c c e s s f u l l y (1 . 052 s)
164 uname@uname:~/ codes / po t f i t >
165

166 uname@uname:~/ codes / po t f i t > cd bin /
167 uname@uname:~/ codes / p o t f i t /bin> l s
168 potfit_apot_meam_mkl
169 uname@uname:~/ codes / p o t f i t /bin> f i l e potfit_apot_meam_mkl
170 potfit_apot_meam_mkl : ELF 64−b i t LSB executable , x86−64, v e r s i on 1 (SYSV) ,

dynamical ly l inked , i n t e r p r e t e r / l i b 6 4 / l , BuildID [sha1]=83
df7d4e482de450bec65998985e8ec870ef1a1c , f o r GNU/Linux 3 . 2 . 0 , with debug_info ,
not s t r i pped

171 uname@uname:~/ codes / p o t f i t /bin>
172

173 uname@uname:~/ codes / p o t f i t /bin> ./ potfit_apot_meam_mkl
174 This i s p o t f i t −20210702 (7 e5bf091) compiled on Oct 28 2021 , 1 6 : 1 7 : 4 7 .
175

176 [ERROR] Usage : . / potfit_apot_meam_mkl <paramf i l e>
177 uname@uname:~/ codes / p o t f i t /bin>

11.2 Collecting many VASP OUTCAR files for potfit
Similar to MEAMfit (see chapter 10 for more on MEAMfit and MEAMfit2), potfit can use the
output of VASP calculations to generate interatomic potentials. Instead of the vasprun.xml files
that MEAMfit uses, potfit uses VASP’s OUTCAR files instead. In the case that you have numerous
atomic configurations with numerous OUTCAR files each, it is intelligent to automate the collection
of OUTCAR files.

As we discussed in section 10.4, we will assume here that all of the VASP calculations from
which you want to collect the OUTCAR files are arranged as is shown in the below diagram. Here,
sets of calculations are grouped together by general class, then, in a sub-directory, their specific
structure, and then, in a further sub-directory, the individual atomic configuration calculations:

1 Top Direc to ry :
2 +−−−−−−−−−−+ +−−−−−−−−−−−+
3 | C ry s ta l s | | Molecules |
4 +−−−−−−−−−−+ +−−−−−−−−−−−+
5

6 Second Level D i r e c t o r i e s :
7 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+
8 | TiN | | Al2O3 | | TiO2 | |N2 | |O2 |
9 +−−−+ +−−−−−+ +−−−−+ +−−+ +−−+

10

300

11 Third Level D i r e c t o r i e s :
12 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
13 | I nd i v i dua l Ca l cu l a t i on s 1 . . . 2 . . . n |
14 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

The following script can be used to collect OUTCAR files. The script uses three nested for loops
to do the heavy lifting as well as a variable named $File_Number which is updated at each step
in the for loops that appends a unique identifier number to each of the collected OUTCAR files so
as to not cause issues with ambiguity. This script is very similar to one supplied in section 10.4 of
this text, demonstrating the versatility of these scripts and how they can be mixed and matched to
suit your various needs.

Please see the following script for the collection of OUTCAR files:
1 mkdir OUTCAR_files
2 File_Number="1" # Begin a va r i ab l e to use in the f o r () loop to count the cur rent job

up to the f i n a l job
3

4 f o r a in ∗/ ; do # Loop with in top d i r e c t o r y e . g . , Cry s ta l s Molecules S labs
5 echo "Enter ing d i r e c t o r y $a"
6 cd "$a" ; pwd
7

8 f o r b in ∗/ ; do # Loop with in s t r u c tu r e d i r e c t o r y e . g . , Al2O3 , Ti2O , e t c . . .
9 echo "Enter ing d i r e c t o r y $b"

10 cd "$b" ; pwd
11

12 f o r c in ∗/ ; do # Loop with in a s i n g l e c a l c u l a t i o n d i r e c t o r y e . g . ,
Al2O3_a0_0 .980 , Al2O3_a0_0 .981 , e t c . . .

13 echo "Enter ing d i r e c t o r y $c"
14 cd "$c" ; pwd
15

16 cp OUTCAR . . / . . / . . / OUTCAR_files/OUTCAR${File_Number} # Copy and rename
the OUTCAR f i l e to the t a r g e t d i r e c t o r y based on the cur rent File_Number

17 echo " Copied OUTCAR to OUTCAR${File_Number}"
18 File_Number=$ (echo ‘ expr $File_Number + 1 ‘) # Add 1 $File_Number
19

20 cd . .
21 done # End o f s i n g l e c a l c u l a t i o n d i r e c t o r y f o r () loop
22

23 cd . .
24 done # End o f major c a l c u l a t i o n category d i r e c t o r y f o r () loop
25

26 cd . .
27 done # End o f main f o r () loop # I t e r a t e un t i l f o r loop cond i t i on s are exhausted
28

29 echo " OUTCAR f i l e c o l l e c t i o n and renaming completed"
30 echo " Success , End o f S c r i p t "

11.3 Using the potfit vasp2force built-in
Used in concert with the OUTCAR collector script covered in section 11.2, the vasp2force script
supplied with potfit can be used to generate a data set compatible with potfit. The vasp2force
script is located in the util directory of your potfit install as can be seen here:

1 uname@uname:~/ codes / p o t f i t / u t i l > l s
2 README ca s t ep2 f o r c e deve l force2 imd fo r c e 2po s ca r kim l i s t_ c on f i g logo

makeapot o ld p lo tapot p o t f i t pot f i t_se tup vasp2 fo r ce

301

3 uname@uname:~/ codes / p o t f i t / u t i l > . / vasp2 fo r ce
4 Search ing d i r e c t o r y . f o r OUTCAR∗ f i l e s . . .
5 Could not f i nd any OUTCAR f i l e s in t h i s d i r e c t o r y .

Running this code can be very straightforward as we will demonstrate in the following on just
a single VASP OUTCAR file calculated for the Al2O3 system:

1 uname@uname:~/ te s t−dir> l s
2 OUTCAR
3 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l / vasp2 fo r ce −h
4 usage : vasp2 fo r ce [−h] [−c <elem_l ist >] [−e <sae_f i l e >] [−a] [− f] [− l] [− r]
5 [− s CONFIGS] [−w WEIGHT]
6 [f i l e s [f i l e s . . .]]
7

8 Converts vasp output data in to p o t f i t r e f e r e n c e c on f i g u r a t i o n s .
9

10 p o s i t i o n a l arguments :
11 f i l e s l i s t o f OUTCAR f i l e s (p l a i n or gzipped)
12 (d i r e c t o r y in case o f −r opt ion)
13

14 op t i ona l arguments :
15 −h , −−help show th i s he lp message and ex i t
16 −c <elem_l is t> l i s t o f i n d i c e s f o r chemical e lements to use
17 e . g . −c Mg=0,Zn=1
18 −e <sae_f i l e > f i l e with s i n g l e atom en e r g i e s
19 −a , −−a l l use a l l c o n f i g u r a t i o n s from OUTCAR
20 −f , −− f i n a l use only the f i n a l c on f i gu r a t i on from OUTCAR
21 −l , −− l i s t l i s t OUTCAR prop e r t i e s and e x i t
22 −r , −−r e c u r s i v e scan r e c u r s i v e l y f o r OUTCAR f i l e s
23 −s CONFIGS, −−c on f i g s CONFIGS
24 comma separated l i s t o f c on f i g u r a t i o n s to use
25 supported schemes :
26 −s 1 ,4 ,12 use c on f i g s 1 , 4 and 12
27 −s 1 ,6−9 use c on f i g s 1 , 6 , 7 , 8 and 9
28 −s 1 ,4 ,6−9 ,12 combination o f the above
29 −w WEIGHT, −−weight WEIGHT
30 c on f i g u r a t i on weight f o r a l l c o n f i g u r a t i o n s
31 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l / vasp2 fo r ce −f
32 Search ing d i r e c t o r y . f o r OUTCAR∗ f i l e s . . .
33 Found the f o l l ow i n g f i l e s :
34 . /OUTCAR
35 #N 10 1
36 #C Al O
37 ## fo r c e f i l e generated from f i l e . /OUTCAR con f i g 1
38 #X 5.17795526 0.00000000 0.00000000
39 #Y 2.94847555 4.25649065 0.00000000
40 #Z 2.94847555 1.54436294 3.96644119
41 #W 1.000000
42 #E −7.4885214460
43 #S −0.0167987 −0.01679376 −0.01679276 −3.564295e−06 −1.27965e−06 −2.440699e−06
44 #F
45 0 1.63802 0.85797 0.58665 −0.012224 −0.006403 −0.004378
46 0 3.89943 2.04246 1.39657 0.012224 0.006403 0.004378
47 0 7.17548 3 .7584 2.56987 −0.012224 −0.006403 −0.004378
48 0 9.43688 4.94288 3.37979 0.012224 0.006403 0.004378
49 1 7.26414 2.75332 0.99161 −0.007678 0.014658 −0
50 1 4.67516 3.27908 0 .2227 −0.007678 0.005318 0.013659
51 1 6.39975 2.52178 3.74374 0.007678 −0.005318 −0.013659
52 1 5 .7172 4 .8764 2.20592 0 −0.00934 0.013659

302

53 1 5 .3577 0.92446 1.76052 0 0.00934 −0.013659
54 1 3.81077 3.04753 2.97483 0.007678 −0.014658 0
55 uname@uname:~/ te s t−dir>

This is equivalent to what the potfit documentation calls a simple configuration file (e.g., one
containing a single atomic configuration). As of the time of this writing, the vasp2force executable
will not write this configuration file to your disk, instead it will only print the configuration to the
terminal. Since we will need to have this saved as a configuration file, you can run the following
command to dump that terminal output into a file of your choosing (see section 4.2 for more on
this specific functionality):

1 vasp2 fo r ce −f |& tee −a vasp2 fo r ce . out

Combining the tee command with executing the vasp2force program lets you create a textfile
containing all of the potfit-formatted atomic configurations. If we then combine this functionality
with the script to collect many VASP OUTCAR files given in section 11.2, then we can create
potfit-compatible configuration files of many atomic configurations. All you need to do is run your
vasp2force executable inside of the directory that you’ve collected all of your OUTCAR files into.
The tee command here will collect all of the terminal output however so you will need to trim the
first n lines of vasp2force.out file that we’ve created to remove all of the lines saying something to
the effect of the following:

1 . /OUTCAR1174
2 . /OUTCAR1132
3 . /OUTCAR112
4 . /OUTCAR365
5 . /OUTCAR646
6 . /OUTCAR829
7 . /OUTCAR641
8 . /OUTCAR590
9 . /OUTCAR882

10 . /OUTCAR314
11 . /OUTCAR427
12 . /OUTCAR36

This header is followed by n of these ./OUTCARn lines which can be removed using the shell.
First, find the number of files that are in the current directory (in which we are running the
vasp2force executable with the following command:

1 uname@uname:~/ te s t−dir> l s | wc − l
2 1228

This command pipes a list of the file contents into the word count built-in (wc) and uses the
lines (-l) option to count the number of files inside of the directory. In this specific case, the number
of files is 1228, so we will have to remove the first 1228 lines from the vasp2force.out file. Let’s take
a quick look at the vasp2force.out file just to make sure that we’re doing everything we need to do
to clean up the file:

1 uname@uname:~/ te s t−dir> head vasp2 fo r ce . out
2 Search ing d i r e c t o r y . f o r OUTCAR∗ f i l e s . . .
3 Found the f o l l ow i n g f i l e s :
4 . /OUTCAR1174
5 . /OUTCAR1132
6 . /OUTCAR112
7 . /OUTCAR365
8 . /OUTCAR646

303

9 . /OUTCAR829
10 . /OUTCAR641
11 . /OUTCAR590

Notice that the vasp2force executable has added an additional two lines to the head of the file!
So then we’ll have to add two to the n files that we counted using the word count command from
before and then remove that total number of lines from the head of the file. This can be done using
sed in the following way:

1 uname@uname:~/ te s t−dir> sed − i −e ’ 1 ,1230d ’ vasp2 fo r ce . out
2 uname@uname:~/ te s t−dir> head vasp2 fo r ce . out
3 #N 10 1
4 #C N Ti
5 ## fo r c e f i l e generated from f i l e . /OUTCAR1174 con f i g 1
6 #X 4.23500013 0.00000000 0.00000000
7 #Y 0.00000000 4.23500013 0.00000000
8 #Z 0.00000000 0.00000000 15.00000000
9 #W 1.000000

10 #E −8.7514170700
11 #S −0.04021155 −0.04021155 0.01776617 0 0 0
12 #F
13

I’ll leave it as an exercise to the reader to automate this all into a single script, it may be
helpful to refer to the expr command discussed at more length in chapter 9 to handle the addition
of integers to a variable (as you would need to do to add two to the n OUTCAR files that you
counted with the wc command. In either case however, it’s pretty quick to just run the wc and sed
commands in the terminal without a script.

11.4 Using the potfit makeapot built-in
The potfit program called makeapot is used to make an initial analytic potential file based on the
interactions that you’re interested in before the optimization begins. The initial potential file is
required for the configuration file and so we will cover its creation briefly here.

In my build of potfit, for some reason, the makeapot executable was empty after the build. To
fix this, I just copied and pasted the code from another download of potfit into the executable using
vim which fixed the problem. Creating the potential file with makeapot requires knowledge of the
number of atom types. Based on the number of atom types, there will be different required numbers
and types of potential functions. In the case of a MEAM potential with 4 distinct species, there
are 32 required functions: ten for the electrostatic core-core repulsion Φij(r), four for the electron
transfer ρj(r), four for the energy describing an ion’s core as it is embedded in the electron sea
Fi(n), ten for the three-body terms fij(r), and four more terms for the three-body angular function
gi(cosθ). For different numbers of atomic species, the number of functions will change.

We can use the makeapot executable to create a meam potential that potfit can start with by
using the following commands. Here we use the tee and pipe commands (for more on tee and this
functionality, see section 4.2) as well to write the potential to a file called meam.pot:

1 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l /makeapot −h
2 usage : makeapot [−h] [−n NTYPES] [−c CUTOFF] [−g] [− r] − i INTERACTION [− l]
3 [−−cp] [− f FUNCTIONS] [−o OUTFILE] [−e ELEMENTS]
4

5 Create an ana l y t i c p o t e n t i a l f i l e f o r p o t i f t .
6

304

7 op t i ona l arguments :
8 −h , −−help show th i s he lp message and ex i t
9 −n NTYPES number o f atoms types , runs from 0 to N−1

10 −c CUTOFF cu t o f f r ad iu s (d e f au l t 6 . 0)
11 −g use a g l oba l c u t o f f parameter f o r a l l p o t e n t i a l s
12 −r randomize the va lue s f o r the p o t e n t i a l parameters
13 − i INTERACTION supported i n t e r a c t i o n types are : adp , eam , meam, pair ,
14 st iweb , t e r s o f f
15 −l , −− l i s t l i s t opt i ons which are a v a i l a b l e
16 −−cp enable chemica l p o t e n t i a l s (only f o r pa i r)
17 −f FUNCTIONS comma separated l i s t o f p o t e n t i a l func t i ons , e i t h e r name or
18 i ∗name , where i =1 , 2 , 3 , . . .
19 −o OUTFILE wr i t e output to t h i s f i l e i n s t ead o f stdout
20 −e ELEMENTS comma separated l i s t o f e lements f o r #C header l i n e
21

22 To sp e c i f y mu l t ip l e p o t e n t i a l s you can use the f o l l ow i n g syntax :
23

24 makeapot −n 3 − i eam −f 6∗eopp ,3∗ csw ,3∗ b j s
25

26 which uses 6 eopp po t en t i a l s , 3 csw and 3 b j s in t h i s order .
27

28 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l /makeapot −n 4 − i meam −f 10∗ eopp_sc ,4∗
csw2_sc ,4∗ bjs ,10∗ csw2_sc ,4∗ parabola |& tee −a meam. pot

29 #F 0 32
30 #T MEAM
31 #I 0
32 #E
33

34 type eopp_sc
35 c u t o f f 6 . 0
36 C_1 15.00 1 .00 10000.00
37 eta_1 6 .00 1 .00 20 .00
38 C_2 5.00 −100.00 100 .00
39 eta_2 3 .00 1 .00 10 .00
40 k 2 .50 0 .00 6 .00
41 phi 3 .00 0 .00 6 .30
42 h 1 .00 0 .50 2 .00
43

44 type eopp_sc
45 c u t o f f 6 . 0
46 C_1 15.00 1 .00 10000.00
47 eta_1 6 .00 1 .00 20 .00
48 C_2 5.00 −100.00 100 .00
49 eta_2 3 .00 1 .00 10 .00
50 k 2 .50 0 .00 6 .00
51 phi 3 .00 0 .00 6 .30
52 h 1 .00 0 .50 2 .00
53

54 type eopp_sc
55 c u t o f f 6 . 0
56 C_1 15.00 1 .00 10000.00
57 eta_1 6 .00 1 .00 20 .00
58 C_2 5.00 −100.00 100 .00
59 eta_2 3 .00 1 .00 10 .00
60 k 2 .50 0 .00 6 .00
61 phi 3 .00 0 .00 6 .30
62 h 1 .00 0 .50 2 .00
63

305

64 type eopp_sc
65 c u t o f f 6 . 0
66 C_1 15.00 1 .00 10000.00
67 eta_1 6 .00 1 .00 20 .00
68 C_2 5.00 −100.00 100 .00
69 eta_2 3 .00 1 .00 10 .00
70 k 2 .50 0 .00 6 .00
71 phi 3 .00 0 .00 6 .30
72 h 1 .00 0 .50 2 .00
73

74 type eopp_sc
75 c u t o f f 6 . 0
76 C_1 15.00 1 .00 10000.00
77 eta_1 6 .00 1 .00 20 .00
78 C_2 5.00 −100.00 100 .00
79 eta_2 3 .00 1 .00 10 .00
80 k 2 .50 0 .00 6 .00
81 phi 3 .00 0 .00 6 .30
82 h 1 .00 0 .50 2 .00
83

84 type eopp_sc
85 c u t o f f 6 . 0
86 C_1 15.00 1 .00 10000.00
87 eta_1 6 .00 1 .00 20 .00
88 C_2 5.00 −100.00 100 .00
89 eta_2 3 .00 1 .00 10 .00
90 k 2 .50 0 .00 6 .00
91 phi 3 .00 0 .00 6 .30
92 h 1 .00 0 .50 2 .00
93

94 type eopp_sc
95 c u t o f f 6 . 0
96 C_1 15.00 1 .00 10000.00
97 eta_1 6 .00 1 .00 20 .00
98 C_2 5.00 −100.00 100 .00
99 eta_2 3 .00 1 .00 10 .00

100 k 2 .50 0 .00 6 .00
101 phi 3 .00 0 .00 6 .30
102 h 1 .00 0 .50 2 .00
103

104 type eopp_sc
105 c u t o f f 6 . 0
106 C_1 15.00 1 .00 10000.00
107 eta_1 6 .00 1 .00 20 .00
108 C_2 5.00 −100.00 100 .00
109 eta_2 3 .00 1 .00 10 .00
110 k 2 .50 0 .00 6 .00
111 phi 3 .00 0 .00 6 .30
112 h 1 .00 0 .50 2 .00
113

114 type eopp_sc
115 c u t o f f 6 . 0
116 C_1 15.00 1 .00 10000.00
117 eta_1 6 .00 1 .00 20 .00
118 C_2 5.00 −100.00 100 .00
119 eta_2 3 .00 1 .00 10 .00
120 k 2 .50 0 .00 6 .00
121 phi 3 .00 0 .00 6 .30

306

122 h 1 .00 0 .50 2 .00
123

124 type eopp_sc
125 c u t o f f 6 . 0
126 C_1 15.00 1 .00 10000.00
127 eta_1 6 .00 1 .00 20 .00
128 C_2 5.00 −100.00 100 .00
129 eta_2 3 .00 1 .00 10 .00
130 k 2 .50 0 .00 6 .00
131 phi 3 .00 0 .00 6 .30
132 h 1 .00 0 .50 2 .00
133

134 type csw2_sc
135 c u t o f f 6 . 0
136 a 0 .20 −2.00 2 .00
137 alpha 2 .00 1 .00 6 .00
138 phi 0 .00 0 .00 6 .30
139 beta 3 .00 0 .50 5 .00
140 h 1 .00 0 .50 2 .00
141

142 type csw2_sc
143 c u t o f f 6 . 0
144 a 0 .20 −2.00 2 .00
145 alpha 2 .00 1 .00 6 .00
146 phi 0 .00 0 .00 6 .30
147 beta 3 .00 0 .50 5 .00
148 h 1 .00 0 .50 2 .00
149

150 type csw2_sc
151 c u t o f f 6 . 0
152 a 0 .20 −2.00 2 .00
153 alpha 2 .00 1 .00 6 .00
154 phi 0 .00 0 .00 6 .30
155 beta 3 .00 0 .50 5 .00
156 h 1 .00 0 .50 2 .00
157

158 type csw2_sc
159 c u t o f f 6 . 0
160 a 0 .20 −2.00 2 .00
161 alpha 2 .00 1 .00 6 .00
162 phi 0 .00 0 .00 6 .30
163 beta 3 .00 0 .50 5 .00
164 h 1 .00 0 .50 2 .00
165

166 type b j s
167 c u t o f f 6 . 0
168 F_0 −1.00 −10.00 0 .00
169 gamma 2.00 0 .10 2 .00
170 F_1 2.00 1 .00 5 .00
171

172 type b j s
173 c u t o f f 6 . 0
174 F_0 −1.00 −10.00 0 .00
175 gamma 2.00 0 .10 2 .00
176 F_1 2.00 1 .00 5 .00
177

178 type b j s
179 c u t o f f 6 . 0

307

180 F_0 −1.00 −10.00 0 .00
181 gamma 2.00 0 .10 2 .00
182 F_1 2.00 1 .00 5 .00
183

184 type b j s
185 c u t o f f 6 . 0
186 F_0 −1.00 −10.00 0 .00
187 gamma 2.00 0 .10 2 .00
188 F_1 2.00 1 .00 5 .00
189

190 type csw2_sc
191 c u t o f f 6 . 0
192 a 0 .20 −2.00 2 .00
193 alpha 2 .00 1 .00 6 .00
194 phi 0 .00 0 .00 6 .30
195 beta 3 .00 0 .50 5 .00
196 h 1 .00 0 .50 2 .00
197

198 type csw2_sc
199 c u t o f f 6 . 0
200 a 0 .20 −2.00 2 .00
201 alpha 2 .00 1 .00 6 .00
202 phi 0 .00 0 .00 6 .30
203 beta 3 .00 0 .50 5 .00
204 h 1 .00 0 .50 2 .00
205

206 type csw2_sc
207 c u t o f f 6 . 0
208 a 0 .20 −2.00 2 .00
209 alpha 2 .00 1 .00 6 .00
210 phi 0 .00 0 .00 6 .30
211 beta 3 .00 0 .50 5 .00
212 h 1 .00 0 .50 2 .00
213

214 type csw2_sc
215 c u t o f f 6 . 0
216 a 0 .20 −2.00 2 .00
217 alpha 2 .00 1 .00 6 .00
218 phi 0 .00 0 .00 6 .30
219 beta 3 .00 0 .50 5 .00
220 h 1 .00 0 .50 2 .00
221

222 type csw2_sc
223 c u t o f f 6 . 0
224 a 0 .20 −2.00 2 .00
225 alpha 2 .00 1 .00 6 .00
226 phi 0 .00 0 .00 6 .30
227 beta 3 .00 0 .50 5 .00
228 h 1 .00 0 .50 2 .00
229

230 type csw2_sc
231 c u t o f f 6 . 0
232 a 0 .20 −2.00 2 .00
233 alpha 2 .00 1 .00 6 .00
234 phi 0 .00 0 .00 6 .30
235 beta 3 .00 0 .50 5 .00
236 h 1 .00 0 .50 2 .00
237

308

238 type csw2_sc
239 c u t o f f 6 . 0
240 a 0 .20 −2.00 2 .00
241 alpha 2 .00 1 .00 6 .00
242 phi 0 .00 0 .00 6 .30
243 beta 3 .00 0 .50 5 .00
244 h 1 .00 0 .50 2 .00
245

246 type csw2_sc
247 c u t o f f 6 . 0
248 a 0 .20 −2.00 2 .00
249 alpha 2 .00 1 .00 6 .00
250 phi 0 .00 0 .00 6 .30
251 beta 3 .00 0 .50 5 .00
252 h 1 .00 0 .50 2 .00
253

254 type csw2_sc
255 c u t o f f 6 . 0
256 a 0 .20 −2.00 2 .00
257 alpha 2 .00 1 .00 6 .00
258 phi 0 .00 0 .00 6 .30
259 beta 3 .00 0 .50 5 .00
260 h 1 .00 0 .50 2 .00
261

262 type csw2_sc
263 c u t o f f 6 . 0
264 a 0 .20 −2.00 2 .00
265 alpha 2 .00 1 .00 6 .00
266 phi 0 .00 0 .00 6 .30
267 beta 3 .00 0 .50 5 .00
268 h 1 .00 0 .50 2 .00
269

270 type parabola
271 c u t o f f 6 . 0
272 alpha 1 .00 −10.00 10 .00
273 beta 1 .00 −10.00 10 .00
274 gamma 1.00 −10.00 10 .00
275

276 type parabola
277 c u t o f f 6 . 0
278 alpha 1 .00 −10.00 10 .00
279 beta 1 .00 −10.00 10 .00
280 gamma 1.00 −10.00 10 .00
281

282 type parabola
283 c u t o f f 6 . 0
284 alpha 1 .00 −10.00 10 .00
285 beta 1 .00 −10.00 10 .00
286 gamma 1.00 −10.00 10 .00
287

288 type parabola
289 c u t o f f 6 . 0
290 alpha 1 .00 −10.00 10 .00
291 beta 1 .00 −10.00 10 .00
292 gamma 1.00 −10.00 10 .00

This potential is now ready to be used in potfit.

309

11.5 Using the potfit potfit_setup built-in
To run potfit, we need to give it a parameter file which will point it to required information like
files and names of headers, etc... These actually can be made by hand simply enough but potfit
comes supplied with a utility (potfit_setup) that automates this process to some extent.

To run the potfit_setup executable, you’ll need to give a configuration file, a potential file, and
an output prefix for the run. Please see the following terminal output as an example:

1 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l / pot f i t_se tup −h
2 usage : pot f i t_se tup [−h] [−c c on f i g f i l e] [−p po t e n t i a l f i l e] [− s p r e f i x]
3

4 Create a s imple p o t f i t parameter f i l e from sc ra t ch .
5

6 op t i ona l arguments :
7 −h , −−help show th i s he lp message and ex i t
8 −c c on f i g f i l e name o f the p o t f i t c on f i gu r a t i on f i l e
9 −p po t e n t i a l f i l e name o f the p o t f i t p o t e n t i a l f i l e

10 −s p r e f i x p r e f i x f o r a l l f i l e s
11

12 The p r e f i x takes precedence over the −c and −p swi t che s . I f the <pre f i x >.pot
13 and <pre f i x >. c on f i g f i l e s are not found , the va lue s o f −c and −p are checked .
14 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / u t i l / pot f i t_se tup −c vasp2 fo r ce . c on f i g −p

meam. pot −s AlOTiN |& tee −a meam. param
15 ntypes 4
16 c on f i g vasp2 fo r ce . c on f i g
17 s t a r tpo t meam. pot
18 endpot meam. pot_end
19 t emp f i l e AlOTiN . tmp
20

21 imdpot AlOTiN . imd
22 p l o t f i l e AlOTiN . p l o t
23 f l a g f i l e STOP
24

25 write_pair 1
26 write_lammps 1
27 plotmin 0 .1
28

29 imdpotsteps 5000
30 output_pref ix AlOTiN
31

32 opt 1
33 anneal_temp auto
34 eng_weight 100
35 s t re s s_weight 10
36 seed 42
37 apot_punish 0

This parameter file is now ready to use with potfit.

11.6 Running potfit to generate a MEAM potential
Using all of the previously created files in sections 11.3, 11.4, and 11.5, we can finally run potfit on
the configuration file that we generated in section 11.5 in order to generate a MEAM potential.

Make certain that all of the atomic configurations that you are attempting to run with potfit
have enough atoms to make potfit happy (if they do not, potfit will halt in the import step and ask

310

you to remove the configuration(s) with too few atoms). Please see the following terminal session
as an example for running potfit:

1 uname@uname:~/ te s t−dir> ~/codes / p o t f i t / bin /potfit_apot_meam_mkl meam. param
2 This i s p o t f i t −20210702 (7 e5bf091) compiled on Oct 28 2021 , 1 6 : 1 7 : 4 7 .
3

4 Reading parameter f i l e >> meam. param << . . .
5 [WARNING] Unknown tag <stress_weight> in parameter f i l e ignored !
6 Reading parameter f i l e >> meam. param << . . . done
7 Sta r t i ng to read the po t e n t i a l f i l e :
8 − Poten t i a l f i l e format 0 detec ted : ana l y t i c p o t e n t i a l s
9 − Using 32 MEAM po t en t i a l (s) to c a l c u l a t e f o r c e s

10 − Su c c e s s f u l l y read 32 po t e n t i a l t ab l e (s)
11 Reading po t e n t i a l f i l e >> meam. pot << . . . done
12 Reading c on f i gu r a t i on f i l e >> vasp2 fo r ce . c on f i g << and c a l c u l a t i n g ne ighbor l i s t s

. . .

Inbetween these two sections of terminal output there may be warnings about the box size of the
calculation with respect to the cutoff distance, unrecognized text that potfit will ignore, or errors
regarding there being too few atoms. After all of those warnings, potfit will begin its fitting routine
as shown below:

1 Reading c on f i gu r a t i on f i l e >> vasp2 fo r ce . c on f i g << and c a l c u l a t i n g ne ighbor l i s t s
. . . done

2

3 Read 964 c on f i g u r a t i o n s (964 with f o r c e s , 0 with s t r e s s e s)
4 with a t o t a l o f 11884 atoms (3611 N (30.39%) , 3240 Ti (27.26%) , 1963 Al (16.52%) ,

3070 O (25.83%)) .
5

6 Minimal Dis tances Matrix :
7 Atom N Ti Al O with
8 N 0.950000 1.400000 1.150000 1.150000
9 Ti 1.400000 2.538465 1.745822 1.150000

10 Al 1.150000 1.745822 1.683032 1.150000
11 O 1.150000 1.150000 1.150000 1.233811
12

13 Global energy weight : 100.000000
14

15 Sta r t i ng opt imiza t i on with 164 parameters .
16 Determining optimal s t a r t i n g temperature T . . .
17 Performed 1640 t r i a l s teps , 832 o f them were downhi l l .
18 Se t t i ng T=19783009.849117
19

20 k T m F F_opt
21 0 19783009.849117 0 36600606.854105 36600606.854105

Depending on your computational resources and your system complexity, potfit may take a
large amount of time to reach a converged potential file. For reference, it may take 48-168 hours
for MEAMfit (discussed in chapter 10) to reach a reasonably converged solution.

In the case that potfit initiates with a larger than realistic temperature, you can also set the
temperature manually by changing the anneal_temp option in the parameter file from auto to some
value like 10 (given commonly as the anneal temp in the potfit documentation’s example files). In
this case, potfit will skip the "Determining optimal starting temperature T ..." and jump to the
optimization step like shown in the following:

1 Reading c on f i gu r a t i on f i l e >> vasp2 fo r ce . c on f i g << and c a l c u l a t i n g ne ighbor l i s t s
. . . done

311

2

3 Read 964 c on f i g u r a t i o n s (964 with f o r c e s , 0 with s t r e s s e s)
4 with a t o t a l o f 11884 atoms (3611 N (30.39%) , 3240 Ti (27.26%) , 1963 Al (16.52%) ,

3070 O (25.83%)) .
5

6 Minimal Dis tances Matrix :
7 Atom N Ti Al O with
8 N 0.950000 1.400000 1.150000 1.150000
9 Ti 1.400000 2.538465 1.745822 1.150000

10 Al 1.150000 1.745822 1.683032 1.150000
11 O 1.150000 1.150000 1.150000 1.233811
12

13 Global energy weight : 100.000000
14

15 Sta r t i ng opt imiza t i on with 164 parameters .
16 k T m F F_opt
17 0 10.000000 0 36600606.854105 36600606.854105
18 0 10.000000 1 3886268.043080 3886268.043080
19 0 10.000000 2 904743.127530 904743.127530

312

12 Additional Topics Just for Fun

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

These contents are just as the title suggests, cool stuff in the shell that I thought would be fun
to include. Enjoy!

12.1 The fork bomb: a denial of service ’virus’
A fork bomb is a cute little piece of code that can relatively easily crash a system. A word of caution
though, if you intend to run this code without any sort of safeguards, then do it on a system that
you’re not afraid to crash. The fork bomb appears to be very simple, as is shown below (not my
own creation):

1 : () { : | :& } ; :

Another implementation of this code is as follows where the only thing that has changed (beyond
the more readable structuring of the code) is that the colon has been replaced by the word fork
(again, not my own creation overall).

1 f o rk () {
2 f o rk | f o rk &
3 }
4 f o rk

The idea of the fork bomb is that, while it looks simple, it is a primitive sort of virus that
creates continuously replicating instances of itself which will starve the system of resources to the
point of slowing or crashing. This is, in other words, a type of denial of service attack. Wikipedia
(wikipedia.org/wiki/Fork_bomb) contains a very rigorous but plain explanation of how the fork
bomb works: "In [the fork bomb], a function is defined (fork()) as calling itself (fork), then piping
(|) its result to a background job of itself (&)."

So then that cute looking piece of code from before has some teeth. Overall, put a different way,
:() is a function all of whose input is what is returned being piped directly back into the function
and split at each step using the fork command. The fork bomb is a neat and tidy tiny chunk of
code with strange capabilities!

12.2 Text diagrams for inline human-readable descriptions of your code
Sometimes you may need to run a large number of calculations that are very similar but distinct
and having only a few key differences from one script to another. In this case, it is the obvious
idea to include a detailed description line in the text of the script as a nice comment to yourself
so that you can remember exactly what the script’s intention is instead of having to scroll through
what my be many lines of code in order to remember what that specific script was intended to
calculate. While that sounds great in theory, I find it to be massively taxing on my eyes, especially
after spending a large number of hours staring at small text in a terminal.

To somewhat remedy this situation, I like to made ASCII text based graphics or viewgraphs
within my code at key points and/or the head of the document so that I can look at a glance
and remember what the script was intended to calculate specifically. The graphics can be made
manually or with a number of utilities that you can search for on the internet. Particularly, I
find this to be a lifesaver when I’m trying to generate EAM or MEAM potential files from a large
number of VASP calculation sets.

313

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

Included below are some examples of little viewgraphs which I have included in various calcula-
tion scripts while generating a force field file for use with LAMMPS. In the scripts, I was running
many individual calculations with slightly changed interatomic distances per script and each of the
100 individual scripts were all on different systems or different system configurations. Managing
all of those highly similar scripts became tedious and a pain in the eyes so I resorted to including
some graphics with text like follows:

The viewgraph below shows an Al-O dimer (as it might form in the simplest case in a sputtering
system with dimer length calculated by VASP) as it is approaching a (100)-oriented slab of TiN
where the Al atom in the dimer is approaching a Ti atom in the slab and the O atom in the dimer is
approaching an N atom in the slab. This was important when doing many such similar calculations
on minutely varying system configurations.

1 # +−−−−−−+ +−−−−−−+
2 # | Al |<−−−>| O | Al−O Dimer (1 .6337A)
3 # +−−−−−−+ +−−−−−−+ |
4 # | Var iab le z−coord .
5 # |
6 # +−−−−−−+ +−−−−−−+ v +−−−−−−+
7 # | Ti |<−−−>| N |<−−−>| Ti | TiN (100) s l ab su r f a c e
8 # +−−−−−−+ +−−−−−−+ +−−−−−−+

The viewgraph below shows a general reminder of how a POSCAR file was set up having a
variable that is set in the scripts called lat_a which controls the height of a dimer above a crystal
slab in a VASP calculation.

1 # Dimer Equi l ibr ium Bond Length
2 # +−−−−−−+ +−−−−−−+
3 # |Atom_1|<−−−>|Atom_2 | |
4 # +−−−−−−+ +−−−−−−+ | Var iab le z−coord . = lat_a
5 # |
6 # +−−−−−−−−−−−−−−−−−−−+ v
7 # | Slab Sur face |
8 # +−−−−−−−−−−−−−−−−−−−+

The viewgraph below shows a reminder of what the various variables included in a POSCAR
file are. I find this extremely useful when referring back to old scripts which could otherwise take
excess time to remember exactly what was going on. The name of the game here is entirely to
waste less time on trying to remember what’s going on in a script (with the added benefit of maybe
reducing fatigue from staring at tiny text in a terminal too).

1 # +−−−−−−+
2 # |Atom_1 | ^ Dimer Atom 1 <−−− Ti in t h i s case i s po in t ing up
3 # +−−−−−−+ |
4 # | lat_b=lat_a + dimer equ i l i b r i um bond length
5 # +−−−−−−+ |
6 # |Atom_2 | v Dimer Atom 2 <−−− N in t h i s case i s po in t ing down
7 # +−−−−−−+ |
8 # | lat_a=Sur face z−coord . + va r i ab l e z−coord .
9 # +−−−−−−+ |

10 # |Atom_3 | v Slab Sur face
11 # +−−−−−−+

The viewgraph below shows a recap that I put at the head of some scripts where a vertically
oriented Al-O dimer molecule is approaching an O atom on a crystalline slab of c-axis oriented
sapphire. This is useful when you have many configurations of a system and want to view or
remember some of the parameters or a general indication of the intention of the calculation.

314

1 # +−−−−−−+
2 # | Al | ^ Dimer Atom 1
3 # +−−−−−−+ |
4 # | (1 .6337A)
5 # +−−−−−−+ |
6 # | O | < Dimer Atom 2
7 # +−−−−−−+ |
8 # | Var iab le z−coord .
9 # +−−−−−−+ |

10 # | O | v C− Sapphire Slab Sur face
11 # +−−−−−−+

The viewgraph below shows a general header I include in calculations where I’m determining
the minimum energy configuration of a structure (in this case the structure was F-43m Ti2Al) as
the script generates an equally spaced number of calculation scripts that expand and contract the
lattice parameter by 2 percent.

1 # +−−−−−−−−−−+
2 # +−−−−−−−−−+ | |
3 # +−−−−−−+ | | | |
4 # | | | Ti2Al | | |
5 # | | <−−−−−− | F−43m | −−−−−−> | |
6 # +−−−−−−+ +−−−−−−−−−+ +−−−−−−−−−−+
7 #
8 # 2% Contracted Equi l ibr ium 2% Expanded

The viewgraph below I thought was handy to include after several lines of code that use the
bash program called bc to calculate a maximum and minimum lattice parameter over which to
sweep a VASP energy calculation with inputs like a starting lattice parameter, a desired number of
calculation steps, and a percent variation max and min of the lattice parameter. I think its really
useful to comment code and inline calculations verbosely to reduce wasted time and headaches
when referring to code in the future; plus it’s kinda fun if you as me!

1 # a0_min a0 a0_max
2 # |<− N_steps −>|<− N_steps −>|

12.3 Text decorations for utility and fun
Text decorations may sounds silly at the outset, and some of course can be. A good example of
silly (but still super useful for putting a personalized touch on your own programs and scripts)
text decorations might be the site kammerl.de/ascii/AsciiSignature.php. The tools there let you
make and customize all sorts of ASCII art banners! An example of this is the following just saying
’Script’ in the font called Sub-Zero from the site I just mentioned:

1 ______ ______ ______ __ ______ ______
2 /\ ___\ /\ ___\ /\ == \ /\ \ /\ == \/__ _\
3 \ ___ \\ \ ____\ \ __< \ \ \\ \ _−/\/_/\ \/
4 \/_____\\ _____\\ _\ _\\ _\\ _\ \ _\
5 \/_____/ \/_____/ \/_/ /_/ \/_/ \/_/ \/_/

A slightly less silly use of text decorations is in making easily visible separations between different
sections of a program or script. Some users may be familiar with the new section tag %% in
MATLAB but BASH doesn’t have such a nice functionality. One way of getting around this to at
least the same visual effect is to put decorative and highly visible sections of commented out text

315

or symbols into your code that separate blocks with independent functions so scrolling through or
navigating the script at a glance is simpler. I include ’decorations’ like these in most of my scripts
because I find it aids in my own readability of the script, especially when I’m returning to the script
after a number of months or years and I don’t have a perfect memory of what I was intending to
do at the time. Some examples are included below:

The following you’ll have no doubt seen in many of the examples enclosed in his text, there’s
something I can’t quite put my finger on about the pattern of alternating colons and dashes that I
find very aesthetically pleasing to the eye.

1 #−:−
2 #−:−:−:−:−:−:−:−:−:−:−:−:− Block o f Code −:−:−:−:−:−:−:−:−:−:−:−:−
3 #−:−

1 #==
2 #========================== Block o f Code : ========================
3 #==

The following I especially like for LATEX(note the % comments)
when I have whole chapters in individual .tex documents, large comments like these lend visual

aid to break up the monotony on the screen and be able to more easily see where new sections
begin or end.

1 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
3 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
4 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
5 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
6 % <!> <!> <!> <!> NEW SECTION <!> <!> <!> <!> <!> <!>
7 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
8 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
9 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

10 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
11 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

While obviously not strictly necessary, I find these to be useful and also fun because you can
personalize them to whatever suits your tastes! You can personalize these to a massive extent and
add a bit of visual appeal and style that makes your code instantly recognizable and all your own.

1 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 % S E B <!> S F S C <!> <!> <!> <!>
3 % T D O <!> H O C O <!> <!> <!> <!>
4 % <!> E W P <!> E R I M <!> <!> <!>
5 % <!> V A P <!> L <!> E P <!> <!> <!>
6 % <!> <!> E R <!> <!> L <!> N U <!> <!>
7 % (c) <!> N D <!> <!> <!> <!> T T <!> <!>
8 % <!> 2 <!> <!> <!> <!> <!> <!> <!> I I <!>
9 % <!> 0 <!> <!> <!> <!> <!> <!> <!> F N <!>

10 % <!> <!> 2 <!> <!> <!> <!> <!> <!> <!> I G
11 % <!> <!> 2 <!> <!> <!> <!> <!> <!> <!> C <!>
12 % <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

I especially love the almost wallpaper-like appearance of this design of my own!

12.4 Using text to speech and alert sounds in the terminal
One interesting bit of functionality that you can build into your scripts is to include audio output
(assuming that the speaker kernel is loaded and working properly). One of the possibilities for this

316

which can be used for all sorts of notifications is the OS X text to speech function named ’say’. For
example, if you wanted the text to speech program to say aloud the word ’beep’ then you could
enter the following command into the OS X terminal:

1 say beep

The say command then allows for all sorts of useful monologue from your terminal session
because you can store output from various parts of a script as variables and them pass them to the
say command. I find this to be useful when I want to know if a script has completed or not without
having to check on it periodically. However, I do actually find the text to speech more intrusive
and startling than the default terminal chime. That chime is in fact what I use the most frequently
when I desire this sort of functionality in my own scripts.

There are several ways to produce a small chime in the terminal. One is to echo the special
character \007 (known as ASCII BEL \007) to the terminal with the following command:

1 echo −ne ’ \007 ’

Another way to achieve the same effect is to give bel as an argument to the tput command as
follows:

1 tput be l

My preferred method is with the ASCII BEL command because it seems to work for me no
matter what system I try it on (as long as the speaker kernel is loaded and working). The bel
character is one of ASCII control characters which constitute ASCII characters 0-31. The bel
character used to actually ring a physical bell on some systems. Coverage of all these control
characters is beyond the scope of this text but they are of great interest. In fact, we have already
spoken about one of these characters before in this text! In section 3.13 we talked about the carriage
return which is actually another control character ASCII \013 and how it would cause trouble for
us when we were trying to issue certain UNIX commands to a DOS-formatted file. Many of the
original control characters have fallen out of common use however. /par

317

13 Concluding Remarks

Copyright ©2022 Steven Edward Bopp. Creative Commons Attribution-NonCommercial 4.0 International Lic.
This text, the first edition of Shell for Scientific Computing, is freely available at https://escholarship.org/uc/
item/4qb8927d., https://doi.org/10.21221/S2G59Q

The scope of this text has been to review some general use cases of the BASH shell and how it
can be used for scientific computing and automation. The provided examples are intended to span
a wide range of applications with tunability and modularity in mind. The tools provided in the
previous sections are intended to be a launchpad for the reader’s quick entry into the field of shell
scripting and how it can make their life easier and their work more expansive. My hope for this
text is that it can reduce the barriers to entry for scientists, engineers, and enthusiasts who want
to begin investigations using scientific computing and make learning this skill fun and easy with
practical examples.

This text is supplied free of charge and all are welcome to join. It’s been my delight to share
with you.

318

https://escholarship.org/uc/item/4qb8927d
https://escholarship.org/uc/item/4qb8927d
https://doi.org/10.21221/S2G59Q

References
[1] Steven Edward Bopp, Haoliang Qian, and Zhaowei Liu. Influence of Hafnium Defects on the

Optical and Structural Properties of Zirconium Nitride. Physica Status Solidi (RRL) – Rapid
Research Letters, 2100372:1–8, 2021.

[2] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavaz-
zoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso,
Stefano De Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos
Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco
Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo
Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P. Seitsonen, Alexander Smogunov, Paolo
Umari, and Renata M. Wentzcovitch. QUANTUM ESPRESSO: A modular and open-source
software project for quantum simulations of materials. Journal of Physics Condensed Matter,
21(39), 2009.

[3] P Giannozzi, Oliviero Andreussi, T Brumme, O Bunau, M Buongiorno Nardelli, M Calandra,
R Car, C Cavazzoni, D Ceresoli, M Cococcioni, and others. Advanced capabilities for materials
modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46):465901,
2017.

[4] Torbjörn Björkman. CIF2Cell: Generating geometries for electronic structure programs. Com-
puter Physics Communications, 182(5):1183–1186, 2011.

[5] Anton Kokalj. Computer graphics and graphical user interfaces as tools in simulations of
matter at the atomic scale. Computational Materials Science, 28(2):155–168, 2003.

[6] Christian Vorwerk, Caterina Cocchi, and Claudia Draxl. Addressing electron-hole correlation
in core excitations of solids: An all-electron many-body approach from first principles. Physical
Review B, 95(15):1–10, 2017.

[7] Christian Vorwerk, Benjamin Aurich, Caterina Cocchi, and Claudia Draxl. Bethe-Salpeter
equation for absorption and scattering spectroscopy: Implementation in the exciting code.
Electronic Structure, 1(3), 2019.

[8] Dmitrii Nabok, Andris Gulans, and Claudia Draxl. Accurate all-electron G0W0 quasiparti-
cle energies employing the full-potential augmented plane-wave method. Physical Review B,
94(3):1–9, 2016.

[9] Stephan Sagmeister and Claudia Ambrosch-Draxl. Time-dependent density-functional theory.
Physical Chemistry Chemical Physics, 11(22):4436, 2009.

[10] Ronaldo Rodrigues Pela, Ute Werner, Dmitrii Nabok, and Claudia Draxl. Probing the LDA-
1/2 method as a starting point for G0W0 calculations. Physical Review B, 235141(23):1–9,
2016.

[11] Pierre Hirel. Atomsk: A tool for manipulating and converting atomic data files. Computer
Physics Communications, 197:212–219, 2015.

[12] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B, 54(16), 1996.

319

[13] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set. Computational Materials Science, 6(1):15–50,
1996.

[14] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Physical Review B,
47(1):558–561, 1993.

[15] Koichi Momma and Fujio Izumi. VESTA : a three-dimensional visualization system for elec-
tronic and structural analysis . Journal of Applied Crystallography, 41(3):653–658, 5 2008.

[16] Andrew Ian Duff, M. W. Finnis, Philippe Maugis, Barend J. Thijsse, and Marcel H.F. Sluiter.
MEAMfit: A reference-free modified embedded atom method (RF-MEAM) energy and force-
fitting code. Computer Physics Communications, 196:439–445, 2015.

[17] P. Brommer and F. Gähler. Effective potentials for quasicrystals from ab-initio data. Philo-
sophical Magazine, 86(6-8):753–758, 2006.

[18] Peter Brommer and Franz Gähler. Potfit: Effective potentials from ab initio data. Modelling
and Simulation in Materials Science and Engineering, 15(3):295–304, 2007.

[19] Peter Brommer, Alexander Kiselev, Daniel Schopf, Philipp Beck, Johannes Roth, and
Hans Rainer Trebin. Classical interaction potentials for diverse materials from ab initio data:
A review of potfit. Modelling and Simulation in Materials Science and Engineering, 23(7),
2015.

[20] Daniel Schopf, Peter Brommer, Benjamin Frigan, and Hans Rainer Trebin. Embedded atom
method potentials for Al-Pd-Mn phases. Physical Review B - Condensed Matter and Materials
Physics, 85(5):1–8, 2012.

320

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> <!> <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> <!>
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>

1 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!>
2 <!> S F S C <!> S E B <!> 1 s t <!> <!> <!>
3 <!> H O C O <!> T D O <!> E <!> <!>
4 <!> <!> E R I M <!> E W P <!> d <!> <!>
5 <!> <!> L <!> E P <!> V A P <!> n <!>
6 <!> (c) <!> L <!> N U <!> E R <!> <!> <!> <!>
7 <!> 2 <!> <!> <!> T T <!> N D <!> <!> <!>
8 <!> <!> 0 <!> <!> <!> I I <!> <!> <!> <!> <!> <!>
9 <!> <!> 2 <!> <!> <!> F N <!> <!> <!> <!> <!>

10 <!> <!> <!> 2 <!> <!> <!> I G <!> <!> <!> E <!>
11 <!> <!> <!> <!> <!> <!> <!> C <!> <!> <!> <!> O
12 <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> <!> F

321

	Introduction
	Motivation for this text
	Acknowledgements
	Acronyms defined
	BASH cheat sheet: my most common commands
	The Bourne-again shell (BASH)
	Accessing the shell

	Shell Commands and How to Use Them
	Shell navigation: pwd, cd, ls, file
	Handling files in the shell
	Create, rename, copy, move, and delete: touch, mv, cp, rm
	Reading, writing, and destroying files: ls, nano, cat, head, tail
	Viewing filters and file comparisons: more, less, and diff
	Create and unzip archives: tar, and gzip
	Z-commands: zcat, zdiff, zless, and zmore
	Estimate a file's disk usage: du

	Special characters: :, ;, &, &&, |, $, !, <, >, *, , ?, /, \, %, ., .., ...
	The slash character /
	The backslash character \
	The modulo character %
	The sequence wildcard character *
	The single character wildcard ?

	Ownership and file modes: chmod and chown
	Superuser operations: su, sudo and fakeroot
	Shortcuts in the shell
	Quick-searching the BASH history: reverse-i-Search ^r
	Command shortcuts in the shell: alias and unalias

	Time-based commands: date, cal, sleep, tty-clock
	Linux services: service

	Shell Programs and How to Run Them
	System monitors: top, htop, atop, and gotop
	whoami, uname and hostname
	Network monitoring: bmon, nmap, arp and ping
	Process controls: no hangups and forks
	find
	wget and curl
	vim: a text editor in the shell
	Gnuplot
	lynx
	openmpi
	ssh and scp
	bc an arbitrary precision BASH calculator
	dos2unix, converting old dos files to UNIX format

	Logical Operations: Variables, Redirects, Pipes, While, For, and If
	Redirects and variables
	Pipes: an example with the tee command
	Loops and built-in logical counters
	For loops
	Until loops
	While loops
	If statements: check whether a program is installed

	Shell Scripting: Making General Purpose Tools
	Make a curses-style text-based user interface with while loops and case functions
	Make a timer in the shell (for use within scripts) using variables and built-in math functions
	BASH web scraping HTML using Gnuplot, lynx, awk, sed, and bc (and checking for installed programs with if statements)
	Use functions to make a user interface video editor script with ffmpeg
	Scripting with custom options using getopts, for, if, and while statements, as well as exit and shift conditions
	Automate installation (sort of) with redirects and shell scripts
	Normalize and 'fix' data sets using dos2unix or tr, sed, grep, sort, wc, awk, for, eval, and bc
	Convert obscure .xrdml files to two-column .dat with tr, awk, paste, bc, and wc

	Shell Scripts for DFT Calculations with Quantum ESPRESSO (PWscf)
	Compiling Quantum Espresso
	Some common error sources in Quantum ESPRESSO
	Quantum Espresso file headers and environment variables
	Charge density and the electron localization Function (ELF)
	K-resolved projected density of states (KPDOS) and the Fermi surface
	The complex dielectric function with epsilon.x
	Cif2Cell: create an interactive BASH script for crystal-making
	Firmi: create Fermi surface .stl files from Quantum Espresso output

	Shell Scripts for DFT Calculations with Exciting
	Compiling Exciting Oxygen
	Some common error sources in Exciting
	Ground state energy of NaCl
	Second harmonic generation (SHG) of a TiN monolayer (relaxed by VASP) with automatic lattice vector conversion to Bohr radii from POSCAR

	Create Crystals and Heterostructures in the Shell with Atomsk
	Installing Atomsk on Linux
	Compiling Atomsk from its source on Linux
	Creating simple structures
	Creation of oriented and duplicated crystals
	Creation of monolayers and heterostructured slabs
	Adding randomness to a crystal

	Shell Scripts for DFT Calculations with VASP
	Compiling VASP 5.3
	Some common error sources in VASP
	Relaxation of a (111)-oriented TiN monolayer on AlN
	Automating many simultaneous calculations with VASP: the O2 dimer, and data analysis with MATLAB
	Automating many simultaneous calculations with VASP: the Al2O3 system, and data analysis with MATLAB
	Adsorption of an AlO dimer on a c-axis oriented Al2O3 surface, and data analysis with MATLAB
	Adsorption of a TiN dimer on a (111)-oriented TiN Surface, and data analysis with MATLAB
	A script to collect and collate energy and volume parameters from VASP calculations and notify the user for unconverged calculations with for loops, awk, tail, and tput bel
	A script to collect and collate many vasprun.xml files with for loops, and a temporary counter file
	A Gnuplot script for plotting OSZICAR and ignoring the file header

	Shell Scripting for Force Field Creation with MEAMfit and MEAMfit2
	Compiling MEAMfit
	Compiling MEAMfit2
	Some common error sources in MEAMfit
	Collecting many vasprun.xml files for use with MEAMfit by using for loops and the expr command
	Plotting a MEAMfit interatomic separations histogram in Gnuplot
	A MEAMfit input script for some automation, and a demonstration of MEAMfit fitting and testing on an example data set
	Removing selected calculations from a set with automation

	Shell Scripting for Force Field Creation with potfit
	Compiling potfit
	Collecting many VASP OUTCAR files for potfit
	Using the potfit vasp2force built-in
	Using the potfit makeapot built-in
	Using the potfit potfit_setup built-in
	Running potfit to generate a MEAM potential

	Additional Topics Just for Fun
	The fork bomb: a denial of service 'virus'
	Text diagrams for inline human-readable descriptions of your code
	Text decorations for utility and fun
	Using text to speech and alert sounds in the terminal

	Concluding Remarks
	References

