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Advancing towards 6G networks emphasizes integrating communication with sensing func-

tionalities, promising unparalleled connectivity, efficiency, and intelligence in forthcoming

networks. In this context, uncrewed aerial vehicles (UAVs) emerge as pivotal assets, offering

versatile solutions for both communication and sensing tasks. Leveraging their mobility and

flexibility, optimizing the UAV deployment or trajectory can enhance the network perfor-

mance to meet the new demands.

Anticipating next-generation 6G networks, traditional cellular architectures’ constraints have

led to the exploration of new network topologies, including cell-free architectures. These

architectures abandon the concept of cell, allowing users to connect to multiple base stations

and mitigating the effects of cellular boundaries for fairer scenarios. Combining cell-free

architectures with UAVs offers substantial performance gains by leveraging UAV adaptability

for dynamic coverage and capacity optimization. To fully leverage this potential, we propose

a comprehensive framework for cell-free UAV networks. Initially, UAVs operate as flying base

stations within a framework of perfect fronthaul connectivity. This paradigm is extended

to accommodate wireless fronthaul scenarios, prompting UAVs to function as flying relays

instead of flying base stations.

Moreover, UAVs hold significant potential beyond their role in communication. Equipped
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with sensors and video cameras, UAVs can serve a dual purpose, enabling efficient data

collection and sensing tasks. One critical application is wildfire tracking, addressing the

pressing need for early detection and monitoring of wildfires. With the escalating frequency

and intensity of wildfires globally, efficient wildfire tracking has become imperative for mit-

igating their devastating impact. Integrating the strengths of cell-free UAV networks with

artificial intelligence, our aim is to optimize UAV trajectories to achieve two primary ob-

jectives: (i) cover the fire perimeter with cameras and (ii) ensure reliable transmission of

captured images to the network. This design significantly enhances resilience, allowing UAVs

to transmit images even if certain base stations are compromised by fire incidents. How-

ever, the complexity of the overall problem presents a challenge, leading to the utilization of

reinforcement learning in this scenario.

In addition to the aforementioned applications in cell-free networks and wildfire tracking,

this dissertation also explores similar scenarios with cellular connectivity. This includes ex-

ploring the integration of communication, sensing, and data collection functionalities within

traditional cellular networks. These methodologies, which involve optimizing trajectories via

traditional techniques or more sophisticated such as reinforcement learning, contribute to

enhancing the efficiency and reliability of cellular networks as well.
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Chapter 1

Introduction

In the realm of 6G networks, data collection, sensing, and communication stand as pivotal el-

ements for fostering unprecedented advancements in communication technologies [1–3]. New

avenues for investigation include the utilization of new spectrum, cell-free solutions, disag-

gregation and virtualization, energy efficiency, and the application of artificial intelligence

(AI) to enhance connectivity across the globe.

This thesis relates a variety of the aforementioned topics under the umbrella of uncrewed

aerial vehicles (UAVs). Precisely, UAVs emerge as an ideal solution for diverse challenges

in wireless communication networks because of their inherent versatility and mobility [4–8].

In the context of wireless communications and sensor networks, UAVs can navigate diverse

terrains and reach locations that traditional methods cannot. In fact, the UAV deploy-

ment/trajectory optimization in wireless networks is a problem of growing interest, with dif-

ferent groups studying its impact under different setups [9–30]. Within the wireless context,

UAVs can serve as flying base stations, relays, sensors, and more, depending on the spe-

cific application requirements. Precisely, all chapters study the UAV deployment/trajectory

optimization problem, alongside the resource allocation management, for different scenarios.
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Chapters 2 and 3 focus on the static UAV deployment problem in cell-free networks. These

type of network architectures, in which every user can potentially communicate with every

base station, have received a lot of attention [11, 31–43]. By leaving behind the concept of

a cell, it becomes possible to (i) provide a much more uniform degree of service, (ii) turn

interference into useful signal, and (iii) further densify the network. Therefore, Chapter 2

considers the uplink scenario in fully and partially centralized cell-free networks, where UAVs

function as flying base stations (FBSs). In this setup, a subset of FBSs receives signals from

each user, and each FBS serves a subset of users. Exact asymptotic expressions, valid for

large subset sizes, and approximate expressions for finite dimensions under Rician fading are

derived for the spectral efficiency, which quantifies the amount of information that can be

reliably transmitted per unit of bandwidth. Leveraging these expressions, the FBS deploy-

ment problem is explored for various receiver architectures. Despite the nonconvex nature

of the deployment problem, a combination of gradient-based and Gibbs sampling algorithms

yields superior performance compared to a square grid deployment. This performance ad-

vantage extends to both minimum and aggregate spectral efficiency metrics for both fully

and partially centralized cell-free networks.

The third chapter serves as a natural extension of the second, where the focus shifts to

incorporating a wireless fronthaul. This chapter delves into the uplink scenario of cell-free

systems, where users establish connections with UAVs that relay information to a processing

point via imperfect wireless fronthaul links. Three multiple access options are explored for

the fronthaul: frequency division multiple access, spatial division multiple access, and combi-

nations thereof. Deterministic equivalent expressions are derived for spectral efficiency under

these fronthaul schemes, considering minimum mean-square error reception (MMSE). Sub-

sequently, optimization subproblems concerning the 3D deployment of UAVs, user transmit

powers, and UAV transmit powers are investigated. The joint optimization of these subprob-

lems yields superior performance, with the 3D deployment emerging as the primary driver

of improvement.
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The fourth chapter considers UAVs as flying users with one main goal: wildfire tracking.

Suitably equipped with cameras and sensors, UAVs can be instrumental for wildfire predic-

tion, tracking, and monitoring, provided that uninterrupted connectivity can be guaranteed

even if some of the ground access points (APs) are damaged by the fire itself [44–46]. A

cell-free network structure, with UAVs connecting to a multiplicity of APs, is therefore ideal

in terms of resilience. The fourth chapter proposes a trajectory optimization framework for

a UAV swarm tracking a wildfire while maintaining cell-free connectivity with ground APs.

Such optimization entails a constant repositioning of the multiplicity of UAVs as the fire

evolves to ensure that the best possible view is acquired and transmitted reliably, while re-

specting altitude limits, avoiding collisions, and proceeding to recharge batteries as needed.

Given the complexity and time-varying nature of this multi-UAV trajectory optimization,

reinforcement learning is leveraged [47], specifically the twin-delayed deep deterministic pol-

icy gradient (TD3) algorithm [48]. The approach is shown to be highly effective for wildfire

tracking and coverage and could be likewise applicable to monitor other natural and man-

made phenomena, including weather events, earthquakes, or chemical spills.

Next, in Chapters 5 and 6, UAVs are used for sensing and data collection applications in

cellular networks [49–52]. However, integrating UAVs in current cellular systems presents

major challenges related to trajectory optimization and interference management among oth-

ers. Chapter 5 considers a multi-cell network including a UAV, which senses and forwards the

sensory data from different events to the central base station [53–55]. Particularly, Chapter

5 covers how to design the UAV’s (i) 3D trajectory, (ii) power allocation, and (iii) sensing

scheduling such that (a) a set of events are sensed, (b) interference to neighboring cells is

kept at bay, and (c) the amount of energy required by the UAV is minimized. The resulting

nonconvex optimization problem is tackled through a combination of (i) low-complexity bi-

nary optimization, (ii) successive convex approximation, and (iii) the Lagrangian method.

A similar setup is studied in Chapter 6, where a multi-UAV cellular network is considered.

However, Chapter 6 focuses on multiple UAVs for data collection tasks [7,56–59]. Precisely,

3



we present an optimization framework that concurrently optimizes UAV trajectories and

transmit powers, aiming to collect data from a variety of IoT sensors while (a) minimiz-

ing the UAVs flying time and (b) keeping interference to terrestrial networks at bay. The

non-convex nature of this problem requires the use of sophisticated approaches, leading us

to employ the TD3 algorithm. Experimental results verify the efficacy of the proposed ap-

proach, demonstrating its ability to significantly enhance data collection in IoT networks

while minimizing the flying time and the interference to ground user links.

Finally, Chapter 7 summarizes the thesis with concluding remarks.
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Chapter 2

Cell-Free UAV Networks: Asymptotic

Analysis and Deployment

Optimization

2.1 Introduction

The evolution towards beyond-5G wireless networks poses challenges such as cooperation,

interference, centralization, scalability, and ultra-densification. There is a vast body of lit-

erature that addresses these issues within the confines of cellular networks, especially under

the frameworks of cooperative communications and interference management [60–68]. These

challenges motivate the interest in network structures that transcend the classical cellular

paradigm.

One structure that seems suitable to address the aforementioned challenges is the cell-

free architecture, in which every user can potentially communicate with every base sta-

tion [11, 31–43]. More precisely, for the sake of scalability, subsets of users communicate
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with subsets of base stations, and the central processing goes one step beyond cooperation.

By leaving behind the concept of a cell, it becomes possible to (i) provide a much more uni-

form degree of service, (ii) turn interference into useful signal, and (iii) further densify the

network. The foregoing works, and references therein, tackle different subproblems within

cell-free structures, e.g., power allocation, subset creation, or pilot assignment, but a major

opportunity remains: optimizing the base station deployment.

FBSs embodied by UAVs are attractive in that respect. Also, FBSs provide superior coverage

and can be deployed quickly and on-demand; this latter aspect is especially relevant in

situations such as natural or man-caused disasters, when the fixed infrastructure is damaged

or outright non-existent.

The challenge of deploying FBSs under various optimality criteria has received considerable

attention [14–23, 25, 27, 69–71]. However, with the exception of some recent works such

as [11, 41], the UAV literature is restricted to the cellular paradigm and, to the best of our

knowledge, the deployment of UAVs as FBSs in cell-free networks has not been thoroughly

studied. This chapter aims at filling that gap.

Compared with terrestrial cell-free networks, their aerial counterparts present major differ-

ences and new challenges. First, air-to-ground links are dominated by the line-of-sight (LoS)

component [72–74] and thus a Rician channel model is needed for these scenarios. This

results in larger channel coherence bandwidths relative to those of ground networks [75–77].

The phase of the LoS component, often modelled deterministically to reflect the tracking and

correction effected by the receiver’s phase lock loop, may have to be modelled stochastically

to reflect drifting [41–43].

Second, large arrays are not feasible, which precludes the deployment of massive MIMO;

however, smaller directional antennas can be carried onboard [14, 16, 78]. Finally, the com-

putational load at the cloud radio access network (C-RAN) gives rise to a tension between
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fully and partially centralized cell-free structures. While the performance of fully centralized

systems is superior, certain functionalities such as large matrix inversions or fast channel

estimation may represent an excessive burden. Partially centralized systems where some of

these tasks are distributed may therefore be preferable whenever the C-RAN is subject to

certain constraints.

Focusing on the FBS deployment problem, ingredients that are important, namely imperfect

channel state information (CSI) and directional antennas, are explicitly accounted for in this

chapter. The analysis entails considering a large number of FBSs and ground users (GUs).

However, as a network-wide receiver is not scalable, only a subset of FBSs can participate in

the decoding of each user and each FBS can only be involved in the reception of a subset of

users. Elaborating on certain random matrix theory results [79–83], deterministic equivalents

(finite-dimensional approximations that become exact asymptotically in the subset sizes) for

the spectral efficiency under either a deterministic or a random model for the LoS phases

are provided. Various receiver architectures are entertained, namely fully centralized MMSE

[35–37] and fully/partially centralized maximum ratio combiner (MRC) [32–35]. Capitalizing

on these deterministic equivalents, the FBS deployment optimization is studied. Specifically,

and with the aim of increasing fairness, the stated objective is to maximize the minimum

spectral efficiency across the network. Although the problem is nonconvex, the combination

of gradient based (GB) and Gibbs sampling (GS) techniques [84, 85] results in remarkable

gains in terms of minimum and sum spectral efficiency. The main contributions of the chapter

can be summarized as follows:

• The uplink of cell-free UAV networks is analyzed, including imperfect CSI, MMSE/MRC

combining, and a realistic antenna radiation pattern for UAVs.

• Linear MMSE and MRC receivers are formulated and novel asymptotic expressions are

provided for the spectral efficiency over Rician channels with deterministic and random

phases in the LoS components.
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• The cell-free UAV deployment problem is studied. In particular, the maximization

of the minimum GU spectral efficiency is formulated. Capitalizing on the obtained

expressions for the spectral efficiency, analytical forms are provided for the gradients

thereof. Given the nonconvexity of the problem, the gradient updates are combined

with the GS technique to avoid low-quality local solutions.

• The relationship between deployment gain and geometry is established. Extensive

simulations show the dependence of the former on the latter, analyzing the impact of

the number of FBSs and GUs, and of the directivity of the receiver antennas, among

others elements.

The remainder of the chapter is organized as follows. Section 2.2 presents the complete

system model of the cell-free UAV network and the communication process. Fully and par-

tially centralized cell-free UAV architectures are studied in Sections 2.3 and 2.4, respectively.

Section 2.5 focuses on the deployment optimization problem while numerical results are pre-

sented and discussed in Section 2.6. Concluding remarks are set forth in Section 2.7.

2.2 System Model

Consider a cell-free network featuring M FBSs, the mth one located at qm = (xm, ym)

with altitude H, serving K cochannel single-antenna GUs at wk = (xk, yk). The channel

coefficient between GU k and single-antenna FBS m is denoted by gk,m, drawn from a Rician

distribution comprising a dominant LoS component and a Rayleigh-distributed small-scale

fading component, such that [86, Sec. 3.4.1]

gk,m =

√
β0 gm(dk,m)

dκk,m

1

Kk,m + 1

[√
Kk,me

jψk,m + ak,m

]
, (2.1)
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where β0 and κ are the path loss at a reference distance of 1 m and the path loss exponent,

respectively, while dk,m denotes the distance. The Rician factor is Kk,m = A1e
A2 arcsin(

H
dk,m

)

for environment-dependent parameters A1 and A2 [73] whereas ak,m ∼ NC(0, 1) accounts for

the small-scale fading. The antenna gain at the mth FBS is

gm(dk,m) = 2 (αm + 1)
Hαm

dαm
k,m

, (2.2)

where αm controls the trade-off between coverage and directivity [78]. The generalization

to multi-antenna FBS will be straightforward if the fading is IID within each FBS, as then

a multi-antenna FBS can be regarded as multiple collocated single-antenna FBSs. If the

fading is not IID within each FBS, then the problem formulation will be the same, with the

final results affected by the correlation statistics.

If the LoS phase is perfectly tracked by the FBS, gk,m ∼ NC(gk,m, rk,m) with

gk,m = E{gk,m} (2.3)

=

√
2(αm + 1) β0

Hαm

dαm+κ
k,m

Kk,m

Kk,m + 1
ejψk,m , (2.4)

and

rk,m = E{|gk,m − gk,m|2} (2.5)

= 2 (αm + 1) β0
Hαm

dαm+κ
k,m

1

Kk,m + 1
. (2.6)

Alternatively, if the LoS phase component is more appropriately modelled as random, i.e.

ψk,m ∼ U [0, 2π], the channel reduces to a zero-mean r.v. with

rk,m = E{|gk,m|2} (2.7)

= 2 (αm + 1) β0
Hαm

dαm+κ
k,m

. (2.8)
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2.2.1 Channel Estimation

The channel coherence Tc depends on the maximum UAV velocity, vmax, the carrier frequency

fc, and the speed of light, c, as Tc ≈ c/fc
2vmax

[86, Sec. 3.4]. The number of resource units within

a fading block is τc = TcBc with Bc the coherence bandwidth. At fc = 2.4 GHz, and with

conservative values vmax = 10 m/s andBc = 1MHz, we will have τc = 6250. Other reasonable

figures for these parameters will result in similarly large coherence values. Therefore, a large

number of orthogonal pilot dimensions are available and pilot contamination can be kept to

a minimum [40]. Thereby neglecting contamination, upon observation at the mth FBS of the

pilot transmitted by GU k, the linear MMSE channel estimate ĝk,m satisfies gk,m = ĝk,m+g̃k,m,

where [87,88]

ĝk,m ∼ NC(gk,m, γk,m), (2.9)

with

γk,m = E{|ĝk,m − gk,m|2} (2.10)

=
r2k,m

rk,m + σ2

p τ

, (2.11)

for given τ and p, denoting the pilot length and transmit power, respectively, while σ2 is

the noise power at the receiver. The uncorrelated error follows g̃k,m ∼ NC(0, ck,m) with

ck,m = rk,m − γk,m. Ultimately, if the LoS component experiences a random phase, the

channel estimate is zero-mean and γk,m is as in (2.10), with

rk,m = 2 (αm + 1) β0
Hαm

dαm+κ
k,m

. (2.12)
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2.2.2 UL Data Transmission

On a given time-frequency resource, the uplink channel matrix is

G =

(
g1, . . . , gK

)
, (2.13)

where gk ∈ CM×1 is the channel between GU k and all FBSs, satisfying G = Ĝ + G̃,

with Ĝ and G̃ being the channel estimation and error matrices, respectively. The subset of

FBSs participating in the reception of each GU is determined by the binary matrix M (s) =

(m
(s)
1 , . . . ,m

(s)
K ) ∈ ZM×K

2 with entries

[
M (s)

]
m,k

=


1 if k ∈ Um

0 otherwise

, (2.14)

where Um is the set of GUs regarded as signal by the mth FBS. Its complementary matrix

is M (i) = 1−M (s), with nonzero entries indicating the GUs that each FBS treats as noise.

Pooling the observations from the M FBSs,

y = M (s) ◦Gx+M (i) ◦Gx+ n (2.15)

= M (s) ◦ Ĝx︸ ︷︷ ︸
signal

+
(
M (s) ◦ G̃+M (i) ◦G

)
x+ n︸ ︷︷ ︸

effective noise: v

, (2.16)

where x = (
√
ps1, . . . ,

√
psK)

T with unit power symbols sk, p denotes the transmit power, ◦

is the element-wise product and noise n ∼ NC(0, σ
2I). The effective noise v is zero-mean

with covariance Σ = E{vv∗} = D1 +D2 + σ2I given

D1 = E
{(

M (s) ◦ G̃x
)(
M (s) ◦ G̃x

)∗}
(2.17)

= diag

{∑
k∈U1

ck,1p, . . . ,
∑
k∈U1

ck,Mp

}
, (2.18)
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Figure 2.1: Fully and partially centralized networks.

and

D2 = E
{(

M (i) ◦Gx

)(
M (i) ◦Gx

)∗}
(2.19)

= (M (i) ◦G)(M (i) ◦G)∗p+ diag

∑
k/∈U1

rk,1p, . . . ,
∑
k/∈UM

rk,Mp

 .

When the LoS components’ phases are random, the channel estimates are zero-mean and

the above holds with only minor modifications in the statistics of the involved terms.

Based on the C-RAN capabilities, two classes of architectures emerge, namely fully cen-

tralized (FC) and partially centralized (PC), as depicted in Fig. 2.1. While the former is

superior in performance, the latter is suitable for settings in which some operations are best

distributed, e.g., when the C-RAN is itself a flying/orbiting device or when the network of

FBSs operates in an ad hoc fashion. In the sequel, we study FC networks where the FBSs

convey high-resolution complex observations and PC networks where the FBSs convey the

linear combination of data observations with locally gathered channel estimates.
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2.3 Fully Centralized Cell-Free Networks

In FC networks, FBSs share the pilot observations, zm, and the collected data signals, ym

with the C-RAN. Let Fk =
{
m :

[
M (s)

]
m,k

= 1 , m = 1, . . . ,M
}
be the subset of FBSs

involved in the reception of GU k at the C-RAN. From the rows of y whose indices are in

Fk, we obtain the |Fk| × 1 vector

yk = M
(s)
k ◦ Ĝkx+ vk, (2.20)

where

M
(s)
k = (m

(s)
k,1, . . . ,m

(s)
k,K) ∈ Z|Fk|×K

2 , (2.21)

while Ĝk ∈ C|Fk|×K and vk ∈ C|Fk|×1. The combiner that maximizes the SINR is the |Fk|×1

MMSE filter [36]

wk =
((

M
(s)
k ◦ Ĝk

)
P
(
M

(s)
k ◦ Ĝk

)∗
p+Σk

)−1

ĝk p, (2.22)

where ĝk ∈ C|Fk|×1 and Σk are the downsized versions of the originalM -dimensional channel

estimate of GU k and the corresponding covariance of the effective noise. From (2.22), the

SINR at GU k is

SINRk = ĝ∗
k

(∑
i ̸=k

(m
(s)
k,i ◦ ĝi)(m

(s)
k,i ◦ ĝi)

∗p+Σk

)−1

ĝk p. (2.23)

An alternative combiner is the MRC, wk = ĝk. For given channel realizations, GU k then

attains

SINRk =
|ĝ∗
kĝk|2 p∑

i ̸=k
|ĝ∗
k(m

(s)
k,i ◦ ĝi)|2 p+ ĝ∗

kΣkĝk
. (2.24)
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From whichever form applies for the SINR, the FC ergodic spectral efficiency of GU k is

SEfc
k =

(
1− τ

τc

)
E{log2(1 + SINRk)}, (2.25)

where τ
τc

accounts for the pilot overhead.

2.3.1 Large-Dimensional Analysis

To evaluate (2.25), we consider the large-dimensional regime, M,K →∞ with finite M/K,

and investigate the convergence of (2.23) and (2.24) to nonrandom limits. This requires that

the subsets themselves grow with the network, i.e., |Fk|, |Um| → ∞ ∀ k,m, accounting for

the non-zero entries in the random matrices. The premises for this convergence are different

depending on whether the LoS phases are deterministic [79,80] or random [82,83], but they

all need the covariance matrix of the channel estimate between User k and all FBSs, defined

by

Γk = E
{(

m
(s)
k ◦ (ĝk − gk)

)(
m

(s)
k ◦ (ĝk − gk)

)∗}
(2.26)

= diag
{
γk,mm

(s)
k,m ∀m

}
, (2.27)

and Gk to satisfy some technical conditions. Specifically, we require that (a) the inverse of

the resolvent matrix in (2.23) exists, which is ensured by the presence of Σk, and that (b) Γk

and G have uniformly bounded spectral norms. The latter condition prevents the received

energy from concentrating on a fixed subset of dimensions as |Fk|, |Um| → ∞ and thus the

analysis in the sequel applies under this premise.

Let us first discuss the MMSE-based receiver with deterministic LoS phases, corresponding

to (2.23). Recent works have shown the asymptotic behavior of bilinear forms based on

the resolvent of large random matrices with nonzero mean, as is the case in (2.23), when
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the variance profiles are separable [79, 80]. In cellular MIMO, correlations among the BS

antennas are common to all users, based on which asymptotic expressions for M,K → ∞

over Rician channels have been given [81]. In cell-free networks, however, the correlations

among antennas at distinct BSs are different for every user, i.e., [Γk]m,m ̸= [Γk]n,n ∀m ̸= n.

Therefore, the variance profile is non-separable and none of the previous analyses is valid for

cell-free networks when using centralized MMSE with deterministic LoS phases.

On the other hand, when the LoS phase is random and uniformly distributed on [0, 2π], the

channel estimates are zero-mean. Therefore, application of the derivations in [82, 83] to a

cell-free setup yields the following result.

Proposition 1. For |Fk|, |Um| → ∞ ∀ k,m and MMSE subset combining with random

phases in the LoS components, SINRk − SINRk → 0 almost surely (a.s.) with

SINRk =
∑
m∈Fk

γk,m∑
i∈Um
i ̸=k

γi,m
1+ei,k

+
∑
i∈Um

ci,m +
∑
i/∈Um

ri,m + σ2

p

. (2.28)

The coefficients ej,k are obtained iteratively with ej,k = limn→∞ e
(n)
j,k , e

(0)
j,k =M , and

e
(n)
j,k =

∑
m∈Fk

m
(s)
k,j,mγj,m∑

i∈Um
i ̸=k

γi,m

1+e
(n−1)
i,k

+
∑
i∈Um

ci,m +
∑
i/∈Um

ri,m + σ2

p

. (2.29)

Proof. Details on how (2.28) emanates from [82,83] can be found in Appendix A.1.

Next, we turn our attention to the MRC case in (2.24), considering both deterministic and

random phases in the LoS components.

Proposition 2. For |Fk|, |Um| → ∞ ∀ k,m with MRC subset combining and deterministic

phases in the LoS components, SINRk − SINRk
a.s.→ 0 with SINRk given in (2.30) on top of

the next page.
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SINRk =
tr(gkg

∗
k + Γk)

2∑
i ̸=k

tr
[(
(m

(s)
k,i ◦ gi)(m

(s)
k,i ◦ gi)∗ + Γi

)
(gkg

∗
k + Γk)

]
+ tr

[
(gkg

∗
k + Γk)

Σk

p

] .
(2.30)

Proof. See Appendix A.2.

Corollary 1. For |Fk|, |Um| → ∞ ∀ k,m and MRC subset combiner with random phases in

the LoS components, SINRk − SINRk
a.s.→ 0 with

SINRk =

(∑
m∈Fk

γk,m
)2∑

m∈Fk
γk,m

(∑
i ri,m − γk,m + σ2

p

) . (2.31)

Proof. The proof follows the procedure in Appendix A.2, by setting the mean components to

zero, i.e., gk,m = 0 ∀k,m, and thus with rk,m = 2(αm + 1) β0
Hαm

dαm+κ
k,m

. Note that γk,m depends

on rk,m as derived in (2.10).

From the continuous mapping theorem [89], the ergodic spectral efficiency in (2.25) satisfies

SEfc
k −

(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0, (2.32)

given the applicable form for SINRk. The deterministic equivalents SINRk and SEfc
k depend

only on the channel statistics.

2.3.2 Fully Centralized Problem Formulation

Armed with the deterministic equivalent expressions, we can turn to optimizing the FBS

deployment. Defining the set of FBS locations by Q = {qm, m = 1, . . . ,M}, and with the

aim of increasing fairness in the network, we can formulate the maximization of the minimum
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spectral efficiency as

max
Q

min
k

(
1− τ

τc

)
E{log2(1 + SINRk)}, (2.33)

which is nonconvex. We combine GB and GS updates to iteratively relocate the FBSs. Given

that the optimization of the spectral efficiency is equivalent to that of the SINR, we obtain

the gradients w.r.t. the latter from Props. 1, 2 and Cor. 1. As the combination of GB

and GS is common to the partially centralized case (see Sec. 2.5), in the remainder of this

section we only derive the gradient expressions for later use.

FC MMSE Deployment

For fully centralized MMSE combining at the C-RAN and random phases in the LoS com-

ponent, the optimization boils down to

max
Q

min
k

∑
m∈Fk

γk,m∑
i∈Um
i ̸=k

γi,m
1+ei,k

+
∑
i∈Um

ci,m +
∑
i/∈Um

ri,m + σ2

p

. (2.34)

For fixed ei,k, the gradient w.r.t. the mth FBS location is

∇qm
SINRk =

∇qm
γk,mDenm − γk,m∇qm

Denm

Den2
m

, (2.35)

where

Denm =
∑
i∈Um
i ̸=k

γi,m
1 + ei,k

+
∑
i∈Um

ci,m +
∑
i/∈Um

ri,m +
σ2

p
, (2.36)

and ∇qm
Denm is the gradient of (2.36). The derivatives of γk,m and ri,m w.r.t. xm, can be

found in [10] and the derivatives w.r.t. ym can be obtained similarly, completing (2.35).
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FC MRC Deployment

For fully centralized MRC combining at the C-RAN and deterministic phases in the LoS

component, the optimization problem reduces to

max
Q

min
k

SINRk (2.37)

with SINRk given in (2.30) on top of this page. The gradient w.r.t. the mth FBS is

∇qm
SINRk =

∇qm
NummDenm − Numm∇qm

Denm

Den2
m

, (2.38)

where Numm and Denm are the numerator and denominator of (2.30), respectively, and

∇qm
Numm and ∇qm

Denm are the corresponding gradients. The computation of (2.38) w.r.t.

xm is sketched in Appendix A.3, and a similar process yields the derivatives w.r.t. ym and

thus the overall gradient in (2.38). All the expressions are simplified further if the LoS

components have random phases as in Cor. 1, since then gk,m = 0 ∀k,m.

2.4 Partially Centralized Cell-Free Networks

In PC networks, some combining operations are performed locally at every FBS such that

the C-RAN need not be privy to the channel estimates. Each FBS requires channel estimates

for the GUs served by that FBS and does not forward the estimates to the C-RAN.

Once the mth FBS observes ym, it is locally combined with wk,m to yield a signal estimate

x̂k,m = w∗
k,mym. Next, x̂k,m is sent through the fronthaul. Once {x̂k,m : m ∈ Fk} are at the
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SINRk =
|v∗
kE{µk,k}|2 p∑

i ̸=k
E{|v∗

k(m
(s)
k,i ◦ µk,i)|2} p+ var{v∗

kµk,k} p+ v∗
kΣ

′

kvk
. (2.43)

C-RAN, they are combined with vk,m to provide the final signal estimate

x̂k =
∑
m∈Fk

v∗k,mx̂k,m (2.39)

=
∑
m∈Fk

v∗k,mw
∗
k,mgk,mxk +

∑
m∈Fk

v∗k,m
∑
i∈Um
i ̸=k

w∗
k,mgi,mxi +

∑
m∈Fk

v∗k,mn
′
k,m. (2.40)

The equivalent noise n′
k,m = w∗

k,m(
∑

i/∈Um
gi,mxi+nm) has covariance Σ

′
k = E{n′

mn
′∗
m}, where

n′
m is the vectorized form of n′

k,m. We also define the nonzero-mean vector µk,i = {µk,i,m :

m ∈ Fk} = {w∗
k,m × gi,m : m ∈ Fk} whereby

x̂k = v∗
kµk,kxk +

∑
i ̸=k

v∗
k (m

(s)
k,i ◦ µk,i)xi + v∗

kn
′
m, (2.41)

where vk is the vectorized form of vk,m.

Proposition 3. In a PC network, the highest spectral efficiency achievable by GU k is

SE
pc

k =

(
1− τ

τc

)
log2(1 + SINRk), (2.42)

where SINRk is provided in (2.43).

Proof. See Appendix A.4.

The combiner required for (2.43) is MMSE-based, yet simpler large-scale-based solutions

could be applied, specifically local MRC (wk,m = ĝk,m) with equal gain combining (EGC) at

the C-RAN (vk = 1).
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SINRk =
tr(gkg

∗
k + Γk)

2∑
i ̸=k

tr
[
(gkg

∗
k + Γk)((m

(s)
k,i ◦ gi)(m

(s)
k,i ◦ gi)∗ +Ri)

]
+ tr

[
(gkg

∗
k + Γk)

Σ
′′
k

p

] , (2.44)

2.4.1 Large-Dimensional Analysis

Expressions can be derived for |Fk|, |Um| → ∞ with local MRC and ECG at the C-RAN

under both deterministic and random phases in the LoS components.

Proposition 4. For |Fk|, |Um| → ∞ ∀ k,m, local MRC, and subset ECG at the C-RAN with

deterministic LoS phases, SINRk − SINRk
a.s.→ 0 with SINRk defined in (2.44) on top of the

next page, where Σ
′′

k = (M
(i)
k ◦Gk)(M

(i) ◦Gk)
∗p+D2 + σ2I.

Proof. See Appendix A.5.

Corollary 2. For |Fk|, |Um| → ∞ ∀ k,m, local MRC, and subset ECG at the C-RAN with

random LoS phases, SINRk − SINRk
a.s.→ 0 with

SINRk =

(∑
m∈Fk

γk,m
)2∑

m∈Fk
γk,m

(∑
i ̸=k ri,m + σ2

p

) . (2.45)

Proof. The proof follows the procedure in Appendix A.5, only with gk,m = 0 ∀k,m and thus

with rk,m = 2(αm + 1) β0
Hαm

dαm+κ
k,m

. Note that γk,m depends on rk,m as derived in (2.10).

From the continuous mapping theorem [89], the spectral efficiency in Prop. 3 satisfies

SE
pc

k −
(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0, (2.46)

given the applicable form for SINRk.
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2.4.2 Problem Formulation

The maximization of the minimum spectral efficiency, hence the minimum SINR, entails

max
Q

min
k

SINRk (2.47)

with SINRk defined in (2.44) on top of this page and

∇qm
SINRk =

∇qm
NummDenm − Numm∇qm

Denm

Den2
m

, (2.48)

where Numm and Denm are the numerator and denominator of (2.44), respectively, with

∇qm
Numm and ∇qm

Denm the corresponding gradients. The computation of (2.48) is akin

to that of (2.38), which is detailed in Appendix A.3. If random phases are considered in the

LoS components, a similar optimization problem can be formulated based on Cor. 2.

2.5 GB-GS Deployment

Equipped with the gradients for each of the scenarios, at iteration number j, the GB updates

are

q(j)
m ←− q(j)

m + ρ(j)∇qm
SINR

(j)

k |qm=q
(j)
m
, (2.49)

where ρ(j) is a decreasing function of j for convergence reasons. Due to the lack of con-

vexity, the updates in (2.49) may quickly converge to low-quality solutions. Furthermore,

an exhaustive search on the 2D plane at altitude H would be computationally prohibitive.

Therefore, affordable techniques should be investigated. A potential alternative is simulated

annealing [10]. However, the exploration in simulated annealing is limited to only one pos-

sible direction. Although the results are promising, exploring other locations may result in
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a better cost function. We thus resort to stochastic optimization, and more particularly to

the GS technique [84], to improve the results. Given a discrete search space Θ, GS aims at

solving

max
Q∈Θ

min
k

SINRk. (2.50)

The FBS locations are iteratively updated according to a certain probability distribution [84].

Precisely, at Iteration t, the coordinates of the FBSs serving the GU with the lowest SINR
(t)

are updated; the index of this GU is denoted by k
(t)
min.

Let us define by q
(t)
m and η(t) = min

k
SINR

(t)

k = SINR
(t)

k
(t)
min

the location of FBS m and the cost

function at Iteration t, respectively. By definition, η(t) is a function of the FBSs associated

to GU k
(t)
min, i.e., η(t)(q

(t)
m , m ∈ F

k
(t)
min

). The coordinates of the F
k
(t)
min

FBSs are updated

sequentially, starting at the FBSs with the lowest index. For a given m ∈ F
k
(t)
min

, let us

denote by Q
(t)

−m,k(t)min

= {q(t+1)
j , q

(t)
i : j < m, i > m, (j, i) ∈ F

k
(t)
min
} the set of FBS locations

associated to GU k
(t)
min where

a) FBSs j < m have already updated their locations to t+ 1,

b) the locations of FSBs i > m still need to be updated, and

c) FBS m is removed.

The cost function η(t)(q
(t)
m , m ∈ F

k
(t)
min

) can be written as a function of the set Q
(t)

−m,k(t)min

,

namely η(t)(q
(t)
m ,Q

(t)
−m,k). Then, the probability of FBS m ∈ F

k
(t)
min

updating its location to

q
(t+1)
m can be calculated as [84]

Pr

{
q(t+1)
m |q(t)

m ,Q
(t)

−m,k(t)min

}
=

exp
{
γ η(t)

(
q
(t+1)
m ,Q

(t)
−m,k

)}∑
q̂
(t+1)
m ∈Θ

exp
{
γ η(t)

(
q̂(t+1)
m ,Q

(t)
−m,k

)} ∀m ∈ Fk(t)min
, (2.51)
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Figure 2.2: Two-dimensional search space
.

where γ is a fixed parameter and Θt+1 represents the possible locations that FBS m can

explore at iteration t + 1. To reduce the search space, we limit the number of possible

neighbors to six, i.e., |Θt+1| = 6 (see Fig. 2.2). The six alternatives are to stay, move north,

move south, move east, move west, and move in the direction of the gradient in (2.49). Note

that the gradient can point at any location in the 2D plane at altitude H. Hence, the search

space is continuous. Moreover, at each iteration, matrix M (s) is updated. A summary of

the iterative process is included in Alg. 1 where ϵ and Imax control when to stop.

Algorithm 1 GS-GB Algorithm

Require: At t = 0, initial FBS locations, q
(0)
m , and cost function η(0).

while |η(t+1)−η(t)|
η(t)

> ϵ or t < Imax do

Find the user with lowest cost function, k
(t)
min and the FBS connected to it, F

k
(t)
min

.

for all m ∈ F
k
(t)
min

do

Obtain Q
(t)

−m,k(t)min

.

The reduced search space Θt+1 with six possible locations is created.
The cost function at the six possible new locations is computed: η(t)

(
q̂(t+1)
m ,Q

(t)
−m,k

)
for q̂

(t+1)
m ∈ Θt+1.

Calculate (2.51) and choose one movement accordingly. Thus, q
(t+1)
m is obtained.

end for
end while
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2.5.1 Complexity

The proposed algorithm combines the complexity of GB and GS. For the latter, the com-

plexity of updating a given FBS location is proportional to the number of states in the

search space, O
(
|Θ|
)
with |Θ| = 6 in our case. For the former, in a FC network, obtain-

ing the |F
k
(t)
min
| FBS gradients for GU k

(t)
min has a complexity of O

(
|F

k
(t)
min
|K
)
under MMSE

and O
(
|F

k
(t)
min
|K + K + |F

k
(t)
min
|
)
under MRC in terms of complex multiplications. For PC

networks, the complexity order coincides with that of FC MRC. The overall complexities,

including GB and GS and given a maximum number of iterations Imax, are, after keeping

the dominant terms, O
(∑Imax

t=1 |Fk(t)min
|K
)
for MMSE and MRC.

2.6 Simulation Results

For the purpose of performance evaluation, we consider a 1 km2 universe, wrapped around

to avoid boundary effects. Unless otherwise specified, Table 2.1 lists the typical parame-

ters used in the simulations, selected based on the cell-free and UAV literature [33, 90–93].

The channel coherence is larger than that of ground networks because aerial settings ex-

hibit higher coherence bandwidths; this, in turn, enables channel estimation with low pilot

contamination. Henceforth, contamination is thereby neglected, and readers interested in

results that include it are referred to [10]. Unless otherwise specified, and, consistently with

the neglect of contamination, we consider a higher value of τ ; precisely, τ = 200 for a 3.2%

pilot overhead. The [m, k] entry of M (s) is 1 if dk,m ≤ Rmax for Rmax = 400 m, which

ensures connectivity to multiple FBSs per GU. Regarding the GB-GS implementation, ρ(t)

must be a decreasing function of t for convergence reasons, in this case ρ(t) = 10 · 1.005−t

though other choices would work as well. The value of DGS is set to DGS = 0.6 m (see

Fig. 2.2) while γ = 30, ϵ = 0.01 and the maximum number of iterations is Imax = 500.

Varying these parameters would shift the tradeoff between speed of convergence and final
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Table 2.1: Simulation Parameters

Description Parameter Value
GU transmit power p 10 mW
Path loss at 1 m β0 -30 dB

Path loss exponent κ 2.2
Dense urban parameters A1, A2 0, 6.4 dB

Noise power σ2 -120 dBm
Antenna beamwidth αm 4
Operating frequency fc 2.4 GHz

Maximum FBS velocity vmax 10 m/s
Coherence bandwidth Bc 1 MHz

Number of FBSs M 100
Number of GUs under MMSE reception K 75
Number of GUs under MRC reception K 40

cost function; for example, diminishing DGS increases the resolution of the search space and

thus the number of iterations, while increasing γ improves the chances of the GS algorithm

choosing the direction that yields the highest cost function, lowering the stochastic compo-

nent of the method. Additionally, the entries of M (s) are updated at every iteration of the

GS-GB algorithm following the aforementioned distance-based rule. The GU locations abide

by a Poisson Point Process (PPP) and we test our optimization algorithm over 100 deploy-

ments, sufficiently many to gauge the performance. The optimized deployment is denoted

by a-opt (after optimization) while a square grid FBS deployment, denoted by b-opt (before

optimization), serves as a benchmark.

2.6.1 FC Networks

Before proceeding to the deployment optimization in FC networks, we measure the gap in

terms of average SINR between the deterministic phase (DP) and the random phase (RP)

models for the LoS components. This is presented in Fig. 2.3a for different values of H,

given M = 100, K = 75, and FC MMSE reception. The gap is only 0.1–0.5 dB, as there

are enough pilot symbols to accurately estimate the channels. The high coherence of aerial
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(a) (b)

Figure 2.3: (a) E{SINRk} under the DP and RP models, parameterized by H, withM = 100
and K = 75; (b) E{SINRk} vs SINRk for FC MMSE reception under the RP model for
H = 50 m.

channels enables large values for τ , in contrast with [42,43], where extremely low values are

assumed.

Then, Fig. 2.3b shows that relatively small networks, with their correspondingly small

subsets, suffice for the deterministic equivalent in Prop. 1 to be accurate.

The counterpart of Fig. 2.3b for MRC reception is presented in Fig. 2.4 for DP and RP

models. Figs. 2.4a and 2.4b relate to the deterministic equivalents in Prop. 2 and Cor.

1, respectively. The network loads are kept at |Ūm|/|F̄k| ≈ M/K ≈ 0.7–0.8 with MMSE

reception and |Ūm|/|F̄k| ≈M/K ≈ 0.3–0.4 with MRC reception, as per the guidelines in [36].

Unless otherwise specified in the rest of simulations, we assume M = 100 and K = 75 in

MMSE reception and M = 100 and K = 40 for the MRC case.

Next, in Figs. 2.5 and 2.6, we test our proposed GB-GS optimization in FC networks with

those loads and under the DP model. In Fig. 2.5, different values of κ and H are considered

while, in Fig. 2.6, the variation is in αm and H. Similar results are presented in Figs. 2.7

and 2.8 for the RP model.
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(a) (b)

Figure 2.4: E{SINRk} vs SINRk at H = 50 m for FC MRC reception under (a) the DP
model; (b) the RP model.

Note that there is a tradeoff between κ, H and αm in terms of coverage and performance. For

example, at lower altitudes, higher values of αm decrease fairness given the smaller coverage

of the FBSs; then, deployment optimization can increase the minimum SINR by about 25

and 30 dB in the MMSE and MRC cases, respectively. In contrast, deployments at higher

altitudes with wide beams, i.e., small αm, result in fairer initial conditions and therefore the

optimization gain is smaller, respectively around 15 and 10 dB. Similar conclusions apply

when the variation is in κ and H. Altogether, the gain is in the range of 15-25 dB with

MMSE and 15-30 dB with MRC reception.

The same trends can be observed for random LoS phases in Figs. 2.7 and 2.8 while Figs.

2.9 and 2.10 include results showing the increase in sum spectral efficiency. Given the space

limitations, only the DP model is presented, although similar results are achieved for the RP

model. For MMSE, the increase in sum spectral efficiency is between 30% and 45% while

for MRC the range of improvement varies between 15% and 40%.

Fig. 2.11 examines whether augmenting the optimization to include also the altitude can

further improve the deployments. Then, twelve additional locations, same six 2D spots with
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(a) (b)

Figure 2.5: E{SINRk} b-opt and a-opt for different κ and H under the DP model in (a) FC
MMSE; (b) FC MRC.

a higher and lower heights, are explored at each iteration, with the altitude being constrained

to 20 ≤ Hm ≤ 80 m and the same DGS applied vertically. Given the space limitations, only

results for the RP MMSE case are presented, over different values of κ. The improvement in

terms of minimum SINR remains in the range of 15 to 25 dB, hence adjusting the altitude

does not seem to provide substantial additional gains once the horizontal position is already

being optimized.

Finally, in Sec. 2.5 it is shown that the number of complex multiplications at each iteration is

O
(
|F

k
(t)
min
|K
)
. In Fig. 2.12, the number of complex multiplications is plotted after averaging

over the number of iterations varying K and for different M under MMSE reception. Note

that M , and therefore |Fk|, controls the slope while the growth is linear in K.

2.6.2 PC Networks

Prop. 4 and Cor. 2 are validated in Figs. 2.13a and 2.13b, respectively, with the same

loads used for FC MRC. The deterministic equivalents are found to be representative even
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(a) (b)

Figure 2.6: E{SINRk} b-opt and a-opt for different αm and H under the DP model in (a)
FC MMSE; (b) FC MRC.

(a) (b)

Figure 2.7: E{SINRk} b-opt and a-opt for different κ and H under the RP model in (a) FC
MMSE; (b) FC MRC.

29



(a) (b)

Figure 2.8: E{SINRk} b-opt and a-opt for different αm and H under the RP model in (a)
FC MMSE; (b) FC MRC.

(a) (b)

Figure 2.9: Sum spectral efficiency b-opt and a-opt for different κ and H under the DP
model in (a) FC MMSE; (b) FC MRC.
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(a) (b)

Figure 2.10: Sum spectral efficiency b-opt and a-opt for different αm and H under the DP
model in (a) FC MMSE; (b) FC MRC.

Figure 2.11: E{SINRk} b-opt and a-opt for different αm optimizing altitude.
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Figure 2.12: Average number of complex multiplications per iteration for different M .

for small networks.

Figs. 2.14a and 2.14b depict deployment results for different values of κ, H and αm under

the DP model. The minimum SINR improvement is 15-30 dB in both figures. Similar results

are provided for the RP LoS phase model in Figs. 2.15a and 2.15b. Fig. 2.16 shows the

increase in sum spectral efficiency for the DP model, which ranges between 15% and 40%.

2.7 Conclusions

This chapter has considered fully and partially centralized architectures for the uplink of

aerial cell-free networks. Two different Rician channel models have been considered: (i)

with known phase and (ii) with random phase in the LoS component. For each model,

deterministic equivalents have been derived for the SINR and the corresponding spectral

efficiency.

Capitalizing on these deterministic equivalents, a deployment optimization problem has been

proposed for each of the architectures. The analytical gradients have been obtained and,

given the lack of convexity, a combined GB-GS approach has been followed. The resulting
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(a) (b)

Figure 2.13: E{SINRk} vs SINRk for PC MRC reception at H = 50 m under (a) the DP
model; (b) the RP model.

(a) (b)

Figure 2.14: E{SINRk} b-opt and a-opt for PC MRC under the DP model for (a) different
κ and H; (b) different αm and H.
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(a) (b)

Figure 2.15: E{SINRk} b-opt and a-opt for PC MRC under the RP model for (a) different
κ and H; (b) different αm and H.

(a) (b)

Figure 2.16: Sum spectral efficiency b-opt and a-opt for (a) different κ and H; (b) different
αm and H.
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improvements in minimum SINR and in sum spectral efficiency have been thoroughly quan-

tified. Most remarkably, 15-25 and 15-30 dB increases in minimum SINR are attained with

MMSE and MRC reception, respectively, for both fully and partially centralized networks.

Avenues for follow-up work include incorporating power control [94], accounting for the

residual effects of pilot contamination, considering multiantenna transceivers, or studying

the impact of the user location distributions and how such distributions could be estimated

dynamically.
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Chapter 3

Cell-Free UAV Networks with

Wireless Fronthaul: Analysis and

Optimization

3.1 Introduction

The race towards 6G wireless networks has begun and many ideas are under investiga-

tion [95], with UAVs as a potential game changer. Indeed, the inclusion of UAVs in wireless

networks, and in particular their deployment as flying APs in cellular-based systems, is a

research problem of growing interest [14–23,25,27]. Such flying APs are an attractive alter-

native to their terrestrial counterparts in terms of coverage, cost, and deployment flexibility.

In particular, their flexibility makes flying APs enticing whenever the fixed infrastructure is

disrupted. With respect to terrestrial APs, UAVs serving as flying APs pose two distinct

challenges: (i) the ground-to-air and air-to-ground character of the radio access links (uplink

and downlink, respectively) and (ii) the necessarily wireless nature of the fronthaul connect-
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ing the UAVs to the rest of the network. The bulk of the research on this topic has thus far

been on the former challenge, including UAV deployment, trajectory optimization, power

control, or interference management [61–66,72,96], always assuming an ideal fronthaul.

Concurrently with the integration of UAVs, wireless systems are progressing towards software-

defined architectures [97–99] under the umbrella of centralized radio access networks (C-

RANs). This goes hand in hand with transcending the time-honored cellular paradigm and

moving to cell-free network structures. In such networks, each user can potentially communi-

cate with multiple APs by joint processing of the signals at the APs [11,12,31–33,35–43,100].

A cell-free framework is especially suitable for UAV networks since UAVs can create strong

interference to adjacent cells because of the LoS nature of their channels. In a cell-free net-

work, not only can this potential interference be mitigated, but it can actually be turned

into useful signals. Initial results confirm the efficacy and benefits of organizing networks

where UAVs serve as APs in a cell-free fashion [9, 10]. Again, these early results focus on

the radio access, under the premise of ideal fronthauling.

The present chapter broadens the scope to encompass both the radio access and the wire-

less fronthaul, in recognition that an isolated study of one aspect may be deceiving because

of potential bottlenecks in the other. With this broader view, UAVs go from being ideal

conduits to having to face a constrained wireless fronthaul. This, in turn, brings to the fore

issues such as the multiple access in that fronthaul, with alternatives that range from simple

frequency-division multiple access (FDMA) to more sophisticated space-division multiple ac-

cess (SDMA). While this work remains application-agnostic, the performance of the different

fronthaul alternatives, and combinations thereof, are tackled. Particularly, the simplicity of

FDMA, where the signal isolation reduces the interference, comes at the expense of a higher

demand for bandwidth and therefore a reduction in the spectral efficiency. Alternatively, in

SDMA, co-channel interference is the price of a multiplexing gain that enables parallelizing

transmissions, thereby increasing the spectral efficiency. Finally, the hybrid FDMA-SDMA
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fronthaul alternative provides more flexibility and can combine the best of both methods.

For the sake of specificity, the chapter concentrates on the radio access uplink, with the

equally important downlink relegated to future work.

While, motivated by massive MIMO principles, much of the cell-free literature considers

matched-filter reception for the radio access uplink [32,33,35], the present work posits MMSE

reception [35–37], which is optimum from a SINR perspective and reverts to matched filtering

in some limiting regimes. This endows the results with broader generality.

With MMSE reception on the radio access and various alternatives for the wireless fronthaul,

the analysis then takes place in the asymptotic regime in which the number of UAVs, users,

and antennas at the C-RAN gateway, all grow large. This enables leveraging random matrix

theory results [79–83] to derive deterministic equivalents (finite-dimensional approximations

that become exact asymptotically) to the spectral efficiency; importantly, the analysis allows

to flexibly define finite subsets of users being served by each UAV, and vice versa, whereby

the signal processing complexity remains bounded even as the aforementioned quantities

are scaled up. While the aforementioned references study the large-dimensional regime of

one-hop cellular networks, to the best of our knowledge this is the first UAV work that

provides an asymptotic analysis for two-hop networks, either cellular or cell-free. Two-hop

channels are much more difficult to deal with as their overall distribution may not have a

closed-form, and in fact the information-theoretic capacity of a multi-hop channel is not yet

known. Algorithms that handle point-to-point two-hop settings have been proposed [101];

however, there are still many open problems in a multi-hop network setup. The addition of a

wireless fronthaul therefore poses new challenges to UAV networks, especially under Rician

fading, where new asymptotic results under zero-forcing reception are derived that might be

of independent interest.

Armed with the deterministic equivalents for the spectral efficiency, three key problems

are addressed, namely the optimization of (i) the UAV deployment, including altitude, (ii)
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the user transmit powers, and (iii) the UAV transmit powers. These problems are stud-

ied separately given their lack of convexity and, for the deployment problem specifically, a

combination of gradient-based (GB) and Gibbs sampling (GS) methods is invoked [84]. The

joint optimization of the UAV deployment and the user and UAV transmit powers drastically

improves the spectral efficiency, with the lion’s share of the benefits being associated with

the deployment given that larger feasible sets, i.e., the 3D space, can be explored compared

to traditional performance optimization schemes, such as power or rate control. Altogether,

the main contributions of the chapter can be summarized as follows:

• An analytical framework is set forth for the uplink of a cell-free UAV network with

Rician fading, channel estimation, realistic antenna patterns, and MMSE reception on

the radio access, as well as a wireless fronthaul.

• Deterministic equivalents are derived for the spectral efficiency in the above framework,

under various fronthaul alternatives.

• For each of the fronthaul alternatives, and with the maximization of the minimum

spectral efficiency as objective, the UAV deployment and the user and UAV transmit

power problems are confronted.

• The impact on the optimization gains of network parameters such as the pathloss

exponent or the antenna directivity is established.

The remainder of the chapter is organized as follows. Sec. 3.2 lays down the system and

communication models. In Sec. 3.3, the transmission schemes are unveiled, including the cell-

free aspects and the different fronthaul alternatives. Then, in Secs. 3.4–3.6, these alternatives

are successively studied. Sec. 3.7 subsequently focuses on the deployment optimization

problem while numerical results are presented and discussed in Sec. 3.8. Concluding remarks

are provided in Sec. 3.9.
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3.2 System Model

Consider the uplink of a cell-free network featuring M UAVs, located at qm = (xm, ym)

and altitude Hm, serving K cochannel single-antenna users at wk = (xk, yk). The channel

coefficient between user k and the single-antenna UAV m is denoted by gk,m, drawn from a

Rician distribution such that [86, Sec. 3.4.1]

gk,m =

√
β0 gm(dk,m)

dκk,m

1

Kk,m + 1

[√
Kk,me

jψk,m + ak,m

]
, (3.1)

where β0 and κ are the pathloss at a reference distance of 1 m and the pathloss exponent,

respectively, while dk,m is the distance. The Rician factor is Kk,m = A1e
A2 arcsin(

Hm
dk,m

)
for

environment-dependent parameters A1 and A2 [73]. The phase of the LoS component, ψk,m,

is uniformly random to reflect drifting [41–43] whereas ak,m ∼ NC(0, 1) to account for the

small-scale fading. Finally, [78]

gm(dk,m) = 2 (αm + 1)
Hαm
m

dαm
k,m

(3.2)

models the antenna gain at the mth UAV, with αm regulating the trade-off between coverage

and directivity.1 Hence, the channel correlation coefficient is

rk,m = E{|gk,m|2} (3.3)

= 2 (αm + 1) β0
Hαm
m

dαm+κ
k,m

. (3.4)

Upon reception by the UAVs, the collected data is forwarded to the C-RAN gateway, whose

coordinates are q = (x, y) with altitude H. Given its air-to-ground nature, a Rician model

is invoked for the fronthaul as well. The channel vector connecting the mth UAV with the

1If multiantenna UAVs were considered, the generalization would be straightforward for IID fading while
a spatial correlation matrix would have to be incorporated otherwise.
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N -antenna C-RAN gateway is

hm =

√
β0
dκm

[√
Km

Km + 1
ejψmsm +

√
1

Km + 1
am

]
(3.5)

where dm and Km are the distance and Rician factor between UAV m and the C-RAN,

respectively. Additionally, ψm accounts for the drifting, again modelled as uniformly random.

Moreover, sm ∈ CN×1 is the array response to the mth UAV. For an N -antenna uniform

linear array (ULA), the array response satisfies

[sm]n = ej
2πfc

c
d(n−1) sin(θm) cos(ϕm) (3.6)

given the azimuth θm, elevation ϕm, and antenna spacing d. The small scale fading is

am ∼ NC(0,Ωm) for some spatial correlation matrix Ωm among the gateway antennas.

Therefore, the overall covariance matrix for a given fronthaul link is

Rm = E{hmh∗
m} (3.7)

=
β0

(Km + 1)dκm

[
Kmsms

∗
m +Ωm

]
. (3.8)

A toy example of this two-hop structure containing wireless access and fronthaul is depicted

in Fig. 1. While the access links are cell-free-based, the fronthaul allows for FDMA, SDMA

or the combination FDMA-SDMA.

3.2.1 Channel Acquisition

The number of orthogonal pilot dimensions, denoted by τ , is constrained by the coherence

bandwidth Bc and the coherence time Tc. The latter depends on the maximum UAV velocity,

vmax, and the carrier frequency, fc, with the worst-case dependence being Tc = c/fc
2vmax

for

isotropic scattering [86, Sec. 3.4]. The number of resource units within a fading block
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Figure 3.1: Cell-free UAV network with wireless access and fronthaul links. In this example,
the multiple access employed in the fronthaul is FDMA-SDMA (see Sec. 3.6).

is τc ≈ TcBc, typically a large number that enables τ to be itself large enough for pilot

contamination to be negligible [40, 102]; it also allows for the use of techniques such as

random pilots [103]. For instance, at fc = 2.4 GHz, and with conservative values vmax = 10

m/s and Bc = 1 MHz, we have τc = 6250. Upon observation of the pilot transmitted by user

k at the mth UAV, the MMSE channel estimate ĝk,m satisfies gk,m = ĝk,m+ g̃k,m, where ĝk,m

is zero-mean with [88]

γk,m = E{|ĝk,m|2} (3.9)

=
r2k,m

rk,m + σ2

ptτ

, (3.10)

for given τ and pt, the latter denoting the pilot transmit power, while σ2 is the noise power

at the receiver. In addition, g̃k,m is zero-mean with variance ck,m = rk,m − γk,m. A similar

approach is applied to the fronthaul, operating at a frequency different from those of the
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access links, such that pilot contamination between the two stages is avoided. Concretely,

the channel estimates between the mth UAV and the C-RAN gateway satisfy hm = ĥm+ h̃m

where ĥm is zero-mean with covariance

Φm = E
{
ĥmĥ

∗
m

}
(3.11)

= RmΨ
−1
m Rm, (3.12)

for Ψm = Rm + σ2

ptτ
I. The error, h̃m, is zero-mean with covariance Cm = Rm −Φm.

3.3 Data Transmission Schemes

This section describes the two-stage data transmission, namely the cell-free radio access and

the wireless fronthaul. For the latter, several alternatives are entertained: FDMA, SDMA,

and combinations thereof.

3.3.1 Cell-Free Radio Access

On a given time-frequency resource unit, the uplink channel matrix is

G =

(
g1, . . . , gK

)
, (3.13)

where gk ∈ CM×1 is the channel between user k and all UAVs, satisfying G = Ĝ + G̃,

with Ĝ and G̃ being the channel estimation and error matrices, respectively. The subset

of UAVs participating in the reception of each user is determined by the binary matrix
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M (s) = (m
(s)
1 , . . . ,m

(s)
K ) ∈ ZM×K

2 with entries

[
M (s)

]
m,k

=


1 if k ∈ Um

0 otherwise

,

where Um is the set of users regarded as signal by the mth UAV. Its complementary matrix

is M (i) = 1 −M (s), with nonzero entries indicating the users that each UAV regards as

noise. Pooling the observations from the M UAVs,

y = M (s) ◦Gx+M (i) ◦Gx+ n (3.14)

= M (s) ◦ Ĝx+
(
M (s) ◦ G̃+M (i) ◦G

)
x+ n, (3.15)

where ◦ denotes Hadamard product, y = (y1, . . . , yM)T, x = (
√
p1s1, . . . ,

√
pKsK)

T with

symbols sk having unit power, pk being the transmit power, and n ∼ NC(0, σ
2I).

3.3.2 Wireless Fronthaul

At the fronthaul stage, the mth UAV transmits tm =
√
ρmym, where

ρm =
pm

E{|ym|2}
(3.16)

=
pm

K∑
k=1

rk,mpk + σ2

(3.17)

ensures an average transmit power of pm. Within this general framework, the various fron-

thaul alternatives can be modeled.
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FDMA

The bandwidth availability at mmWave and sub-THz frequencies makes FDMA an enticing

solution, in which signals are perfectly isolated. Here, single-antenna reception at the C-

RAN gateway suffices—this is a special case of the FDMA-SDMA strategy with N = 1

receive antennas presented later in this section. As a consequence, the observed signal at

the C-RAN gateway over the band allocated to the mth UAV is then

zm = hmtm + nm, (3.18)

where nm ∼ NC(0, σ
2).

SDMA

Systems suffering from bandwidth limitations for the fronthaul might consider SDMA, where

UAVs transmit concurrently. Their signals are untangled at the C-RAN gateway by the

fronthaul combiner um ∈ CN×1, with N ≥ M . At that combiner’s output, the signal

corresponding to the mth UAV is

zm = u∗
m

( M∑
j=1

hjtj + n

)
, (3.19)

with n ∼ NC(0, σ
2I). The structure of um is discussed in the next section.

FDMA-SDMA

FDMA and SDMA can be combined. Let the system have 1 ≤ L ≤ M frequency bands,

with L = M being FDMA and L = 1 being pure SDMA. Over band fℓ, a subset of UAVs,

denoted byMℓ, conveys data to the C-RAN, which separates the |Mℓ| streams through an
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N -dimensional fronthaul combiner, um ∈ CN×1. For L > 1, the observed signal for m ∈Mℓ

is

zm = u∗
m

( ∑
j∈Mℓ

hjtj + n

)
, (3.20)

whose terms respectively correspond to the signals from the |Mℓ| UAVs sharing the ℓth

bands and noise.

3.4 FDMA Fronthaul

Let us now proceed to analyze the performance under FDMA fronthauling. After collecting

the M fronthaul transmissions over different bands, the C-RAN receives

z = c ◦M (s) ◦ Ĝx+ n′. (3.21)

With the C-RAN treating the fronthaul channel estimate as the true channel, the effective

fronthaul gain for the mth UAV is cm = ĥm
√
ρm; the gains for the M UAVs are assembled

into c = (c1, . . . , cM). In turn, n′ is the effective noise, zero-mean and with covariance

Σ = E{n′n′∗}. It can be verified that Σ is diagonal, with entries

[Σ]m,m = rmρm

(∑
∀i

ri,mpi + σ2

)
− ϕmρm

∑
i∈Um

γi,mpi + σ2. (3.22)

Let Fk =
{
m :

[
M (s)

]
m,k

= 1 , m = 1, . . . ,M
}
be the subset of UAVs that regard what is

received from user k as signal. From the rows of z whose indices are in Fk, we obtain the
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SINRk =
|w∗

k(ck ◦ ĝk)|2pk

w∗
k

(∑
i ̸=k

(ck ◦m(s)
k,i ◦ ĝi)(ck ◦m

(s)
k,i ◦ ĝi)∗pi +Σk

)
w∗
k

, (3.24)

SINRk = (ck ◦ ĝk)∗
(∑
i ̸=k

(ck ◦m(s)
k,i ◦ ĝi)(ck ◦m

(s)
k,i ◦ ĝi)

∗pi +Σk

)−1

(ck ◦ ĝk) pk. (3.26)

|Fk| × 1 vector

zk = ck ◦M (s)
k ◦ Ĝkx+ n′

k, (3.23)

where M
(s)
k = (m

(s)
k,1, . . . ,m

(s)
k,K) ∈ Z|Fk|×K

2 , ck ∈ C|Fk|×|Fk|, Ĝk ∈ C|Fk|×K and n′
k ∈ C|Fk|×1

contain the Fk rows of the original matrices and vectors. For a generic combiner, wk ∈

C|Fk|×1, the instantaneous SINR experienced by user k is given in Eq. (3.24) achieving a

spectral efficiency of

SEk =
1

L

(
1− τ

τc

)
E{log2(1 + SINRk)}, (3.25)

where τ
τc

accounts for the pilot overhead and L represents the number of fronthaul frequency

bands; in this case L = M . Consequently, although an increase in M yields higher SINR

values, the pre-log factor dominates (3.25) and therefore the overall spectral efficiency de-

creases. With the optimum MMSE combiner, the above specializes to [36] the expression

presented in Eq. (3.26).
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SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei

pi +
rm
ϕm

(∑
∀i
ri,mpi + σ2

)
−
∑
i∈Um

γi,mpi +
σ2

ϕmρm

. (3.31)

3.4.1 Large-Dimensional Analysis

The evaluation of (3.25) takes place in the asymptotic regime, |Fk|, |Um| → ∞ ∀ k,m, where

convergence to nonrandom limits is assured provided that

Γk = E
{(

m
(s)
k ◦ ĝk

)(
m

(s)
k ◦ ĝk

)∗}
(3.27)

= diag
{
γk,mm

(s)
k,m ∀m

}
, (3.28)

and

Φ = E
{
ĥĥ

∗}
(3.29)

= diag
{
ϕm ∀m

}
, (3.30)

with ĥ = (ĥ1, . . . , ĥM)T satisfying some technical conditions. Specifically, the inverse of the

resolvent matrix in (3.26) must exist, which is ensured by the presence of Σk, while Γk and

Φ must have uniformly bounded spectral norms. In other words, the received power should

not concentrate on a subset of dimensions as the network grows large.

Theorem 1. With an FDMA fronthaul, |Fk|, |Um| → ∞ ∀ k,m and MMSE subset combin-

ing, SINRk−SINRk
a.s.→ 0 almost surely (a.s.) with SINRk =

∑
m∈Fk

SINRk,m and SINRk,m given

in Eq. (3.31). The coefficients ej are obtained iteratively by ej = limn→∞ e
(n)
j , e

(0)
j = |Fj|,

and

e
(n)
j = pj tr

[
ΦΓj

( K∑
i ̸=j

ΦΓi

1 + e
(n−1)
i

pi +Σj

)−1
]
. (3.32)
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Proof. Details on how (3.31) emanates from [82,83] can be found in Appendix A.6.

Interestingly, note that in the asymptotic regime, the value of SINRk is a linear combination

of the SINRs that the kth user experiences over the Fk UAVs weighted by the fronthaul

channel. Finally, from the continuous mapping theorem [89], SEk − 1
M

(
1− τ

τc

)
log2(1 +

SINRk)
a.s.→ 0.

3.4.2 Problem Formulation

Let us now turn to optimizing the UAV deployment and transmit powers. With the aim of

ensuring fairness in the network, this is formulated as the max-min problem

max
qm,Hm,pk,pm

min
k

1

M

(
1− τ

τc

)
E{log2(1 + SINRk)}

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(3.33)

which is nonconvex. Invoking Thm. 1, and with the constraints not reiterated for the sake

of compactness, the above leads to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m, (3.34)

where SINRk,m is provided in (3.31). The optimizations of UAV deployment and transmit

powers are tacked separately as follows.

Deployment Optimization

The analytical 2D-gradients w.r.t. (3.34) for a given altitude are

∇qj
SINRk =

∇qj
γk,j Denj − γk,j∇qj

Denj

Den2
j

pk for j ∈ Fk, (3.35)
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where Denj is the denominator of (3.31). The optimization of Hm is studied separately, as

it is common to every fronthaul alternative.

User Transmit Power

The following result is a stepping stone to the user transmit power optimization.

Proposition 5. The objective function mink SINRk in (3.33) satisfies the definition of com-

petitive utility function while the constraints pk ≤ pmax follow the definition of monotonic

constraints.

Proof. See Appendix A.7.

Capitalizing on Prop. 5, the algorithm in [104, Alg. 1] can be applied with sure converge to

the optimum user transmit power in the max-min SINR sense.

UAV Transmit Power

From (3.31), it can be shown that SINRk,m is an increasing function of pm. Consequently,

SINRk increases with pm as well. Therefore, the optimal UAV transmit power that maximizes

the mink SINRk is pm = pmax.

3.5 SDMA Fronthaul

Let us now turn to the SDMA fronthaul alternative. The C-RAN received signals still

follow (3.21) after applying the N -dimensional combiner um in (3.19) and replacing cm =
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u∗
mĥm

√
ρm and the equivalent noise

n′
m =

M∑
j=1

u∗
mhj
√
ρjyj − u∗

mĥm
√
ρm

( ∑
k∈Um

ĝk,mxk

)
+ u∗

mn. (3.36)

The SINR and spectral efficiency expressions in (3.25)–(3.26), corresponding to an MMSE

access combiner, also hold with the aforementioned modifications. In particular, the pre-log

factor only depends on the pilot overhead when L = 1.

A zero-forcing (ZF) structure is adopted for the fronthaul, whereby U = (u1, . . . ,uM) ∈

CN×M is given by U = Ĥ(Ĥ
∗
Ĥ)−1 with Ĥ = (ĥ1, . . . , ĥM). Then, u∗

mĥj = δm,j with

δm,j = 1 if m = j and 0 otherwise. The ensuing SINR involves the equivalent noise power

E{n′
mn

′∗
j } under Rician fading, for which no expressions are available in the literature. One

of the contributions in the sequel is an asymptotic expression for this power.

3.5.1 Large-Dimensional Analysis

As in Sec. 4.3.1, the spectral efficiency is evaluated for |Fk|, |Um| → ∞ ∀ k,m and N →∞

with N ≥M . Convergence to deterministic limits is assured provided that Rm satisfies the

same conditions as Φ and Γm. As the equivalent noise n′
m in (3.36) satisfies E{n′

mn
′∗
j } ∝

E{u∗
mQuj}, we first proceed to characterize such quadratic form asymptotically with a result

that might be of independent interest.

Theorem 2. Let Q ∈ CN×N be a deterministic Hermitian matrix while U = (u1, . . . ,uM) ∈

CN×M is a ZF matrix combiner, U = limϵ→0 Ĥ(Ĥ
∗
Ĥ + ϵI)−1. For M ,N → ∞,

E{u∗
mQum} − lim

ϵ→0

1
N2 tr

(
ΦmT

′(ϵ,Q)
)(

1 + 1
N
tr(ΦmT )

)2 a.s.→ 0 (3.37)

for T and T ′(ϵ,Q) defined in (A.1) and (A.3), respectively.
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SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξSDMA
m

ρm

. (3.39)

Proof. See Appendix A.8.

The convergence of (3.37), in terms of relative error, is illustrated in Fig. 3.2.

Corollary 3. Let Q ∈ CN×N be a deterministic Hermitian matrix while U = (u1, . . . ,uM) ∈

CN×M is a ZF matrix combiner, U = limϵ→0 Ĥ(Ĥ
∗
Ĥ + ϵI)−1. For M ,N → ∞, and m ̸= j

E{u∗
mQuj}

a.s.→ 0. (3.38)

Proof. The proof follows similar steps as the ones included in Appendix A.8 and exploits the

fact that ĥm and ĥj are uncorrelated.

The combination of Thm. 2 and Corollary 3 results in an asymptotically diagonal noise

covariance matrix Σk.

Theorem 3. With an SDMA fronthaul, ZF fronthaul combining, |Fk|, |Um| → ∞ ∀ k,m,

N → ∞ with N ≥ M and MMSE subset combining, SINRk − SINRk
a.s.→ 0 with SINRk =∑

m∈Fk

SINRk,m and SINRk,m given in Eq. (3.39). The application of Thm. 2 to E{n′
mn

′∗
m}

results in

ξSDMA
m = lim

ϵ→0

M∑
n=1

pn

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 + σ2
1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmT )

)2
while the coefficients ej are obtained iteratively by ej = limn→∞ e

(n)
j , e

(0)
j = |Fj|, and e

(n)
j

included in Eq. (3.40).

Proof. Proceed as in Appendix A.6.
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e
(n)
j =

∑
m∈Fj

γj,mpj∑
i∈Um
i ̸=k

γi,m

1+e
(n−1)
i

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξSDMA
m

ρm

. (3.40)
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Figure 3.2: Relative error between the two terms in Thm. 2 as a function of ϵ for various M
and N .

Similarly to the FDMA case, SINRk can be decomposed as the sum of SINRs over the

Fk UAVs with two main differences: (i) the fronthaul channel is compensated by the ZF

combiner and (ii) the noise is increased after the ZF stage, as per ξSDMA
m

ρm
. Finally, from the

continuous mapping theorem, SEk −
(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0.

3.5.2 Problem Formulation

We now turn to optimizing the UAV deployment and transmit powers by maximizing the

minimum SINR under SDMA fronthauling. Capitalizing on Thm. 3, that amounts to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(3.41)
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for SINRk,m in (3.39). The above problem is nonconvex.

Deployment Optimization

The presence of ξSDMA
m in the denominator of (3.39) makes the gradients analytically un-

wieldy. However, as shown in Fig. 3.3a, the signal terms within ξSDMA
m satisfy

lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 ≈ cmd
κ
m, (3.42)

where cm is a regression parameter and dm, recall, is the distance between UAV m and

the C-RAN. Referring to Fig. 3.3a, cm can be obtained by fitting every data point (solid

regression curve) or only the maximum at each distance (dashed regression curve). Similarly

for the noise term within ξSDMA
m , as shown in Fig. 3.3b,

lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 ≈ c(n)m dκm, (3.43)

with a corresponding regression parameter c
(n)
m . After comparing the respective perfor-

mances, the solid regression curves are chosen and the gradient satisfies

∇qm
SINRk ≈

∇qm
γk,mDenm − γk,m∇qm

Denm

Den2
m

pk, (3.44)

for m ∈ Fk with

Denm =
∑
i∈Um
i ̸=k

γi,m
1 + ei

pi +
∑
∀i

ri,mpi −
∑
i∈Um

γi,mpi + σ2 +
dκm
ρm

( M∑
n=1

pncm + σ2c(n)m

)
.
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Figure 3.3: Curve fitting with every data point (solid) or only the maximum at each distance
(dashed) for (a) E{u∗

mCnum} and (b) σ2E{u∗
mum}.

User Transmit Power

It can be verified that mink SINRk in (3.41) satisfies the definition of competitive utility

function and the constraints are monotonic. Thus, [104, Alg. 1] converges to the optimal

user transmit powers.

UAV Transmit Power

To tackle this subproblem, it is convenient to reformulate (3.41) so as to capitalize on the

fact that for any set of functions fk(x), the problem maxx mink fk(x) is equivalent to

max
x,t

t

s.t.fk(x) ≥ t ∀k.
(3.45)
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It follows that the optimization in (3.41) w.r.t. pm is equivalent to

max
pm, t, yk,m

t

s.t.
∑
m∈Fk

y2k,m ≥ t ∀k

y2k,m ≤ SINRk,m ∀k,m

(3.46)

where yk,m is a slack variable satisfying y2k,m = SINRk,m when the optimum solution is

attained; elsewhere, the value of y2k,m can be increased for a higher cost function.

While equivalent to the original problem, (3.46) is neither convex nor concave. To tackle it,

we leverage the successive convex approximation method (SCA) [105]. First, given that y2k,m

is convex, it accepts a lower bound of the type y2k,m ≥ y
2 (lb)
k,m with

y
2 (lb)
k,m = y

2 (p)
k,m + 2y

(p)
k,m(yk,m − y

(p)
k,m) (3.47)

where y
2 (p)
k,m is the value of y2k,m at approximation point p. Then, defining for the sake of

brevity

λm,n = lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ,Cn))(
1 + 1

N
tr(ΦmT )

)2 (3.48)

and

λ
′

m = lim
ϵ→0

1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 , (3.49)

a similar procedure is followed to derive a lower bound for SINRk,m, which is convex w.r.t.

1
pm

(∑M
n̸=m λm,nrnpn + σ2λ

′
m

)
and therefore satisfies SINRk,m ≥ SINR

(lb)

k,m, the latter term

included in Eq. (3.50) and with
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SINR
(lb)

k,m = SINR
(p)

k,m − ζSDk,m

[
1

pm

(
M∑
n=1

λm,nrnpn + σ2λ
′

m

)
− 1

p
(p)
m

(
M∑
n=1

λm,nrnp
(p)
n + σ2λ

′

m

)]
(3.50)

y2k,m∑M
n=1 λm,nrnpn + σ2λ′

m

≤ −
ζSDk,m
pm

+
SINR

(p)

k,m +
ζSDk,m

p
(p)
m

(∑M
n=1 λm,nrnp

(p)
n + σ2λ

′
m

)
∑M

n=1 λm,nrnpn + σ2λ′
m

,

(3.52)

ζSDk,m = − ∂SINRk,m

∂ 1
pm

(∑M
n=1 λm,nrnpn + σ2λ′

m

)∣∣∣∣∣
pi=p

(p)
i i=1,...,M

. (3.51)

Still, y2k,m ≤ SINR
(lb)

k,m is not convex because of the quotients pn
pm

in (3.50). Division of both

sides of the inequality by
∑M

n=1 λm,nrnpn + σ2λ
′
m results in (3.52) where the only noncon-

vex term is the second in the right-hand side, which itself accepts a lower bound w.r.t.∑M
n=1 λm,nrnpn + σ2. As a consequence, further application of the SCA technique results

in the convex set of constraints derived in (3.53). Altogether then, an approximate convex

reformulation of (3.46) is

max
pm, t, yk,m

t

s.t.
∑
m∈Fk

y
2 (lb)
k,m ≥ t ∀k

(3.54)

y2k,m∑M
n=1 λm,nrnpn + σ2λ′

m

≤ −
ζSDk,m
pm

+

[
SINRk,m +

ζSDk,m

p
(p)
m

(
M∑
n=1

λm,nrnp
(p)
n + σ2λ

′

m

)]
× 1∑M

n=1 λm,nrnp
(p)
n + σ2λ′

m

− 1(∑M
n=1 λm,nrnp

(p)
n + σ2λ′

m

)2
(

M∑
n=1

λm,nrnpn −
M∑
n=1

λm,nrnp
(p)
n

) .
(3.53)
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and further subject to (3.53). This problem can be efficiently solved with standard opti-

mization tools [106]. In addition, it can be shown that, given the tightness of the local

approximations, the sequence of objective values generated by the SCA applied to (3.54) is

monotonically non-decreasing with an upper bound, and therefore converges.

3.6 FDMA-SDMA

Finally, under a combined FDMA and SDMA fronthaul, the application of theN -dimensional

fronthaul combiner um in (3.20) yields the same model of (3.21) with cm = u∗
mĥm

√
ρm and

an equivalent noise n′ = (n′
1, . . . , n

′
M) ∈ CM×1 with

n′
m =

M∑
j∈Mℓ

u∗
mhj
√
ρjyj − u∗

mĥm
√
ρm

( ∑
k∈Um

ĝk,mxk

)
+ u∗

mnc.

The SDMA component requires N ≥ max{|Mℓ| , ℓ = 1, . . . , L} and, with the fronthaul

combiner um set to be ZF, u∗
mĥj = δm,j for m, j ∈Mℓ.

3.6.1 Large-Dimensional Analysis

Under the same assumptions as for pure FDMA or SDMA and given the ZF nature of um,

Thm. 2 is applied to characterize the asymptotic equivalent noise terms.

Theorem 4. With a combined FDMA and ZF-SDMA fronthaul, |Fk|, |Um| → ∞ ∀ k,m,

N → ∞ with N ≥ max{|Mℓ| , ℓ = 1, . . . , L}, and MMSE subset combining, SINRk −

SINRk
a.s.→ 0 with SINRk =

∑
m∈Fk

SINRk,m and SINRk,m given in Eq. (3.55). The application

of Thm. 2 to E{n′
mn

′∗
m} results in

ξFSm = lim
ϵ→0

∑
j∈Mℓ

pj

1
N2 tr(ΦmT

′(ϵ,Cj))(
1 + 1

N
tr(ΦmT )

)2 + σ2
1
N2 tr(ΦmT

′(ϵ, I))(
1 + 1

N
tr(ΦmI)

)2 .
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SINRk,m =
γk,mpk∑

i∈Um
i ̸=k

γi,m
1+ei,k

pi +
∑
∀i
ri,mpi −

∑
i∈Um

γi,mpi + σ2 + ξFS
m

ρm

. (3.55)

The coefficients ej are obtained iteratively by ej = limn→∞ e
(n)
j , e

(0)
j = |Fj|, and are obtained

similarly to the ones presented in Eq. (3.40).

Proof. Proceed as in Appendix A.6.

From the continuous mapping theorem, SEk − 1
L

(
1− τ

τc

)
log2(1 + SINRk)

a.s.→ 0.

3.6.2 Problem Formulation

The max-min SINR optimization problem in this case boils down to

max
qm,Hm,pk,pm

min
k

∑
m∈Fk

SINRk,m

s.t. Hmin ≤ Hm ≤ Hmax, pk ≤ pmax, pm ≤ pmax,

(3.56)

for SINRk,m given in (3.55).

Deployment Optimization

As in pure SDMA, the terms in ξFSm can be approximated by a linear combination of poly-

nomials whose variable is the distance between the UAV and the C-RAN. Therefore,

∇qm
SINRk ≈

∇qm
γk,mDenm − γk,m∇qm

Denm

Den2
m

pk, (3.57)
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for m ∈ Fk where

Denm =
∑
i∈Um
i ̸=k

γi,m
1 + ei,k

pi +
∑
∀i

ri,mpi −
∑
i∈Um

γi,mpi + σ2 +
dκm
ρm

( ∑
j∈Mℓ

pjcm + σ2c(n)m

)
.

User Power Allocation

Again, [104, Alg. 1] converges to the user transmit power that maximizes mink SINRk in

(3.56).

UAV Power Allocation

Because of space limitations, the derivation of the UAV transmit power optimization is not

included. Similar steps as in Sec. 3.4.2 should be followed.

3.7 GB-GS Deployment Algorithm

Equipped with the 2D gradients derived in the previous section, the UAV locations could be

updated iteratively as

q(t)
m ←− q(t)

m + ρ(t)∇qm
SINR

(t)

k |qm=q
(t)
m
, (3.58)

where t is the iteration counter and ρ(t) a decreasing function of t for convergence reasons.

However, the nonconvex nature of the problem may result in low-quality solutions. Moreover,

the altitudes should be part of the optimization as well. For such a complex optimization, an

attractive approach is that of stochastic optimization. This work leverages the well-known

GS technique in conjunction with (3.58). Concretely, for a set of possible states Θ, GS aims
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at solving

max
{ℓm ∀m} ∈Θ

min
k

SINRk, (3.59)

where ℓm =
(
qm, Hm

)
corresponds to the 3D locations that are iteratively updated according

to a certain probability distribution [84].

Let η(t) = min
k

SINR
(t)

k ≡ SINR
(t)

k
(t)
min

be the cost function at Iteration t whereas k
(t)
min represents

the index of the user with lowest SINR
(t)
. In SDMA, such η(t) is a function of all UAVs since

those within subset Fk provide service while the rest create fronthaul interference. For the

other two fronthaul strategies, only a subset of UAVs are relevant. To maintain a generic

formulation, we derive the algorithm under SDMA fronthauling; minor changes apply for

FDMA and FDMA-SDMA. The cost function can be expressed as η(t)(ℓ(t)m , ∀m) and the 3D

locations of the M UAVs are updated sequentially, starting with the lowest index.

Denote by L(t)
−m = {ℓ(t+1)

1 , . . . , ℓ
(t+1)
m−1 , ℓ

(t)
m+1, . . . , ℓ

(t)
M } the set of UAVs satisfying:

a) UAVs 1, . . . ,m− 1 have already updated their locations to t+ 1;

b) the locations of UAVs m+ 1, . . . ,M still need to be updated; and

c) UAV m is excluded.

The cost function allows an alternative expression as a function of L(t)
−m, namely η(t)(ℓ(t)m ,L

(t)
−m).

From [84], the probability of the mth UAV updating its 3D location to ℓ(t+1)
m is

Pr
{
ℓ(t+1)
m |ℓ(t)m ,L(t)

−m

}
=

exp
{
γ η(t)

(
ℓ(t+1)
m ,L(t)

−m
)}

∑
ℓ̂
(t+1)
m ∈Θt+1

exp
{
γ η(t)

(
ℓ̂
(t+1)

m ,L(t)
−m
)} , (3.60)

where γ is a fixed parameter and Θt+1 represents the possible locations that UAV m can

explore at Iteration t + 1. To reduce the search space, the number of such locations is
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Figure 3.4: 3D search space for UAV m with the dots representing Θt+1.

limited to |Θt+1| = 18 (see Fig. 3.4). The options are to stay, move north, move south,

move east, move west, and move in the direction of the gradient in (3.58), as well as the

corresponding twelve locations at a higher and lower altitude. The search space is the set

of 3D positions confined between some minimum and maximum altitudes, respectively Hmin

and Hmax. And, after each iteration, matrix M (s) is updated. A summary of the process is

included in Algorithm 2 where ϵ is a stopping parameter.

Algorithm 2 GS-GB Algorithm

Require: at t = 0, initialize UAV locations, ℓ(0)m , and cost function, η(0)

while |η(t+1)−η(t)|
η(t)

> ε do

find the user with lowest cost function, k
(t)
min

for all m = 1, . . . ,M do
obtain L(t)

−m,k(t)min

.

create the reduced search space with eighteen possible locations, Θt+1.
compute the cost function at the possible new locations, η(t)

(
q̂(t+1)
m ,L(t)

−m,k(t)min

)
for ℓ̂

(t+1)

m ∈ Θt+1.
calculate (3.60) and choose one movement accordingly, obtaining ℓ(t+1)

m .
end for

end while

It is proved in [85] that, for large enough γ and t→∞, the solution for (3.60) converges to

the optimal solution with probability 1.
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3.8 Numerical Results

To evaluate the performance, we consider a 1 km2 universe, wrapped around to avoid bound-

ary effects. The simulation parameters are listed in Table 5.1, selected based on the cell-free

and UAV literature [33, 90–93]. Consistent with the neglect of pilot contamination, we con-

sider τ = 200 for a 3.2% pilot overhead. To ensure connectivity to multiple UAVs, the

[m, k] entry of M (s) is 1 if dk,m ≤ Rmax for Rmax = 400 m. The fading is IID, such that

Ωm = I. Moreover, the noise arising in the fronthaul is scaled by a factor of M and L in

SDMA and FDMA-SDMA, respectively, to account for the bandwidth difference among the

schemes. As for the GB-GS algorithm, and noting that other choices may be as effective,

ρ(t) = TGS · 1.005−t where TGS depends on the fronthaul scheme and is set to TGS = 80 for

FDMA and to TGS = 40 for SDMA and FDMA-SDMA. In addition, DGS = 1 m (see Fig.

3.4) while γ = 10 and ϵ = 0.01. The entries of M (s) are updated at every iteration of

the GS-GB algorithm following the aforementioned distance-based rule with the frequency

band allocations drawn at random. Finally, the user locations abide by a Poisson Point Pro-

cess and the optimization algorithm that combines deployment and power optimization is

tested over 100 deployments. When presenting results, the optimized deployment is denoted

by A-O (after optimization) while a square grid UAV deployment, denoted by B-O (before

optimization), serves as a benchmark.

We first evaluate the performance with FDMA fronthauling under a variety of parameters

while validating the asymptotic derivations. Concretely, Fig. 3.5a plots the average per user

spectral efficiency for differentM andK. Additionally, Fig. 3.5b verifies Thm. 1 for different

K/M . From Fig. 3.5b, a smaller K/M , i.e., more UAVs per ground user, provides better

SINRs while allowing more UAVs to participate in the decoding of each user. Conversely, by

looking at Fig. 3.5a, for fixed K, increasing M is not helpful in terms of spectral efficiency

given the 1/M pre-log factor in (3.25). Finally, Fig. 3.5b shows that the derived results are

indeed tight for finite-dimensional systems given the small gap between the E{SINR} and
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Table 3.1: Simulation parameters

Description Parameter Value
Maximum transmit power pmax, pmax 100 mW

Pathloss at 1 m β0 -30 dB
Pathloss exponent κ 2.2

Dense urban parameters A1, A2 0, 6.4 dB
Noise power for access and FDMA σ2 -96 dBm

Antenna beamwidth αm 4
Operating frequency fc 2.4 GHz

Maximum UAV velocity vmax 10 m/s
Coherence bandwidth Bc 1 MHz
Number of UAVs M 64
Number of users K 45

Maximum and minimum altitude Hmax, Hmin 25, 100 m

SINR curves, with the advantage of only depending on large-scale parameters. A similar

assessment is conducted for SDMA fronthauling in Fig. 3.6. The number of antennas is set

to N = 1.2N . Interestingly, although SDMA provides lower SINRs compared to FDMA, an

increase inM results in an improved spectral efficiency provided that the pre-log factor in Eq.

(3.25) is one. This is because of the multiplexing gain in SDMA. Finally, Fig. 3.7 presents

the results for FDMA-SDMA. We consider L = M
5
and N = 1.2L, and the observations are

consistent with those of FDMA and SDMA both in terms of (a) the tendency when varying

the network load, and (b) the match between real and asymptotic SINR derivations.

As one would expect, the SINRs achieved with FDMA are decidedly higher because of the

orthogonal nature of the transmisions and reduced noise bandwidth. In contrast (see Fig.

3.8), when measuring the sum spectral efficiency, SDMA vastly outperforms FDMA thanks

to its spatial multiplexing gain. The hybrid FDMA-SDMA scheme balances the two.

Turning now to the deployment optimization, Fig. 3.9 presents results under FDMA fron-

thauling with different κ and αm. Particularly, with the aim of keeping a small legend, the

values shown in such figures are (κ, αm) where B-O and A-O, recall, stand for before and

after optimization, respectively. Specifically, Fig. 3.9a plots the B-O and A-O distributions;
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Figure 3.5: (a) FDMA performance for different K,M ; (b) validation of Thm. 1.
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Figure 3.6: (a) SDMA under different K,M ; (b) validation of Thm. 3.
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Figure 3.7: (a) FDMA-SDMA for different K,M , L = M
5
; (b) validation of Thm. 4.
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Figure 3.8: Sum spectral efficiency under different network loads K/M for (a) FDMA; (b)
SDMA; (c) FDMA-SDMA.
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Figure 3.9: CDFs B-O and A-O for different κ and αm under an FDMA fronthaul (a)
E{SINRk}; (b) min-E{SINRk}.

the optimization is highly effective, with at least 45% of users improving their SINR as a

result. Then, Fig. 3.9b presents the CDF of the minimum SINR, where the optimization

yields a 8-18 dB gain.

Fig. 3.10 presents results for the SDMA fronthaul parameterized by (κ, αm). For κ = 2.2,

40-60% of users enjoy an improved SINR after the optimization. For a higher pathloss

exponent, κ = 3, it is 20-40%. The minimum SINR improves by 5-17 dBs for a variety of κ

and αm.

Results for the third fronthaul option, which combines FDMA and SDMA, are included

in Fig. 3.11 for different (αm, L, N). Again, the combination of deployment and power

optimization highly increases the SINR experienced by those users with unfavorable initial

conditions. Concretely, at least 50% of the SINRs are increased depending on the network

parameters while the gains in terms of minimum SINR are 12-27 dB.

In Figs. 3.12a and 3.12b, respectively for FDMA and SDMA fronthauls, we provide in-

sight on the contributions to the optimization gain. Precisely, we present the CDFs B-O,

A-O, only optimizing the deployment (DEPLOY-O) and only optimizing the transmit pow-
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Figure 3.10: CDF B-O and A-O parameterized by (κ, αm) under SDMA fronthaul with
N = 80 (a) E{SINRk}; (b) min−E{SINRk}.
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Figure 3.11: CDF B-O and A-O parameterized by (αm, L) and N under FDMA-SDMA
fronthaul (a) E{SINRk}; (b) min−E{SINRk}.
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Figure 3.12: E{SINRk} CDF B-O, A-O, DEPLOY-O and POWER-O for κ = 2.2 and αm = 4
for (a) FDMA fronthaul; (b) SDMA fronthaul.

ers (POWER-O) (POWER-O) for (a) FDMA ; (b) SDMA. Power optimization helps to

increase the lowest SINRs for 20-30% of users. However, the main source of gain is from the

deployment optimization, improving 90-100% of the user SINRs.

3.9 Conclusions

This chapter has considered a cell-free network with wireless access and fronthaul links. For

the latter, a variety of schemes have been considered, namely FDMA, SDMA, and FDMA-

SDMA. Under Rician fading for the access and fronthaul links, deterministic equivalents for

the SINR with MMSE reception have been provided for the three fronthaul schemes. Based

on these deterministic expressions, the minimum SINR has been maximized with respect

to (a) the 3D UAV locations, (b) user transmit power, and (c) UAV transmit power. A

combination of gradient-based and Gibbs sampling algorithms has been employed for the

former, and classic optimization techniques for the latter two.

Extensive results have shown how the optimization of the minimum SINR provides superior
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and fairer conditions in the network. Gains of 5-27 dB are achieved depending on the

fronthaul techniques and network parameters. Further results have uncovered that the lion’s

share of the improvements can be attributed to the deployment optimization, with marginal

additional gains associated with the optimization to the transmit powers.
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Chapter 4

A Reinforcement Learning Approach

for Wildfire Tracking with UAV

Swarms

4.1 Introduction

Wildfires are a growing concern worldwide and cause tremendous environmental and eco-

nomic damage. It is therefore crucial to predict, track, and monitor them to facilitate the

actions of firefighters and emergency responders [44–46]. Additionally, the study of wildfires

can help to identify areas at risk and to understand the nature of fire propagation, along

with possible causes and factors that contribute to their spread [107–110].

An attractive means to monitor, track, and sense events are UAVs given the (i) availability of

cameras and sensors, (ii) wireless connectivity to ground APs, (iii) long-lasting batteries, and

(iv) easy control and maneuverability [4–8]. UAVs can fly at low altitudes and collect data

ranging from high-resolution images to heat signatures [111–116]. However, the transmission
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of such data is contingent on the connectivity. Regardless of whether APs are damaged by

fire, the flow of information should be guaranteed. This relates to the network’s resiliency

and, in that respect, wireless systems are evolving from traditional cellular structures towards

cell-free arrangements. These are especially appealing when a high degree of reliability is

needed, given that users can then communicate with multiple APs [31–33, 35–37, 39, 41, 42,

100]. Initial results have demonstrated the efficacy and benefits of a cell-free architecture for

UAVs [9–13] and hence this is the structure adopted here.

The design of deployments and trajectories for UAVs in cellular and wireless sensor networks

is a problem of growing interest [14–25,27–29], yet, to the best of our knowledge, this is the

first work that considers a multi-UAV trajectory optimization to track an event with cell-

free connectivity. This gives rise to various challenges, mainly related to the complexity

and time-varying nature of the problem, which precludes the use of classic optimization

techniques. Compounding this complexity, the lifespan of UAV batteries is limited and thus,

once a UAV is low on energy, a recharge is needed. Authors in [117] provide an exhaustive

review of different techniques to recharge or replace UAV batteries, along with the required

time. Altogether, the problem at hand breaks down into two stages of tracking and charging.

Two decidedly nonconvex optimization problems arise, one for each stage, with the switching

from tracking to charging based on the remaining energy of each UAV.

Reinforcement learning (RL) provides a framework where an agent learns optimal policies

based on interactions with the environment and on feedback in the form of rewards [47].

For settings with a large number of states and/or actions, strategies combining RL with

neural networks have been devised, converging to the so-called deep Q-learning (DQL) [118–

123]. These methods have already been considered for UAV trajectory optimizations [124–

128]. A recent actor-critic algorithm named twin delayed deep deterministic policy gradient

(TD3) has been shown to perform better than its predecessors [48] in terms of stability,

exploration capabilities, handling of continuous actions, and sampling efficiency. The field of
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UAV trajectory optimization has greatly benefited from this new algorithm [57,59,129,130],

which is applied in this work as well. The main contributions of the chapter are as follows:

• An analytical framework is set forth to describe the tracking of a wildfire by a swarm

of UAVs equipped with cameras. The connectivity between UAVs and APs is through

a cell-free network, with Rician fading, channel estimation, and minimum mean square

error (MMSE) reception explicitly modeled.

• Based on communication and mechanical constraints, the tracking and charging multi-

UAV optimization problems are formulated.

• For each of the two problems, the UAV trajectory and the transmit power optimizations

are confronted using the TD3 approach. While, for the tracking stage, the objective is

to monitor the wildfire perimeter ensuring a correct reception of the video/images in

a timely fashion, during the charging stage the goal is to reach a charging point with

the minimum energy expenditure.

• The impact on the wildfire coverage of parameters such as the number of UAVs, the

allowed flying altitudes, and the UAVs’ energy is established. A similar analysis is

conducted for the charging problem, with the remaining energy as the main constraint.

The remainder of the manuscript is organized as follows. Sec. 4.2 presents the camera and

communication models. In Sec. 4.3, the cell-free connectivity is introduced while Sec. 4.4

unveils the two optimization problems. Sec. 4.5 subsequently focuses on the solution of

those problems while numerical results are discussed in Sec. 4.6. Concluding remarks are

provided in Sec. 4.7.
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4.2 System Model

The system under consideration features M UAVs, each equipped with a video camera. The

mth UAV is located at q
(n)
m =

(
x
(n)
m , y

(n)
m , h

(n)
m

)
, where the height h

(n)
m is the distance from the

focal point of its camera’s lens to the ground, n is the time index, and the duration of each

time slot is δ. The UAVs are served by L APs with locations qℓ = (xℓ, yℓ, hℓ). Additionally,

the system contains C UAV charging stations located at cc = (xc, yc, hc).

4.2.1 Camera Model

Consider a planar environment F ∈ R2 and define the field of view (FoV) as the area

projected over F that a camera captures. For a UAV with a downward-facing camera, a

rectangular FoV B(n)
m defined as

B(n)
m =

{
v = (vx, vy) : |x(n)m − vx| ≤ h(n)m tan(α1) and |y(n)m − vy| ≤ h(n)m tan(α2)

}
, (4.1)

where α1 and α2 represent the two halfview angles associated with the perpendicular edges

of a rectangle (see Fig. 4.1). The notion of area per pixel expresses the tradeoff between the

quality of the image and the dimension of the FoV: higher-resolution images correspond to

smaller FoVs, and vice versa. From classical optics, the area per pixel is [131]

f
(
q(n)
m ,v

)
=

 a
(
b− h(n)m

)2
v ∈ B(n)

m

∞ otherwise
, (4.2)

where b and a depend on the camera capabilities, representing the focal length of the lens

and the area of a pixel on the lens divided by b2, respectively, while v represents the position

on F . At higher altitudes, f(·) is larger because each pixel covers a bigger area on the FoV,

and the resolution is lower. At lower altitudes, it is the other way around. Outside the FoV,
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Figure 4.1: Rectangular FoV of the mth UAV for given α1 and α2 over a planar region F .

by definition, there are no pixels and f(·) is therefore infinite.

The camera’s sensor consists of I equispaced pixels. From sheer geometry,

I =
4
(
b− h(n)m

)2
tan(α1) tan(α2)

f
(
q
(n)
m ,v

) . (4.3)

For a 24-bit RGB color system, the number of bits to represent a picture is 24I and, com-

pressing the image with a ratio of ρ, the number of bits to be transmitted per image is

B = 24Iρ. (4.4)

4.2.2 Channel Model

Upon imaging the environment, UAVs establish wireless connections with the APs to convey

the captured images. The air-to-ground channel coefficient between the mth UAV and the
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ℓth AP is denoted by g
(n)
m,ℓ, drawn from a Rician distribution such that [86, Sec. 3.4.1]

g
(n)
m,ℓ =

√
β0(

d
(n)
m,ℓ

)κ
(K

(n)
m,ℓ + 1)

(√
K

(n)
m,ℓe

jψ
(n)
m,ℓ + a

(n)
m,ℓ

)
, (4.5)

where β0 and κ are, respectively, the pathloss at a reference distance of 1 m and the pathloss

exponent; in turn, the distance is d
(n)
m,ℓ and the Rician factor is

K
(n)
m,ℓ = A1 exp

(
A2 arcsin

(
hℓ − h(n)m

d
(n)
m,ℓ

))
(4.6)

for environment-dependent parameters A1 and A2 [73]. The phase of the LoS component,

ψ
(n)
m,ℓ, is uniformly random to reflect drifting [41,42] whereas the small-scale fading is

a
(n)
m,ℓ ∼ NC(0, 1). (4.7)

Hence, the channel power gain is given by

r
(n)
m,ℓ =

β0(
d
(n)
m,ℓ

)κ . (4.8)

4.2.3 Channel Acquisition

Unlike most of the UAV-related literature, this chapter incorporates imperfect channel esti-

mates to enhance the model’s realism. Given that the system under consideration features

a small number of UAVs, orthogonal pilots can be allocated to each of those UAVs while

keeping the overhead at bay; pilot contamination is thus not an issue. After observing the

length-τ pilot sequence transmitted by the mth UAV, the ℓth AP can compute the MMSE

channel estimate ĝ
(n)
m,ℓ, which satisfies

g
(n)
m,ℓ = ĝ

(n)
m,ℓ + g̃

(n)
m,ℓ (4.9)
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such that ĝ
(n)
m,ℓ is zero-mean with [88,132]

γ
(n)
m,ℓ = E

{
|ĝ(n)m,ℓ|

2
}

(4.10)

=

(
r
(n)
m,ℓ

)2
r
(n)
m,ℓ +

σ2

ptτ

, (4.11)

given pt as the pilot transmit power and σ2 as the noise power at the receiver. Finally, the

estimation error g̃
(n)
m,ℓ is zero-mean with variance

c
(n)
m,ℓ = r

(n)
m,ℓ − γ

(n)
m,ℓ. (4.12)

4.2.4 Energy Consumption Model

UAVs are governed by certain dynamics relating location, speed, and acceleration. A first-

order Taylor expansion yields [45],[46]

q(n+1)
m = q(n)

m + v(n)
m δ +

1

2
a(n)
m δ2, (4.13)

and

v(n+1)
m = v(n)

m + a(n)
m δ, (4.14)

where v
(n)
m and a

(n)
m denote the speed and acceleration vectors. For a quad-rotor UAV moving

in 3D with a given climb angle τ
(n)
m , and denoting the magnitude of the speed vector by v

(n)
m ,

i.e., v
(n)
m = ∥v(n)

m ∥, the power consumption can be modeled as [27,126]

P (n)
m = P0

(
1 +

3v
(n)2
m

U2
tip

)
+ Pi

(√
1 +

v
(n)4
m

4v40
− v

(n)2
m

2v20

)1/2

+
1

2
d0ιsAv

(n)3
m +mgv(n)m sin τ (n)m , (4.15)
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where P0 and Pi represent the blade profile and induced powers, respectively, Utip is the tip

speed of the rotor blade, and v0 is the mean rotor induced velocity. In addition, d0 and s are

the fuselage drag ratio and rotor solidity, respectively, while ι denotes the air density and A

the rotor disc area.

As advanced, the UAV’s mission is divided into tracking and charging stages. The switching

occurs at n = nm, once the UAV’s energy falls below a threshold that is a function of the

distance between the UAV and the closest charging point (see Sec. 4.6). Consequently, the

UAV needs to head for a charging station and the remaining energy, denoted by E
(nm)
m , must

satisfy

E(nm)
m −

nm+Ncm∑
n=nm

P (n)
m δ ≥ 0, (4.16)

to avoid running out of energy, where Ncm is the number of slots it takes for the mth UAV

to reach charging station cc.

Other constraints include the maximum and minimum UAV altitudes, a maximum velocity

and acceleration, and the avoidance of collisions:

hmin ≤ h(n)m ≤ hmax (4.17)

v(n+1)
m ≤ Vmaxδ (4.18)

∥v(n+1)
m − v(n)

m ∥ ≤ Amaxδ (4.19)

d
(n)
m,j ≥ Dsafe, (4.20)

where Vmax and Dsafe are the maximum UAV velocity and minimum safety distance among

UAVs, respectively, d
(n)
m,j is the distance between the mth and jth UAVs, and Amax is the

maximum acceleration.
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4.3 Cell-free Connectivity

On a given time-frequency resource unit, the number of active APs is L(n), which is a function

of time. The uplink channel matrix is then

G(n) =

(
g
(n)
1 , . . . , g

(n)
M

)
, (4.21)

where g
(n)
m ∈ CL(n)×1 is the channel between the mth UAV and the active APs, satisfying

G(n) = Ĝ
(n)

+ G̃
(n)
, (4.22)

where Ĝ
(n)

and G̃
(n)

are the channel estimate and error matrices, respectively. In general,

subsets of APs can provide service to subsets of UAVs [9,13,36], yet this work considers full

connectivity, for the sake of the simplicity of notation, pooling the observations from the

L(n) APs into

y(n) = G(n)x(n) + n(n) (4.23)

= Ĝ
(n)

x(n)︸ ︷︷ ︸
signal

+ G̃
(n)

x(n) + n(n)︸ ︷︷ ︸
effective noise: n

(n)
e

, (4.24)

where

x(n) =

(√
p
(n)
1 s

(n)
1 , . . . ,

√
p
(n)
M s

(n)
M

)T

, (4.25)
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with unit power symbols s
(n)
m while p

(n)
m denotes the transmit powers and the noise is n(n) ∼

NC(0, σ
2I). The effective noise n

(n)
e has covariance Σ(n) = D(n) + σ2I given

D(n) = E
{(

G̃
(n)

x(n)
)(
G̃

(n)
x(n)

)∗}
(4.26)

= diag

{
M∑
m=1

c
(n)
m,1p

(n)
m , . . . ,

M∑
m=1

c
(n)
m,Lp

(n)
m

}
. (4.27)

Upon observing y(n), the combiner that maximizes the signal-to-interference-plus-noise ratio

(SINR) is the MMSE filter, achieving a value of [36]

SINR(n)
m = ĝ(n)∗

m

(∑
n̸=m

ĝ(n)
n ĝ(n)∗

n p(n)n +Σ(n)

)−1

ĝ(n)
m p(n)m , (4.28)

giving a spectral efficiency of

SE(n)
m =

(
1− τ

τc

)
E{log2(1 + SINR(n)

m )}, (4.29)

where τ/τc accounts for the pilot overhead and τc denotes the total number of resource units

within a coherence block. Random matrix theory offers a way to circumvent the numerical

evaluations of the above expectation, providing stable spectral efficiency forms that depend

solely on large-scale parameters.

4.3.1 Large-Dimensional Analysis

When evaluating (4.29) for M,L(n) → ∞, convergence to nonrandom limits is assured pro-

vided that

Γ(n)
m = E

{
ĝ(n)
m ĝ(n)∗

m

}
(4.30)

= diag
{
γ
(n)
m,ℓ ∀ℓ

}
(4.31)
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satisfies some technical conditions. Specifically, the inverse of the resolvent matrix in (4.28)

must exist, which is ensured by the presence of Σ(n), while Γ(n)
m must have uniformly bounded

spectral norm, meaning that the received power does not concentrate on a subset of dimen-

sions as the network grows large.

Theorem 5. For M,L(n) →∞ with MMSE reception, SINR(n)
m −SINR

(n)

m → 0 almost surely

(a.s.) with

SINR
(n)

m =
L(n)∑
ℓ=1

γ
(n)
m,ℓp

(n)
m∑

i ̸=m

γ
(n)
i,ℓ

1+ei
p
(n)
i +

∑
∀i
c
(n)
i,ℓ p

(n)
i + σ2

. (4.32)

The coefficients ej are obtained iteratively with ej = lims→∞ e
(s)
j , e

(0)
j = L(n), and

e
(s)
j = p

(n)
j tr

[
Γ

(n)
j

( M∑
i ̸=j

Γ
(n)
i

1 + e
(s−1)
i

p
(n)
i +Σ(n)

)−1
]
. (4.33)

Proof. The proof follows a similar procedure as the one described in Appendix A.1.

As anticipated, (4.32) is a deterministic quantity that depends only on large-scale parameters.

From the continuous mapping theorem [89], it follows that

SE(n)
m − SE

(n)

m
a.s.→ 0, (4.34)

where

SE
(n)

m =

(
1− τ

τc

)
log2

(
1 + SINR

(n)

m

)
(4.35)

is the asymptotic spectral efficiency.
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4.4 Problem Formulation

Let us now turn to optimizing the UAV trajectories and the transmit powers. In the tracking

stage, the UAVs in the set S(n)
1 have sufficient energy to track while, in the charging stage,

the UAVs in the set S(n)
2 attempt to reach one of the C charging points as expeditiously as

possible. Given the different nature of the two stages, separate optimizations are devised.

4.4.1 Tracking Stage

During the tracking stage, UAVs periodically capture images, to be forwarded to the APs

every N slots. To keep the information fresh on average, the received image bit content must

satisfy

δWSE
(n)

m ≥
B

N
(4.36)

where B is given in (4.4) andW is the transmission bandwidth. Note that this conservatively

assumes that successive transmissions involve completely new images.

With (4.36) as a constraint that adds to those on altitude, speed, and collision-avoidance,

the optimization of trajectories and powers can be cast as the minimization of (a weighted

version of) the area per pixel. As discussed in Sec. 4.2.1, the area per pixel reflects the

tradeoff between image quality and FoV. Before proceeding, though, the definition of area

per pixel must be extended from a single UAV to multiple UAVs, as their FoV may intersect.

If multiple cameras cover a certain point v, the area per pixel is [131]

f̃
(
q(n)
m : m ∈ S(n)

1 ,v
)
=

1∑
i∈Nv

f
(
q
(n)
i ,v

)−1
+∆

, (4.37)

where Nv is the set of UAVs whose cameras cover v while ∆ is a regularization factor that
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prevents the function from diverging if none of the UAVs covers v. Therefore, the joint

optimization of the UAVs in tracking mode emerges as

min
q
(n)
m ,p

(n)
m

∫
F
f̃
(
q(n)
m : m ∈ S(n)

1 ,v
)
ψ(v, n)dv,

s.t. p(n)m ≤ pmax

(4.13), (4.14), (4.17)-(4.20), (4.36)

(4.38)

where ψ : R2 × N→ [0,∞) is a density that weights the points on the FoV, assigning them

relative importance (see Sec. 4.4.3). As reported in Sec. 4.6, the solution to the above

problem also maximizes the coverage, defined as the ratio between the points with positive

density that lie inside the UAVs’ FoV and the total number of points with positive density:

Coverage(n) =

∫
F I{ψ(v, n) > 0} I

{
∃B(n)

m : v ∈ B(n)
m

}
dv∫

F I{ψ(v, n) > 0} dv
, (4.39)

where I{·} is an indicator function whose value is one when the argument’s condition is true

and zero otherwise.

4.4.2 Charging Stage

During the charging stage, a UAV tries to reach one of the C charging stations. For the mth

UAV, the closest one is

cm = argmin
c
∥q(nm)

m − cc∥, (4.40)

where nm, recall, is the time slot in which the mth UAV switches from tracking to charg-

ing. In an unconstrained setup, trivial straight-line trajectories would be optimal, but the

actual solution is subject to constraints. In particular, choosing to minimize the energy
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consumption, the UAV trajectories are optimized via

min
q
(n)
m ,Ncm

nm+Ncm∑
n=nm

P (n)
m δ,

s.t. (4.13), (4.14),(4.16)-(4.20)

(4.41)

where Ncm is introduced in Sec. 4.2.4, P
(n)
m is defined in (4.15), and the constraints ensure

sufficient energy to reach a charging point, the avoidance of collisions, and the respect of al-

titude and velocity limits. The switching between tracking and charging, recall, is controlled

by the remaining energy at the UAV, as furthered in Sec. 4.6.

4.4.3 Fire Dynamics

The density function ψ(v, n) depends on the event being tracked and can be generated either

synthetically through a model or constructed from actual data. While the solution presented

in the next section is valid for any generic density function, for wildfires this function should

encode certain features that model the spread of a fire. Wildfire simulation is an active field

of research in itself [109]. FARSITE, an established model employed by government agencies,

is adopted here [110]. It dictates that the spread of every ignition originally follows an ellipse.

Subsequently, the points on the ellipse serve as new fronts as per Huygens principle [110],

each such front point growing as a new ellipse. The set of new front points is defined by the

combination of the local ellipses, i.e., their convex hull [110, Fig. 1]. Because of the different

local weather conditions, fuels, or terrain, the dimensions of the local ellipses can be different

and result in a new front that is no longer elliptic. Let us define U (n) [m/s] and θ
(n)
wind as the

midflame wind’s speed and direction, respectively, modelled as

U (n) ∼ |N (U0, σU)| (4.42)

θ
(n)
wind ∼ N (θwind, σwind). (4.43)
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Generating the ellipse corresponding to each front point requires its minor and major axes,

2a(n) and 2b(n), respectively, with

a(n) =
1

2 LB(n)

(
R+

R

HB(n)

)
(4.44)

b(n) =
1

2

(
R+

R

HB(n)

)
, (4.45)

where R [m/min] is the fire’s steady-state spreading rate and

LB(n) = 0.936 e0.2566U
(n)

+ 0.461 e–0.1548U
(n)

–0.397 (4.46)

HB(n) =
LB(n) +

√
[LB(n)]2–1

LB(n) –
√

[LB(n)]2–1
. (4.47)

Hence, at time n+ 1, the ith front point, denoted by z
(n)
i ∈ R2, generates the ellipse

z
(n)
i + δ

c(n)x sin θ
(n)
wind + a(n) cosω

c
(n)
y cos θ

(n)
wind + b(n) sinω

 , (4.48)

where 0 ≤ ω ≤ 2π whereas c
(n)
x and c

(n)
y represent the fire spreading gradients, respectively.

As the exact FARSITE implementation requires detailed information about the environment,

and with a view to a general formulation, we consider a simplified set of FARSITE parameters

that has been widely used in the literature [111,112]. In this simplified model [110]

c(n)x = c(n)y =
R

2

(
1–

1

HB(n)

)
. (4.49)

With that, a 2D histogram can be produced to serve as the density function ψ(v, n), assigning

a nonzero weight to the points of the fire’s perimeter being tracked. Fig. 4.2 illustrates the

expansion of a wildfire from an ignition point (black dot) using FARSITE. Assuming wind

in the direction of the red arrow, an ellipse with minor and major axes, 2a(n) and 2b(n),
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respectively, represents the next fire front as shown in Fig. 4.2b. Then, each blue point in the

new fire front acts like a new ignition point and the convex hull of the corresponding ellipses

generates the new fire front in Fig. 4.2d. Here, the density function ψ(v, n) corresponds to

the perimeter, represented by the red curve.

Wind direction

Ignition point

New fire fronts
New fire fronts

𝑎(𝑛)

𝑏(𝑛)

Draw ellipses on top of 
each new fire front

(a) (b) (c) (d)

Figure 4.2: Summary of FARSITE fire propagation model.

4.5 Proposed Solution

4.5.1 DQL Fundamentals

Solving (4.38) and (4.41) is challenging due to (i) the variety of constraints, (ii) the lack of

convexity with respect to the optimization variables, and (iii) the time-varying nature of the

problem. However, the optimization can be formulated as a Markov decision process (MDP)

problem, for which RL is an appropriate solution. In general, an MDP is defined by the

tuple (S,A,P , R, γ), where S and A are the state and action spaces, respectively. In turn,

P denotes the state transition probability with P
(
s(n+1)|s(n), a(n)

)
being the probability of

transitioning from state s(n) to s(n+1) after action a(n). Finally, R is the reward function and

γ ∈ [0, 1] denotes the discount factor in such function. According to the MDP,

P
(
s(n+1)|s(0), a(0), . . . , s(n), a(n)

)
= P

(
s(n+1)|s(n), a(n)

)
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and

R
(
s(n+1)|s(0), a(0), . . . , s(n), a(n)

)
= R

(
s(n+1)|s(n), a(n)

)
= r
(
s(n), a(n)

)
, (4.50)

where r(·) is introduced as shorthand notation. The goal in RL is to find a policy π : S → A

that maximizes the average discounted reward,

π∗ = argmax
π

E

{
∞∑
j=0

γjr
(
s(j), a(j)

) ∣∣∣∣π
}
, (4.51)

with expectation over s(0) ∼ P
(
s(0)
)
, a(n) ∼ π

(
·|s(n)

)
and s(n+1) ∼ P

(
s(n+1)|s(n), a(n)

)
. In

RL, the Q-function measures the expected future reward when the system is in state s,

performs action a, and follows policy π, namely

Qπ(s, a) = Eπ

{
∞∑
j=0

γjr
(
s(j

′), a(j
′)
) ∣∣∣∣s(n) = s, a(n) = a

}
. (4.52)

where j′ = j+n+1. An interesting property of the Q-function is that every optimum policy

π∗ achieves the optimum Q-function, i.e.,

Qπ∗
(s, a) = Q∗(s, a), (4.53)

where ∗ denotes optimality. Hence, one can identify the optimum policy through the Q-

function. In fact, through dynamic programming and the Bellman equation, learning the Q-

function is possible. Under the temporal difference (TD) learning solution, which combines

the current estimate of the Q-function with samples obtained from the environment, the

estimates can be iteratively updated following [47]

Q(s, a)← (1− α)Q(s, a) + α
[
r(s, a) + γmax

a′
Q(s′, a′)

]
. (4.54)
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Although (4.54) provides a straightforward rule to learn the Q-function, the corresponding

learning process is highly dependent on the state and action space dimensions, as every

pair (s, a) needs to be explored many times. Multi-UAV communication problems, with

their complex and dynamic environments, and high-dimensional state and action spaces,

motivate the use of DQL. This leverages deep neural networks to approximate the Q-value

function, with a slight abuse of the notation, as Q(s, a) ≈ Q(s, a;θ) where θ are the neural

network parameters tuned to minimize

L(θ) = E
{
|y(s, a)−Q(s, a;θ)|2

}
, (4.55)

where y(s, a) is the target value defined as

y(s, a) = r(s, a) + γmax
a′

Q(s′, a′;θ). (4.56)

Still, DQL suffers from a major limitation as it considers a discrete action space. To consider

continuous actions, we adopt TD3, a policy-based model-free algorithm [48]. TD3 leverages

an actor-critic architecture, with both modules composed by neural networks. On the one

hand, the critic aims at learning the Q-function, which is exploited by the actor to know how

beneficial an action is. On the other hand, the actor’s role is to learn a policy that, as opposed

to traditional Q-learning, outputs continuous action values. Such policy is parameterized by

ϕ, the actor’s neural network parameters, that are updated by the gradient computed as

∇J(ϕ) = E
{
∇ϕπϕ(s) ∇aQ(s, a;θ)|a=πϕ(s)

}
, (4.57)

where

J(ϕ) = Eπ

{
∞∑
j=0

γjr
(
s(j), a(j)

)}
. (4.58)
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In addition, DQL algorithms typically include the so-called target networks. These are copies

of the original networks whose parameters remain frozen over a number of iterations. Then,

a soft-update rule is applied. Concretely, we denote by θ′ and ϕ′ the critic and actor neural

network target parameters, respectively, with update rules

θ
′ ← (1− τT)θ

′
+ τTθ, (4.59)

ϕ
′ ← (1− τT)ϕ

′
+ τTϕ, (4.60)

where τT controls the memory of the updates. The inclusion of target networks addresses the

moving target issue that arises when Q-values and target values are obtained using the same

neural network and are constantly changing, creating a moving target for the learning; the

algorithm’s goal then keeps varying as the agent learns, hampering the finding of a solution.

Relative to previous actor-critic methods, TD3 introduces improvements that enhance the

stability during learning:

1. It features two critics, and respective target critic networks. This addresses the over-

estimation of Q-values caused by the use in previous methods of the maximum action

value to approximate the maximum expected action value, as per (4.56). In TD3, the

agent selects the Q-target network with smaller Q-value to construct the target value

as

y(s, a) = r(s, a) + γ min
i=1,2

Q(s′, a′;θ′
i). (4.61)

2. To reduce the accumulation of residual errors, the policy network parameters are up-

dated less frequently than the Q-function parameters. Precisely, [48] suggests a policy

update for every two Q-function updates.
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3. To prevent overfitting to specific estimated values, TD3 adds clipped random noise to

the target actions,

â = πϕ′(s) + ϵ̂, (4.62)

where ϵ̂ ∼ clip
(
N (0, σ̂a),−ϵ̂max, ϵ̂max

)
, i.e., the values outside the interval [−ϵ̂max, ϵ̂max]

are clipped to the interval edges.

TD3 is applicable to (4.38) and (4.41). Next, we define the states, actions, and rewards for

each problem with one agent coordinating a swarm of M UAVs.

4.5.2 TD3: Tracking Stage

To solve (4.38), single-agent or multi-agent algorithms can be employed. A single-agent

solution would coordinate the entire swarm and present a significant challenge due to the

exponential growth of state and action spaces with the number of UAVs. Alternatively, large

MDPs can be factored into simpler ones, leading to simpler agents and distributed solutions

[133, 134]. Accordingly, we use the multi-agent solution, where each UAV is controlled by a

different agent. The following is needed:

• The state space, which includes information about (i) the UAV locations, (ii) the

portion of the image bit content that has not yet been transmitted, and (iii) the state

of the fire coverage. To quantify the latter, let us compute the center of mass of the

area per pixel as per (4.63). If important points remain uncovered, the agent learns to

move in that direction. The untransmitted portion of the image bit content is included

in the state space as

i(n)m = max

{
0,

(
1− δWSE

(n)

m

B/N

)}
. (4.64)
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(
x(n)c , y(n)c

)
=

∫
F vf̃

(
q
(n)
m : m ∈ S(n)

1 ,v
)
ψ(v, n)dv∫

F f̃
(
q
(n)
m : m ∈ S(n)

1 ,v
)
ψ(v, n)dv

(4.63)

Altogether, the state of the mth UAV at time n is

s(n)m =

{
x
(n)
m

S
,
y
(n)
m

S
,
h
(n)
m

hmax

,
v
(n)
m

vmax

,
x
(n)
c

S
,
y
(n)
c

S
,
d
(n)
m,j

Cd

, i(n)m

}
, (4.65)

where S and Cd are positive normalization constants, v
(n)
m is the UAV’s speed and d

(n)
m,j

is the distance between the mth and the jth UAVs.

• The action space defines the set of actions that the UAVs can take and consists of

variations in the 3D location and transmit power, such that a
(n)
m ∈ R4×1. Given the

relationships established by (4.13) and (4.14), the problem is solved with respect to the

acceleration. The first three actions relate to the acceleration variations in 3D space,

each constrained by a maximum and minimum value [−Amax, Amax]. The last action

component sets the transmit power, adjusted to any value satisfying 0 ≤ p
(n)
m ≤ pmax.

• The reward function evaluates the quality of the actions and motivates the agent to take

those leading to desirable outcomes. Not only does it capture the cost function, but

it satisfies the constraints. As per the reward shaping technique, the reward observed

by the mth UAV is [135]

rm
(
s(n)m , a(n)m

)
=

5∑
w=1

rm,w
(
s(n)m , a(n)m

)
, (4.66)

whose terms are detailed next. In particular, rm,1
(
s
(n)
m , a

(n)
m

)
contains the variation in

the cost function. After performing action a
(n)
m , the state transitions to s

(n+1)
m , whose
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cost is defined as

c(s(n+1)
m ) =

∫
F
f̃
(
q(n+1)
m : m ∈ S(n+1)

1 ,v
)

· ψ(v, n+ 1)dv. (4.67)

Thus, to motivate the UAVs to reduce the cost function, rm,1

(
s
(n)
m , a

(n)
m

)
is defined as

rm,1
(
s(n)m , a(n)m

)
= Kc

(
1− c(s

(n+1)
m )

I
(n)
r

)
(4.68)

where Kc > 0 and I
(n)
r = 1

∆

∫
F ψ(v, n + 1)dv. Moreover, to avoid collisions among

UAVs, we define

rm,2
(
s(n)m , a(n)m

)
=

 −Kcoll if ∃ d
(n)
m,j ≤ Dsafe

0 otherwise
, (4.69)

where Kcoll > 0. Similarly, we define the reward associated with (4.36) as

rm,3
(
s(n)m , a(n)m

)
=

 −Kf if B
N
≥ δWSE

(n)

m

0 otherwise
, (4.70)

where Kf > 0. A similar expression is used to define rm,4(·) and rm,5(·), which penalizes

actions taking the UAV out of limits and exceeding a maximum velocity, respectively,

with respective penalties of −Kh and −Kv.

The multi-agent TD3 algorithm used to train a single UAV during the tracking stage is

summarized in Alg. 3 whereas Fig. 4.3 presents its block diagram. Note that the factoriza-

tion of the larger problem into M single-agent problems allows for parallelization, leading

to faster convergence and more efficient learning. Given that the UAVs in tracking mode

have the same objective, their training will converge to the same models. Therefore, training

92



can be conducted on one UAV, while the others can either follow the learned policy up to

that point in time, perform random movements, or remain static. Besides the initial net-

work parameters, Alg. 3 accepts the number of episodes E, which refers to the number of

wildfire realizations the system will observe, as input. Additionally, a replay buffer of size

|M| stores transitions of the type
{
s
(n)
m , a

(n)
m , rm

(
s
(n)
m , a

(n)
m

)
, s

(n+1)
m

}
. Finally, F refers to the

update frequency over the policy and target networks.

4.5.3 TD3: Charging Stage

Since the tracking and charging stages are optimized separately, two independent models

can be trained. The same ideas and algorithms described for tracking can be applied for

charging, with only some modifications needed to address (4.41). Concretely, during the

charging stage, only one UAV needs to be coordinated. Hence, the states consist of

s(n)m =

{
xum − x

(n)
m

S
,
yum − y

(n)
m

S
,
hum − h

(n)
m

hmax

, d
(n)
m,j,

E
(n)
m

E0

}
, (4.71)

where, recall, the distance between the mth and jth UAVs is d
(n)
m,j while E0 is a positive

constant normalizing the remaining energy. While rm,2(·), rm,4(·) and rm,5(·) remain the

same, rm,3

(
s
(n)
m , a

(n)
m

)
= 0 as the UAVs have no data to forward. The main difference,

though, is in the definition of rm,1
(
s(n), a(n)

)
, in (4.72) atop the next page, which includes

the variation in the cost function:

• When the charging point is reached, a positive reward Kfin is given.

• The term −KeP
(n)
m δ aims at minimizing the energy whereas the second component mo-

tivates the UAV to minimize the distance with the charging point. If it is approached,

the UAV receives a positive reward; otherwise, the reward is negative. Finally, a neg-

ative reward of Ken is incurred if the remaining energy is exhausted.
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rm,1(s
(n)
m , a(n)m ) =

{
Kfin if q

(n)
m = ccm

−KeP
(n)
m δ +Kd

(
∥ccm − q

(n)
m ∥ − ∥ccm − q

(n+1)
m ∥

)
otherwise

.

(4.72)

Alg. 3 applies to the charging stage with the above modifications in the rewards. In addition,

whereas the tracking stage does not have a final state, the training of the charging model

does reach a final state whenever q
(n)
m = ccm . Thus, the while condition in the loop can be

changed from n < Ne to q
(n)
m ̸= ccm .

ActorCritic

TD Error Update

𝑦 = 𝑟 + γmin
𝑖=1,2

𝑄𝑖

Target 𝑄1 Target 𝑄2

Critic 1 Critic 2

Target

Actor 1

𝑄(𝑠 𝑛 , 𝑎(𝑛))

𝑎(𝑛)
∊∼ 𝓝(0, 𝜎𝑎) ∊∼ 𝓝(0, 𝜎𝑎)

Environment

Replay bufferMini-batch

Agent

DPG Update

Parameter update

Data flow

𝑎(𝑛)

{𝑠(𝑛), 𝑎(𝑛), 𝑟(𝑛), 𝑠(𝑛+1)}

Figure 4.3: TD3 block diagram.

4.6 Numerical Results

For the purpose of performance evaluation, a 300-m2 environment is considered with the

simulation parameters in Table 4.1. The camera parameters are set based on [30, 131],

emulating real devices, while the UAV and cell-free parameters are borrowed from [13,33,92].
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Algorithm 3 TD3 - Tracking stage

Require: No. of episodes E, initial policy parameters ϕ, critic parameters θ1, θ2, empty
memory replay bufferM and parameter update frequency F .
Initialize θ

′

1 ← θ1, θ
′

2 ← θ2, and ϕ
′ ← ϕ.

for e = 1, . . . ,E do
Set n = 0 and initialize UAV, AP and ignition point locations.
while n < Ne do

Obtain the current state s(n).
Perform action a

(n)
m = clip

(
πϕ
(
s
(n)
m

)
+ ϵ
)
, with ϵ ∼ N (0, σa), and observe s

(n+1)
m .

Compute the reward r
(
s
(n)
m , a

(n)
m

)
as in (4.66).

Store
{
s
(n)
m , a

(n)
m , rm

(
s
(n)
m , a

(n)
m

)
, s

(n+1)
m

}
inM.

Select a minibatch of Nmem experiences
{
s
(n)
m , a

(n)
m , rm

(
s
(n)
m , a

(n)
m

)
, s

(n+1)
m

}
fromM.

Compute target actions â
(n)
m as in (4.62).

Compute targets y(s, a) as in (4.56).
Update the critics by minimizing E{|y(s, a)−Q(s, a;θi)|2} for i = 1, 2.
if n mod F then

Update ϕ via (4.57).
Update target networks θ

′

1, θ
′

2, and ϕ
′
as in (4.59) and (4.60).

end if
n = n+ 1.
Optional: move the rest of UAVs.

end while
end for
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Aiming at simulating real wildfires, the fire propagation components are chosen from [110–

112] whereas the TD3 parameters are configured as suggested in [57,59,129,130]. Particularly,

the variance of the noise added to the actions is σa = σ̂a = 0.1, ϵ̂max = 0.5, and the parameter

soft updates are handled with τT = 0.01. Also, the learning rate for actor and critics is set

to 5 · 10−4 and 5 · 10−3, respectively. The normalization constants in the states and rewards

are obtained via cross-validation and summarized in Table 4.2; other values could work as

well. The initial UAV and AP locations, charging point coordinates, and fire ignition point

are randomly generated. At each time slot, the fire perimeter is updated according to Sec.

4.4.3 whereas the UAV locations are updated following the output of the actor block in the

trained TD3 algorithm. Finally, given that we solve two separate problems, we first provide

training and evaluation results assuming unlimited energy at UAVs. Then, after discussing

the charging performance, the combined results of tracking and charging are presented.

Table 4.1: Simulation parameters

Parameter Value Parameter Value
α1, α2 17.5◦, 13.125◦ pmax 100 mW
a, b 10−6, 10 β0 -30 dB
ρ 0.4 σ2 -96 dBm
L 10 A1, A2 0, 6.4 dB
C 4 ∆ 10−5

fc 2.4 GHz δ 0.5 s
Amax 1 B 10 MHz
Vmax 20 γ 0.85
Hmin, Hmax 100 m, 150 m N 2
τ 200 τc 6250
U0 5 m/s Dsafe 4 m

σU 1 m/s θ̂wind U [0, 2π]
R 35 m/min σwind 0.1

For starters, let us validate the cell-free asymptotic derivations, as they are leveraged in

(4.38). To that end, Fig. 4.4a plots the average user spectral efficiency for different M and

L; as one would expect, a smaller M/L, i.e., more APs per UAV, yields a better spectral

efficiency. In turn, Fig. 4.4b indicates that Thm. 5 provides an excellent approximation even

in low-dimensional systems, say M = 3 and L = 6.
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Table 4.2: State and reward parameters

Description Parameter Value
Normalization in (4.65), (4.71) S 300
Constant in (4.68) Kc 50
Penalty in (4.69) Kcoll 100
Penalty in (4.70) Kf 15
Flying-out-of-limits penalty Kh 60
Normalization in (4.71) E0 12000
Rewards and constants in (4.72) Kfin,Ke, Kd 200, 1, 0.1
Out-of-energy penalty Ken 100

(a)
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Figure 4.4: (a) Spectral efficiency for different M,L; (b) validation of Theorem 5.
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Next, the attention shifts to the tracking stage. Fig. 4.5 assesses the TD3 algorithm’s

training performance for M = 1, . . . , 4, where a 3-layer feed-forward neural network is used,

each layer containing 256 neurons. In the initial 750 episodes, the replay buffer accumulates

transitions to ensure that, upon training commencement, every minibatch comprises samples

with minimal correlation, enhancing the learning process. Hence, learning truly begins after

episode 750, leading to an overall increase in the average reward for all models. Once 3000

episodes are reached, rewards stabilize. For subsequent evaluations, the models saved at

the 6000-episode mark are utilized. Fig. 4.5b evaluates the trained models over a single

realization of a wildfire with the cost function in (4.38). Despite the random initialization of

the UAV locations, the swarm efficiently repositions itself, ensuring full perimeter coverage

by n = 100. However, as n reaches 300, the perimeter dimensions become too extensive

to be managed by M = 1 UAV, resulting in a significant cost increase. A similar trend is

observed for M = 2 UAVs, but M = 3 and M = 4 UAVs manage to maintain a satisfactory

performance. Note how, due to the regularization parameter ∆, the cost function exhibits

a high variance. When all points are covered, the function yields a small value. However, if

even a single perimeter point remains uncovered, the function experiences sharp spikes. The

coverage metric defined in (4.39) then comes handy, as a smoother complement to the cost

function, and hence both values are reported in the sequel.

Next, we measure the cumulative distribution function (CDF) of the cost function and fire

coverage for Hmin = 125 and Hmax = 150 at n = 350 over 1,000 independent wildfire events.

As one would expect, increasing the number of UAVs results in an increased coverage and

a smaller cost function. Particularly, the case with M = 4 UAVs achieves a 90% coverage

with very high probability. Also, note that both figures consider n = 350, i.e., fires that

have already expanded and are large. Although not shown for the sake of conciseness, for

n = 100, meaning for fires that are still small, 90% coverage is achieved regardless of the

number of UAVs.
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Figure 4.5: For the tracking problem (a) average training reward; (b) cost function value as
a function of n.
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Figure 4.6: At n = 350 for Hmin = 125 and Hmax = 150 (a) cost function; (b) coverage.
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Figure 4.7: Cost and coverage for tracking and (Hmin, Hmax): (a) (125,150) (b) (100,125).

To quantify the impact of the flying altitude on the problem, we include Fig. 4.7. These

figures measure the swarm’s area per pixel (blue) and coverage (red) over 400 time steps and

average the results across 1,000 different fire realizations, considering only the tracking stage

where UAVs have unlimited energy. Fig. 4.7a corresponds to Hmin = 125 and Hmax = 150,

while Fig. 4.7b is for Hmin = 100 and Hmax = 125. As expected, reducing the allowed flying

altitudes decreases the FoV, leading to a degradation in both the cost function and coverage.

This degradation is especially notable when the fire is large, say n > 300, whereas, at the

onset of the event, lower flying altitudes suffice.

Next, our RL solution is tested against two benchmarks. The first one distributes the UAVs

uniformly at random throughout the region and is denoted by U. The second one, denoted by

G, places the UAVs around the ignition point following a 2D Gaussian random distribution

with covariance 10I. Against these benchmarks, two initializations are considered for the

RL approach, again uniformly at random or Gaussian, denoted respectively by U+RL and

G+RL. Fig. 4.8 presents results for M = 3 and M = 4 with Hmin = 125 and Hmax = 150.

The following is observed:

• The U method performs poorly. An approximate value for the coverage achieved by
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Figure 4.8: Cost and coverage for tracking under different solutions: (a) M = 3 (b) M = 4.

this method can be gauged from the expected coverage with M UAVs, computed as

the ratio between the area covered by the UAV’s FoV and the total area of the region,

namely

M
22 E{h(n)m }2 tanα1 tanα2

S2
. (4.73)

For E{h(n)m } = (Hmax + Hmin)/2, the values obtained for M = 3 and M = 4 are,

respectively, 0.199 and 0.265, consistent with the coverage curves for the U plots.

• The G benchmark performs well during the initial stages. However, as the fire grows

large, say n > 150, both the area per pixel and coverage degrade significantly. In

contrast, our method manages to provide solid coverage under both initializations.

Starting with the UAVs around the ignition point, corresponding to G+RL, ensures

better coverage at first, but the U+RL method rapidly relocates the UAVs to cover

the fire effectively too.

Before merging the tracking and charging stages, we validate the TD3 solution applied to

the charging stage via (4.41), where the same three-layer feedforward neural network is used.

For training, episodes are limited to a maximum length of 200. The maximum number of

101



0 1000 2000 3000 4000 5000 6000 7000 8000

Episode

12000

10000

8000

6000

4000

2000

0

A
v
e
r
a
g

e
 R

e
w

a
r
d

(a) (b)

Figure 4.9: For the charging problem (a) average training reward; (b) 2D histogram for the
distance vs energy in a trained agent.

UAVs coincides with that of the tracking stage, i.e., M = 4. UAV locations are randomly

initialized. During each episode, one UAV intends to reach a charging point, while the

remaining UAVs perform random movements. Fig. 4.9a plots the average training reward

versus the episode number for various values of M with γ = 0.85. After 3,000 episodes, the

agent is fully trained, achieving an average reward of around 200—the value of rfin—thus

resulting in q
(n)
m = ccm . Once the agent is trained, the energy threshold at which the UAV

switches from tracking to charging needs to be set. For that purpose, a 2D histogram is

produced relating the distance between the UAV and the charging point when switching

to the charging stage (x-axis), and the amount of energy that the UAV needs to reach the

charging point (y-axis). Fig. 4.9b shows such a histogram after evaluating the trained

agent over 50,000 episodes. Since the UAV should reach the charging point with very high

probability, a conservative threshold should be chosen. For example, the UAV switches to

charging when, at a certain distance, its level of energy falls below 1.2 times the maximum

energy at that distance in Fig. 4.9b.

Finally, for the combined tracking and charging results, the UAV energies are initialized

at random from U [3.5, Emax] kJ for different Emax. This is justified by the UAVs’ previous

surveillance resulting in different energy values. The minimum energy level for UAVs is set
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to 3.5 kJ, ensuring that UAVs can reach a charging point in case their initial energy levels

are low. We measure the swarm’s coverage over 400 time steps and average the results across

1,000 different fire realizations. Fig. 4.10 plots the cost function (blue) and coverage (red)

given Emax = 125 kJ for various M and (Hmin, Hmax). While the initial coverage is small,

UAVs rapidly adjust their locations to track the varying perimeter. Although, at each time

instant, we aim at minimizing the cost function, the corresponding curves are increasing.

This is due to the fire perimeter expanding with time, with a higher cost even if full coverage

is achieved. Also, note that the values attained in Fig. 4.10 are similar to those in Fig. 4.7,

where infinite energy is assumed, only with a 3-5% degradation.

To further assess the effects of finite energy batteries, Fig. 4.11 presents results for lower

values of Emax, precisely for Emax = 125 kJ, Emax = 100 kJ and Emax = 80 kJ, for a variety

of M with Hmin = 125 and Hmax = 150. Interestingly, since the UAVs switch to charging

more often when their energy levels are lower, the performance worsens. There is a 10%

degradation in coverage for M = 3 while, for M = 4, that degradation is smaller, especially

when the fire is extensive. Conversely, when a fire is in its initial stage, coverages above 90%

can be achieved at all energy levels.

Fig. 4.12 illustrates the system’s operation for M = 3 UAVs and a given wildfire realization.

Precisely, Figs. 4.12a and 4.12b depict the UAV trajectories until n = 150 and n = 400,

respectively, alongside the wildfire perimeter represented by means of a 2D histogram, where

the value of each point represents its importance. For that same realization, the cost function

and coverage are depicted in Fig. 4.12c whereas Fig. 4.12d shows the excess bit rate percent-

age in the cell-free connectivity constraint given by (4.36). At the beginning of the mission,

UAV-1 (red) needs to recharge its battery and therefore heads to the closest charging point

with coordinates (225, 80, 10). In parallel, UAV-3 (blue) approaches the wildfire and, by

n = 36, full coverage is achieved; see Fig. 4.12c. However, the energy levels of UAV-3 are

low, and at n = 74 it switches to charging mode and heads to the charging point located at
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Figure 4.10: Cost and coverage for Emax = 125 kJ and (Hmin, Hmax): (a) (125,150) (b)
(100,125).
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Figure 4.11: Cost and coverage for different Emax (a) M = 3, (b) M = 4.
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(230, 225, 10), causing a reduction in coverage. At that time, UAV-1 (red) and UAV-2 (green)

have enough energy and are in tracking mode, repositioning themselves closer to the wildfire.

At n = 84, coverage begins to increase, reaching full coverage by n = 140. Afterwards, the

three UAVs continue adjusting their locations to cover the fire perimeter, maintaining the

coverage well above 80% for the remainder of the mission. Finally, Fig. 4.12d presents the

excess bit rate in (4.36) as a percentage of B
N
. (A value of 0 is assigned during the charging

periods as UAVs do not transmit.). The combination of trajectory and power optimization

yields a positive gap, indicating that the images are correctly relayed to the network.

4.7 Conclusions

This chapter has considered a cell-free UAV network whose aim is to track a wildfire while

satisfying a set of mechanical, energetic, and communication constraints. Two complex

nonconvex optimization problems have been formulated, for tracking and charging, and a

reinforcement learning framework has been applied to tackle them. Particularly, the TD3

algorithm has been used. Extensive results have shown that a small swarm of UAVs can reli-

ably provide coverage. Concretely, if the energy levels and the flying altitudes are moderately

high, an average coverage of more than 90% can be achieved with only a few UAVs, with

that coverage shrinking with the charging level and the altitude. Altogether, the tradeoff

among the number of UAVs, energy, and flying altitude, has been established.
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Figure 4.12: For a given wildfire realization: (a) wildfire and UAV trajectories until n = 150;
(b) wildfire and UAV trajectories until n = 400; (c) cost function and coverage over the
entire mission; (d) excess bit rate in (4.36).
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Chapter 5

Sensing and Communication in UAV

Cellular Networks: Design and

Optimization

5.1 Introduction

The transition towards 6G networks has started with a potential use case of combining sens-

ing and communications under the same umbrella [1–3]. While static sensing and/or com-

munication networks have been greatly studied, efficient sensing and reliable communication

in dynamic networks result in new challenges not perceived by the static counterparts. To

circumvent these challenges, the UAV technology presents an appealing framework. Indeed,

because of their advantages, e.g. low production cost or easy deployment and control, the use

of UAVs in wireless communication systems has attracted significant attention during the

last few years. Specifically, deploying UAVs and other nodes under certain optimality crite-

ria is an active field of research [9,10,14–19,21–25,27,69–71,136–140]. For example, authors
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in [10,16,19] regard UAVs as flying base stations with the goal of maximizing the minimum

rate whereas [70, 71] exploit the relaying capabilities of the UAVs. Additionally, [138–140]

present a variety of UAV-aided data-collection networks. However, jointly tackling sensing

and communications problems is novel with few works dealing with it [49–52].

Compared to earlier results, this manuscript covers unsolved fundamental challenges that

naturally arise in joint sensing and communication networks such as the 3D UAV trajectory

optimization, interference management, and sensing scheduling. One important defining

aspect of these networks is data collection versus sensing. In data collection UAV networks,

sensing is done on the ground and a communication link between the ground device and

the UAV is needed. On the other hand, in sensing UAV networks, UAVs sense the events

cooperatively whilst guaranteeing a successful sensing probability. For example, UAVs can

be equipped with a variety of cameras and sensors which, after sensing an event, generate a

certain amount of data that is transmitted to the base station (BS) [53–55].

In fact, the vast majority of the literature separates sensing from communications, especially

within UAV networks given the complexity of achieving optimal deployments. Therefore,

this work aims at filling this gap by focusing on the UAV-energy minimization problem with

respect to (i) 3D UAV trajectory, (ii) power allocation, and (iii) sensing in multi-cell UAV-

aided networks constrained to a set of sensing, communications, and mechanical technical

specifications. Concretely, each cell provides service to a set of GUs. In addition, the central

cell also contains a set of events that must be sensed by the UAV, that can be regarded

as an aerial user which always reports to the central BS1. After sensing an event, usually

represented through a probabilistic sensing model [141–143], the UAV generates the sensory

data which is transmitted to the central BS over a certain resource block.

Unlike the existing works in the literature, we envision a time-dependent probability of sens-

ing, i.e., longer periods flying close to an event result in higher sensing probabilities. In

1Minor modifications would apply if handovers between the UAV and the BSs were considered.
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addition, the sensory data transmission is mainly constrained by the information causality,

UAV mobility, and interference. In fact, compared to [137, 139], and similar works, the

constraints that preserve the causality of the information need to be redefined. Two major

differences arise: (i) the UAV uses the same resource block at all times without any time

or frequency scheduling, and (ii) there is no link between the events and UAV as previously

mentioned. As a consequence, the spectral efficiency of this system is higher although a re-

formulation of the causality constraint is needed. Moreover, a significant issue that is often

ignored when designing UAV networks, as in [21,23,25,27,70,71,137] among others, relates

to interference. Particularly, it is assumed that the devices within each cell are assigned an

orthogonal resource block; therefore, intra-cell interference is negligible, which can be easily

achieved for example by orthogonal frequency division multiple access (OFDMA). However,

frequency reuse among cells gives rise to inter-cell interference. Specifically, interference in

aerial radio links is predominant compared to the ground counterparts given the Rician na-

ture of air-to-ground channels [72–74]. Consequently, interference arising from the sensory

data transmission from the UAV to the BS must be accounted for. Otherwise, correct decod-

ing at certain GUs or BSs may fail. There are two main solutions to mitigate interference:

(a) using coding or beamforming at the transmitter [63,65,67,144] and/or (b) perform power

control at the UAV [145, 146]. In this work, to handle inter-cell interference, power control

is performed at the UAV, to make it possible to carry a single antenna.

Finally, we broaden the model by considering a variable flying time. This is in contrast

with most of the UAV literature, in which the flying time is fixed and predetermined. By

exploiting the path discretization technique [27], we allow non-uniform time slots, which are

shown to boost the UAV’s energy efficiency.

The optimization problem we aim to solve is highly nonconvex; hence, it is decomposed

into four subproblems and is solved utilizing the block coordinate descend (BCD) approach

[147]. The first subproblem deals with the logic-based sensing variables while the second
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jointly optimizes the UAV trajectory and time slot length by leveraging the well-known

successive convex approximation method (SCA) [105], which is also applied to optimize the

UAV altitudes. Finally, it is shown that the analytical expression for the UAV transmit

power can be obtained through the Lagrangian method. Therefore, the main contributions

of this chapter can be summarized as:

• A novel scenario that integrates sensing and communications is presented in UAV-aided

multi-cell cellular networks based on realistic channels, sensing models, and subject to

sensing, communications, and mechanical constraints.

• The UAV energy minimization problem is studied as a function of the 3D UAV path,

sensing, and transmit power which results in a mixed-integer nonlinear programming

problem.

• Capitalizing on four low-complexity subproblems, suboptimal solutions minimizing the

on-board UAV energy are obtained. The sensing is handled through a low-complexity

binary optimization algorithm while the SCA technique is used to optimize the UAV’s

path. Finally, the optimal UAV transmit power is analytically obtained.

• The impact and tradeoffs between a variety of parameters is well established. Our

results show that the proposed scheme outperforms other benchmark methods and

reduces the energy consumption between 33%-200%.

The remainder of the chapter is organized as follows. Section 5.2 presents the complete

system model for the UAV-enabled sensing and communications network. The problem

formulation and solution are studied in Sections 5.3 and 5.4, respectively. Numerical results

are presented and discussed in Section 5.5 while concluding remarks are set forth in Section

5.6.
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5.2 System Model

Consider a cellular network composed of multiple cells as shown in Fig. 5.1. Each cell

contains one BS while the central cell also features one UAV and M events that need to

be sensed with M = {1, . . . ,M} denoting the set of events of interest. Particularly, the

mth event of interest is located inside the central cell2 at ℓm = (lm, 0) with lm ∈ R2×1

whose coordinates are known a priori via different techniques such as Global Positioning

System (GPS)3. The flying/mission time is represented by T and the corresponding UAV

coordinates at time t are given by ℓ(t) = (q(t), H(t)) where q(t) ∈ R2×1 represents the ground

coordinates and H(t) denotes the flying altitude. The BSs are located at the center of each

cell. However, provided that the UAV reports to the BS in the central cell, only the location

of such BS is relevant, whose coordinates are ℓB = (qB, HB)
4. For the kth GU outside the

central cell, its coordinates are ℓk = (wk, 0). Particularly, {qB,wk} ∈ R2×1 and HB is the BS

altitude, common for all of them. The optimization with respect to continuous time variables

would yield to an intractable problem since the number of optimization variables is infinite.

Therefore, the mission time T is discretized into N non-uniform time slots, denoted by δ(n),

whose lengths are included in the optimization problem. Consequently, T =
N∑
n=1

δ(n) and

thus the UAV’s path is discretized, where the 3D coordinates at slot n are represented by

ℓ(n) = (q(n), H(n)). Usually, discretizing the trajectory only specifies the locations whereas

discretizing the path involves both the locations and the time dimension [27]. To maintain

the sampling accuracy, an appropriate value for N must be chosen by imposing the following

constraint

||ℓ(n+ 1)− ℓ(n)|| ≤ dmax, (5.1)

2Our formulation and solutions apply to the general case in which the events are located at different cells.
3The impact of inaccurate locations is left as future work.
4Minor modifications will be needed if the central cell has to handover the UAV to another cell. If such

a handover happens, the other BS location will be relevant as well.
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UAV Trajectory Event of Interest BS GU

Data Signal Interference Signal

Figure 5.1: A multi-cell network with UAV-aided communications and sensing.

where dmax is a proper value such that the UAV is assumed to fly at a constant velocity

within each segment and the parameter variation between two successive time slots is small.

In fact, when dmax → 0, then N → ∞ and a nearly continuous trajectory is obtained. To

obtain a scalable N that satisfies (5.1), one can first obtain an upper bound on the flying

distance, given by Dmax, and require (N + 1)dmax >> Dmax. Consequently, under the worst

case scenario of the UAV flying Dmax, the sampling accuracy is still preserved. For ease of

exposition, we define dB(n) and dk(n) as the Euclidean distance from the UAV to the central

BS and User k, respectively.

5.2.1 Channel Model

The channel coefficient between the UAV and any of the network elements, denoted by

gi(n) for i ∈ {B, k}, follows a Rician distribution, which encompasses two elements: (a) the
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LoS component and (b) a Rayleigh-distributed small-scale fading component [86, Sec. 3.4.1]

gi(n) =

√
β0

dκi (n) (Ki(n) + 1)

[√
Ki(n)e

jψi(n) + ai(n)

]
for i ∈ {B, k}, (5.2)

where β0 and κ are the path loss at a reference distance of 1m and the path loss exponent,

respectively. The Rician factor isKi(n), which depends on the geometry between transmitter

and receiver and environmental parameters [73]. Finally, ψi(n) ∼ U [0, 2π] and ai(n) ∼

NC(0, 1) account for the phase rotation and the small-scale fading, respectively.

5.2.2 Rate Calculation

The UAV can be regarded as an aerial user within the central cell. Therefore, it is assigned

an orthogonal resource block, avoiding interference to the GUs within the central cell. Upon

sensing an event, the UAV generates and transmits the sensory data to the BS with an

instantaneous rate of

R(n) = log2

(
1 +
|gB(n)|2p(n)

σ2

)
, (5.3)

where σ2 denotes the noise power and p(n) is the UAV’s transmit power, which must not

exceed a certain value:

p(n) ≤ pmax, (5.4)

where pmax is the maximum transmit power. A common approach to manage the randomness

of the rate is to consider the ergodic capacity, i.e., E{R(n)}. Furthermore, application

of Jensen’s inequality to E{R(n)} removes the effect of the small-scale fading given that

E{|gB(n)|2} = β0
dκB(n)

. As shown in [21], to keep the contribution of the LoS and NLoS

channel components, the channel coefficient can be well approximated by a logistic regression.
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Therefore, as suggested in [21], the rate is approximated as

R(n) = log2

(
1 +

(
C1 +

C2

1 + e−(B1+B2uB(n))

) β0p(n)

dκB(n)σ
2

)
, (5.5)

where C1, C2, B1, and B2 are obtained from the logistic model and uB(n) =
(H(n)−HB)

dB(n)
.

5.2.3 Interference Management

A key enabler in wireless cellular networks is interference management. While intra-cell in-

terference can be avoided through well-known techniques such as OFDMA, neighboring cells

will reuse some of the resources5. Consequently, given the dominance of the LoS component

in aerial channels, inter-cell interference arises at both the BSs and the GUs originated by

the UAV transmissions6. Therefore, to keep interference at a bay, a joint optimization of the

UAV trajectory and power is considered, in recognition that an isolated study of one aspect

may be misleading because of potential bottlenecks in the other. By using the same logistic

regression approximation for the channels between the UAV and GUs (or neighboring BSs),

the amount of interference that GU k receives from the UAV is:

Ik(n) =
(
C1 +

C2

1 + e−(B1+B2uk(n))

)β0p(n)
dκk(n)

. (5.6)

Therefore, the following interference-related constraint must be met for each of the GUs:

Ik(n) ≤ Ith, (5.7)

5A reuse factor of one is assumed while the same framework and solutions apply if other sectorization and
reuse factors are assumed. The sectorization or reuse factor will only affect the number of interference-related
constraints not their nature.

6In practice, neighboring BSs can fully cancel the UAV’s interference through beamforming techniques.
However, if there is any remaining interference at neighboring BSs, an interference constraint, similar to
those of GUs, can be added
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where Ith is the maximum level of interference each GU can tolerate without compromising

the decoding.

5.2.4 Energy Consumption Model

We consider a realistic energy consumption model for the UAV comprised of (i) flying power

pf
(
n, ℓ(n), δ(n)

)
, (ii) sensing power ps, and (iii) communication power p(n) [148–150]. Fol-

lowing [27], for rotatory-wing UAVs, the total UAV energy, spent over the N time slots,

is

E =
N∑
n=1

δ(n)

(
pf
(
n, ℓ(n), δ(n)

)
+

M∑
m=1

αm(n)ps + p(n)

)
, (5.8)

where αm(n) is a logic binary variable defined as

αm(n) =


1 if event m is sensed at time n

0 otherwise

. (5.9)

Based on [27,126], pf
(
n, ℓ(n), δ(n)

)
is a function of the UAV locations and the time slots as

follows

pf
(
n, ℓ(n), δ(n)

)
= P0

(
1 +

3v(n)2

U2
tip

)
+ Pi

(√
1 +

v(n)4

4v40
− v(n)2

2v20

) 1
2

+

1

2
d0ρsAv(n)

3 +mgv(n) sin τc(n), (5.10)

where v(n) is the 3D velocity at time slot n defined as:

v(n) =
||ℓ(n+ 1)− ℓ(n)||

δ(n)
, (5.11)
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τc(n) denotes the climb angle, which is a function of ℓ(n), and the rest of parameters are

defined in the aforementioned references. Finally, other constraints related to the UAV

locations include a minimum and maximum flying altitude, the initial and final positions

and a maximum velocity constraint:

Hmin ≤ H(n) ≤ Hmax (5.12)

ℓ(1) = ℓi, ℓ(N) = ℓf , (5.13)

||ℓ(n+ 1)− ℓ(n)|| ≤ Vmaxδ(n). (5.14)

5.2.5 Sensing

The goal of sensing is to collect data from different events. Indeed, optimizing the UAV’s

trajectory will improve the efficiency and accuracy of the sensing. Particularly, we consider

M events and utilize the probabilistic sensing model [141–143] where the dependency between

sensing probability and UAV trajectory is through a distance-based exponential function. In

other words, the probability of sensing event m at time n is

Pm(n) = e−µdm(n), (5.15)

where µ determines the sensing capability of the UAV. Other relevant sensing models can

be found in [136]. However, note that (5.15) avoids the dependency with respect to the
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time-slot length, i.e., longer δ(n) might provide better sensing accuracy. In this work, we

also study the impact of a time-dependent sensing probability. Inspired by [52], assume that

the nth time slot is divided into X sub-slots of equal length tn, i.e., δ(n) = Xtn, and that

the UAV carries out X trials to sense an event. A failure in the sensing occurs when all X

trials fail to correctly sense the event. Hereby, the probability of successful sensing can be

obtained through its complementary:

Pm(n) = 1−
(
1− e−µdm(n)

) δ(n)
tn , (5.16)

where (i) a longer δ(n) results in a higher probability and (ii) δ(n) ≥ tn to ensure at least

one trial. In addition, only one event can be sensed at a time, modeled by

0 ≤
M∑
m=1

αm(n) ≤ 1. (5.17)

Moreover, the sensing of the M events follows a certain order, discussed in Sec. 5.4.6,

determined by S = {s1, . . . , sM} with sm ∈ M. Therefore, the following constraints must

be met

n∑
i=1

(
αsm(i)− αsj(i)

)
≥ 0 for m < j. (5.18)

Furthermore, it is required to sense each event once, which can be mathematically modeled

by

N∑
n=1

αm(n) = 1, (5.19)

where a certain amount of data, Cm, is assumed to be generated by the UAV if αm(n) = 1.

Altogether, based on the logic variables αm(n), the constraint that must be met in terms of
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sensing probability is

Ps,th ≤ αm(n)Pm(n) + A
(
1− αm(n)

)
, (5.20)

where Ps,th is the minimum sensing probability the UAV requires to correctly sense an event

and A is chosen to be a constant larger than Ps,th. Note that a sensing variable can be active,

i.e., αm(n) = 1, if Pm(n) ≥ Ps,th. To the contrary, if αm(n) = 0, (5.20) is satisfied since

A ≥ Ps,th.

5.2.6 Causality of the information

As stated in the introduction, compared to the existing works in the literature, the constraint

that relates to the causality of the information needs to be redefined given that (i) the UAV

uses the same resource block at all times without any time or frequency scheduling, and

(ii) there is no link between the events and UAV. In fact, upon sensing an event, the UAV

generates the sensory data, e.g. a picture or a measurement among others. Let us assume the

UAV senses the events in a certain order, as defined by S in Section 5.2.5, and the amount

of data generated by the smth event is Csm . Successful reception of the sensory data at the

BS is ensured by the following sensing constraints:

αsM (n)
∑N

i=n+D δ(i)R(i) +B
(
1− αsM (n)

)
≥ CsM

...

αs1(n)
∑N

i=n+D δ(i)R(i) +B
(
1− αs1(n)

)
≥

M∑
m=1

Csm

, (5.21)

where B is chosen to be a constant larger than
M∑
m=1

Csm . For example, before sensing any

event or between two events, the binary variables are zero but the constraints are met due to

B ≥
M∑
m=1

Csm . When the last event is sensed, αsM (n) = 1 and therefore after D samples, the
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amount of data that the BS receives has to be larger than CsM . Whenever the penultimate

event is sensed, αsM−1
(n) = 1 for n = nM−1. Hence, the BS must be able to receive the data

from the last two events in the last N − nM−1 −D samples. A similar procedure is followed

to generate the causality constraints for the remaining events.

5.3 Problem Formulation

With the aim of producing energy-efficient trajectories for the sensing and communication

problem, the objective function in our work is presented in Eq. (5.8). Constraints (5.4) and

(5.7) determine the maximum transmit power and maximum GU interference, respectively.

The set of constraints presented in (5.11)-(5.14) relate to the UAV mechanical capabilities

and starting/ending point of the mission. In addition, introducing the set of logic variables

αm(n) allows us to combine the communication and sensing constraints under the same

umbrella. More specifically, constraints (5.17)-(5.21) ensure all M events are sensed and

the corresponding sensory data is successfully received at the central BS. To this end, the

optimization variables are: (i) sensing variables αm(n), (ii) UAV trajectory
(
q(n), H(n)

)
,

(iii) length of the time slots δ(n), and (iv) transmit UAV power p(n). Therefore, the problem

presented in (5.22) can be formulated,

min
αm(n),q(n),H(n),δ(n),p(n)

N∑
n=1

δ(n)

(
pf
(
n, ℓ(n), δ(n)

)
+

M∑
m=1

αm(n)ps + p(n)

)
s.t. αm(n) ∈ {0, 1},

(5.1), (5.4), (5.7), (5.11)− (5.14), (5.17)− (5.21),

(5.22)

which falls within the class of nonconvex mixed-integer non-linear programming problems

whose solution requires prohibitive time and computational complexity. Accordingly, we

split the problem into four subproblems: (i) optimizing sensing with path, length of the
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time slots, and power fixed; (ii) optimizing 2D trajectory and time slot length with fixed

sensing, altitude and power; (iii) optimizing altitude with sensing, 2D trajectory, length of

the time slots, and power fixed; and (iii) optimizing power with sensing, path, and time slots

fixed. Once the solution to each of the four subproblems is obtained, a BCD procedure [147]

is followed until convergence is achieved.

5.4 Joint Optimization

In this section, we conduct a thorough analysis of the subproblems that arise from (5.22).

More specifically, the optimization of the binary sensing variables is covered first. Second, an

SCA-based approach for the joint trajectory and time slot optimization is presented. Finally,

the optimal UAV transmit power can be derived through the Lagrangian method.

5.4.1 Sensing Optimization

For fixed q(n), δ(n), H(n), and p(n), we first aim at solving the sensing optimization sub-

problem. Provided that the only contribution of the sensing variables, αm(n), in the cost

function is through the term that depends on the sensing power, ps, the first optimization

problem reduces to:

min
αm(n)

N∑
n=1

M∑
m=1

δ(n)αm(n)ps

s.t. αm(n) ∈ {0, 1},

(5.17)− (5.21).

(5.23)

The binary nature of αm(n) results in an NP hard problem. Relaxing the binary assumption

would result in constraint violations, and therefore the problem should be kept in the binary
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domain. To cope with the increased complexity, note that αm(n) = 0 when Pm(n) ≤ Ps,th.

Hence, there is no need to search over the entire solution space, but only in the points

satisfying Pm(n) ≥ Ps,th. Consequently, the branch and cut is an appealing technique to

solve this problem [151]. The complexity of this approach is discussed in Sec. 5.4.5.

5.4.2 Trajectory and Slot Length Optimization

Given any feasible αm(n), H(n) and p(n), optimizing the 2D trajectory and the length of

the time slots reduces to the following problem:

min
q(n),δ(n)

N∑
n=1

δ(n)

(
pf
(
n, ℓ(n), δ(n)

)
+

M∑
m=1

αm(n)ps + p(n)

)
s.t. (5.1), (5.7), (5.11)− (5.14), (5.20), (5.21),

(5.24)

which is nonconvex. Therefore, we leverage the SCA technique to create an approximated

version of (5.24). To full-fill this goal, we first obtain an equivalent problem by adding

different slack variables such as ∆(n) = ||ℓ(n+1)− ℓ(n)||. Given that v(n) = ∆(n)
δ(n)

, the first

term in the cost function can be re-written as:

N∑
n=1

δ(n)pf
(
n, ℓ(n), δ(n)

)
=

N∑
n=1

P0

(
δ(n) +

3∆(n)2

U2
tipδ(n)

)
+ Piy(n) +

1

2
d0ρsA

∆(n)3

δ(n)2
+

mg∆(n) sin τc(n), (5.25)

where y(n), being a second slack variable, is defined below:

y(n)2 =

√
δ(n)4 +

∆(n)4

4v40
− ∆(n)2

2v20
. (5.26)
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min
q(n),δ(n),∆(n),y(n),β(n)

N∑
n=1

P0

(
δ(n) +

3∆(m)2

U2
tipδ(n)

)
+ Piy(n) +

1

2
d0ρsA

∆(n)3

δ(n)2

+ mg∆(n) sin τc(n) +
N∑
n=1

δ(n)

( M∑
m=1

αm(n)ps + p(n)

)
s.t.

β(n)2

δ(n)
≤ R(n),

δ(n)4

y(n)2
≤ y(n)2 +

∆(n)2

v20
,

||ℓ(n+ 1)− ℓ(n)|| ≤ ∆(n),

(5.1), (5.7), (5.11), (5.13), (5.14), (5.20), (5.29).

(5.30)

After some algebraic manipulations over the previous equation, we have

∆(n)4

y(n)2
= y(n)2 +

∆(n)2

v20
. (5.27)

Finally, a third slack variable is needed to deal with the rate-related constraints:

β(n)2 = δ(n)R(n). (5.28)

Consequently, the set of constraints in (5.21) can be expressed as a function of β(n) in a

compact manner for a given event sensing order S = {s1, . . . , sM}:

αsm(n)
N∑

i=n+D

β(i)2 +B
(
1− αsm(n)

)
≥

M∑
l=m

Csl . (5.29)

As a result, the problem in (5.24) can be re-written as presented in (5.30).

Proposition 6. The optimization problems presented in (5.24) and (5.30) are equivalent.

Proof. The proof can be found in App. A.9.

Still, some of the constraints in (5.30) are nonconvex which makes SCA relevant in this
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work. More precisely, SCA (a) locally convexifies the initial problem and (b) solves a convex

approximated version by alternating between two steps: (i) upper (lower) bound a concave

(convex) function by its first-order Taylor expansion and (ii) find the optimal solution of the

approximated convex problem. In the subsequent, we derive the necessary approximations

for the nonconvex constraints in (5.30). For ease of exposition, we denote variables by x and

the value of the variable in the approximation point by x and first cope with the expressions

that relate to R(n).

Proposition 7. R(n) is jointly convex with respect to e−(B1+B2uB(n)) and d2B(n).

Proof. The proof can be found in App. A.10.

Using Prop. 7, the following lower bound for R(n) can be derived as a function of λ(n) =

B1 +B2uB(n) and q(n).

Lemma 1. At any local point for the UAV trajectory q(n) and λ(n), R(n) accepts the

following lower bound:

R(n) ≥ Rlb(n) (5.31)

= R(n)− ϕ(n)
(
e−λ(n) − e−λ(n)

)
− ζ(n)

(
||q(n)− qB||2 − ||q(n)− qB||2

)
. (5.32)

Proof. The proof and the values of ϕ(n) and ζ(n) can be found in App. A.11.

Hence, the constraint related to R(n) in (5.30) is locally convex given Rlb(n). However,

provided that λ(n) is nonconvex with respect to uB(n), since uB(n) = (H(n)−HB)
dB(n)

, a lower-

bound for uB(n) is required.

Lemma 2. At any local point for the UAV trajectory q(n), uB(n) accepts the following lower
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bound:

uB(n) ≥ ulbB(n) (5.33)

= uB(n)− ψ(n)
(
||q(n)− qB||2 − ||q(n)− qB||2

)
. (5.34)

Proof. The proof and the value of ψ(n) can be found in App. A.12.

Therefore, the constraint that λ(n) must satisfy is

λ(n) ≤ B1 +B2u
lb
B(n). (5.35)

The set of constraints that takes into account the maximum interference tolerated by out-

of-central cell GUs is also nonconvex with respect to q(n). However, an upper bound on the

interference can be derived by considering the worst-case scenario of the UAV flying on top

of User k:

(
C1 +

C2

1 + e−(B1+B2uk(n))

)β0p(n)
dκk(n)

≤ Iubk , (5.36)

where

Iubk =

(
C1 +

C2

1 + e−B1−B2

)
β0p(n)

dκk
. (5.37)

Following the previous equation and rearranging terms, we obtain

||q(n)−wk||2 ≥
(
(C1 +

C2

1+e−B1−B2
)β0p(n)

Ith

) 2
κ

−H2, (5.38)
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min
q(n),δ(n),∆(n),
y(n),β(n),τ(n)

N∑
n=1

P0

(
δ(n) +

3∆(m)2

U2
tipδ(n)

)
+ Piy(n) +

1

2
d0ρsA

∆(n)3

δ(n)2
+ mg∆(n)cz

+
N∑
n=1

δ(n)

( M∑
m=1

αm(n)ps +
M∑
m=1

p(n)

)
s.t.

β(n)2

δ(n)
≤ Rlb(n),

δ(n)4

y(n)2
≤ y(n)2 + 2y(n)

(
y(n)− y(n)

)
+

1

v20

(
∆(n)2 + 2∆(n)

(
∆(n)−∆(n)

))
,

(5.1), (5.11), (5.13), (5.14), (5.20), (5.35), (5.39), (5.40).

(5.41)

which is still non-convex. Further application of the SCA results in:

||q(n)−wk||2 + 2(q(n)−wk)
T (q(n)− q(n)) ≥

(
(C1 +

C2

1+e−B1−B2
)β0p(n)

Ith

) 2
κ

−H2.

(5.39)

A similar procedure applies to (5.29), which results in the following convex set of constraints:

αsm(n)
N∑

i=n+D

(
β(i)2 + 2β(i)

(
β(i)− β(i)

))
+B

(
1− αsM (n)

)
≥

M∑
l=m

Csl . (5.40)

Armed with the respective upper or lower bounds and after applying the same technique to

the expressions that involve y(n)2, ∆(n)2, and, if needed (5.16), the local approximation of

the problem in (5.30) is introduced in (5.41), where, compared to (5.30), we add cz ≤ 1 given

that sin τc(n) ≤ 1 and the sin-function is neither convex nor concave. It can be verified

that both the cost function and the constraints in (5.41) are convex. Therefore, (5.41) can

be solved using standard optimization solvers such as CVX [106].
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min
H(n),∆(n),

y(n),β(n),τ(n)

N∑
n=1

P0

(
δ(n) +

3∆(m)2

U2
tipδ(n)

)
+ Piy(n) +

1

2
d0ρsA

∆(n)3

δ(n)2
+ mg∆(n)cz

s.t.
β(n)2

δ(n)
≤ Rlb(n),

δ(n)4

y(n)2
≤ y(n)2 + 2y(n)

(
y(n)− y(n)

)
+

1

v20

(
∆(n)2 + 2∆(n)

(
∆(n)−∆(n)

))
,

(5.1), (5.12)− (5.14), (5.20), (5.35), (5.39), (5.40).

(5.42)

5.4.3 Altitude Optimization

A similar methodology is followed to optimize the altitudes, H(n). Given the space limi-

tations, we skip some derivations since the process is very similar to the 2D optimization.

Consequently, the approximated optimization problem for the altitude is presented in (5.42),

where Rlb(n), (5.35), and (5.39) are slightly modified to account for the gradients w.r.t. to

the altitude. Finally, (5.42) is a convex optimization problem and therefore can be efficiently

solved [106].

5.4.4 Power Allocation

The last subproblem aims at finding the optimal power allocation for given feasible αm(n),

q(n), δ(n), and H(n). The terms that include p(n) in the cost function and constraints

result in

min
p(n)

N∑
n=1

δ(n)p(n)

s.t. (5.4), (5.7), (5.21),

(5.43)

which is convex and can be analytically solved applying the Lagrangian method.
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Proposition 8. The optimal power allocation for the UAV is given by

p∗(n) =

 0 n = 1, . . . , D[
a(n)− 1

KB(n)

]+
n = D + 1, . . . , N,

(5.44)

where a(n) depends on the Lagrangian multipliers and is defined in Eq. (A.63), KB(n) =(
C1 +

C2

1+e−(B1+B2uB(n))

)
β0

σ2dκB(n)
, and the operator [x]+ = max(x, 0).

Proof. The proof can be found in App. A.13.

5.4.5 Algorithm Analysis

Based on the solutions to the previous subproblems, we propose an iterative method for the

initial nonconvex problem in which we optimize four sets of variables: sensing variables, 3D

UAV trajectories, time slot length, and power allocation. The convergence of the proposed

BCD approach in Alg. 4 is guaranteed by the following proposition.

Proposition 9. The sequence of objective values generated by Alg. 4 is monotonically non-

increasing with a lower bound, and therefore converges.

Proof. The proof can be found in App. A.14.

The complexity of the previous algorithm is given by the combination of individual com-

plexities for solving each of the subproblems. Particularly, it can be shown via induction

that, given a sensing order, the maximum number of combinations for αm(n) in (5.23) is

upper bounded by
N+M−1∑
i=1

(N −M + 2)i, corresponding to the case in which the M events

can be sensed during the N time slots, i.e., a very conservative bound. Additionally, given

that (5.41) involves logarithmic forms, the interior point method presents a complexity of

O
(
(7N)3.5 log(1/ϵ1)

)
where ϵ1 relates to the convergence accuracy [152]. Similarly, solving
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Algorithm 4 BCD updates for the optimization variables

Require: Initial sensing, trajectory, time slots and power variables at the first iteration,
j = 0, given by {α(0)

m (n), q(0)(n), δ(0)(n), H(0)(n), p(0)(n)} and define by η(0) the respective
cost function.
while |η(j+1)−η(j)|

η(j)
> ϵ do

Fix {q(j)(n), δ(j)(n), H(j)(n), p(j)(n)} and solve (5.23) to obtain {α(j+1)
m (n)}.

Fix {α(j+1)
m (n), H(j)(n), p(j)(n)} and solve (5.30) to obtain {q(j+1)(n), δ(j+1)(n)}.

Fix {α(j+1)
m (n), q(j+1)(n), δ(j+1)(n), p(j)(n)} and solve (5.42) to obtain {H(j+1)(n)}.

Fix {α(j+1)
m (n), q(j+1)(n), δ(j+1)(n), H(j+1)(n)} and solve (5.43) to obtain {p(j+1)(n)}.

Compute the cost function η(j+1).
end while

(5.42) has a complexity of O
(
(5N)3.5 log(1/ϵ2)

)
. Finally, solving (5.43) has a complexity

of O((N + N2) log(1/ϵ3)
)
where the term in N2 arises after applying the ellipsoid to the

dual problem [106]. Consequently, the overall complexity is dominated by the SCA-based

subproblems.

5.4.6 Algorithm Initialization

Given initial and final trajectory points, the first step is to determine the sensing order

S. Different criteria may apply, e.g. based on priority, distance or random. In our case,

we set the ordering based on distance. Consequently, s1 = argminm ||ℓ(1) − ℓm|| while

si+1 = argminm ||ℓsi − ℓm|| for m ̸= sj, j ≤ i. Next, the value of Dmax is obtained,

serving as an upper bound on the maximum distance the UAV has to cover, i.e., Dmax ≥

||ℓ(1)− ℓs1||+
∑M−1

i=1 ||ℓsi − ℓsi+1
||+ ||ℓsM − ℓ(N)||. As a consequence, for a fixed dmax, the

number of slots can be set as (N + 1)dmax >> Dmax. Next, we turn to generating the UAV

trajectory. Initially, the UAV path coordinates will lie on the lines joining the departure

point, events locations, and the destination point. Therefore, we ensure the initial trajectory

is capable of sensing all events. Particularly, until the first event is sensed, i.e., Ps1(n) ≥ Ps,th

and therefore αs1(n) = 1, the UAV coordinates lie on the line between the departure point
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and the first event as:

q1(n+ 1) = q1(n) + α sin θ cosϕ, (5.45)

q2(n+ 1) = q2(n) + α sin θ sinϕ, (5.46)

H(n+ 1) = H(n) + α cos θ, (5.47)

where θ and ϕ are the inclination and azimuth angles between ℓi and ℓs1 , respectively.

The trajectory between two events lies on the line connecting the location where the for-

mer is sensed and the subsequent, with the corresponding recalculation of θ and ϕ while

satisfying the altitude constraints. Finally, after sensing sM , the same formulation ap-

plies with the angles corresponding to the points associated to ℓsM and ℓf . To maintain

the accuracy in the sampling while satisfying the maximum velocity constraint, we have

α ≤ min{dmax, Vmaxδ(n)}. Once the trajectory and sensing variables are initialized, the pow-

ers are set to the minimum value between pmax and the value that satisfies the interference

constraint (5.7). To verify that the causality constraints are met, a search is performed.

Otherwise, either more slots can be added or the problem can be declared infeasible.

5.5 Numerical Results

For the purpose of performance evaluation, we consider a cellular network composed by one

central and six neighboring cells, each following a hexagonal shape of radius R = 200m,

although our work is independent of the cell shape. Unless otherwise specified, Table 5.1

lists the parameters used in the simulations, selected from the UAV and sensing literature

[19,49,71]. Observe that the parameters related to Eq. (5.8) are not included since they are

the same as the ones in [27]. To maintain the accuracy in the path discretization process,

we consider dmax = 2 and an upper bound on the flying distance Dmax = 400m. Therefore,

129



Table 5.1: Simulation Parameters

Description Parameter Value
Path loss at 1 m β0 -30 dB

Path loss exponent κ 2
Logistic regression parameters C1, C2 0, 1
Logistic regression parameters B1, B2 -4.3221, 6.0750

BS altitude HB 25 m
Noise power σ2 -96 dBm

Minimum sensing probability Ps,th 0.9
Maximum UAV transmit power pmax 100 mW

Maximum GU interference Ith -73 dBm
Maximum UAV velocity Vmax 30 m/s

Sensing capability at the UAV µ 10−3

Processing delay D 1
Sensing power ps 0.1 mW

(N+1)dmax > Dmax is satisfied with N > 300. In this case, we use N = 400 where the initial

length of the slots is δ(n) = 0.25s with a resulting initial flying time of T = 100s. The typical

scenario that we use in our simulations and the corresponding events and GU locations are

presented in Fig. 5.2a, with M = 8 events and K = 6 GUs, i.e., one per each neighboring

cell. The starting and final points are ℓi = [130,−30, 50] and ℓf = [65, 100, 50], respectively.

The UAV trajectory for two cases of µ = 10−3 and µ = 2 · 10−3 using the above typical

scenario is included in Figs. 5.2a and 5.2b, with the former showing the 2D projection and

the latter plotting the 3D trajectories to gain intuition on the altitude variations. Though

more insight will be provided about the influence of µ, it is shown that higher values, i.e.,

worse sensing capability, require the UAV to fly closer to the events. In fact, from Fig. 5.2b

it can be shown that the UAV tends to fly at lower altitudes for µ = 2 · 10−3 to satisfy the

sensing requirements compared to µ = 10−3.

We first verify Prop. 9 in Fig. 5.3 for different initializations and BCD orderings. Particu-

larly, in O1, the optimization order in Alg. 4 is: {αm(n), q(n), δ(n), H(n), p(n)} whereas in

O2, the optimization order is {H(n), q(n), δ(n), p(n), αm(n)}. In addition, 2D initializes the

altitude at a constant value H(n) = 50m while 3D uses the method described in Sec. 5.4.6.
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(a) (b)

Figure 5.2: Typical scenario with M = 8 events, K = 6 GUs, and the UAV trajectory for
µ = 10−3 and µ = 2 · 10−3; (a) 2D, (b) 3D.

Finally, different values of cz are tested as well to see its effect in the final solution. First,

note that no matter what ordering and initialization setup we utilize, convergence in Alg. 4

is achieved only after a few iterations. Additionally, the difference in terms of cost function

is minimal. However, the solutions differ. This can be seen in Fig. 5.4, where for a variety of

initializations, the UAV altitudes may be different though requiring a similar energy budget.

Such a tendency is mainly because all methods converge to a solution where the UAV flies at

the velocity that minimizes the required energy, as described in [27, Sec. II-B]. More details

on this phenomena are provided in subsequent paragraphs where the UAV velocity is also a

matter of study.

Next, in Figs. 5.5a and 5.5b we compare the energy and flying time, respectively, for dif-

ferent benchmarks parametrized by M . Particularly, “Proposed” stands for the algorithm

presented in this work while “Min-Time” solves the flying time minimization problem. Addi-

tionally, “Equal-δ(n)” utilizes a similar algorithm as ours, but with fixed δ(n) = 0.25s for all

n. Finally, the “Max-Vel” benchmark is an heuristic algorithm based on the one described
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Figure 5.3: Convergence of Prop. 9 for a va-
riety of initializations, BCD orderings and cz.
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Figure 5.4: Final UAV flying altitude for a
variety of initializations and cz.

in Sec. IV-F, where the UAV flies at maximum velocity between each pair of points ensur-

ing the rest of constraints are met. As expected, the more events, i.e., increasing M , the

higher the energy and flying times are. Clearly, in terms of required on-board energy, our

method outperforms the rest of benchmarks by saving at least 25% of the energy, whereas

the minimum flying time is attained by the “min-Time” benchmark, with our method being

close. Note that given the correlation between the “Proposed” and “min-Time” algorithms,

their performance is similar, where shorter flying time results in less energy. In addition,

the gap between the “Proposed” and “Equal-δ(n)” curves arises by adding δ(n) into the

optimization problem. Therefore, it is clear that non-uniform slots make a big difference

in terms of energy-efficiency and flying time given the added degrees of freedom and the

enlarged feasibility region compared to a fixed time slot.

Fig. 5.6 studies the impact of N in the simulation environment for the proposed algorithm

and a variety of benchmarks. While Figs. 5.6a and 5.6b plot the energy and flying time,

respectively, parametrized by N , Fig. 5.6c presents the UAV velocity for N = 400 under

three algorithms. It can be concluded from Figs. 5.6a and 5.6b that the methods that

include δ(n) in the optimization, i.e., “Proposed” and “Min-Time”, converge to the same
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Figure 5.5: (a) Energy and (b) flying time for different M and a variety of algorithms.

cost function independent of the value of N . This is in conjunction with the flying velocities

presented in Fig. 5.6c, where the “Proposed” method adjusts the UAV path to fly at the

velocity that minimizes the energy, as explained in [27, Sec. II-B], achieved if v(n) = 17.7

m/s. In addition, to minimize the flying time, the UAV flies at its maximum velocity, in

this case v(n) = 30 m/s. To the contrary, if δ(n) is not included in the optimization: (i)

the energy and flying time tend to be higher than the other methods and (ii) after a certain

value of N , both energy and time stabilize given that adding more slots is no longer helpful.

In this case, it can be concluded from the three pictures that N > 260 does not provide any

change given that the UAV can finalize its mission in less slots and therefore will hover at

the destination point spending unnecessary energy.

Fig. 5.7 examines the dependency of the amount of needed energy and time to complete the

sensing mission with respect to the sensing probability, Ps,th. The blue curves correspond

to the required energy while the red curves relate to the flying time. Figs. 5.7a and 5.7b

utilize the model in (5.15), with Fig. 5.7b considering a fixed flying altitude of H(n) = 50m.

Finally, Fig. 5.7c considers the model in (5.16). In addition, different values for the sensing

capability, µ, are also presented. Clearly, a smaller µ allows the UAV to sense the events at
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Figure 5.6: (a) Energy and (b) flying time for different N and a variety of algorithms. In
(c), the UAV velocity for N = 400.
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larger distances compared to a higher µ, as shown in Figs. 5.2a and 5.2b. Therefore, the use

of smaller µ results in trajectories whose energy and time serve as a lower bound for higher

values of µ. Additionally, increasing the value of Ps,th requires the UAV to fly closer to the

events. As a consequence, both energy and flying time tend to increase with the threshold

probability. By comparing Figs. 5.7a and 5.7b, it is shown that for higher values of Ps,th,

optimizing the altitude, as in Fig. 5.7a, reduces the required energy and time given that the

distance between the UAV and the event can be smaller if the UAV has freedom to adapt

its altitude. Finally, the difference between the values in Figs. 5.7a and 5.7c is minimal.

Although the latter considers a sensing model that depends on the length of the time-slot,

i.e., higher δ(n) results in a higher sensing probability, the energy and flying time mainly

depend on the velocity. In fact, as shown in Fig. 5.7d, which plots the velocity for the models

in (5.15) (solid-blue) and (5.16) (dashed-red), in both cases the UAV velocity converges to

the value that minimizes the required energy, i.e., v(n) = 17.7 m/s. As a consequence, the

energy and time obtained using (5.15) and (5.16) are similar.

Next, we study the effects of the maximum interference tolerated by the GUs, given by Ith.

In Figs. 5.8a and 5.8b, we present the variation of energy and time parametrized by Ith,

respectively. We present a variety of algorithms, as in previous figures. While the “Proposed”

and “min-Time” refer to the same systems as in other figures, the “max-Vel” also adjusts

the power as in (5.43) provided that the initialization algorithm might use more power than

what is needed for the communication part. As in previous figures, the proposed method

outperforms the rest in terms of required energy by at least 25% though needs more time to

complete the mission. Additionally, given that the cost function is dominated by the flying

energy, variations in the transmit power are not distinguishable in Fig. 5.8a. Second, in

general, the amount of needed energy and time tend to increase as Ith decreases given that

the feasible regions shrink for decreasing Ith. Note that for Ith → 0, the problem might be

infeasible.
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Figure 5.7: In (a)-(c), energy (blue) and flying time (red) for different µ, varying the threshold
for the sensing probability for (a) sensing model in (5.15) with 3D optimization; (b) sensing
model in (5.15) with 2D optimization; (c) sensing model in (5.16) with 3D optimization. In
(d) velocity for µ = 10−3 and Ps,th = 0.9.
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To gain more insight on the effects of interference, we include Fig. 5.9. Particularly, Fig.

5.9a plots the gap in the interference constraint, defined as:

∆ =
√
||q(n)−wk||2 +H2 −

√(
(C1 +

C2

1+e−B1−B2
)β0p(n)

Ith

) 2
κ

(5.48)

for the GU at [302.8,−50.7]. The definition of ∆ arises from calculating the difference

between the square root of the left and right hand sides of the constraint presented in (5.38).

Note that in fact, (5.48) provides a notion on how (5.38) is met. Higher values of ∆ mean

the UAV easily meets the constraint while smaller values of ∆ mean the UAV finds it harder

to meet the interference constraint. More particularly, by looking at Fig. 5.9a, it can be

verified that smaller Ith yields a smaller ∆ since the regions where the UAV can fly, meeting

the interference constraints, become smaller. In addition, note that in fact, the “min-Time”

algorithm provides smaller ∆ given that higher transmit powers can still meet the constraints

since its goal is to minimize the flying time, not the flying energy/power. Additionally, Figs.

5.9b and 5.9c plot the transmit power, p(n), for different values of Ith using the “Proposed”

and “min-Time” algorithms, respectively. Note that these curves compare an easy-to-meet

interference constraint, i.e., Ith = 10−8, versus limiting values of Ith. More importantly,

the orders of magnitude for the transmit power are very different in Figs. 5.9b and 5.9c.

While the former adjusts its power to satisfy the communication requirements with minimum

power, the latter does not perform power minimization, which yields to a much higher power

consumption for communication purposes. Finally, the water-filling nature of the solution

obtained in (5.43) can be verified from Fig. 5.9b. Between the slots 200 and 300, the UAV

flies close to the BS. Therefore, it experiences favorable channel conditions which result in

the increase of the transmit power.
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Figure 5.8: Energy (solid/blue) and flying time (dot/red) for different Ith and for (a) H =
50m and (b) H = 30m.

0 100 200 300 400

Slot index

0

100

200

300

400

500

(a)

0 100 200 300 400

Slot index

-60

-40

-20

0

20

p
(n

) 
[d

B
m

]

(b)

0 100 200 300 400

Slot index

-60

-40

-20

0

20

p
(n

) 
[d

B
m

]

(c)

Figure 5.9: For different values of Ith and algorithms, (a) ∆; (b) p(n) for the “Proposed”
algorithm; and (c) p(n) for the “Min-Time” algorithm.
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5.6 Conclusions

This chapter has considered energy-efficient communications and sensing where an aerial ve-

hicle senses multiple events of interest. After generating the sensory data, the UAV ensures

its reception by the BS while managing the interference effect to GUs located at neighbor-

ing cells. We have considered a generic cellular network with Rician channel models and

presented mechanical-related, communication-related, and sensing-related constraints that

must be satisfied to complete the mission. We presented a novel logic-based approach to

formulate (a) the 3D path planning, (b) sensing, and (c) transmit power subproblems. This

formulation has allowed us to use classic optimization techniques. Most remarkably, we

have studied the dependency of the UAV trajectory with respect to different parameters and

benchmarks, namely: (i) maximum velocity, (ii) minimum flying time, and (iii) fixed-slot

duration. Comparative studies across various number of events have demonstrated that our

proposed approach results in a reduction of energy consumption between 33%-50%. More-

over, the proposed scheme outperformed the minimum flying time and maximum velocity

benchmarks by consuming 33%-41% less energy, depending on the maximum level of inter-

ference the GUs can tolerate. Finally, the number of time slots and time slot duration have a

significant impact on overall performance. Our solution consumes 33% and 200% less energy

compared to the minimum flying time and fixed-slot duration benchmarks, respectively.
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Chapter 6

Multi-UAV Reinforcement Learning

for Data Collection in Cellular MIMO

Networks

6.1 Introduction

In the realm of 6G networks, data collection, sensing, and communicating stand as pivotal

elements for fostering unprecedented advancements in communication technologies. The

complexity and dynamic nature of 6G networks calls for a comprehensive understanding of

user behaviors, network performance, and environmental factors. Through data collection,

valuable insights into user preferences, network congestion patterns, and emerging usage

trends can be estimated [153]. Moreover, as 6G networks aspire to integrate diverse tech-

nologies such as artificial intelligence, augmented reality, and the Internet of Things (IoT),

data collection becomes instrumental in training and refining intelligent algorithms, enabling

networks to adapt in real-time.
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UAVs emerge as an ideal solution for data collection challenges in wireless communication

networks because of their inherent versatility and mobility [7,56–59]. UAVs offer a dynamic

and adaptable platform that can be efficiently deployed to address specific data collection

needs. In the context of wireless communications networks, UAVs can navigate diverse ter-

rains and reach locations that traditional data collection methods cannot reach. In fact, the

deployment of sensors and access points and the UAV deployment/trajectory optimization

in wireless networks is a problem of growing interest, where different groups have studied its

impact under a variety of setups [4, 9, 13–21,23–25,27–29,70,71,154–157].

Within the UAV trajectory optimization framework, three main challenges arise: (i) Op-

timizing the UAV trajectory is challenging due to the non-convex nature of the involved

functions. To address this challenge, various works adopt simplistic models, such as pure

LoS channels [7,58], single-antenna BSs [29,70,71], or approximating the involved functions

using convex representations [23,25,27,29,70,71,156]. (ii) Once UAVs successfully collect in-

formation in a network, ensuring that subsequent transmissions of this data do not interfere

with the established links connecting GUs is critical. Hence, proper interference control for

the UAV transmissions is needed to avoid degrading the ongoing communications between

ground-based devices. (iii) Delay-sensitive applications may require a maximum delay for

the receipt of the collected data at the BS. Consequently, we employ the age of informa-

tion (AoI) as a metric to measure the delay, initially introduced in [158]. Essentially, the

larger the AoI, the less fresh the information is, whereas a smaller AoI indicates that the

data is received by the BS shortly after being collected by the UAV. In fact, AoI has been

used as a metric in recent UAV trajectory optimization problems, such as those discussed

in [52,159,160].

To the best of our knowledge, this is the first work that considers a multi-UAV trajectory op-

timization problem that deals with the combination of the three aforementioned challenges,

namely, non-convexity, interference with GUs and AoI. Particularly, effective interference
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control mechanisms must be implemented. Typically, within the UAV literature, orthog-

onality among the UAV and/or GU resources is assumed for simplicity [7, 57, 70, 71, 156].

The use of single-antenna receivers in such an orthogonal setup makes the channel models

and optimization problems very simple. However, such approach requires a large number of

orthogonal resources, either in time and/or frequency. To use resources more efficiently, in

this work, we allow UAVs to share resources with a set of GUs and take into account multi-

antenna BSs. Particularly: (a) GUs continuously transmit to the BS, and (b) UAVs relay

the collected data from a number of IoT devices to the same BS. Given that current deploy-

ments feature multi-antenna BSs, a variety of MIMO reception techniques can be applied to

mitigate interference between links [82,83]. In this work, we assume MMSE reception which

is optimal from the SINR perspective [161]. This will increase the complexity of the opti-

mization problem given the non-convexity of the SINR with respect to the UAV trajectories.

Additionally, MMSE reception is combined with power control, which is known to further

reduce interference [162,163]. Consequently, the joint optimization of UAV trajectories and

transmit powers serves a dual purpose: efficiently collecting data from diverse devices and

concurrently preventing interference to GU-BS links.

Furthermore, this work considers imperfect CSI under Rician fading, being the appropriate

channel model given the air-to-ground nature of the channels under consideration [72–74].

Other critical features, such as the UAV’s energy consumption model or mechanical-related

constraints are accounted for. Consequently, we formulate a multi-objective optimization

problem aimed at minimizing the maximum UAV flying time while maximizing the GUs

spectral efficiency, the latter contributing to reduced interference.

The emerging non-convex optimization problem poses challenges for conventional optimiza-

tion methods. Therefore, we employ RL, a well-suited approach for tackling complex prob-

lems. In RL, an agent learns optimal policies through interactions with the environment,

receiving feedback in the form of rewards for its actions [47]. As our problem involves con-
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tinuous states and actions, DQL enhances RL by integrating deep neural networks to handle

continuous state and action spaces [118–123]. Notably, various DQL algorithms have been

applied to optimize UAV trajectories recently [124–128]. A specific DQL algorithm, TD3,

excels in performance due to its robustness against sparse rewards and its ability to enhance

stability and exploration [48]. Recent studies in the UAV literature demonstrate the advan-

tages of using TD3 compared to its predecessors [57,59,129,130], and it is therefore applied

in this work. In summary, the main contributions of the chapter are:

• The analytical framework needed to model a multi-UAV data collection problem is pre-

sented. We consider the uplink of a MIMO cellular network, with aerial and terrestrial

links, imperfect channel state information, and MMSE reception.

• Based on a variety of data collection, communication, energy-related, and mechanical

constraints, a multi-UAV optimization problem is formulated.

• The UAV trajectory and transmit power optimization are identified using the TD3

method. The objective is to (i) minimize the maximum flying time among UAVs and

(ii) keep the interference to GUs at bay.

• The tradeoff in terms of mission completion time, number of IoT devices, UAVs, cellular

network size, and UAVs’ energy is established.

The rest of the chapter is structured as follows: Section 6.2 introduces the system model for

the multi-UAV data collection problem. In Section 6.3, the optimization problem is detailed,

and Section 6.4 reveals the proposed solution using RL. Numerical results are presented in

Section 6.5 and concluding remarks are discussed in Section 6.6.
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6.2 System Model

Consider a cellular network featuring a base station and K GUs, whose locations are given

by wk =
(
xk, yk, 0

)
. Additionally, the network includes M UAVs, whose coordinates at time

n are q
(n)
m =

(
x
(n)
m , y

(n)
m , h

(n)
m

)
. Finally, within the same cell, L IoT devices perform sensing

tasks and are located at iℓ = (xℓ, yℓ, 0).

Under this setup, UAVs jointly cooperate to collect and forward the sensory data from the

IoT devices under a variety of energy, mechanical, and communication constraints. Conse-

quently, UAVs can be seen as aerial users, sharing the same resources with the GUs. As

previously discussed, orthogonal multiple access techniques require a large number of time

and or frequency resources. Hence, spatial division multiple access (SDMA), where GUs

and UAVs share the same time and frequency, is adopted in this work. Therefore, the BS is

equipped with N antennas, where N ≥ K +M to mitigate interference. Additionally, the L

IoT devices are scheduled over a different band, making N independent of L.

Finally, each of the UAVs has a certain flying time Tm, which, for uniform time slots of length

δ, is given by Tm = Nmδ, where Nm is the number of time slots to complete the mission

of the mth UAV. In this work, we consider variable Nm while keeping δ fixed. As will be

described in subsequent sections, the goal is to design the UAV trajectories and transmit

powers such that the individual flying time of each UAV is minimum while collecting and

forwarding the IoT data to the BS and minimizing interference to the GUs. A toy example

for the networks under consideration is depicted in Fig. 6.1, with M = 2 UAVs, K = 3 GUs

and L = 3 IoT devices.
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Figure 6.1: Network example with M = 2, L = 3, and K = 3.

6.2.1 UAV’s Energy Consumption

We first consider the constraints imposed by limited-energy UAV batteries, as the model

would otherwise lack a vital component, rendering it unrealistic. Hence, we first define the

velocity of the mth UAV over the nth time slot as:

v(n)m =
||q(n+1)

m − q
(n)
m ||

δ
. (6.1)

Then, under a certain climb angle τ
(n)
m , the 3D energy consumption model for a quad-rotor

UAV is given by [126]

P (n)
m = P0

(
1 +

3v
(n)2
m

U2
tip

)
+ Pi

(√
1 +

v
(n)4
m

4v40
− v

(n)2
m

2v20

)1/2

+
1

2
d0ιsAv

(n)3
m +mgv(n)m sin τ (n)m ,

(6.2)
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where the parameters are defined in [126]. Each UAV should design its trajectory to complete

the cooperative data collection mission without running out of energy. This is modeled as

Nm∑
n=1

P (n)
m δ ≤ Emax

m , (6.3)

where Emax
m is the mth UAV’s energy level when it starts the mission. Finally, other con-

straints related to the UAV locations include the initial and final positions, limits on the

flying altitude, a maximum velocity constraint, and the avoidance of collisions:

q(1)
m = qm,i, q(Nm)

m = qm,f , (6.4)

Hmin ≤ h(n)m ≤ Hmax, (6.5)

||q(n+1)
m − q(n)

m || ≤ Vmaxδ, (6.6)

d
(n)
m,j ≥ Dsafe, (6.7)

where qm,i and qm,f represent the initial and final UAV locations, respectively. Also, the

minimum and maximum allowed flying altitudes are denoted by Hmin and Hmax, respec-

tively. In addition, Vmax is the maximum flying speed whereas d
(n)
m,j and Dsafe denote the

distance between UAVs m and j at time n and the minimum safety distance between UAVs,

respectively.
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6.2.2 Data Collection

Given L IoT devices performing sensing tasks, M single-antenna UAVs jointly cooperate to

collect their sensory data. Particularly, at least Cℓ,min bits of information must be collected

from the ℓth IoT device during the mission. The capacity of the channel between the mth

UAV and the ℓth IoT device at time n is denoted by C
(n)
m,ℓ. In this work, it is assumed that

the IoT devices include a single antenna and use a low transmit power, represented by ps.

Consequently, UAVs should fly near the IoT devices to collect the data which results in a LoS

propagation for such links. Finally, the IoT devices operate at a different frequency band

than the cellular network, avoiding interference between the two. Hence, using Shannon’s

capacity formula, C
(n)
m,ℓ is given by

C
(n)
m,ℓ = Bδ log2

(
1 +

psβ0[
d
(n)
m,ℓ

]κ
σ2

)
, (6.8)

where β0 and κ are the pathloss at a reference distance of 1 m and the pathloss exponent,

respectively, and d
(n)
m,ℓ is the distance between the mth UAV and the ℓth IoT device. In

addition, σ2 is the noise variance whereas B is the transmission bandwidth1. Consequently,

to ensure proper data collection at the IoT devices, the following constraints must be satisfied

{
∃m,n : C

(n)
m,ℓ ≥ Cℓ,min , ∀ℓ

}
. (6.9)

For ease of notation, we introduce a binary variable α
(n)
m,ℓ, which takes a value of one whenever

the correct collection of data from an IoT device at a certain time n occurs and zero otherwise.

Minor modifications are required in (6.9) in case all UAVs are mandated to collect data from

all or a subset of IoT devices.

1Note that while the interference between UAVs and GUs can be significant, the interference between
IoT devices is neglected due to their small transmit power ps. Fundamentally, in the presence of such an
interference, the problem and proposed solution are the same with only a minor modification in Eq. (6.8)
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6.2.3 Communications Process

After collecting data from an IoT device, UAVs communicate with the BS. In parallel, all K

GUs actively transmit data to the BS during the mission 2. Therefore, the communication

process over the cellular network for both aerial and terrestrial users needs to be modeled.

Channel Models

Let us denote the channel from UAV m to the BS by g
(n)
m . The N channel components are

modeled by Rician distribution as

g(n)
m =

√
β0[

d
(n)
m

]κ
(K

(n)
m + 1)

[√
K

(n)
m ejψms(n)m + a(n)

m

]
, (6.10)

where d
(n)
m is the UAV-to-BS distance. The Rician factor is

K(n)
m = A1 exp

(
A2 arcsin

(
h
(n)
m

d
(n)
m

))
, (6.11)

where A1 and A2 are parameters that depend on the environment [73]. Moreover, ψm reflects

the drifting, modelled as uniformly random within [0, 2π]. Also, the steering vector s
(n)
m ∈

CN×1 captures the array response to the mth UAV, whose entries are

[s(n)m ]n = ej
2πfc

c
d(n−1) sin(θ

(n)
m ) cos(ϕ

(n)
m ), (6.12)

for a uniform linear array. In (6.12), fc represents the operating frequency, θ
(n)
m and ϕ

(n)
m are

the azimut and elevation angles between transmitter and receiver, respectively, the antenna

spacing is denoted by d, and c represents the speed of light. The small scale fading a
(n)
m is

modeled by NC(0,Ra) where Ra is the spatial correlation matrix at the BS. Therefore, the

2The solution proposed in this work is also applicable to networks where the BS schedules K different
users at different time slots.
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overall aerial channel covariance matrix is

R(n)
m = E{g(n)

m g(n)∗
m } (6.13)

=
β0[

d
(n)
m

]κ
(K

(n)
m + 1)

[
K(n)
m s(n)m s(n)∗m +Ra

]
. (6.14)

The channel between the kth user and the BS is Rayleigh and denoted by g
(n)
k . Consequently,

it follows the same expression as (6.10) by setting K
(n)
m = 0 and covariance

R
(n)
k =

β0[
d
(n)
k

]κRa, (6.15)

where Ra is the spatial correlation matrix at the BS and d
(n)
k denotes the distance between

such BS and the kth GU.

Channel State Information

This work considers imperfect channel estimates at the BS, a novel feature within the UAV

trajectory optimization literature given the added complexity. Neglecting pilot contami-

nation, under MMSE estimation, we have g
(n)
m = ĝ(n)

m + g̃(n)
m where ĝ(n)

m is zero-mean with

covariance matrix

Φ(n)
m = E

{
ĝ(n)
m ĝ(n)∗

m

}
(6.16)

= R(n)
m Ψ(n)−1

m R(n)
m , (6.17)

where Ψ(n)
m = R(n)

m + σ2

ptτ
I, pt is the pilot power, and τ is the pilot length. The error h̃

(n)

m

is zero-mean with covariance C(n)
m = R(n)

m − Φ(n)
m . The same derivations and results apply

for the channels between GUs and BS, decomposed as g
(n)
k = ĥ

(n)

k + h̃
(n)

k with covariance

matrices Φ
(n)
k and C

(n)
k for ĥ

(n)

k and h̃
(n)

k , respectively.
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Data Transmission

On a given time-frequency resource, dropping the time index for simplicity, the received

signal at the N -antenna BS, y = (y1, . . . , yN)
T, is composed by GU and UAV data:

y =
M∑
m=1

gmxm +
K∑
k=1

gkxk + n (6.18)

=
M∑
m=1

ĝmxm +
K∑
k=1

ĝkxk︸ ︷︷ ︸
signals

+
M∑
m=1

g̃mxm +
K∑
k=1

g̃kxk + n︸ ︷︷ ︸
effective noise: v

. (6.19)

Note that the UAVs do not need to be transmitting all the time, but only after collecting

data from the IoT sensors. In (6.18), the UAV transmit data is xm =
√
pmsm, where sm is

a complex symbol with unit power and pm is the transmit power. Similarly, for the ground

users, xk =
√
pksk. In addition, n ∼ NC(0, σ

2I). A variety of combining techniques are

available in the literature. However, MMSE reception is known to maximize the SINR,

which for the kth GU attains a value of

SINRk = ĝ∗
k

(∑
j ̸=k

ĝjĝ
∗
jpj +

M∑
m=1

ĝmĝ
∗
mpm +Σ

)−1

ĝkpk, (6.20)

where Σ is the effective noise covariance Σ = E{vv∗} =
∑
∀m

Cmpm +
∑
∀k

Ckpk + σ2I. The

same expression applies for the UAV’s SINR after the respective modifications. Hence, the

spectral efficiency is

SE
(n)
k = Bδ

(
1− τ

τc

)
E{log2(1 + SINR

(n)
k )}, (6.21)

where the time index has been restored, B is the transmission bandwidth and τ
τc
accounts for

the pilot overhead. However, note that a closed form expression for (6.21) is not available.

As a result, any optimization utilizing (6.21) will encounter stability and convergence issues.

By leveraging random matrix theory, closed forms for the spectral efficiency that exclusively
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depend on large-scale parameters can be obtained, providing an alternative to numerical

evaluations as shown next.

Large-Dimensional Analysis

In the asymptotic regime, i.e., N,M +K →∞ with finite N
M+K

> 1, the spectral efficiency

value in (6.21) converges to a deterministic quantity if Φ(n)
m and Φ

(n)
k have uniformly bounded

spectral norms. Upon dropping the time index, the following theorem can be derived.

Theorem 6. With N,M + K → ∞ and MMSE reception, SINRk − SINRk → 0 almost

surely (a.s.) where

SINRk = pk tr

[
Φk

( K∑
j ̸=k

Φjpj
1 + ej

+
M∑
m=1

Φmpm
1 + em

+Σ

)−1
]
. (6.22)

Proof. The proof follows a similar procedure as the one described in Appendix A.1.

Restoring the time index and applying the continuous mapping theorem [89], we have SE
(n)
k −

SE
(n)

k → 0 a.s. where

SE
(n)

k = Bδ

(
1− τ

τc

)
log2

(
1 + SINR

(n)

k

)
. (6.23)

Note that the previous equation only depends on large-scale parameters, enhancing stability

during the optimization process.

AoI of the sensory data

Once a UAV collects C
(n)
m,ℓ bits from an IoT device, it needs to forward them to the BS. To

maintain data freshness, we utilize the concept of AoI, which essentially measures the delay

between when data is collected by a UAV and when it is received at the BS. In other words, a
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larger AoI implies a longer delay in the communication process. Particularly, when α
(n)
m,ℓ = 1,

the mth UAV receives C
(n)
m,ℓ bits from the ℓth IoT device, which will be transmitted to the

BS in future slots. Therefore, we can define the AoI as [158]

η(n)m =

 η
(n−1)
m + 1 if Λ

(n)
m = 0

1 otherwise
, (6.24)

where Λ
(n)
m is a binary variable defined as

Λ(n)
m =


1 if

n∑
i=1

SE
(i)

m ≥
n∑
i=1

L∑
ℓ=1

α
(i)
m,ℓC

(i)
m,ℓ

0 otherwise

. (6.25)

In other words, if the UAV fails to send the data after collecting it, the AoI increases until

all the data gathered by the mth UAV, given by
n∑
i=1

L∑
ℓ=1

α
(i)
m,ℓC

(i)
m,ℓ, is correctly received by

the BS. Hence, a constraint on the AoI can be included, enforcing freshness on the collected

data:

η(n)m ≤ ηmax ∀m,n, (6.26)

where ηmax is the maximum AoI allowed by the system.

6.3 Problem Formulation

In this section, we formulate a multi-objective optimization problem, whose goal is to min-

imize (i) UAVs flying time, and (ii) UAV-to-GU interference. We can combine the two
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metrics to define the following cost function:

D
(
Nm, q

(n)
m , p(n)m

)
= max

m
Nmδ + υ

max
m

Nm∑
n=1

K∑
k=1

λ(n)
1

SE
(n)
k

, (6.27)

where

λ(n) =


1 if ∃ p(n)m > 0

0 otherwise

, (6.28)

and υ ∈ [0, 1) controls the trade-off between the maximum flying time and the interference.

A small υ prioritizes finishing the mission as fast as possible whereas a large υ curtails the

UAVs’ interference to the ground users. Note that the indicator λ(n) is needed since only

the time slots with an active UAV transmission are relevant in minimizing the interference.

The overall minimization problem is formulated as

min
Nm,q

(n)
m ,p

(n)
m

D
(
Nm, q

(n)
m , p(n)m

)
s.t. p(n)m ≤ pmax,

(6.3)− (6.9), (6.26),

(6.29)

which falls in the category of non-convex mixed integer programming optimization problems.

Consequently, conventional techniques such as the successive convex approximation may

fail to provide close-to-optimal solutions. This is because these techniques (i) require the

derivation of convex surrogate functions, which can be challenging to find, (ii) exhibit a

dependency on the initialization parameters, and (iii) require solving the convex optimization

problems for large number of variables, incurring high complexity.
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6.4 DRL-Based Solution

RL offers a robust framework suitable for tackling complex problems like (6.29), thanks to

its ability to adapt to non-convex and dynamic scenarios. Thus, we initially introduce the

concept of Markov decision processes (MDPs), for which RL can achieve optimality. Let us

denote the state and action spaces by S and A, respectively. Considering P as the state

transition probability and R(·) as the reward function, (S,A,P , R) defines the MDP. RL

aims at finding a policy π : S → A that maximizes the expected discounted reward,

π∗ = argmax
π

E

{
∞∑
j=0

γjr
(
s(j), a(j)

) ∣∣∣∣π
}
, (6.30)

where r
(
s(j), a(j)

)
is the reward for taking action a(j) at state s(j), γ represents the discount

factor, and the expectation is over a(n) ∼ π
(
·|s(n)

)
and s(n+1) ∼ P

(
s(n+1)|s(n), a(n)

)
. Note

that solving (6.30) is not trivial and is usually done through a surrogate function called

the Q-function. The Q-function is defined as the expected cumulative reward for taking a

particular action a in a given state s and subsequently adhering to policy π:

Qπ(s, a) = Eπ

{
∞∑
j=0

γjr
(
s(j

′), a(j
′)
) ∣∣∣∣s(n) = s, a(n) = a

}
, (6.31)

where j′ = j + n + 1. In fact, [47] demonstrates the feasibility of obtaining the Q-function

for a small number of states and actions. However, because of the continuous domain of the

involved functions, the number of states and actions in (6.29) is infinite and more innovative

solutions are needed. We use DQL wherein the agent incorporates various neural networks

to handle continuous states and actions. The Q-function is approximated through a neural

network with parameters θ, i.e., Q(s, a) ≈ Q(s, a;θ). Defining the target value

y(s, a) = r(s, a) + γmax
a′

Q(s′, a′;θ
′
), (6.32)
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where θ
′
denotes the target network parameters, θ are optimized by minimizing the loss

function

L(θ) = E
{
|y(s, a)−Q(s, a;θ)|2

}
. (6.33)

The inclusion of Q(s, a;θ) allows handling continuous states; however, the possible actions

are still discrete, restricting the UAV movements and therefore the optimality of the solution.

To include continuous actions, a policy-based algorithm like TD3 can be used. Before digging

into the TD3 details, we present the main ideas behind deep deterministic policy gradient

(DDPG) method [48] that is a predecessor to TD3. The DDPG agent is composed of two

main blocks: (i) the actor and (ii) the critic. The actor outputs the actions and aims at

learning a policy, which is now modelled through a neural network with parameters ϕ, i.e.,

πϕ. The ϕ updates are based on the following gradient

∇J(ϕ) = E
{
∇ϕπϕ(s) ∇aQ(s, a;θ)|a=πϕ(s)

}
. (6.34)

The critic is in charge of learning the Q-function via (6.33) and provides feedback to the

actor regarding how beneficial an action is. To enhance the learning stability of DDPG, TD3

is leveraged in this work, as introduced in Chapter 3.

The optimization problem (6.29) is a single-agent MDP that can be decomposed into an

M -agent MDP with the same goal for all agents [133,134]. Consequently, for the same UAV

goals, the final models will be the same as well. Additionally, such factorization facilitates

parallelization, resulting in expedited convergence and more efficient learning. Moreover,

this approach scales effectively to larger environments and agent populations, maintaining

its efficacy without incurring substantial increases in computational overhead. Therefore,

we focus on the learning for a single UAV assuming that the remaining UAVs remain static,

move randomly, or adhere to the learned policy up to that point in time.
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6.4.1 TD3 Multi-UAV Data Collection

Solving (6.29) via DRL requires defining the states, actions, and rewards, as presented next.

State space

State space encompasses details concerning (i) inter-UAV distances, (ii) IoT locations, (iii)

collected data awaiting transmission, (iv) destination point, and (v) distance to GUs. Par-

ticularly, the first M − 1 state components relate to the inter-UAV distances:

v(n)m =

{
1

Cd

d
(n)
m,j, form ̸= j

}
, (6.35)

where d
(n)
m,j is the Euclidean distance between the mth and jth UAVs and Cd > 0 is a

normalization constant. Next, the following 3L states account for the IoT locations:

e(n)m =

{
i
(n)
ℓ

(
xℓ − x

(n)
m

Cs

,
yℓ − y

(n)
m

Cs

,
−h(n)m

hmax

)
,∀ℓ

}
, (6.36)

where Cs > 0 is a constant and i
(n)
ℓ = 1 if data from the ℓth IoT device still needs to be

collected and i
(n)
ℓ = 0 otherwise. Subsequently, upon collecting data from an IoT device, the

UAV forwards it to the BS. The state component that accounts for the AoI metric relates

to the amount of data that still needs to be transmitted:

i(n)m = max

0,

n∑
i=1

(
L∑
ℓ=1

(
α
(i)
m,ℓC

(i)
m,ℓ

)
− SE

(i)

m

)
Cr

 . (6.37)
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Moreover, three states that include information about the UAV’s destination point are added

as follows:

f (n)
m =

{
i(n)

(
xm,f − x(n)m

Cs

,
ym,f − y(n)m

Cs

,
hm,f − h(n)m

hmax

)}
, (6.38)

where i(n) = 1 if the data from all L events have been correctly collected and i(n) = 0

otherwise. The following K UAV-to-GU distances, denoted by d
(n)
m,k, are also part of the

state space to take into account the GUs’ spectral efficiency optimization:

u(n)m =

{
1

Cd

d
(n)
m,k, ∀k

}
. (6.39)

Finally, we also include the UAV’s remaining energy as part of the state space as follows:

r(n)m =

Emax
m − δ

n∑
i=1

P
(i)
m

Ce

, (6.40)

where Ce > 0. Altogether, the mth UAV’s state is an M + 3L +K + 4 dimensional vector

composed by

s(n)m =
{
v(n)m , e(n)m , i(n)m , f (n)

m , u(n)m , r(n)m

}
. (6.41)

Action Space

Action space includes the set of feasible actions available to the UAVs while interacting with

the environment. In this case, for a given UAV, a(n) =
{
a
(n)
1 , . . . , a

(n)
4

}
. To be precise, the

first three components relate to the 3D location variations and must satisfy−∆d ≤ a
(n)
i ≤ ∆d

for i = 1, 2, 3 where ∆d is the maximum variation along each axis. The last component of
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r1(s
(n)
m , a(n)) = υ

K∑
k=1

λ(n)SE
(n)
k +

{
i(n)Kfin if q

(n)
m = qm,f

i(n)Kd

(
d
(n)
1 − d

(n)
2

)
otherwise

(6.43)

.

the action space relates to the UAVs’ transmit power, which must satisfy 0 ≤ a
(n)
4 ≤ pmax

3.

Reward Function

Upon performing an action, the environment feeds back to the agent a scalar value that

guides the agent’s learning and reflects desired outcomes. Such signal is known as reward

function and encodes information about the cost function and the constraints. Following the

reward shaping technique [135], we use the following reward function:

r
(
s(n), a(n)

)
=

6∑
j=1

rj
(
s(n), a(n)

)
, (6.42)

where the individual rewards are defined next. First, r1
(
s(n), a(n)

)
is defined in Eq. (6.43),

on top of the next page, and relates to the cost function, where d
(n)
1 = ∥qm,f − q

(n)
m ∥ and

d
(n)
2 = ∥qm,f − q

(n+1)
m ∥. The initial term encourages the maximization of the GU’s spectral

efficiency, aiming to reduce interference. The second term motivates the agent to reach

the final destination once data from all IoT devices are correctly collected, i.e., if i(n) = 1.

Furthermore, Kfin denotes the reward for reaching the final destination, with 0 < Kd < Kfin

introducing minor rewards or penalties if the UAV flies closer to or farther away from the

destination point, respectively. To avoid collisions among UAVs, a negative reward of Kcoll

3Note that if either all the collected data have been transmitted or the UAV has not gathered any data,

the power level that minimizes interference to the GUs is a
(n)
4 = p

(n)
m = 0.
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r3,ℓ
(
s(n), a(n)

)
=



Kc if α
(n)
m,ℓ = 1

−Kf if done = True and
M∑
m=1

Nm∑
n=1

α
(n)
m,ℓ < L

Kd

(
d
(n)
m,ℓ − d

(n+1)
m,ℓ

)
if done = False and

n∑
i=1

α
(i)
m,ℓ = 0

0 otherwise

, (6.45)

is added when (6.7) is violated

r2
(
s(n), a(n)

)
=

 −Kcoll if ∃ d(n)m,j ≤ Dsafe

0 otherwise
. (6.44)

Similarly, r3
(
s(n), a(n)

)
=
∑

ℓ r3,ℓ
(
s(n), a(n)

)
, where the individual rewards r3,ℓ

(
s(n), a(n)

)
are

presented in (6.45), on top of the next page, assigns rewards when the UAV collects data

from the IoT devices. Note that a positive reward is assigned when collecting data from

the ℓth device while a negative reward of −Kf is allocated when the episode ends and the

UAV failed in collecting data from all IoT devices. The condition for the episode to end,

i.e., done = True, is based on different circumstances, which can be any of the following:

(i) a collision occurs, (ii) the UAV runs out of energy, or (iii) the UAV reaches the final

destination. In addition, to incentivize the UAV to get closer to the ℓth IoT device that still

requires its data to be collected, i.e.,
n∑
i=1

α
(i)
m,ℓ = 0, the third row in (6.45) is included, where

d
(n)
m,ℓ = ∥iℓ − q

(n)
m ∥. To make sure the agent meets the AoI constraint presented in (6.26),

r4
(
s(n), a(n)

)
is defined using an expression similar to (6.44) with a negative reward of −Kd.

Finally, r5
(
s(n), a(n)

)
and r6

(
s(n), a(n)

)
make sure the UAV stays within certain limits and

does not run out of energy, respectively. The corresponding penalties for not meeting such

constraints are Kh and Ke, respectively.

The same algorithm presented in Alg. 3 can be employed for training a single UAV and

Fig. 6.2 shows the corresponding block diagram. To initialize such algorithm, we require

the number of episodes Ne, representing the network realizations observed during training.
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The replay buffer, initially empty, has a size of |M| and stores transitions of the form{
s(n), a(n), r

(
s(n), a(n)

)
, s(n+1)

}
. Finally, recall that an episode ends when done = True,

which can be met by any of the following situations: (i) a collision occurs, (ii) the UAV

runs out of energy, or (iii) the UAV reaches the final destination.

Environment

Replay buffer

∊∼ 𝓝(0, 𝜎𝑎)

𝑎(𝑛)

{𝑠(𝑛), 𝑎(𝑛), 𝑟(𝑛), 𝑠(𝑛+1)}

Agent

A
ct

o
r

C
ri
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 U
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𝑦 = 𝑟 + γmin
𝑖=1,2

𝑄𝑖

D
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 U

p
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e

∊∼ 𝓝(0, 𝜎𝑎)

𝑎(𝑛)𝑄(𝑠 𝑛 , 𝑎(𝑛))

Figure 6.2: Involved blocks within the TD3 algorithm and their interactions.

6.5 Numerical Results

To evaluate the performance of the proposed approach, we consider a region of S-m2. The BS

is located at the center of the cell, whereas the GU locations, departure/destination UAV

locations, and IoT coordinates are generated at random following a uniform distribution

within the cell and altitude limits. Table 6.1 presents the simulation parameters, based on

the UAV and MIMO literature [13,18,92]. Finally, the learning rate for the actor and critics

on the Adam optimizer [164] is set to 10−4 whereas we employ a neural network with two

fully connected layers of 400 and 300 neurons, respectively, for both components of the agent.

We first validate the results obtained in Theorem 1 given its inclusion in the optimization

problem through (6.26). Fig. 6.3a plots the average spectral efficiency that a generic user can
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Table 6.1: Simulation parameters

Parameter Value Parameter Value
δ 0.5 s Emax

m 30 kJ
Hmin, Hmax 25 m, 50 m N 20

pmax 100 mW K 5
∆d 8 m Dsafe 4 m
B 10 MHz σ2 -96 dBm
S 250 ηmax L+1
β0 -30 dB A1, A2 0, 6.4 dB
ps 1 mW fc 2.4 GHz

Cℓ,min 1.5 Mbits Ra IN
τ 200 τc 6250
pt 100 mW υ 0.1
c 3e8 d 0.0625 m

Table 6.2: State & reward parameters

Description Parameter Value

Normalization in (6.35) Cd

√
2S2 +H2

max

Normalization in (6.36) Cs S
Normalization in (6.37) Cr 15LBδ
Normalization in (6.40) Ce 30e3

Reward & constant in (6.43) Kfin, Kd 100, 0.1, 0.1
Penalty in (6.44) Kcoll 10
Reward in (6.45) Kc 20

Reward & penalty forward data Ks, Kd 10, 20
Noise variance in (??) σa 0.2

Noise variance in Fig. 6.2 σ̂a 0.2
Soft-updates memory in Alg. 3 τT 0.005

achieve, either GU or UAV, for M = 3 while varying K = 1, . . . , 10 and N after normalizing

by δB. As expected, increasing the ratio N/(M +K) results in the increase of the spectral

efficiency. Next, and maintaining the normalization by δB, Fig. 6.3b validates Theorem

1, demonstrating that even finite-dimensional systems provide tight approximations. For

instance, with N = 20, M = 3, and K = 6.

We now discuss the training performance of the TD3 algorithm for S = 250-m2 in Figs. 6.4a

and 6.4b. Fig. 6.4a measures the average reward for different values of M for K = 4 with

an averaging window of 100 samples. In addition, we include the training curves attained by
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Figure 6.3: (a) Spectral efficiency for different N and M +K; (b) validation of Theorem 1.

its predecessor, the DDPG algorithm, which serves as benchmark. Once the replay buffer

stores enough experiences, |M| = 200, 000 in this case, the learning starts, i.e., at the 1, 000

episode mark. Clearly, the blue curves, corresponding to the TD3 method, ensure a fast

convergence. To the contrary, the DDPG algorithm fails to learn when M = 1 whereas the

learning curve for M = 2 is much slower compared to the TD3’s curve. In addition, Fig.

6.4b presents the average flying time as a function of the number of training episodes under

the TD3 approach for varying M and L = 6 IoT devices. In line with Fig. 6.4a, after 1, 000

episodes, the learning starts and therefore maxmNm decreases, showing the efficacy of our

proposed approach when minimizing the UAVs’ flying time.

Next, we study the relationship between the flying time, the consumed energy, and the size of

the region S. Specifically, for the case of M = 2 and varying L and S, we evaluate both the

average and maximum flying times among the M UAVs, as well as the energy consumption.

These metrics are illustrated in Figs. 6.5a and 6.5b, respectively, encompassing the average

value from 1, 000 distinct network realizations. Unsurprisingly, the expansion of the region

size correlates with an increase in both flying time and energy consumption, exhibiting

a nearly linear relationship. Particularly, the ratio between flying time and network size

ranges from 0.096 to 0.18 for 1 ≤ L ≤ 4. A similar analysis reveals that the ratio for energy
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Figure 6.4: (a) Average reward during training for TD3 and DDPG with L = 4; (b) Average
flying time during training for TD3 with L = 6.
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Figure 6.5: For different network size S and number of IoT devices L (a) flying time; (b)
consumed energy.

consumption ranges from 0.023 to 0.036. Hence, in general, for M = 2, L = 4 requires

approximately twice the time and 1.5 times the energy that L = 1 requires.

Figs. 6.6a and 6.6b present results for the flying time and energy consumption, respectively,

as L and M vary. As expected, increasing L results in an increase in both flying time and

energy consumption, with different slopes observed for different values of M ; specifically,

lower values of M exhibit steeper slopes compared to larger values of M . For example, for

L ≥ 3, M = 3 needs approximately 50% of the flying time that M = 1 requires, whereas the

163



1 2 3 4 5 6

L

20

30

40

50

60

70

80
F

ly
in

g
 T

im
e

 N
m

(a)

1 2 3 4 5 6

L

4

6

8

10

12

C
o

n
s

u
m

e
d

 E
n

e
rg

y
 [

k
J

]

(b)

Figure 6.6: For different number of IoT devices L and UAVsM (a) flying time; (b) consumed
energy.

energy savings vary between 18% to 47%. In addition, while the dependency with respect to

the size appears to be linear for both the flying time and energy, as seen in Fig. 6.5, when

L varies for a fixed size, the flying time maintains a linear dependency, whereas the energy

consumption seems to follow a different non-linear trend, with a more pronounced curve

observed for smaller values of M , i.e., the lower M the higher the increase in the amount of

needed energy.

Additionally, in Figs. 6.7a and 6.7b, we present a network realization along with the cor-

responding UAV trajectories and transmit powers, respectively. Fig. 6.7a visually demon-

strates that despite training being conducted by one UAV, utilizing the same model for all

M UAVs efficiently results in cooperation among them. Therefore, all UAVs can effectively

collaborate and collect data from all IoT devices while minimizing their flying time, inter-

ference to GUs, avoiding collisions, and without running out of energy. In addition, Fig.

6.7b depicts the transmit power of the UAVs and when data from an IoT device has been

collected (solid vertical black line). For example, UAV-1 collects data from an IoT device at

n = 1 and given that it is far from the BS, it needs two time slots to finish the transmission,

which yields to an AoI of 2. Interestingly, at n = 11, UAV-2 collects data from two IoT
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Figure 6.7: (a) Network realization with M = 3, L = 6, K = 4 and the UAV trajectories;
(b) UAV transmit power for the scenario in (a); (c) GU spectral efficiency for different power
allocation strategies controlled by F .

devices and needs three time slots to forward such data, making the AoI to increase up to

3. In addition, from Fig. 6.7b, it can be seen that the algorithm learns to transmit the

collected data at a larger power during a few slots. This strategy is, in fact, superior to

reducing the power and transmitting the collected data over more time slots when trying to

avoid interference to GUs. To support this claim, we include Fig. 6.7c, which measures the

spectral efficiency of GUs only, averaged over twenty time slots. The value of F determines

the number of time slots a UAV is active, and to make a fair comparison, the power is also

scaled by a factor of F . In other words, for large values of F , a UAV transmits data over

more time slots at a lower power. It can be seen that F = 1 provides higher GUs spectral

efficiencies, being equivalent to less interference caused by the UAVs. However, the gain is

marginal compared to the values achieved by F = 10 or F = 20.

Finally, we demonstrate that the proposed approach remains valid even if each UAV collects

data from a subset of IoT devices. Specifically, the learned models can be extended to

accommodate this scenario by making slight modifications to Eq. (6.36) and considering

only the IoT devices whose data needs to be collected by the mth UAV. Consequently, the

total number of IoT devices this approach can handle becomes Lcomb =
∑

m Lm, where Lm

represents the number of IoT devices associated with UAV m. The primary advantage of

this model is the reduction in shared information among UAVs. In other words, if UAVs

165



1 2 3 4 5 6

L
m

20

30

40

50

60

70

80

90
F

ly
in

g
 T

im
e

 N
m

4

6

8

10

12

14

C
o

n
s

u
m

e
d

 E
n

e
rg

y
 [

k
J

]

(a)

0 50 100 150 200 250

x [m]

0

50

100

150

200

250

y
 [

m
]

1

11

21

31

41

1 11

21

31

41

51

(b)

Figure 6.8: (a) Flying time and consumed energy for M = 2 and different L; (b) network
realization with M = 2, L = 4 and K = 4 and the UAV trajectories.

collaborate to collect data from L devices, they need to share which sensors still need to be

visited. However, in a distributed approach, each UAV requires information only about the

IoT devices from which it needs to collect data. To show the effectiveness of this method,

we include Figs. 6.8a and 6.8b. Fig. 6.8a illustrates the flying time and consumed energy,

with the respective maximum values, averaged over 1, 000 realizations for different values of

Lm and M . We simplify the analysis by assuming Lm = Lj for all m, j. While the trend

resembles that of Fig. 6.6, the flying times in Fig. 6.8a increase due to the larger number

of IoT devices per UAV. Particularly, the average flying time increases up to 65% whereas

the consumed energy does so up to 51%. Nevertheless, the linear relationship between flying

time and the number of IoT devices remains consistent. Additionally, Fig. 6.8b depicts

a specific realization for M = 2 and Lm = 4, i.e., Lcomb = 8, illustrating that each UAV

only approaches IoT devices from which it must collect data. Particularly, the IoT devices

associated to each UAV are depicted using the same color.
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6.6 Conclusions

This chapter explores multi-UAV data collection over cellular networks. UAVs, acting as

aerial users, gather data from IoT sensors and transmit them to the BS while keeping in-

terference to GUs at bay. Key aspects such as multi-antenna BSs, imperfect CSI, MIMO

reception techniques, and AoI are accounted for. Additionally, UAV-related factors including

finite battery capacity, collision avoidance, and maximum speed constraints are considered.

Together, these elements form a comprehensive framework for optimizing data collection,

with the goal of reducing the UAVs’ flying time and interference to GUs through multi-

objective optimization.

Given the complexity of the problem with respect to the UAV trajectories and transmit

powers, we employ a RL framework, specifically utilizing the TD3 algorithm. Extensive

results are presented, elucidating the relationship between the flying time and consumed

energy with respect to the network size, the number of IoT devices, and the number of

UAVs. Particularly, for fixed M , increasing the network size results in a linear increase of

the flying time and consumed energy with the ratio between slopes varying between [1, 2] for

the flying time and [1, 1.5] for the consumed energy. Also, the number of UAVs plays a key

role, where a reduction of up to 50% of the flying time and up to 47% of the consumed energy

can be achieved. Finally, it is demonstrated that the same model applies to a distributed

problem in which each UAV collects data from a set of IoT devices. However, given the

non-cooperative nature of such scenario, the flying time and consumed energy can increase

up to 65% and 51%, respectively, whereas the number of IoT devices that can be accounted

for is larger.
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Chapter 7

Conclusions

This thesis provides various analytical frameworks for cell-free and cellular UAV networks,

where UAVs are utilized for communications, sensing, and/or data collection purposes. Pre-

cisely, each chapter studies either the UAV deployment or the UAV trajectory optimization

combined with other resource allocation subproblems that arise in each of the scenarios under

consideration.

In Chapter 2, cell-free UAV networks are introduced and investigated, where UAVs take on

the role of aerial base stations. This chapter explores different channel models and recep-

tion techniques, for which deterministic equivalents for the SINR and their corresponding

spectral efficiency are derived. Capitalizing on these deterministic equivalents, a deployment

optimization problem is proposed for each of the architectures, where the resulting improve-

ments in minimum SINR and in sum spectral efficiency have been thoroughly quantified.

Notably, MMSE and MRC reception techniques yield significant improvements, achieving

minimum SINR increases of 15-25 dB and 15-30 dB, respectively, across fully and partially

centralized networks.

Chapter 3 expands upon the framework introduced in Chapter 2 by integrating wireless fron-
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thaul links, transforming UAVs into flying relays. The investigation explores three multiple

access schemes for the fronthaul, namely FDMA, SDMA, and FDMA-SDMA. Determin-

istic equivalents for the SINR with MMSE reception are provided for the three fronthaul

schemes. Utilizing these equivalents, the optimization approach targets maximizing the

minimum SINR with respect to the 3D UAV positions as well as user and UAV transmit

powers. Results show significant improvements, ranging from 5 to 27 dB, mainly attributed

to the deployment optimization.

Next, in Chapter 4, the use of UAVs for wildfire tracking is investigated. Equipped with

cameras, the goal is to track a wildfire while satisfying a set of mechanical, energetic, and

cell-free communication constraints. With limited battery energy, UAVs alternate between

tracking and charging modes, each posing a unique nonconvex optimization problem ad-

dressed via reinforcement learning. Extensive findings indicate that a small UAV swarm can

consistently ensure coverage. Specifically, under conditions of moderately high energy levels

and standard flying altitudes, an average coverage exceeding 90% is achievable. However,

this coverage shrinks with decreasing charging levels and flying altitudes. Altogether, the

tradeoff among the number of UAVs, energy, and flying altitude, is established.

Chapter 5 explores energy-efficient communication and sensing scenarios featuring a UAV ca-

pable of sensing multiple events. After gathering sensory data, the UAV ensures its reception

by the BS while managing interference to GUs in neighboring cells. This chapter considers

cellular networks, along with various mechanical, communication, and sensing constraints

essential for mission completion. A novel logic-based approach is introduced for formulating

the 3D path planning, sensing, and transmit power subproblems, enabling the use of clas-

sic optimization techniques. Comparative studies across different benchmarks demonstrate

energy consumption reductions ranging from 33% to 50% with the proposed approach de-

pending on the maximum interference level tolerated by GUs. The number of time slots and

slot duration significantly impact performance, with the proposed solution consuming 33%
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and 200% less energy compared to other benchmarks.

Finally, Chapter 6 explores multi-UAV data collection in cellular networks. Serving as aerial

users, UAVs collect data from ground IoT sensors and transmit it to the BS while mitigating

interference to GUs under AoI, mechanical and energy constraints. Using reinforcement

learning, significant reductions in flying time and energy consumption are achieved. Precisely,

extensive findings reveal the correlation between flying time, energy use, network size and

number of UAVs. In fact, increasing the network size results in proportional increases in

the flying time and energy use, albeit with varying ratios. Furthermore, varying the number

of UAVs can yield reductions of up to 50% in flying time and 47% in energy consumption.

Additionally, the model extends to distributed setups, though potential increases in flying

time and energy use may occur, allowing for greater IoT device coverage.

Similar methodologies and approaches could be extrapolated to diverse scenarios in both

communication and sensing domains. Future work might entail exploring UAV deployment

strategies or trajectory optimization for various events, extending to scenarios beyond wildfire

tracking. Additionally, integrating real data into our algorithms and conducting empirical

tests with physical drones in controlled environments could offer invaluable insights into their

real-world efficacy and performance.
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Appendix A

Supplementari Proofs

Theorem 7. ( [82, Theorem 1]) Let D ∈ CM×M be known and deterministic. In addition,

S ∈ CM×M is Hermitian nonnegative-definite while H ∈ CM×M is a random matrix with

zero-mean independent column vectors, hk, each with covariance matrix 1
M
Rk. Finally, D

and Rk have uniformly bounded spectral norm w.r.t. M . For z > 0 and M,K →∞,
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M
tr
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with coefficients ek = limn−→∞e
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(A.2)

with initial values e
(0)
k =M .
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Theorem 8. ( [82, Theorem 2]) Let Φ ∈ CM×M be Hermitian nonnegative-definite. Under

the same conditions as Thm. 7, for M,K →∞,

1

M
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D
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HH∗ + S + zIM)−1Φ

(
HH∗ + S + zIM)−1

]
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with T and ek given in Thm. 7 for given z and e′(z,Φ) =
(
e′1(z), . . . , e

′
K(z)

)
computed as
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)−1
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with J(z) ∈ CK×K and v(z) ∈ CK×1 defined as
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and
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A.1 Proof of Prop. 1

Let us define the matrices

Ωk =

((
M (s) ◦ Ĝk

)
P
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)∗ − (m(s)
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and Ω
′

k = |Fk|,Ωk. Then, (2.23) can be written as

SINRk = ĝ∗
kΩkĝk p (A.8)

=
p

|Fk|
tr
[
ĝkĝ

∗
kΩ

′

k

]
. (A.9)

For |Fk|,|Um| −→ ∞ ∀ k,m, using [82, Lemma 4] and Theorem 7, we have
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tr
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In our case, the role of
(
HH∗ + S + zIM)−1 in Theorem 7 is played by Ω

′

k. There is a

direct mapping between the terms in the aforementioned theorem and our problem, namely

(i) D = Γk p, (ii) Rj = Γj p, and (iii) S + zIM = 1
|Fk|

Σk with matrix T k following the

structure of T in Theorem 7, i.e.,
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, (A.11)

where the contribution of GU k is removed as in Ω
′

k. The necessary coefficients can be

calculated as ej,k = limn→∞ e
(n)
j,k with

e
(n)
j,k = p tr
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where m
(s)
k,j,m = ⊮{j ∈ Um form ∈ Fk}. The fixed-point algorithm can be used to compute

e
(n)
j,k and has been proved to converge [82]. Finally, since matrices Γk and T k are diagonal,
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(A.34) can be written as

p
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tr[ΓkT k] = p tr
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which yields the expression in Prop. 1 after some straightforward algebra.

A.2 Proof of Prop. 2

From (2.24), we can compute the deterministic equivalence of each term in the numerator

and denominator separately, letting |Fk|, |Um| → ∞. We divide each by 1/|Fk|2 and recall

that ĝk,m = gk,m + ζk,m with the distribution of ζk,m derived in (2.10). Then, the signal

satisfies

1

|Fk|
ĝ∗
kĝk −

1

|Fk|
(
g∗
kgk + trΓk

) a.s.→ 0, (A.15)

as a consequence of [82, Lemma 4]. Therefore, from the continuous mapping theorem,
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For the interfering terms, a similar procedure is used. Applying [82, Lemma 4] twice, the

interfering terms follow
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Finally, following a similar approach for the noise,

1

|Fk|2
ĝ∗
kΣkĝk −

1

|Fk|2
tr
[
(gkg

∗
k + Γk)Σk

] a.s.→ 0. (A.18)

Plugging the derived deterministic equivalents into (2.24), Prop. 2 is obtained.

A.3 Gradient Computations

We first calculate some partial derivatives needed for (2.37). We do so with respect to

xm, and a similar procedure can be used for ym. First, note that (2.3) can be written as

gk,m =
(
bm
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and

∂dαm+κ
k,m

∂xm
= (αm + κ)dαm+κ−2
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. (A.21)

Similar to (A.19), we can obtain
∂rk,m
∂xm

with
∂γk,m
∂xm

as reported in [10]. Note that Numm can

be expressed as Numm =
(∑
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with derivative
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To calculate the derivative of Denm, we first need to manipulate the interference and noise

terms. A given interference term can be decomposed as

tr
[(
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. (A.23)

The calculation of the derivatives for each term is straightforward, involving only polyno-

mial terms that depend on gi,m and γi,m, whose derivatives are derived in (A.19) and [10],

respectively. After some algebra, the derivative of each interfering term is obtained. Finally,

the noise can be decomposed as

tr
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. (A.24)

As for the interference terms, obtaining the derivative w.r.t. the FBS locations from (A.24)

is tedious but straightforward. Combining the derivatives obtained from (A.23) and (A.24),

the partial derivative w.r.t. xm of Denm arises. A similar procedure can be followed to obtain

the derivative w.r.t. ym and, with that, the overall gradient.
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A.4 Proof of Prop. 3

In PC networks, only the FBSs have access to the channel estimates. Thus, the C-RAN

regards v∗
kE{µk,k} as the true channel and the signal model therein is

x̂k = v∗
kE{µk,k}xk︸ ︷︷ ︸

signal

+(v∗
kµk,k − v∗

kE{µk,k})xk︸ ︷︷ ︸
channel uncertainty

+
∑
i ̸=k

v∗
k(m

(s)
k,i ◦ µk,i)xi︸ ︷︷ ︸

interference

+v∗
kn

′

m︸ ︷︷ ︸
noise

. (A.25)

The second, third, and fourth terms, which are uncorrelated, are pooled as effective noise.

As uncorrelated Gaussian noise represents the worst case in terms of the achievable spectral

efficiency, we obtain the lower bound in Prop. 3.

A.5 Proof of Prop. 4

As for the centralized MRC, we compute the equivalents for each of the terms in (2.43).

Again, we first divide both numerator and denominator by 1/|Fk|2. Then, the signal term

satisfies

1

|Fk|2
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|Fk|2
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kĝk}|2 (A.26)

=
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. (A.27)
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For the interference terms, when i ̸= k
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where Ri = diag{m(s)
i,mri,m ∀m}. For the variance term,
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ĝ∗
kg̃k

∣∣∣∣2} a.s.→ 0, (A.29)

as a consequence of [82, Lemma 3]. A similar procedure can be used to derive the contribution

of the noise,

1

|Fk|2
v∗
kΣ

′

kvk =
1

|Fk|
E
{

1

|Fk|
(ĝ∗

kΣ
′′
ĝk

}
− 1

|Fk|2
tr
[
(gkg

∗
k + Γk)Σ

′′] a.s.→ 0, (A.30)

where Σ
′′

k = (M (i)
k ◦Gk)(M

(i) ◦Gk)
∗p+D2 + σ2I. After plugging the various terms into

(2.43), Prop. 4 is obtained.
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A.6 Proof of Theorem 1

Define the matrix

Ωk =

((
ck ◦M (s) ◦ Ĝk

)
P
(
ck ◦M (s) ◦ Ĝk

)∗ − (ck ◦ ĝk)(ck ◦ ĝk)∗pk +Σk

)−1

,

(A.31)

where P = diag{pk ∀ k} and Ω′
k = |Fk|Ωk. Then, (3.26) can be written as

SINRk =
(
ck ◦ ĝk

)∗
Ωk

(
ck ◦ ĝk

)
pk (A.32)

=
pk
|Fk|

tr
[(
ck ◦ ĝk

)(
ck ◦ ĝk

)∗
Ω′
k

]
. (A.33)

For |Fk|,|Um| −→ ∞ ∀ k,m, using [82, Lemma 4] and Thm. 7,

pk
|Fk|

tr
[(
ck ◦ ĝk

)(
ck ◦ ĝk

)∗
Ω′
k

]
− pk
|Fk|

tr[ΦΓkT k]
a.s.→ 0. (A.34)

In our case, the role of
(
HH∗ + S + zIM)−1 in Thm. 7 is played by Ω′

k. There is a direct

mapping between the terms in the aforementioned theorem and our problem, namely (i)

D = ΦΓk pk, (ii) Rj = ΦΓj pj, and (iii) S + zIM = 1
|Fk|

Σk with matrix T k following the

structure of T in Thm. 7, namely

T k =

(
1

|Fk|

K∑
j ̸=k

ΦΓj
1 + ej

pj +
1

|Fk|
Σk

)−1

. (A.35)

The necessary coefficients can be calculated as ej = limn→∞ e
(n)
j with

e
(n)
j = pj tr

[
ΦΓj

( K∑
i ̸=j

ΦΓi

1 + e
(n−1)
i

pi +Σj

)−1
]
. (A.36)
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SINR
µ

k =
∑
m∈Fk

γk,mpk∑
i∈Um
i ̸=k

γi,m
1+ei,k

pi +
rm
ϕm

(∑
∀i
ri,mpi +

σ2

µ

)
−
∑
i∈Um

γi,mpi +

K∑
i=1

ripi+
σ2

µ

ϕmpm
σ2

. (A.39)

The fixed-point algorithm can be used to compute e
(n)
j and has been proved to converge [82].

Finally, since matrices Γk and T k are diagonal, (A.34) can be written as

pk
|Fk|

tr[ΦΓkT k] = pk tr

[
ΦΓk

( K∑
i ̸=k

ΦΓi
1 + ei

pi +Σk

)−1
]
, (A.37)

and, with some straightforward algebra, the expression in Thm. 1 is obtained.

A.7 Proof of Prop. 5

The definition of competitive utility functions and monotonic constraints are available at

[104, Assumptions 1 and 2]. In our case, the utility function of user k is given in Thm. 1. It

satisfies positivity because each SINRk,m in (3.31) is positive. Then, to verify competitive-

ness, it is enough to show that a function of the type
∑

m∈Fk

ak,mpk
ck,m+dk,mpk

is always increasing

for ak,m, ck,m, dk,m > 0. Indeed,

d

d pk

∑
m∈Fk

ak,mpk
ck,m + dk,mpk

=
∑
m∈Fk

ak,mck,m
(ck,m + dk,mpk)2

> 0. (A.38)

Similarly, it can be shown that SINRk is decreasing with respect to pi for i ̸= k. Finally,

to show directional monotonicity, we substitute pi by µpi ∀ i and define the new SINR by

SINR
µ

k . After some straightforward algebraic manipulations, SINR
µ

k is included in (A.39).

All the terms in SINR
µ

k are as in SINRk except for the ones that depend on σ2, which are

divided by µ. Provided that µ > 1, each of the denominators is smaller in SINR
µ

k and
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thus SINR
µ

k ≥ SINRk for µ > 1. Finally, it is easy to show that pk ≤ pmax are monotonic

constraints.

A.8 Proof of Theorem 2

Given a ZF fronthaul combiner U , we can make construct U (ϵ) = Ĥ(Ĥ
∗
Ĥ+ϵI)−1 satisfying

U = limϵ→0U
(ϵ). For ease of exposition, we define Ω = ( 1

N
ĤĤ

∗
+ ϵ

N
I)−1 while Ωm equals

Ω without the contribution of the mth channel. Note that U (ϵ) = 1
N
ĤΩ. In addition,

U (ϵ) = Ĥ(Ĥ
∗
Ĥ + ϵI)−1 = (ĤĤ

∗
+ ϵI)−1Ĥ =

1

N
ΩĤ . (A.40)

As a consequence, E{u(ϵ)∗
m Qu

(ϵ)
m } can be written as

E{u(ϵ)∗
m Qu(ϵ)

m } = E
{

1

N2
ĥ

∗
mΩQΩĥm

}
. (A.41)

The term inside the expectation satisfies

1

N2
ĥ

∗
mΩQΩĥm =

1
N2 ĥ

∗
mΩmQΩmĥm

(1 + 1
N
ĥ

∗
mΩmĥm)2

(A.42)

=
Nm

(1 + Dm)2
. (A.43)

Note that Nm converges a.s. to

Nm
a.s.→ 1

N2
tr
(
ΦmΩmQΩm

)
(A.44)

a.s.→ 1

N2
tr
(
ΦmT

′(ϵ,Q)
)
, (A.45)
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where T ′(ϵ,Q) is provided in Thm. 8 for D = Φm, Φ = Q, S = 0, z = ϵ, Rk = Φk and by

substituting M = N . For the term in the denominator, applying Thm. 7,

Dm
a.s.→ 1

N
tr
(
ΦmΩm

)
(A.46)

a.s.→ 1

N
tr
(
ΦmT

)
, (A.47)

where the same substitutions used to obtain T ′(ϵ,Q) are made in Thm. 7 to acquire T .

Applying the continuous mapping theorem,

E{u(ϵ)∗
m Qu(ϵ)

m } −
1
N2 tr

(
ΦmT

′(ϵ,Q)
)(

1 + 1
N
tr
(
ΦmT

))2

a.s.→ 0. (A.48)

Taking the limit when ϵ→ 0 in both terms results in the convergence stated in Thm. 2.

A.9 Proof of Prop. 6

Given that we have added three slack variables, we analyze their behavior individually. First,

||ℓ(n + 1) − ℓ(n)|| ≤ ∆(n) will be met with equality at the optimal, otherwise the value of

∆(n) can be reduced to achieve a better cost function. A similar argument is used to show

that y(n)2 =
√
δ(n)4 + ∆(n)4

4v40
− ∆(n)2

2v20
, otherwise the value of y(n) can be decreased to reduce

the cost function. Finally, at the optimal, Eq. (5.28) is met, or else the value of β(n) can be

increased.

A.10 Proof of Prop. 7

We first define x = 1 + e−(B1+B2uB(n)) and y = d2B(n). Also, let us define C3 = C1
β0p(n)
σ2

and C4 = C2
β0p(n)
σ2 , both strictly positive for p(n) > 0. Substituting the previous terms
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∇2f(x, y) =

(
∂2f(x,y)
∂x2

∂2f(x,y)
∂x∂y

∂2f(x,y)
∂x∂y

∂2f(x,y)
∂y2

)
=

C4(2xy
κ
2 +2C3x+C4)

x2(xy
κ
2 +C3x+C4)2

κ
2
C4y

κ
2 −1

xy
κ
2 +C3x+C4)2

κ
2
C4y

κ
2 −1

xy
κ
2 +C3x+C4)2

κ
2
(C3x+C4)

(
(1+κ

2
)xy

κ
2 +C3x+C4

)
y2(xy

κ
2 +C3x+C4)2

 .

(A.49)

sT∇2f(x, y)s =

C4s
2
1y

2(xy
κ
2 + 2C3x+ C4) + s22x

2
(
(2C3x+ C4)xy

κ
2 + (C3x+ C4)

2
)
+ C4xy

κ
2 (s1y + s2x)

2

x2y2(xy
κ
2 + C3x+ C4)2

.

into R(n) and dropping the time index n, we obtain R = f(x.y) log2(e) where f(x, y) =

log

(
1 +

(
C3 +

C4

x

)
1

y
κ
2

)
. The Hessian matrix of f(x, y) is included in Eq. (A.49). For any

vector s = (s1, s2)
T, it can be shown that sT∇2f(x, y)s ≥ 0 as included in Eq. (A.50).

Therefore, f(x, y) is convex with respect to x, y, which ultimately implies the convexity of

R(n) as well.

A.11 Proof of Lemma 1

By exploiting the convexity of R(n) as shown in Prop. 7, such a term accepts a lower bound

of the type:

R(n) ≥ Rlb(n) (A.50)

= R(n)− ϕ(n)
(
e−λ(n) − e−λ(n)

)
−

ζ(n)
(
||q(n)− qB||2 − ||q(n)− qB||2

)
, (A.51)

where coefficients ϕ(n) and ζ(n) are provided in Eqs. (A.52) and (A.54), respectively.
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ϕ(n) =
∂R(n)

∂(1 + e−λ(n))
(A.52)

=
β0
σ2p(n)C2

log(2)(1 + e−λ(n))
(
β0
σ2p(n)[C1(1 + e−λ(n)) + C2] + (1 + e−λ(n))dκB(n)

) (A.53)

ζ(n) =
∂R(n)

∂d2B(n)
=

β0
σ2p(n)κ[C1(1 + e−λ(n)) + C2]

2 log(2)d2B(n)
(
β0
σ2p(n)[C1(1 + e−λ(n)) + C2] + (1 + e−λ(n))dκB(n)

)
(A.54)

A.12 Proof of Lemma 2

A similar procedure as the one followed in App. A.10 is considered to show the convexity

of uB(n) =
(H(n)−HB)

dB(n)
with respect to ||q(n) − qB||2. As a consequence, uB(n) accepts the

following lower bound:

uB(n) ≥ ulbB(n) (A.55)

= uB(n)− ψ(n)
(
||q(n)− qB||2 − ||q(n)− qB||2

)
, (A.56)

where the value of ψ(n) is

ψ(n) =
∂uB(n)

∂||q(n)− qB||2
(A.57)

=
H(n)−HB

2(||q(n)− qB||2 + (H(n)−HB)2)
3
2

(A.58)

A.13 Proof of Prop. 8

To solve the power allocation problem, we first formulate the Lagrangian as in (A.59).

Defining wm(n) =
n−D∑
i=1

λi,mαsm(i), the Lagrangian can be rewritten as presented in (A.60)
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L(p(n),λ) =
N∑
n=1

δ(n)p(n) +
N−D∑
n=1

M∑
m=1

λn,m

[
αsm(n)

N∑
i=n+D

δ(i)R(i) +B
(
1− αm(n)

)
−

M∑
l=m

Csl

]
+

N∑
n=D+1

K∑
k=1

λ
′

n,k

(
Ith − p(n)Kk(n)

)
+

N∑
n=D+1

λ
′′

n

(
pmax − p(n)

)
.

(A.59)

L(p(n),λ) =
N∑
n=1

δ(n)p(n) +
N∑

n=D+1

M∑
m=1

wm(n)δ(n)R(n)−

N∑
n=D+1

K∑
k=1

λ
′

n,kp(n)Kk(n)−
N∑

n=D+1

λ
′′

np(n) +Kct, (A.60)

where Kct is a constant term that does not depend on p(n). Taking the derivative with

respect to the optimization variables, p(n), for fixed values of the multipliers, we obtain

dL(p(n),λ)
dp(n)

= δ(n) +
M∑
m=1

wm(n)δ(n)

ln(2)

KB(n)

1 + p(n)KB(n)
−

K∑
k=1

λ
′

n,kKk(n)− λ
′′

n,m = 0. (A.61)

Solving the previous equation for p(n), we obtain:

p(n) =

[ M∑
m=1

wm(n)δ(n)
ln(2)

K∑
k=1

λ
′
n,kKk(n) + λ′′

n − δ(n)
− 1

KB(n)

]+
, (A.62)

for all n = D + 1, . . . , N . The value of a(n) in Eq. (5.44) is therefore:

a(n) =

M∑
m=1

wm(n)δ(n)
ln(2)

K∑
k=1

λ
′
n,kKk(n) + λ′′

n − δ(n)
. (A.63)
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To obtain the Lagrangian multipliers, we aim to solve the dual problem after obtaining the

solution to p(n):

max
λ
L(p(n),λ)

s.t. λ ≥ 0,

(A.64)

which can be efficiently solved by gradient methods and therefore obtain the optimal multi-

pliers λ∗ for fixed p∗(n). Particularly, the ellipsoid method is an enticing solution [106] where

obtaining the subgradient of L(p∗(n),λ) with respect to λ for fixed p∗(n) is a straightforward

calculation given (A.60). Consequently, we use an iterative process between the solutions

obtained in (A.62) and (A.64).

A.14 Proof of Prop. 9

Define the iteration number and the corresponding cost function by j and η(j), respectively.

Next, we get rid of the time index n and represent the cost as a function of the optimization

variables, i.e., η
(
α
(j)
m , q(j), δ(j), H(j), p(j)

)
. The BCD approach followed in Alg. 4 provides the

following inequalities: (i) η
(
α
(j)
m , q(j), δ(j), H(j), p(j)

)
≥ η

(
α
(j+1)
m , q(j), δ(j), H(j), p(j)

)
by solv-

ing (5.23); (ii) applying the SCA technique to the 2D-UAV path and UAV altitude subprob-

lems presented in (5.30) and (5.42), respectively, results in η
(
α
(j+1)
m , q(j), δ(j), H(j), p(j)

)
≥

η
(
α
(j+1)
m , q(j+1), δ(j+1), H(j+1), p(j)

)
, and (iii) optimizing the transmit power in (5.43) results

in η
(
α
(j+1)
m , q(j+1), δ(j+1), H(j+1), p(j)

)
≥ η

(
α
(j+1)
m , q(j+1), δ(j+1), H(j+1), p(j+1)

)
. As a result,

Alg. 4 provides a non-increasing sequence: η(0) ≥ η(1) ≥ · · · ≥ η(∗) where for simplicity η(∗)

is the objective function after convergence. Since the cost function is lower-bounded by a

value of zero, the BCD approach followed by Alg. 4 will converge.
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