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The Emergence of Cultural Attractors:
An Agent-Based Model of Collective Cognitive Alignment

J. Ben Falandays & Paul E. Smaldino

Abstract
Cultural attractor landscapes describe the time-evolution of
cultural variants over transmission events. When variants sit
at a local minimum of a stable attractor landscape, there will
be no cumulative error over transmissions, laying the founda-
tion for cumulative culture. But because cultural attractors are
emergent products of dynamic populations of cognitive land-
scapes, which are in turn emergent products of individual ex-
perience within a culture, stable cultural attractor landscapes
cannot be taken for granted. Yet, little is known about how
cultural attractors form or stabilize. We present an agent-based
model of cultural attractor dynamics, which adapts a cognitive
model of unsupervised learning of phoneme categories in indi-
vidual learners to a multi-agent, sociocultural setting wherein
individual learners provide the training input to each other. We
find that constraints at the level of cognition, development, and
demographic structure determine the tendency for populations
to self-organize into and dynamically stablilize a cultural at-
tractor landscape.
Keywords: cultural evolution, cultural attraction, categoriza-
tion, symbolic cognition, agent-based modeling

Introduction
In research on cultural evolution, there has been a histori-
cal and theoretical divide between approaches that empha-
size information preservation, and those that emphasize in-
formation transformation (Buskell, 2017). The preservative
approach can be identified with Darwinian selectionist the-
ories of culture, which tend to focus on the fitness conse-
quences of cultural phenotypes, and to treat transmission as
analogous to biological inheritance with noise (Boyd & Rich-
erson, 2005). The transformative approach can be identified
with Cultural Attraction Theory (CAT), which emphasizes
that cultural transmission is not a simple copying process, but
rather an active construction process in which cognitive bi-
ases can introduce error (Sperber, 1996). The distribution of
cognitive biases in a population can be thought of as compris-
ing a cultural attractor landscape, whereby some transforma-
tions of artifacts become more likely than others.

The scientific consensus now appears to be that there is
room, and indeed need, for both approaches (Buskell, 2017).
Henrich, Boyd, and Richerson (2008) pointed out that Dar-
winian models of cultural selection are useful precisely be-
cause of the existence of cultural attractors: when attractors
are present, cultural variants will cluster in predictable ways
such that they can effectively be approximated as discrete
traits. This stance puts them in agreement with Claidière,
Scott-Phillips, and Sperber (2014), who argued that perfect
replication is a special case of attraction: when cultural vari-
ants sit at local minima of a stable attractor landscape, there
will be no cumulative transformation of the variant over re-
peated transmissions, allowing pure selection to dominate.
Thus, both schools of thought acknowledge that cultural at-
traction effects are important factors for cumulative culture.

It has been suggested that cultural attractors are not actu-
ally explanations of anything, but rather something to be ex-
plained (Scott-Phillips, Blancke, & Heintz, 2018). Yet sur-
prisingly little attention has been paid to actually explaining
how cultural attractors form, stabilize, or change over time.
The few computational models of cultural attraction that exist
instead treat attractors as if they are independent, pre-existing,
stable entities with their own causal powers (Claidière &
Sperber, 2007; Rafał, 2018; Acerbi & Mesoudi, 2015). In
these models, the primary mechanism invoked is that the like-
lihood of a cultural variant (i.e. a behavior, artifact) being
reproduced in the next generation is dependent on its prox-
imity to an attractor point. As such, these models are little
more than selectionist accounts in new clothes, with the ad-
ditional downside that the forces of selection have now been
abstracted away to a different level of explanation. Because
cultural attractors involve the influence of memories and bi-
ases that are themselves culturally learned, the landscape of
cultural attractors must necessarily emerge from dynamic cul-
tural processes.

Culture is always changing. Therefore, any apparently sta-
ble cultural attractor landscape is only meta-stable, consti-
tuted by a shifting population of many individuals with (at
least partially) plastic cognitive landscapes. A cognitive land-
scape, in turn, refers to a particular system for parsing the
sensory world, storing information, and generating behaviors,
which can be adjusted through learning/development. As cul-
tural artifacts are being produced, they influence the cognitive
landscapes of individuals, which can alter the cultural attrac-
tor landscape at the population level, etc. Furthermore, there
is overwhelming evidence that cognitive processes are mas-
sively interactive and dynamic (Falandays, Batzloff, Spevack,
& Spivey, 2020), meaning cognitive attractor landscapes are
in constant flux over real time and developmental time (Smith
& Thelen, 2003). Viewed in light of this constant culture-
cognition feedback loop, the existence of a stable cultural at-
tractor landscape cannot be taken for granted.

While there exist several computational models of category
formation in groups (Ke, Minett, Au, & Wang, 2002; Steels
& Belpaeme, 2005; Baronchelli, Gong, Puglisi, & Loreto,
2010; Skyrms, 2010; Kirby, 2001; reviewed in Kallens, Dale,
& Smaldino, 2018), this work has tended to abstract over the
issue of cognitive alignment between individuals, instead as-
suming that signals can be reliably transmitted, regardless of
the potential cognitive differences between transmitters and
receivers. For example, a model of the self-organization of
vowel systems in groups from De Boer (2000) makes the as-
sumption that, with just one exposure to a previously unheard
vowel, individuals can readily add a new category to their
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cognitive repertoire that closely matches the new observation.
But since the shaping of cognitive landscapes is an ongoing,
dynamical process, it is not clear when such simplifications
are justified. Furthermore, simply requiring multiple expo-
sures for individuals to acquire new signals, as in a model
by Reali, Chater, and Christiansen (2018), may not do jus-
tice to the way that prior experience shapes future perception
and learning. Even models that account for transmission er-
rors, such as one by Nowak, Krakauer, and Dress (Nowak,
Krakauer, & Dress, 1999), often assume the existence of a set
of possible signals that is available to all agents. Therefore,
existing models do not address how cultural attractor land-
scapes can get off the ground.

In this paper, we present an agent-based model that can ac-
count for the emergence and dynamical stabilization of cul-
tural attractor landscapes. We adapt a model of unsuper-
vised learning of phoneme categories in individual learners
(Toscano & McMurray, 2010) to a multi-agent, sociocultural
setting wherein individual learners provide the training input
to each other. Agents attempt to use their limited cognitive re-
sources to capture the distribution of sensory signals they ob-
serve from neighbors, then use their idiosyncratic perceptual
representations to generate new signals (or more broadly un-
derstood, new actions, artifacts, etc.). Beginning from a state
in which all agents possess a set of randomly distributed cate-
gories of uniform probability, under some conditions popula-
tions self-organize into identifiable, more-or-less stable clus-
ters of signals, which reveal a cultural attractor landscape. We
explore the role of innate cognitive capacities, levels of trans-
mission error, production biases, learning periods, lifespans,
and population sizes to understand the conditions that may
be favorable or unfavorable for cumulative culture to emerge,
via collective cognitive alignment.

For present purposes, we think of the signal clusters that
form as akin to proto-linguistic units, such as a phoneme
set, but they might also be taken to reflect any culturally-
shared pattern of categorical distinctions–that is, those per-
ceptual distinctions that allow the recognition and reproduc-
tion of sensory instances as members of a category. Deacon
(1998) explains how such distinctions are the foundation for
indexical knowledge (i.e. associations between categories),
and in turn how shared categorical and indexical associations
provide the foundation for symbolic communication. How-
ever, the level of categorical perception is relevant for vir-
tually every aspect of culture, not just symbolic communi-
cation, because even seemingly simple, culturally-acquired
behaviors can be ”causally opaque” without relevant back-
ground knowledge, such that naive observers would be unable
to segment, identify and replicate the relevant parts (Csibra &
Gergely, 2011). The collective alignment of categorical per-
ceptual distinctions therefore represents a critical, yet under-
explored issue for cultural evolution.

Model Description1

A schematic of the model dynamics are shown in Fig. 1. The
model population consists of a network of N agents arranged
on a fully-connected network. Agents are tasked with com-
municating and categorizing stimuli from one another. Stim-
uli are represented as points on a two-dimensional2 Euclidean
S × S space (we used S = 100). Each agent i possesses in
memory a set of K categories, where each category j is de-
fined as a two-dimensional Gaussian distribution defined by a
mean µi j , standard deviation σi j, an amplitude φi j and a cor-
relation ρi j between dimensions (though for simplicity, we
chose to keep ρ fixed at 0). Collectively, an agent’s set of
categories is referred to as a mixture of Gaussians (MOG),
and it is the agent’s mental model of the signal space. The
mean of each Gaussian represents the central tendency of the
category (similar to prototypes in some theories of categoriza-
tion), while smaller standard deviations represent more spe-
cific categories. The amplitude φi j represents the prior prob-
ability that a random stimuli is a member of that category,
also known as the base rate of the category. Upon initializa-
tion, the mean of each category for each agent is randomly
drawn from a uniform distribution in [[0, 100][0,100]], with
an initial standard deviation of σinit (an innate inferential prior
expectation). The amplitude of each category is initialized at
1/K, representing the notion that all categories are initially
equally probable. Each agent also possesses an age, which
is the number of time steps for which it has been ”alive.” All
agents are initialized with age 0.

Dynamics of the model occur in discrete time steps, each
of which consists of two stages: communication and repro-
duction. In the communication stage, each agent is selected,
in random order, to communicate a signal to a randomly se-
lected partner. Each agent randomly selects one neighbor
with whom to communicate (the target). The communicator
selects one category from their memory by probabilistically
sampling a category based on the prior probability distribu-
tion over categories, which is defined by the amplitude coef-
ficients of each Gaussian. The communicator then generates a
signal by probabilistically sampling a point stimulus from the
selected category (so that the most maximally likely stimulus
is the category’s mean value). Communicating a signal in-
volves two potential sources of deviation from the category’s
distribution as it is stored in memory. First, a “prototype bias”
parameter A in [0, 1] induces a bias towards the mean of the
category. In production, the standard deviations of the se-
lected category in each dimension are scaled by 1−A. This
means that as A approaches 1, agents always produce the
mean values of the selected category (because the scaled σ’s
are 0), effectively implementing a “prototype” model in pro-

1The code to run this model is available
as a Jupyter notebook on our Github page:
https://github.com/bfalandays/CulturalAttractorDynamics

2Note that while we do not expect the qualitative patterns of our
model to be dependent upon restricting the signal space to two di-
mensions, the effect of adding additional dimensions has yet to be
systematically explored.

549



0 25 50 75 100

x

Fr
eq
ue
nc
y

Blue agent randomly selects red 
agent for interaction, then selects 

the blue-highlighted category (with 
probability based on frequency) from 
which to produce a signal. The signal 
is then randomly sampled from the 

selected category.
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Red agent categorizes the 
stimulus (true value shown in 

dashed blue line) as belonging to 
the red-highlighted category, as 

this category has the highest 
posterior probability of 
containing the signal.

After learning, all categories have 
adjusted their means and standard 
deviations, with the magnitude of 

change dependent on each category’s 
posterior probability of containing the 

signal. Only the winning category 
increases in frequency, while others 

decrease.

Learning

Communicator

Receiver

1

2

3

Step 1: All agents have a turn as communicator

Step 2: Deaths and births

Replacement

Each agent has a probability 1/L 
of dying on each iteration, where 

L is the expected lifespan.

Any agent that dies is replaced, in 
the same position on the 

network, by a newly initialized 
agent, with randomly distributed 
categories of uniform frequency.

Figure 1: An illustration of the model dynamics. Note that,
for ease of visualization, cognitive landscapes are illustrated
here as a mixture of 1-D Gaussians, when the actual model
used 2-D Gaussians.

duction. On the other hand, as A approaches 0, the proba-
bility density function of possible signals approaches the full
Gaussian distribution observed by the agent. The A parame-
ter is intended to capture the fact that production of a category
within an individual i is less variable than production of that
category across observations i has made of other individu-
als. For example, while it is easy to recognize the same word
produced by many speakers with different accents, a single
individual will typically produce the word with only one ac-
cent. Second, after a “raw” signal is generated by an agent,
transmission noise is added, which is here implemented as
Gaussian noise with µ = 0 and σ =W .

Upon receiving a signal from a communicator, the target
agent uses Bayesian inference to categorize the signal and
adjust the parameters of their MOG representation in mem-
ory. The target first maps the signal as a member of the most

likely of its own stored categories, then updates the properties
of its categories to reflect this new information. Critically, up-
dating of the frequency parameter of Gaussians occurs based
on winner-take-all competition, such that only the most likely
Gaussian for a signal increases in frequency, while all other
decrease slightly. Because the mathematical description of
the learning process is somewhat complicated, for considera-
tions of space we refer interested readers to the learning rules
as described in Toscano & McMurray (2010).

After each agent has had the opportunity to communicate
(not all agents will receive a signal, and some will receive
multiple signals on a given time step), the reproduction stage
occurs. On each step, each agent has a probability of 1/L
of dying, giving an expected lifespan of L iterations. Any
agent who dies is removed from the simulation and replaced
by a new agent, initialized in the same way as agents at the
beginning of each simulation. We also explored the influence
of a ”critical period” for learning, implemented by turning off
learning for agents over C iterations in age.

Simulation Experiments
Baseline Model: Qualitative Analysis and
Visualization
In order to understand the influence of informational bottle-
necks at the cognitive, developmental, and demographic lev-
els on the tendency to self-organize into a stable cultural at-
tractor landscape, it will be helpful to first qualitatively ana-
lyze the behavior of a baseline model. The parameters used
in the baseline model are presented in Table 1, in bold font.

Fig. 2 provides a representative illustration of the behav-
ior of the model. The model begins with all agents possess-
ing a set of equal-frequency Gaussians, uniformly distributed
throughout the signal space. Over the first 5000 time steps,
we can see the beginnings of cultural attractors emerging, as
nearby Gaussians begin to converge over the course of com-
munication and learning. By 10,000 time steps, a clearly
distinguishable set of tight clusters have emerged, though
there remain some looser clouds of low-frequency categories,
driven by new learners entering the population. At this point,
the qualitative structure of the clustering pattern remains sta-
ble, but clusters continue to drift around the signal space
stochastically. Some categories move too near to each other
and merge3, while new clusters emerge to fill empty spaces.
In other words, the dynamics of the baseline model result in
a number of discriminable, roughly-shared perceptual cate-
gories (i.e, cultural attractors) emerging in the population.
However, these patterns are unstable, which would likely im-
pact their utility as scaffolds for other cultural constructions.

3Note that categories at the level of agents do not merge. Instead,
if two categories become too close to each other, they will compete
within an agent’s MOG, which can result in one category increasing
in frequency while the other diminishes. On the other hand, the cate-
gories detected at the population scale, using the k-means algorithm,
do not directly compete, and thus may be described as ”merging”
when the algorithm detects two nearby clusters at one time point,
but detects only a single cluster at a subsequent time point that en-
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Figure 2: The states of all Gaussian across all agents in a pop-
ulation at nine time points of one run. Colors correspond to
different agents. Each agent has multiple categories in their
MOG, which correspond to individual points of a given color.
The size of points is proportional to the SD of the category,
and the transparency (alpha value) of the points is propor-
tional to the frequency of the category, such that infrequent
categories become more transparent.

Outcome Measures
Our model of the emergence of cultural attractors is not a
model of cultural evolution per se, due to the fact that our at-
tractors are currently completely arbitrary and fitness neutral.
Rather, it is a model of the emergence of some of the precon-
ditions for cultural evolution to take place: shared perceptual
biases (e.g., analogical categories, iconic distinctions) that al-
low for cultural variants to be faithfully transmitted (Brand,
Mesoudi, & Smaldino, 2021). In other words, cultural attrac-
tor dynamics are necessary but not sufficient to explain cumu-
lative culture, which requires at minimum the additional step
of mapping the attractor landscape onto a fitness landscape.
As a first step towards this, our goal at present was to charac-
terize the behavior of the model in ways that plausibly relate
to the potential for cumulative culture under various parame-
ter settings. To this end, we considered a number of measures
related to the 1) complexity, 2) discriminability, 3) stability,
and 4) conformity (i.e. degree of inter-agent agreement) with
respect to the inferred attractor landscape. We expect these
outcomes may be relevant in different ways for different cul-
tural domains or problem spaces, and hence at this level of

compasses the former two.

generality we cannot yet say which outcome patterns are ”op-
timal” for cumulative culture.

To obtain our measures, the model was observed every
1000 time steps by generating 500 signals from each agent
(using the same method as for communication). Additionally,
the state of all agents’ MOGs was recorded at the end of each
run, in order to characterize cognitive patterns at the agent
level. To characterize the emergent cultural attractor land-
scape at the population level, at each time slice of the data
we applied the k-means algorithm. To determine the optimal
value for k, the partition was calculated at each evaluated time
point using values of k ranging from 1-50. We then used the
gap statistic (Tibshirani, Walther, & Hastie, 2001) to select
the optimal value of k at each timepoint.

Based on the obtained optimal k-means partition at each
time step, we operationalized the complexity of the attrac-
tor landscape as the Shannon Entropy of the frequency dis-
tribution over clusters. The discriminability of clusters was
operationalized as the silhouette coefficient for the optimal k-
means partition of each sample of signals, a common metric
for validating clustering schemes. This value ranges between
[−1,1], with values near 1 indicating well-separated clusters.

Next, to examine the relative stability of the population
signal distribution, we adopted a dissimilarity metric for
probability distributions known as the earth mover’s distance
(EMD). The EMD can be understood by imagining differ-
ent probability distributions as different ways of piling up an
amount of dirt (or “earth”). The dissimilarity between two
distributions can be thought of as the minimal cost of mov-
ing one pile of dirt—a reference distribution—such that it
is transformed into a differently-shaped pile of dirt—a tar-
get distribution. Because our signal space is continuous, to
compute this measure we first constructed a discrete proba-
bility distribution based on the full set of signal samples at
each time point. The signal space was divided into a grid
of 20 × 20 evenly-spaced points (each square being 5 × 5)
and the number of observations in each square was counted,
creating a 2-D histogram. We then computed the EMD be-
tween the population distribution at each timepoint t to the
same population at time t - 1 (therefore there is no measure
taken at time 0). This provides a measure of the change in the
population distribution over the time between each evaluated
timepoint (the model was evaluated every 1000 timesteps).

Finally, to examine the conformity in cognitive biases
across agents, we computed the average dissimilarity of the
distribution of signals generated by an individual agent to the
distribution generated from the rest of the population. We will
refer to this as “nonconformity,” because this term captures
the notion of divergence from a population norm. To com-
pute this metric, we again used the EMD described above. At
each evaluated timepoint, a 2-D histogram was constructed
from the signal samples from each individual agent i in a
population of size N, and was compared to another histogram
was constructed from the signal samples corresponding to ev-
ery agent besides the focal agent (similar to the “jackknife”
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resampling technique). Finally, we took the average of these
values across agents, which provides a measure of the relative
conformity vs. idiosyncracy, or generalization vs. specializa-
tion, in a population.

Data Normalization In order to understand the impact of
each informational bottleneck at the cognitive, developmen-
tal, or demographic scale, we varied parameters one at a time
from the parameter settings in the baseline model. The full
set of parameters explored are presented in Table 1. Learn-
ing rates were held fixed across runs. In order to summarize
the results, we first standardized all independent and depen-
dent variables to allow for comparison. We next extracted
the mean value for each outcome measure, over the second
half of each of run (100 runs were conducted per parameter
value). Then, all parameters were entered as predictors into
a linear regression, treating each outcome measure as the de-
pendent variable in turn. Finally, we extracted the regression
coefficients for each parameter with respect to each outcome
measure. These results are plotted in Fig. 3, which allows for
a rough comparison of the impact of each parameter on each
outcome measure. While this is a necessary simplification for
purposes of space, it should be noted that several of our pa-
rameters show non-linear, threshold-like effects with respect
to some outcome measures, which are of course not captured
by linear regression, and will require more fine-grained anal-
ysis the future.

Table 1: Variable model parameters. The values used in the
baseline model are presented in bold font.

Parameter Values Explored
K (MOG size) 10, 20, 30
σinit (Init. cat. S.D.) 1, 5, 10
A (Prototype bias) 0, .25, .75, 1
W (Trans. noise) 0, 3, 10
C (Crit. period len.) 2500, 5000, 10000, 20000, 40000
L (Exp. lifespan) 5000, 10000, 15000
N (Pop. size) 10, 25, 50, 100, 200

Results and Discussion

To unpack our initial findings, we proceed upwards from the
scale of cognitive constraints, to the level of development, and
finally to the level of demographic constraints. Beginning
at the cognitive level, the first relevant parameter is K, the
number of Gaussians available in each agents MOG, which
corresponds to memory resources. K shows an intuitive pos-
itive relationship with complexity–when agents have greater
memory resources, populations sustain more complex reper-
toires. We also observe greater stability and conformity as K
increases. This is due to the fact that, as agents have more
memory resources available, they are more quickly and com-
pletely able to attune to the population distribution of signals.
While fitness consequences are not currently represented in

our model, we expect that increased memory resources come
at a greater metabolic cost. As such, in future explorations
this parameter can allow for examining the co-evolution of
culture and the brain. This finding can also complements pre-
vious work showing how neural and cognitive limitations in-
fluence collective categorical alignment, such as the way that
the just-noticeable-difference in human color perception can
be sufficient to trigger cross-cultural patterns of color cate-
gorization (Baronchelli et al., 2010; Puglisi, Baronchelli, &
Loreto, 2008; Gong, Gao, Wang, & Shuai, 2019).

Figure 3: The estimated effect size of each IV on each DV
based on linear regression, after standardizing all variables.

Another constraint at this level relates to the fact that a only
a finite number of signals will be observed by any agent, in-
troducing a role for cognitive ”priors” to guide inference: be-
cause learners are not exposed to all possible signals, repeated
inference processes can lead population distributions to con-
verge towards prior expectations (Kirby, Cornish, & Smith,
2008). In our model, priors are implemented with the σinit pa-
rameter (as well as the initial locations of Gaussians, though
this is currently random rather than inherited), which deter-
mines the expected variability of categories. We find that
increasing σinit from the baseline value of 5 to a value of
10 has little impact on final outcomes, while decreasing σinit
from 5 to 1 results in a collapse of the cultural repertoire to-
wards a single, central attractor (though this non-linearity is
not well revealed by Fig. 3). This threshold effect occurs
because when categories are initially very tight, they act as
extremely powerful cognitive attractors, heavily concentrat-
ing activation (on the basis of input) to just one category at a
time. These extreme competition effects eventually result in
only one major attractor in the global space.

The next set of parameters can be grouped as sources of
transmission noise. We considered both general transmis-
sion noise (W ) and noise introduced by production biases (A).
Note that the prototype bias parameter, A, is functionally the
inverse of the noise parameter W (greater values of A reduce
variability around the mean, while greater values of W in-
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crease variability), which is consistent with the inverse pat-
terns revealed in Fig. 3. In our model, we find that sources of
noise modulate a trade-off between complexity and discrim-
inability, or stability and conformity. By limiting the fidelity
of transmission, low-moderate levels of noise make signalling
less precise, which slows learning rates and thereby stabilizes
the global pattern. This helps to promote cognitive confor-
mity across individuals. However, too much noise limits the
discriminability of categories, and therefore the complexity
of the population-level clustering scheme–when categories
are highly variable, fewer of them can be maintained in the
same space. This result complements a point made in the
literature on ”stochastic resonance” that some noise is crucial
for the stability and sensitivity of complex dynamical systems
(Wiesenfeld & Moss, 1995; Turner & Smaldino, 2018).

Proceeding to the developmental scale, we next consider
the effect of a critical period for learning (C) as well as
the expected lifespan of individuals (L). In the case of cul-
ture, where meaningful distinctions may be fine grained and
rapidly changing, investment in learning is critical. However,
time spent learning is costly and detracts from reproduction,
therefore longer learning times should be selected against,
all else being equal (Hurford, 1991). This means that a cul-
tural repertoire is constrained to being learnable, but the ex-
istence of the repertoire may itself drive selection for greater
investment in learning, which then allows for more complex
culture, and so on. Furthermore, individuals must live long
enough to transmit what they have learned, else the culture
will simplify or dissipate entirely.

We find that the presence of a critical period substantially
enhances the stability of the attractor landscape over time.
Shorter learning times also can increase the complexity of the
landscape (seen as a negative effect of critical period length
on complexity in Fig. 3). However, if learning times are
too short (e.g. 2500 time steps in our model), this leads to
a potential cost in terms of decreased discriminability of cat-
egories and increased non-conformity, as individuals are un-
able to converge to the dominant global pattern before the
critical period closes (note that this non-linearity is not well
revealed by Fig. 3). On the other hand, when learning pro-
ceeds over the entire lifespan, we find that longer lifespans
result in a decrease in complexity at the population-level,
which is attributable to competition between categories–the
more time spent learning, the more categories that will be
irrecoverably suppressed. With fewer categories, those that
remain then become more discriminable. These findings add
to a growing body of work on the evolution of critical or sen-
sitive periods (Frankenhuis & Walasek, 2020) by suggesting
that, in the case of culture, long learning times may not be se-
lected against only due to metabolic costs, but also by virtue
of their role in stabilizing a cultural attractor landscape.

Finally, at the demographic level, we considered the in-
fluence of population size N. Population size and/or den-
sity are considered important factors for cultural evolution
because these parameters constrain the number of neighbors

from which an individual may learn, which can limit the com-
plexity sustainable by a population (Henrich, 2004). In our
model, we find that smaller populations are able to main-
tain slightly more complex distributions, but that distribu-
tions are substantially more stable within large populations.
This is the inverse pattern typically pointed to in the litera-
ture (larger populations are thought to sustain more complex
repertoires), but we again point out that our cultural attractor
landscapes represent shared perceptual, categorical distinc-
tions, whereas the cultural variants referred to in the litera-
ture on population size/density are generally combinatorial
productions scaffolded by iconic distinctions (i.e. tools). As
such, this finding is not contradictory to previous work, and
instead suggests interesting relationships between the com-
plexity of perceptual category repertoires, and the complexity
of the combinatorial repertoires they support.

Conclusion and Future Directions
While much of the work on the cultural evolution of arbitrary
conventions has focused on the mapping between signals and
meanings, taking for granted a shared set of perceptual cat-
egories as a starting point, we have tried to show that this
is not trivial issue. It is only when factors at multiple lev-
els of analysis dynamically constrain the degrees of freedom
in cultural transmission in complementary ways that a shared
set of cultural attractors may form and stabilize, which can
then provide the foundation for selection on symbolic sys-
tems (Jablonka & Lamb, 2014; Deacon, 1998). Viewing cul-
tural attractor landscapes as a complex system of interact-
ing constraints allows for straightforward integration of CAT
with Darwinian selectionist accounts: fitness-based selection
effects can be understood as yet another constraint promot-
ing the formation of statistical attractor points. As such, we
believe this model may be useful for researchers interested
in the co-evolution of innate cognitive biases, developmental
tendencies, and demographic structure with culture.

Our model can be straightforwardly extended to incorpo-
rate biological inheritance of cognitive priors and/or devel-
opmental hyper-parameters, as well as to include fitness con-
straints, by placing our agents into any type of evolutionary
or communicative game. As such, our model can be used
to simulate the operation of selectionist dynamics and trans-
formative dynamics simultaneously. A next step will be to
allow agents to generate sequences of signals, allowing us to
examine the entanglement between perceptual and combina-
torial/syntactic cognition in cultural attractor dynamics.
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