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Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a
limited number of risk factors and have had low discriminatory power (area under the receiver operating character-
istic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model
that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide poly-
morphisms (SNPs) using data from 11 case-control studies in the United States (5,793 cases; 9,512 controls)
from the Ovarian Cancer Association Consortium (data accrued from 1992 to 2010). We developed a hierarchical
logistic regression model for predicting case-control status that included imputation of missing data. We randomly
divided the data into an 80% training sample and used the remaining 20% for model evaluation. The AUC for the
full model was 0.664. A reduced model without SNPs performed similarly (AUC = 0.649). Both models performed
better than a baseline model that included age and study site only (AUC = 0.563). The best predictive power was
obtained in the full model among women younger than 50 years of age (AUC = 0.714); however, the addition of
SNPs increased the AUC the most for women older than 50 years of age (AUC = 0.638 vs. 0.616). Adapting this
improved model to estimate absolute risk and evaluating it in prospective data sets is warranted.

genetic risk polymorphisms; model evaluation; ovarian cancer; risk model

Abbreviations: AUC, area under the curve; COGS, Collaborative Oncological Gene-Environment Study; EOC, epithelial ovarian
cancer; GWAS, genome-wide association study; MCMC, Markov chain Monte Carlo; MHT, menopausal hormone therapy; OC,
oral contraceptive; OCAC, Ovarian Cancer Association Consortium; ROC, receiver operating characteristics; SNP, single
nucleotide polymorphism.

More than 21,000 cases of ovarian cancer and 14,180
deaths from ovarian cancer were expected in 2015,
accounting for 5% of cancer deaths among women; most
were expected to be cases of epithelial ovarian cancer

(EOC) (1). The 5-year survival rate for localized ovarian
cancer is 92%, but most cases are diagnosed at a distant
stage at which 5-year survival is only 27% (2). EOC has
no specific symptoms, and no screening or early detection
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measures have been adopted clinically, making disease pre-
vention and identification of high-risk women key to reduc-
ing mortality (1).

Risk prediction models provide objective estimates for
use in clinical decision-making, identification of highest-
risk individuals who can benefit from preventive measures,
development of preventive intervention studies at the popu-
lation level, and creation of risk-benefit indices (3). Risk
prediction for EOC is challenging because of its rarity
and the modest associations of most known risk factors,
although several well-established risk factors have been
identified. Oral contraceptive (OC) use (4), parity (5), and
tubal ligation (6, 7) are inversely associated with EOC risk;
family history of breast and/or ovarian cancers are posi-
tively associated with risk (8). Older age at menarche
and use of menopausal hormone therapy (MHT) (particularly
estrogen-only therapy) have been associated with a higher
EOC risk, whereas breastfeeding and hysterectomy have
been associated with a lower risk in some but not all stud-
ies (6, 9–16). Although results have been inconsistent, in a
recent report of 12 population-based case-control studies,
investigators concluded that aspirin use was associated
with reduced EOC risk (17). Further, endometriosis has
been associated with risk of low-grade serous, endome-
trioid, and clear-cell EOC (18, 19).

EOC risk models generally have low discrimination
(area under the receiver operator characteristic curve
(AUC) < 0.60), which may be partly due to exclusion of
women who report premenopausal hysterectomy (with or
without unilateral oophorectomy), incomplete inclusion of
risk factors (e.g., tubal ligation), or the specific subpopula-
tions in which the model was evaluated (e.g., women hav-
ing a hysterectomy or women with symptoms) (20–25).
Although some existing risk models specifically address
risk among carriers of the mutation in the breast cancer 1
and breast cancer 2 genes (BRCA1 and BRCA2) (26, 27),
mutations are rare in the general population; prior models
for women of average risk have not considered genetic sus-
ceptibility. Given the 17 confirmed genetic variants related
to EOC (28–34), our objective was to develop and inter-
nally validate a relative risk prediction model for invasive
EOC among women of average risk that incorporated all
established and strongly probable epidemiologic risk fac-
tors and genetic data from 11 case-control studies in the
United States that are members of the Ovarian Cancer
Association Consortium (OCAC).

METHODS

Study populations and inclusion criteria

The analysis included 11 US-based case-control studies
in the OCAC in which data were accrued from 1992–2010
(Table 1) (14, 35–45). All studies were population-based
except for the Mayo Clinic Ovarian Cancer Case-Control
Study (MAY), which was clinic-based; in that study, con-
trols were women attending the Mayo Clinic’s Departments
of Family Medicine and General Internal Medicine for gen-
eral medical examinations. All studies had ethics board
approval and obtained written informed consent. Data were

included for women who were 30 years of age or older at
diagnosis (cases) or interview/reference date (controls), had
no prior history of cancer (except nonmelanoma skin can-
cer), and self-identified as white, non-Hispanic; most
women were confirmed to be of European ancestry by
genetic analysis. Control subjects had to have at least 1
intact ovary, and case patients had invasive EOC. Most case
patients (81%) were recruited within 1 year of diagnosis.
After exclusions, the analysis included data from 5,793
invasive EOC cases and 9,512 controls. We randomly sam-
pled 80% of the participants (n = 12,244) for estimation
and model building; the remaining 20% (n = 3,061) were
retained for independent validation.

Risk factor data

Risk factors from each study, as well as demographic
and clinical variables, were submitted to the OCAC data
coordination center at Duke University, where common
coding schemes were applied; data were originally col-
lected via questionnaire. Data on the following risk factors
were available in the majority of studies: age at menarche
(continuous years); OC use (ever vs. never); duration of
OC use (continuous months); aspirin use (low dose, high
dose, or irregular/no use); number of full-term pregnancies
(continuous), number of non–full-term pregnancies (contin-
uous variable; derived by subtracting parity from number
of pregnancies); breastfeeding status (ever vs. never); dura-
tion of breastfeeding (continuous months); age at end of
last pregnancy (continuous years); tubal ligation (yes vs.
no); hysterectomy more than 1 year prior to diagnosis
(cases) or interview/reference age (controls) (yes vs. no);
endometriosis (yes vs. no); body mass index within 5 years
of diagnosis/interview; menopause status at diagnosis
(cases) or interview/reference age (controls) (premeno-
pausal vs. postmenopausal); MHT use (ever vs. never);
type of MHT (unopposed estrogen replacement therapy
only vs. all other MHT use); history of breast cancer in a
first-degree relative (yes vs. no); and history of ovarian
cancer in a first-degree relative (yes vs. no). We considered
additional potential risk factors (e.g., nonsteroidal antiin-
flammatory drug use, age at tubal ligation, age at meno-
pause, and duration of MHT) that were ultimately not
included because they were not significant predictors of
EOC in preliminary models and were missing for a large
percentage of participants. Because of frequency matching,
age was included in all models to avoid bias (46), as were
random effects for study sites.

Genetic susceptibility data

The OCAC evaluated 23,239 single nucleotide poly-
morphisms (SNPs) in 43 individual studies that were
grouped into 34 case-control strata; 2 previous genome-
wide association studies (GWAS) informed the OCAC-
specific SNP selection for the Collaborative Oncological
Gene-Environment Study (COGS) (34). Analysis of the
GWAS and COGS genotype data resulted in identification
and confirmation of 17 susceptibility loci (Web Table 1,
available at http://aje.oxfordjournals.org/) (28–34) that are
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Table 1. Description of 11 Case-Control Studies Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model From the Ovarian Cancer Association Consortium,
1992–2010

First Author, Year
(Reference No.) Study Name Study

Acronym Location Period of
Ascertainment

Median
Age, years

Age Range,
years

No. of
Controls

No. of
Cases

Response
Rate, %a

Controls Cases

Risch, 2006 (41) Connecticut Ovarian Cancer Study CON CT 1998–2003 55 34–81 466 318 61 69

Rossing, 2007 (14) Diseases of the Ovary and Their
Evaluation

DOV Western WA 2002–2009 57 35–74 1,527 894 62 74

Lurie, 2008 (38) Hawaii Ovarian Cancer Case-Control
Study

HAW HI, southern CA 1993–2008 57 30–90 345 236 80 78

Lo-Ciganic, 2012 (37) Novel Risk Factors and Potential Early
Detection Markers for Ovarian
Cancer

HOP Western PA, northeast OH,
western NY

2003–2009 57 30–94 1,561 570 68 71

Kelemen, 2008 (36) Mayo Clinic Ovarian Cancer Case-
Control Study

MAY IA, IL, MN, ND, SD, WI 2000–2010 60 30–92 842 533 58 91

Schildkraut, 2010 (42) North Carolina Ovarian Cancer Study NCO NC 1999–2008 57 30–75 751 651 60 67

Terry, 2005 (43) New England Case-Control Study of
Ovarian Cancer

NEC NH, eastern MA 1992–2003 54 30–78 1,067 704 64 71

Bandera, 2011 (35) New Jersey Ovarian Cancer Study NJO NJ 2002–2008 60 30–87 336 185 40 47

McGuire, 2004 (39) Genetic Epidemiology of Ovarian
Cancer Study

STA San Francisco Bay Area, CA 1997–2001 50 30–65 330 276 75 75

Ziogas, 2000 (45) University of California Irvine Ovarian
Study

UCI Southern CA 1993–2005 56 30–86 505 318 80 67

Pike, 2004 (40);
Wu, 2009 (44)

Los Angeles County Case-Control
Studies of Ovarian Cancer

USC Los Angeles County, CA 1992–2002 57 30–85 1,782 1,108 72 60

Abbreviations: CA, California; CT, Connecticut; HI, Hawaii; IA, Iowa; IL, Illinois; MA, Massachusetts; MN, Minnesota; NC, North Carolina; ND, North Dakota; NH, New Hampshire; NJ,
New Jersey; NY, New York; OH, Ohio; PA, Pennsylvania; SD, South Dakota; WA, Washington; WI, Wisconsin.

a Response rates were calculated differently across studies; algorithms are available upon request.
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included in our risk prediction model. Some, but not all,
participants from the studies in our analysis contributed to
the GWAS genotyping efforts (Mayo Clinic Ovarian
Cancer Case-Control Study, North Carolina Ovarian
Cancer Study (NCO), New England Case-Control Study of
Ovarian Cancer (NEC)) and COGS (all studies except the
Connecticut Ovarian Cancer Study (CON)), requiring
imputation of missing SNPS for the remaining women.

Statistical analysis

We used generalized additive models (R package mgcv;
R Foundation for Statistical Computing, Vienna, Austria)
(47–49) with random effects for study site, fixed effects for
categorical variables and SNPs, and smooth nonparametric
functions for continuous variables for exploratory model
fitting using subjects with complete data. Some evidence
supports the idea that risk factor associations may vary by
menopausal status (50). However, because age at meno-
pause was missing for 59% of the postmenopausal women
and is difficult to determine for some women because of
premenopausal hysterectomy and hormone use, we fit sepa-
rate models for women younger than 50 years of age and
women 50 years or older. The generalized additive models
suggested that nonlinear functions of the continuous vari-
ables could be approximated with linear functions of the
variables (P > 0.05) except for duration of OC use. The
square root of OC use duration did not produce a signifi-
cant increase in the deviance compared with using the
spline terms (P = 0.2265), and a linear term for OC use
duration was rejected (P = 0.0114). We retained linear
terms with the original continuous variables except for
duration of OC use, for which we used the square root
transformation. Nulliparity was included as a term for inter-
action with all variables that were not defined for nullipa-
rous women (age at last pregnancy, breastfeeding, and
breastfeeding duration).

Some data were missing for all risk factors except age;
80% of the participants were missing information on at
least 1 risk factor (Table 2). Rather than limit our analysis
to participants with complete data or drop risk factors from
the model, we developed a Bayesian model (51) that pro-
vided a coherent sequence of conditional models for case-
control status, the risk factors, and indicators of whether
they were missing (in the case of data not missing at ran-
dom) (52). Missing risk factors and indicators were mod-
eled as functions of other risk covariates and of education
level, smoking status, and alcohol use (Table 3). The joint
model specification for the risk factors and ovarian cancer
status allowed all observed data to be incorporated and
simultaneous inference for model parameters and missing
data via Markov chain Monte Carlo (MCMC) using JAGS
(Vienna, Austria) (53). The increased sample size obtained
by using participants with partial information can increase
power, whereas the multiple imputations through MCMC
provide valid confidence intervals for statistical inference
by addressing uncertainty in the missing values and reduc-
ing bias induced by complete case analyses when data are
not missing at random (54).

The first stage Bernoulli models expressed the log odds
of the probability of EOC (π_i) as

⎛
⎝⎜

⎞
⎠⎟ ∑ ∑π

− π
= α + β + β ( )

=

Z Xlog
1

1i

i

g

j
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i j j
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for the 2 groups (denoted by g) via a generalized linear mixed
model with random effects for the 11 studies to account for
differential baseline odds due to study design, as follows:

α ∼ (μ σ ) ( )N , , 2g ind
sitesite site
2

i

and random effects to account for birth cohort (c), as follows:

β ∼ (β σ ) ( )N , 3j c
g ind

j
g

j,
2

i

for the 6 hormonally-related covariates Z (i.e., indicator of
OC use, square root of OC use duration, indicator of MHT
use, indicator of type of MHT use, interaction of the indica-
tor of hysterectomy with MHT use, and type of MHT use) to
allow potential birth year differences due to formulation
changes, and finally fixed effects for the remaining risk fac-
tors in X in each group (17 epidemiologic risk factors
and the 17 SNPs). All of the group-specific means, β j

g, for
random-effects and fixed-effects coefficients for the other ex-
posures were given independent normal prior distributions,
with a mean βj and a prior standard deviation of 1, which re-
flected the expectation that population log odds ratios should
be well within plus or minus 2 based on prior estimates and
standard deviations from the literature. For the 17 SNPs, we
used informative prior distributions based on log odds ratios
from the GWAS and COGS samples independent from the
11 studies included in model development (Web Table 2).
The hierarchical formulation allows coefficients to “shrink”
to common coefficients across sites, cohorts, and age groups
if significant variation is not present but provides flexibility
to account for differences among groups while avoiding is-
sues of multiple testing. Distributions for the missing data
models are given in Table 3. For example, missing SNPs
were modeled using a multinomial model with the probabili-
ties for the number of rare alleles given an informative
Dirichlet prior distribution centered at genotype probabilities
assuming Hardy-Weinberg equilibrium and a mass parameter
in the Dirichlet equivalent to 1,000 observations; genotype
probabilities were calculated using the minor allele frequen-
cies estimated from GWAS and COGS samples from OCAC
not used in this analysis (Web Table 2). Combined with
genotype, other risk variables, and case-control status, miss-
ing SNPs were generated using their respective predictive
distributions given the observed data and values of para-
meters at each iteration in the Markov chain.

Models with and without the SNPs were fit to the train-
ing data (random sample of 80%) and used to predict case-
control status in the validation data (remaining 20%).
Inference was based on 70,000 iterations of the MCMC
algorithm. The first 20,000 iterations were used to assess
convergence of the MCMC and the last 50,000 were used
for inference with the training data and predictions in the
validation set. Point estimates of log odds ratios were
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Table 2. Frequency Distributionsa of Risk Factors Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model by Case-
Control Status for the Training and Evaluation Sets, From 11 Case-Control Studies, 1992–2010

Risk Factors Included in Model

Training Set Evaluation Set

Controls (n = 7,586) Cases (n = 4,662) Controls (n = 1,926) Cases (n = 1,131)

Mean (SD) No. % Mean (SD) No. % Mean (SD) No. % Mean (SD) No. %

Age at diagnosis/interview, years 56.2 (11.6) 57.58 (10.9) 56.69 (11.7) 57.51 (10.9)

Age at menarche, years 12.7 (1.6) 12.6 (1.5) 12.7 (1.5) 12.6 (1.5)

Missing age 63 1 95 2 19 1 28 2

OC use

Ever used 5,341 70 2,750 59 1,350 70 682 60

Missing OC use 69 1 58 1 12 1 16 1

Months of OC use 74.7 (69.4) 57b 58.3 (61.3) 36b 76.3 (70.9) 58b 59.1 (55.0) 48b

Missing months of OC use 89 1 79 2 19 1 21 2

Pregnancy history

No. of full-term pregnancies 2.2 (1.5) 1.9 (1.6) 2.2 (1.6) 1.9 (1.5)

Missing no. of full-term
pregnancies

44 1 31 1 8 <1 10 1

No. of pregnancies 3.2 (1.7) 3.0 (1.7) 3.2 (1.7) 2.9 (1.6)

Missing no. of pregnancies 45 1 31 1 8 <1 10 1

Non–full-term pregnancies 0.65 (1.1) 0.52 (1.0) 0.60 (1.0) 0.53 (1.0)

Missing no. of non–full-term
pregnancies

45 1 31 1 8 <1 10 1

Age at end of last pregnancy,
years

30.5 (5.5) 29.5 (5.6) 30.7 (5.5) 29.8 (5.7)

Missing age at end of last
pregnancy

638 8 413 9 162 8 94 8

Breastfeeding

Ever breastfed 3,250 43 1,507 32 799 41 393 35

Missing breastfeeding status 1,201 16 621 13 306 16 128 11

Months of breastfeeding 14.2 (16.3) 11.6 (15.8) 14.7 (15.8) 10.8 (12.7)

Missing breastfeeding duration 1,203 16 623 13 306 16 128 11

Tubal ligation

Had tubal ligation 1,585 21 709 15 380 20 185 16

Missing information 892 12 329 7 232 12 70 6

Endometriosis

Had endometriosis 585 8 475 10 137 7 124 11

Missing information 354 5 367 8 78 4 93 8

Family history (first-degree
relative)

Breast cancer 1,073 14 760 16 277 14 167 15

Missing breast cancer history 305 4 247 5 82 4 65 6

Ovarian cancer 202 3 239 5 55 3 53 5

Missing ovarian cancer history 397 5 284 6 99 5 78 7

BMIc

BMI 26.44 (6.11) 26.82 (6.42) 26.50 (6.09) 26.47 (6.12)

Missing BMI 342 5 275 6 74 67 6

Aspirin use

Irregular or no use 3,786 50 2,349 50 975 51 572 51

Regular user of low-dose
aspirin

186 3 64 1 46 2 19 2

Regular user of high-dose
aspirin

247 3 103 2 49 3 38 3

Missing aspirin use 3,367 44 2,146 46 856 44 502 44

Table continues
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Table 2. Continued

Risk Factors Included in Model

Training Set Evaluation Set

Controls (n = 7,586) Cases (n = 4,662) Controls (n = 1,926) Cases (n = 1,131)

Mean (SD) No. % Mean (SD) No. % Mean (SD) No. % Mean (SD) No. %

Menopausal status

Postmenopausal 4,818 64 3,215 69 1,247 65 774 68

Missing menopausal status 174 2 72 2 46 2 20 2

Hysterectomy

Had hysterectomyd 1,015 13 738 16 248 13 167 15

Missing information 147 2 595 13 36 2 151 13

MHT

Ever used MHT 2,938 39 1,907 41 749 39 477 42

Missing MHT use 108 1 139 3 30 2 42 4

Only used unopposed estrogen 833 11 642 14 206 11 152 13

Missing type of MHT 477 6 443 10 110 6 114 10

rs1243180e

No minor alleles 2,770 37 1,505 32 628 33 396 35

1 minor allele 2,313 30 1,512 32 631 33 342 30

2 minor alleles 523 7 368 8 140 7 86 8

rs2072590e

No minor alleles 2,652 35 1,451 31 620 32 364 32

1 minor allele 2,414 32 1,533 33 649 34 355 31

2 minor alleles 546 7 404 9 132 7 106 9

rs11782652e

No minor alleles 4,839 64 2,890 62 1,229 64 693 61

1 minor allele 734 10 476 10 163 8 125 11

2 minor alleles 25 <1 19 <1 6 <1 5 <1

rs10088218e

No minor alleles 4,198 55 2,656 57 1,032 54 630 56

1 minor allele 1,306 17 689 15 348 18 185 16

2 minor alleles 105 1 43 1 21 1 9 1

rs757210e

No minor alleles 2,230 29 1,292 28 555 29 321 28

1 minor allele 2,599 34 1,567 34 662 34 379 34

2 minor alleles 762 10 525 11 180 9 123 11

rs9303542e

No minor alleles 2,982 39 1,628 35 691 36 423 37

1 minor allele 2,219 29 1,456 31 598 31 337 30

2 minor alleles 407 5 301 6 110 6 65 6

rs7651446e

No minor alleles 5,070 67 2,952 63 1,273 66 699 62

1 minor allele 527 7 423 9 121 6 117 10

2 minor alleles 15 <1 13 <1 7 <1 9 1

rs3814113e

No minor alleles 2,597 34 1,721 37 643 33 437 39

1 minor allele 2,421 32 1,377 30 623 32 318 28

2 minor alleles 594 8 290 6 135 7 70 6

rs8170e

No minor alleles 3,703 49 2,192 47 949 49 510 45

1 minor allele 1,735 23 1,077 23 414 21 284 25

2 minor alleles 174 2 119 3 38 2 31 3

Table continues
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estimated by the median of the samples from the posterior
distribution of each of the parameters; Bayesian 95% confi-
dence intervals were obtained by taking the 2.5th percentile
and 97.5th percentile of the estimated posterior distribution
for each parameter (55). Predictions for each participant in
the training data were based on the mean of the posterior

predictive distribution, which was estimated using the
Monte Carlo average over posterior draws of missing predic-
tors and parameters in equation 1. For comparison, we also
fit a model that was adjusted for study site and age only
(baseline model) and one that was adjusted for study site,
age, and SNPs, omitting epidemiologic risk factors.

Table 2. Continued

Risk Factors Included in Model

Training Set Evaluation Set

Controls (n = 7,586) Cases (n = 4,662) Controls (n = 1,926) Cases (n = 1,131)

Mean (SD) No. % Mean (SD) No. % Mean (SD) No. % Mean (SD) No. %

rs10069690e

No minor alleles 3,061 40 1,757 38 765 40 441 39

1 minor allele 2,147 28 1,350 29 523 27 322 28

2 minor alleles 351 5 234 5 101 5 58 5

rs56318008e

No minor alleles 4,152 55 2,385 51 1,028 53 584 52

1 minor allele 1,353 18 915 20 348 18 221 20

2 minor alleles 106 1 87 2 25 1 20 2

rs58722170e

No minor alleles 3,403 45 2,029 44 832 43 462 41

1 minor allele 1,941 26 1,201 26 503 26 318 28

2 minor alleles 267 4 157 4 66 3 45 4

rs17329882e

No minor alleles 3,317 44 1,874 40 836 43 477 42

1 minor allele 1,989 26 1,302 28 491 25 292 26

2 minor alleles 305 4 211 5 74 4 56 5

rs116133110e

No minor alleles 2,702 36 1,678 36 626 33 411 36

1 minor allele 2,337 31 1,419 30 634 33 346 31

2 minor alleles 572 8 290 6 141 7 68 6

rs635634e

No minor alleles 3,597 47 2,074 44 895 46 497 44

1 minor allele 1,803 24 1,176 25 448 23 291 26

2 minor alleles 211 3 137 3 58 3 37 3

chr17_29181220e

No minor alleles 2,916 38 1,845 40 716 37 461 41

1 minor allele 2,241 30 1,338 29 562 29 308 27

2 minor alleles 454 6 204 4 123 6 56 5

rs183211e

No minor alleles 3,241 43 1,859 40 824 43 447 40

1 minor allele 2,051 27 1,290 28 488 25 332 29

2 minor alleles 319 4 238 5 89 5 46 4

Abbreviations: BMI, body mass index; MHT, menopausal hormone therapy; OC, oral contraceptive; SD, standard deviation.
a Frequency distributions are based on nonmissing data. Percent missing is based on the variable of interest and any upper level variable related to

it. For example, women who are missing information on OC use status, and therefore duration of OC use, are combined with women who report ever
using OCs but are missing duration of use to reach the number and percentage of women who are missing months of OC use.

b Median months of OC use.
c Weight (kg)/height (m)2.
d Women who reported hysterectomies more than 1 year prior to diagnosis (cases) or interview/reference date (controls) were considered to have

had a hysterectomy.
e Missing genotype data were approximately the same across the 17 single nucleotide polymorphisms. The percentages of participants missing geno-

type data were as follows: 26% for training set controls, 27%–28% for training set cases and evaluation set controls, and 27% for evaluation set cases.
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Model validation

We compared the models with and without SNPs and with
and without the epidemiologic variables (all models included
reference age and study) based on their overall discrimina-
tory accuracy and calibration in the independent validation
data. We evaluated the discriminatory accuracy of the risk
prediction models using the AUC from the receiver operating
characteristics (ROC) curve. Predictive performance on the
validation set was also assessed using calibration plots that
compared the predicted risk (score) from the model to the
observed proportions across groups defined by study sites,
birth cohorts, age, and number of pregnancies.

RESULTS

The training set had 4,662 cases and 7,586 controls; the
evaluation set had 1,131 cases and 1,926 controls (Table 2).
The average age was 57 years. In both the training and eval-
uation sets, case patients were less likely to use OCs, have
been pregnant, and have had a tubal ligation than were
controls and were more likely to have a family history of
breast or ovarian cancer and to use MHT. The distribution

of SNPs was similar to those observed in the GWAS and
COGs data sets.

Table 4 provides estimates of the log odds ratios (med-
ians) and 95% Bayesian confidence intervals for the group-
specific coefficients from the hierarchical logistic regression
model with the 17 SNPs; estimates from the model without
the 17 SNPs were similar (Web Table 3). Most risk factors
included in the model were statistically significant predic-
tors among women younger than 50 years of age; however,
in general, the directions of associations were comparable
across groups. Notably, some associations were weaker
among older women than among younger women, including
duration of OC use, number of pregnancies, breastfeeding,
family history of breast or ovarian cancers, endometriosis,
tubal ligation, MHT use and type, and hysterectomy,
whereas low-dose aspirin use showed a significant inverse
association in women 50 years of age or older.
Furthermore, more SNPs were significant for women 50
years or older, who comprised the majority of women in
this study. Endometriosis, duration of OC use, tubal liga-
tion, family history of breast or ovarian cancer, number
of non–full-term pregnancies, and SNPS rs2072590,
rs10088218 in 8q24, rs9303542, rs7651446 in 5p15,

Table 3. Risk Factors Included in the Invasive Epithelial Ovarian Cancer Relative Risk Prediction Model and Distributions and Covariates
Used in Models to Impute Missing Values for Risk Factors With Missing Values, From 11 Case-Control Studies, 1992–2010a

Risk Factor Covariates Included in Imputation Model for Risk Factor Distribution

SNP genotypes Site Multinomial-Dirichlet

Family history of ovarian cancer Site Bernoulli

Family history of breast cancer Family history of ovarian cancer and site Bernoulli

Endometriosis Cohort, age, and site Bernoulli

Menopausal status Alcohol, smoking status, age, and site Bernoulli

Tubal ligation Endometriosis, educational level, age, cohort, and site Bernoulli

Hysterectomy Endometriosis, tubal ligation, family history of breast cancer, family history of
ovarian cancer, age, cohort, and site

Bernoulli

Height (BMI) Site and cohort Gaussian

Weight (BMI) Site, cohort, height, age, smoking status, and educational level Gaussian

Aspirin use Site, cohort, age, smoking status, and BMI Bernoulli

Ever used MHT Menopausal status, hysterectomy, educational level, age, cohort, and site Bernoulli

Type of MHT Ever used MHT, menopausal status, hysterectomy, educational level, age,
cohort, and site

Bernoulli

Age at menarche Age, cohort, and site Truncated Student t

Ever used OCs Cohort and site Bernoulli

Duration of OC use Ever used OCs, age, cohort, and site Truncated Gaussian

No. of pregnancies Hysterectomy, tubal ligation, ever used OCs, endometriosis, educational level,
smoking, alcohol use, age, cohort, and site

Poisson

No. of full-term births No. of pregnancies, hysterectomy, tubal ligation, ever used OCs,
endometriosis, educational level, smoking, alcohol use, age, cohort, and site

Binomial

Age at end of last pregnancy No. of pregnancies, age at menarche, smoking status, educational level, age,
cohort, and site

Truncated Gaussian

Ever breastfed No. of pregnancies, smoking status, educational level, cohort, and site Bernoulli

Duration of breastfeeding No. of pregnancies, smoking status, educational level, age, cohort, and site Truncated Gaussian

Abbreviations: BMI, body mass index; MHT, menopausal hormone therapy; OC, oral contraceptive; SNP, single nucleotide polymorphism.
a Left-hand side variables (i.e., risk factors) may depend on any covariates given in the Covariates column.
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Table 4. Estimates of Log Odds Ratios and 95% Bayesian Confidence Intervals for Risk Factors Included in the Invasive Epithelial Ovarian
Cancer Relative Risk Prediction Model Containing 17 Confirmed Single Nucleotide Polymorphisms, Stratified by Age at Diagnosis (Cases) or
Interview/Reference Age (Controls), From 11 Case-Control Studies, 1992–2010a

Risk Factor

Age at Diagnosis/Interview, years

<50 (n = 1,286 Cases and 2,473
Controls)

≥50 (n = 3,376 Cases and 5,113
Controls)

Median 95% CI Median 95% CI

Age 0.0308 0.0117, 0.0438 −0.0067 −0.0205, 0.0014

High-dose aspirin use 0.05 −0.4624, 0.6254 −0.1223 −0.3517, 0.062

Low-dose aspirin use −0.3338 −1.6847, 0.747 −0.2982 −0.5838, −0.0262

BMI 0.0252 0.0148, 0.0381 0.0023 −0.0059, 0.0087

Duration of Breastfeeding −0.0079 −0.0166, 0.0001 −0.0091 −0.0149, −0.0035

Ever breastfed −0.3251 −0.5537, −0.0882 −0.0342 −0.1658, 0.0889

Endometriosis 0.5193 0.2967, 0.7637 0.2347 0.0645, 0.4095

Family history of breast cancer 0.317 0.0885, 0.5534 0.1663 0.0537, 0.2902

Family history of ovarian cancer 1.3687 0.9383, 1.7791 0.4949 0.2625, 0.7273

Hysterectomy and no MHT use −0.7656 −1.2045, −0.3448 −0.0592 −0.2585, 0.1699

Age at end of last pregnancy −0.0148 −0.0289, −0.0024 −0.005 −0.0108, 0.0017

Age at menarche −0.0891 −0.1389, −0.0373 0.0067 −0.0259, 0.0315

Menopausal status 0.1161 −0.18, 0.3834 0.0955 −0.0744, 0.2697

MHT with estrogen and no hysterectomy 1.5661 0.992, 1.8842 −0.1107 −0.3277, 0.1101

MHT with estrogen and hysterectomy −2.1774 −2.7231, −1.5081 0.2408 −0.027, 0.4781

Other MHT without hysterectomy 0.1682 −0.2312, 0.482 −0.182 −0.3235, −0.0267

Other MHT and hysterectomy 1.2814 −0.1834, 2.5757 0.0166 −0.3454, 0.5927

Ever used OCs −0.219 −0.4963, −0.0029 −0.0069 −0.1703, 0.1463

Duration of OC use −0.1275 −0.1521, −0.1008 −0.0546 −0.0756, −0.0374

Non–full-term pregnancies −0.1005 −0.2088, 0.0233 −0.0719 −0.1144, −0.034

Full-term births −0.1227 −0.203, −0.0463 −0.0644 −0.1188, −0.0166

Tubal ligation −0.4349 −0.6769, −0.2126 −0.2668 −0.4027, −0.1423

rs1243180 0.1089 −0.0116, 0.2168 0.1499 0.0806, 0.2232

rs2072590 0.1653 0.0695, 0.2806 0.1342 0.0629, 0.2034

rs11782652 0.0686 −0.0858, 0.2117 0.0765 −0.037, 0.1985

rs10088218 −0.1946 −0.3243, −0.0688 −0.1644 −0.2719, −0.0647

rs757210 0.0275 −0.0711, 0.1192 0.0757 0.0048, 0.1472

rs9303542 0.1151 0.003, 0.216 0.1857 0.1078, 0.2599

rs7651446 0.266 0.0877, 0.4144 0.2974 0.1702, 0.4162

rs3814113 −0.1142 −0.2172, −0.0052 −0.1719 −0.2483, −0.1062

rs8170 0.0368 −0.0851, 0.1388 0.0771 −0.0028, 0.161

rs10069690 0.0236 −0.1049, 0.115 0.1044 0.0332, 0.1843

rs56318008 0.1816 0.0705, 0.3095 0.1825 0.0862, 0.2661

rs58722170 −0.028 −0.1337, 0.0807 0.0156 −0.0587, 0.0929

rs17329882 0.11 −0.0026, 0.2086 0.1441 0.0749, 0.2237

rs116133110 −0.0788 −0.1743, 0.0271 −0.085 −0.1608, −0.0139

rs635634 0.0644 −0.0627, 0.1807 0.071 −0.0135, 0.1492

chr17_29181220 −0.0946 −0.2029, 0.0192 −0.1193 −0.1914, −0.0463

rs183211 0.1355 0.0323, 0.2447 0.0989 0.0318, 0.162

Abbreviations: BMI, body mass index; CI, confidence interval; MHT, menopausal hormone therapy; OC, oral contraceptive.
a Estimates and intervals are based on the training set only.
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rs3814113, rs56318008, and rs183211 contributed signifi-
cantly to all of the group-specific models.

The AUCs for models for all women, women younger
than 50 years, and women 50 years and older both without
and with SNPs included are shown in Figure 1A and 1B,
respectively. The inclusion of the SNPs provided a small
improvement (change in the AUC = 0.015) in predictions
for the validation data in terms of AUC for all women,
with the biggest improvement for women 50 years of age
and older (0.026 increase). Among all women, the AUC
was 0.664 in the model with SNPs and 0.649 in the model
without SNPs (but including epidemiologic factors), which
is a marked improvement over the AUC for the models
with age and study site alone (AUC = 0.563) and those
with age, study site, and the 17 SNPs (AUC = 0.600)
(Table 5). The posterior probability that the AUC for the
full model with SNPs and epidemiologic factors is better
than the AUC for the model with age, study site, and SNPs
alone was 99.8%, whereas there was a 70% chance that the
addition of SNPs improved AUC over the model with age,
study site, and epidemiologic factors. The best predictive
power was obtained for women younger than 50 years:
The AUCs were 0.714 and 0.713 in the models with and
without the SNPs, respectively. Lower AUCs were
observed in women 50 years of age or older (with SNPs,
AUC = 0.638; without SNPs, AUC = 0.612). Finally, we
generated a target ROC curve with an AUC of 0.75 for a
widely accepted clinically actionable discrimination by
sequentially adding hypothetical SNPs generated with a
minor allele frequency of 0.20 and a log odds ratio of 0.15
(within the range of validated SNPS for EOC) until the

AUC exceeded 0.75. Under this setting, on average 58
additional SNPS would be needed (95% confidence inter-
val: 39, 79) to increase the AUC from 0.66 to 0.75.
Figure 2 and Web Figure 1 suggest that the model is well-
calibrated across risk score deciles, studies, birth cohorts,
age, and number of pregnancies.

DISCUSSION

Our validated relative risk prediction model for EOC in-
cludes an extensive list of established non-genetic risk fac-
tors for ovarian cancer and 17 novel genetic variants. We
divided the data set of 5,793 cases and 9,512 controls of
non-Hispanic, European ancestry in an 80:20 ratio for use in
independent modeling and evaluation analyses. Overall, the
model’s predictive capacity was modest, and epidemiologic
factors contributed to the increase in the AUC substantially
more than did the SNPs. The methodology for imputation
developed here may be adapted for prospective validation.

Previous ovarian cancer risk prediction analyses have
included fewer than 1,000 cases in any given phase of
model development or validation (23, 24). Our larger sam-
ple size provided ample power for stratification by age and
permitted us to include a much larger number of accepted
epidemiologic risk factors, as well as 17 genetic loci. This
and imputation of missing data provided the power neces-
sary to detect and estimate higher-order interaction effects.
The model includes an interaction between MHT use and
hysterectomy status dependent on age.

In contrast to previous models, ours was a joint model
for disease status, risk factors, and missingness. A strength
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Figure 1. Invasive epithelial ovarian cancer relative risk prediction model from the Ovarian Cancer Association Consortium, 1992–2010.
Receiver operating characteristic curve for models A) without and B) with single nucleotide polymorphisms (SNPs). The receiver operating char-
acteristic (ROC) curve plots the true positive fraction (i.e., sensitivity) versus the false positive fraction (i.e., 1-specificity) at various threshold
settings. The ROC curve in A represents the relative risk prediction model containing age, study site, and 17 risk factors; the ROC curve in B re-
presents the full relative risk prediction model containing the variables in A plus 17 confirmed genetic susceptibility variants. For each model, 3
ROC curves are presented for women grouped by age: all ages, women younger than 50 years of age, and women 50 years of age or older.
The area under the curve, a measure of discriminatory power equivalent to the C statistic in binary models, is presented for each ROC curve. A
fourth hypothetical target ROC curve is depicted based on adding additional hypothetical SNPs with a minor allele frequency of 0.20 and log
odds ratio of 0.15 (similar to the current data) until the area under the curve is 0.75 or more; on average, 58 additional SNPs would be needed
(95% confidence interval: 39, 79).
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of our approach was the use of MCMC methods that allow
for simultaneous inference for missing data and model
parameters. This allowed us to include all participants in
the analysis while correctly accounting for the observed
sample sizes in interval and error estimates of odds ratios.
This is critical when variables, such as hysterectomy status,
are not missing at random and would lead to biased infer-
ences, including complete-case analysis (54). The hierar-
chical framework also permits parsimonious adjustment for
birth cohort effects in hormonal exposures, such as OC and
MHT use, for which formulations have changed over time.

To date, absolute risk prediction models for ovarian can-
cer have achieved moderate discriminatory accuracy in the
general population. A recent model, which included first-

degree family history of breast or ovarian cancer, duration
of MHT use, parity, and duration of OC use and was devel-
oped and externally validated among women older than 50
years of age, had an AUC of 0.59 (23). The best model
from the Nurses’ Health Studies included duration of ovu-
lation (age (for premenopausal women) or age at meno-
pause minus age at menarche minus 1 year per pregnancy
and years of OC use), duration of menopause, and tubal
ligation; the overall AUC for the model predicting ovarian
cancer was approximately 0.60 (24). Our full model ob-
tained higher overall predictive accuracy (AUC = 0.664),
albeit estimated in a case-control setting, in part because
more established risk factors were included and we allowed
for associations to vary by strata in the population (age), as
well as birth cohorts.

The predictive ability of the model was substantially
higher for younger women (AUC = 0.714) than for older
women (AUC = 0.638), despite the increase in incidence
of ovarian cancer with age. This is consistent with the
Rosner risk prediction model (24), in which the AUCs gen-
erally were higher for women younger than 50 years of
age. One reason for the improved prediction in younger
women is that many of the risk factors occur during preme-
nopause and appear to have stronger associations in youn-
ger women, perhaps in part because the exposure to the
risk factors is more proximal (50). Our results are consis-
tent with those from studies of individual risk factors that
suggested, for example, that the inverse association with
hysterectomy, OC use, and tubal ligation attenuate with
increasing time since last use (or surgery) (4, 6, 50).

Recent efforts to improve risk estimation have focused
on common genetic variation. However, the addition of
common SNPs to risk prediction models has not yet re-
sulted in dramatically improved discriminatory accuracy in
real or simulated data scenarios (56–58). Our findings are
consistent with this; addition of the 17 confirmed SNPs
improved the AUC of the model that incorporated epidemi-
ologic risk factors by a small amount (with SNPs,
AUC = 0.664; without SNPs, AUC = 0.649). Our model
pertains to women of average baseline risk, and mutation
status of highly penetrant susceptibility genes such as
BRCA1 and BRCA2 was not included because these data
were not available. Although the model accounts for family
history of breast and ovarian cancer, the inclusion of the
mutation status and other high penetrant rare variants
may improve prediction in future efforts. However, even
strongly associated risk factors may only modestly improve
upon a risk model’s discriminatory accuracy (59), and a
very large number of susceptibility SNPs are required to
make a substantial impact because of their small relative
risks (60). Our simulation results suggest that an additional
39–79 SNPs may be needed to increase the AUC to a clini-
cally actionable discriminatory value of 0.75. This is simi-
lar to observations for breast cancer, for which a 3–4 unit
increase can be achieved with addition of 60–70 SNPs (56,
58, 61–64).

The model may be improved by extension to predict
histologic subtypes of EOC, because risk factor associa-
tions may vary by histology (19). Further gains in predic-
tive accuracy may accompany discovery and inclusion of
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Figure 2. Calibration plots for risk scores from the invasive epithelial
ovarian cancer relative risk prediction model from the Ovarian Cancer
Association Consortium, 1992–2010. The calibration plot represents
the agreement between the average predicted probability of epithelial
ovarian cancer (i.e., risk score) and observed outcomes (i.e., relative
frequency of cases) in the full risk prediction model containing age,
study site, 17 risk factors, and 17 confirmed genetic susceptibility var-
iants for women included in the analysis. Women were divided into 10
bins determined by increasing risk (0.10 long). The vertical and hori-
zontal bars reflect uncertainty in the average predicted risk and mean
under a Bernoulli model, respectively.

Table 5. Predictive Power for Relative Risk Prediction Models for
Invasive Epithelial Ovarian Cancer That Include Age, Study Site, 17
Epidemiologic Risk Factors, or 17 Confirmed Genetic Susceptibility
Variants, From 11 Case-Control Studies, 1992–2010

Age Study Site Epidemiologic Risk
Factors SNPs AUC

Included Included Included Included 0.664

Included Included Included Not included 0.649

Included Included Not included Included 0.601

Included Included Not included Not included 0.563

Abbreviations: AUC, area under the receiver operating character-
istic curve; SNPs, single nucleotide polymorphisms.
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additional novel risk factors. In breast cancer, the addi-
tion of sex hormones and mammographic density added
substantially to risk prediction models (65, 66). Finally,
these results may not be generalizable to other racial/eth-
nic groups or to women in other countries.

Our model was developed and internally validated
among participants from case-control studies. Although
this study design may be subject to misclassification and
selection bias, the studies were predominantly population-
based, and our associations are similar in direction and
magnitude to those observed in cohort studies. To be clini-
cally meaningful, the relative risk estimates must be com-
bined with a model of age-specific baseline population risk
to provide estimates of absolute risk. Hierarchical models
provide a natural framework for integrating relative risk es-
timates from this study—and propagating their uncertainty
—into future models for absolute risk within prospective
studies.
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