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Integration of polygenic and gut 
metagenomic risk prediction for  
common diseases

Yang Liu    1,2,3,4,5  , Scott C. Ritchie    1,2,4,5,6,7, Shu Mei Teo1,2,8, 
Matti O. Ruuskanen9,10, Oleg Kambur9, Qiyun Zhu11,12, Jon Sanders13, 
Yoshiki Vázquez-Baeza14, Karin Verspoor    15,16, Pekka Jousilahti9, Leo Lahti10, 
Teemu Niiranen9,17, Veikko Salomaa    9, Aki S. Havulinna    9,18, Rob Knight14,19,20, 
Guillaume Méric    2,21,22,23,24 & Michael Inouye    1,2,3,4,5,6,7,25 

Multiomics has shown promise in noninvasive risk profiling and early 
detection of various common diseases. In the present study, in a prospective 
population-based cohort with ~18 years of e-health record follow-up, we 
investigated the incremental and combined value of genomic and gut 
metagenomic risk assessment compared with conventional risk factors for 
predicting incident coronary artery disease (CAD), type 2 diabetes (T2D), 
Alzheimer disease and prostate cancer. We found that polygenic risk scores 
(PRSs) improved prediction over conventional risk factors for all diseases. 
Gut microbiome scores improved predictive capacity over baseline age 
for CAD, T2D and prostate cancer. Integrated risk models of PRSs, gut 
microbiome scores and conventional risk factors achieved the highest 
predictive performance for all diseases studied compared with models based 
on conventional risk factors alone. The present study demonstrates that 
integrated PRSs and gut metagenomic risk models improve the predictive 
value over conventional risk factors for common chronic diseases.

Multiomic technologies have uncovered potential biomarkers for vari-
ous common age-related diseases, including cardiovascular disease, 
diabetes, liver disease, dementia and cancer1–6. Although conventional 
risk prediction typically relies on demographic (for example, age or 
sex), anthropomorphic (for example, body mass index (BMI)), life-
style factors and disease-specific clinical laboratory measurements 
(for example, blood pressure (BP), non-high-density lipoprotein 
(HDL)-cholesterol, mammographic density, creatinine, glycated hemo-
globin (HbA1c)), the recent emergence of multiomics means that it is 
now possible to measure and integrate whole classes of biomolecular 
and cellular factors for the purposes of building multiomic risk scores.

PRSs, a quantitative measure of genetic predisposition for a phe-
notype, have demonstrated validity and potential clinical utility in risk 
prediction for various common diseases7–10, for example, in cardio-
vascular disease11–14, cancers15,16, diabetes mellitus17–19 and ankylosing 

spondylitis20. Given the potential of a genome-wide genotyping array 
as a one-time, relatively inexpensive assay from which hundreds of 
PRSs can be calculated, PRSs are being assessed in clinical studies for 
healthcare systems around the world9,11,21.

The gut microbiota (the collection of microorganisms inhabit-
ing the human gastrointestinal tract) has also been shown to have a 
role in many common diseases22–24. Gut microbial signatures have 
been associated with mortality and incident diseases in the general 
population, such as type 2 diabetes (T2D) and liver and respiratory 
diseases4,25–29, suggesting the potential of the gut microbiome in disease 
risk prediction. Notably, although genome-wide association studies 
have revealed the human genetic basis of the gut microbiome30–32, it 
is apparent that the heritability of the gut microbiome is relatively 
low and cross-generational familial microbiome similarity is largely 
associated with cohabitation33–35.
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than family history for all diseases where this was available, including 
CAD, T2D and prostate cancer.

In assessing the incremental gain in prediction of each PRS over its 
disease-specific conventional risk factors (Fig. 1), we found ∆C-indices 
of 0.023 for CAD (95% CI 0.013–0.034), 0.01 for T2D (95% CI 0.004–
0.016), 0.017 for AD (95% CI 0.010–0.024) and 0.027 for prostate can-
cer (95% CI 0.009–0.047). As expected, all PRSs were significantly 
associated with their respective incident diseases after adjusting for 
disease-specific conventional risk factors, and baseline age remained 
the strongest predictor for CAD, AD and prostate cancer (Extended 
Data Fig. 1). We observed hazard ratios (HRs) per s.d. for PRS levels 
of 1.68 for CAD (95% CI 1.50–1.88, P = 2.25 × 10−19), 1.42 for T2D (95% CI 
1.30–1.55, P = 6.48 × 10−15), 1.92 for AD (95% CI 1.73–2.15, P = 4.27 × 10−32) 
and 1.73 for prostate cancer (95% CI 1.47–2.04, P = 5.50 × 10−11). The 
effects of PRSs and family history were independent for incident CAD, 
T2D and prostate cancer, implying that the PRS and family history com-
plement each other. As a subanalysis for CAD, we excluded individuals 
taking antihypertensives and lipid-lowering medications at baseline 
(Extended Data Fig. 2a,b), with the findings being consistent with the 
main analysis of all individuals.

For T2D, we performed a subanalysis using nuclear magnetic 
resonance (NMR)-determined glucose as an additional conventional 
risk factor (Extended Data Fig. 3a,b). In sex-stratified Cox models of 
individual risk factors, BMI again had the strongest C-statistic (0.743, 
95% CI 0.723–0.764), whereas the PRS and glucose had C-statistics of 
0.612 (95% CI 0.588–0.637) and 0.656 (95% CI 0.631–0.682), respec-
tively. Adding the PRS increased the C-statistic over the model of con-
ventional risk factors by 0.007 (95% CI 0.001–0.013). In the model 
combining PRSs and conventional risk factors, the PRS and glucose 
were both significantly associated with incident T2D with similar effect 
sizes (HR = 1.40 per s.d., 95% CI 1.27–1.54, P = 1.85 × 10−12 and HR = 1.38 
per s.d., 95% CI 1.28–1.48, P = 5.95 × 10−19).

In a subanalysis of AD in participants aged ≥60 years (Extended 
Data Fig. 4), the sex-stratified Cox model of the PRS alone with a 
C-statistic of 0.667 (95% CI 0.629–0.705) was greater than any indi-
vidual conventional risk factor as well as the model combining all 
conventional factors. Adding the PRS improved the C-statistic over 
conventional risk factors by 0.064 (95% CI 0.036–0.096), leading to a 
model with a C-statistic of 0.722 (95% CI 0.687–0.756). Notably, in the 
model combining PRSs and all conventional risk factors of AD, the PRS 
was associated with an incident AD with an HR of 1.87 (95% CI 1.65–2.12, 
P = 8.95 × 10−23) per s.d., which was greater than that for baseline age 
(HR = 1.73 per s.d., 95% CI 1.51–1.98, P = 4.50 × 10−15).

Gut microbiome and incident disease
In FINRISK 2002, the gut microbiome composition was determined by 
shallow shotgun metagenomic sequencing of baseline stool samples 
(Methods). To investigate the association between incident diseases 
and the overall variation in gut microbial communities, we performed 
Cox analyses on α and β diversity at the species level, adjusting for 
disease-specific conventional risk factors. The α diversity was estimated 
using the Shannon index, the Chao–Shannon index49, species richness 
and evenness. The Shannon index and the Chao–Shannon index were 
significantly negatively associated with incident T2D (HR 0.89 per s.d., 
95% CI 0.82–0.96, P = 0.004 and HR 0.90 per s.d., 95% CI 0.82–0.98, 
P = 0.014, respectively), complementing the previously reported nega-
tive association between T2D and gut microbiome richness50; species 
richness was associated with incident prostate cancer (HR 1.23 per s.d., 
95% CI 1.1–1.39, P = 4.20 × 10−4); no significant association was observed 
for incident CAD and AD (Supplementary Table 1). In the analysis of β 
diversity between samples using principal component analysis (PCA) 
of the Aitchison distance, incident T2D was associated with principal 
component (PC)2 (HR 0.94, 95% CI 0.91–0.96, P = 1.31 × 10−5) and PC5 
(HR 1.04, 95% CI 1.00–1.08, P = 0.030). In comparison, using principal 
coordinate analysis based on the Bray–Curtis dissimilarity, incident 

Given that they are based on robust scalable technologies, use 
noninvasive sampling and have been applied in numerous disease risk 
prediction studies, PRSs and the gut microbiome comprise promising 
components of potential future multiomic risk prediction36,37. It has 
been previously shown that the gut microbiome and host genetics inde-
pendently contribute to cross-sectional prediction of host metabolic 
traits, with improved prediction performance by combining genetics 
and microbiome over modeling based on host genetics and environ-
mental factors38. However, many previous microbiome studies of 
disease have retrospective case–control designs, which are susceptible 
to various selection biases (for example, ascertainment, geographical, 
demographic biases) as well as technical differences such as sample 
storage39,40. Prospective studies minimize the risk of many of these 
biases and enable risk prediction of future disease. Furthermore, the 
extent to which host genetics and microbiome can jointly predict future 
risk of common diseases, including their additive value to baseline age 
and other conventional risk factors, remains unclear.

In the present study, we investigate the predictive capacity of PRSs, 
the gut microbiome and conventional risk factors for multiple inci-
dent common diseases using a population-based prospective cohort. 
We focus on diseases for which there is prior evidence of substantial 
predictive capacity for PRSs and the human gut microbiome, that is, 
coronary artery disease (CAD)12,41, T2D26,42, Alzheimer disease (AD)43,44 
and prostate cancer45,46. We utilized the population-based, multiomic 
FINRISK 2002 cohort47 to assess the individual and combined perfor-
mance of PRSs, gut microbiome scores and conventional risk factors 
to incident disease. Finally, we generated and validated multiomic 
predictive models for each disease and have made these available to 
the research community.

Results
For those in FINRISK 2002 with imputed genotypes and gut metagen-
omic sequencing, there were 333 incident cases of CAD, 579 of T2D, 273 
of AD and 141 of prostate cancer over a median follow-up of 17.8 years 
through electronic health records (EHRs). Characteristics of the study 
sample of FINRISK 2002 cohort for each disease are given in Table 1. 
For CAD, T2D and AD, baseline clinical risk factors were significantly 
different between incident cases and non-cases with the exception 
of smoking for T2D, and sex, diastolic BP (DBP) and HDL for AD. We 
detected significant differences between case and non-case groups 
in baseline age and smoking for prostate cancer.

PRSs and conventional risk factors
Previously validated PRSs for CAD12 (PGS000018), T2D42 (PGS000036), 
AD43 (PGS000334) and prostate cancer45 (PGS000662) were obtained 
from the Polygenic Score Catalog48 (Methods). Cox regression mod-
els were used to assess the predictive performance of PRSs and 
disease-specific conventional risk factors for incident diseases.

We first assessed prediction performance of PRSs and con-
ventional risk factors (Methods) individually for their respective 
incident diseases (Fig. 1). In sex-stratified (except for prostate can-
cer) Cox models of individual risk factors for incident CAD, AD and 
prostate cancer, baseline age had the highest concordance statistic 
(C-statistic) (0.719, 95% confidence interval (CI) 0.695–0.743; 0.880, 
95% CI 0.864–0.895; and 0.769, 95% CI 0.739–0.798, respectively). For 
CAD and AD, systolic BP (SBP) was the second strongest individual 
factor by C-statistics (0.649, 95% CI 0.619–0.679 and 0.656, 95% CI 
0.623–0.688, respectively), followed by comparable C-statistics 
for PRSs (0.626, 95% CI 0.595–0.656 and 0.650, 95% CI 0.616–0.684, 
respectively). For incident prostate cancer, the PRS was stronger than 
other individual conventional risk factors except baseline age with a 
C-statistic of 0.641 (95% CI 0.593–0.690). For incident T2D, the BMI 
had the strongest C-statistic (0.745, 95% CI 0.726–0.764) and the PRS 
had a C-statistic of 0.612 (95% CI 0.589–0.636), similar to the other 
conventional risk factors. The PRS alone achieved a higher C-statistic 
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T2D was associated with PC1 (HR 1.78, 95% CI 1.08–2.95, P = 0.024) and 
PC5 (HR 3.26, 95% CI 1.44–7.38, P = 0.005). No significant associations 
were observed for CAD, AD and prostate cancer.

To investigate the predictive capacity of gut microbial taxa for 
incident diseases, we focused on 235 species-level taxonomic groups 
after excluding rare and less prevalent taxa (Methods). In developing 
prediction models with taxa abundance at species levels, we utilized 
ridge logistic regression with 10× three-fold stratified cross-validation 
(Methods). The average cross-validated area under the receiver oper-
ating characteristic curve (AUROC) of the models was 0.597 (range 
0.588–0.605) for CAD, 0.610 (0.599–0.624) for T2D, 0.564 (0.552–
0.582) for AD and 0.613 (0.595–0.626) for prostate cancer (Extended 
Data Fig. 5). In subanalyses, similar AUROCs of cross-validated mod-
els were achieved for CAD (mean 0.587, range 0.552–0.609) and T2D 
(mean 0.604, range 0.589–0.614), whereas the gut microbiome was not  
predictive of AD in participants aged ≥60 years at baseline.

In sex-stratified (except for prostate cancer) Cox regression mod-
els, the gut microbiome score alone was significantly associated with 
all incident diseases (Extended Data Fig. 6), with HRs of 1.28 (95% 
CI 1.17–1.41, P = 2.29 × 10−7), 1.40 (95% CI 1.30–1.51, P = 7.45 × 10−20), 
1.34 (95% CI 1.20–1.50, P = 2.09 × 10−7) and 1.50 (95% CI 1.27–1.78, 
P = 1.66 × 10−6) per s.d. for incident CAD, T2D, AD and prostate can-
cer, respectively. For CAD and T2D, the gut microbiome scores indi-
vidually showed similar performance in C-statistics compared with a 
few conventional risk factors including family history (0.578, 95% CI 
0.547–0.61 and 0.612, 95% CI 0.590–0.635, respectively; Fig. 2). For 
AD, the gut microbiome score achieved a higher C-statistic (0.581, 
95% CI 0.546–0.616) than BP, cholesterol levels and smoking. For 
prostate cancer, the gut microbiome score was second only to baseline 
age in the C-statistic (0.623, 95% CI 0.581–0.666). After adjusting for 
disease-specific conventional risk factors (Extended Data Fig. 6), the 
effect of the gut microbiome score was significant but attenuated 
for incident T2D (HR = 1.20 per s.d., 95% CI 1.11–1.30, P = 9.13 × 10−6) 
and prostate cancer (HR 1.23 per s.d., 95% CI 1.03–1.46, P = 0.020); 
no significant effect of the gut microbiome score was found for CAD 
and AD. Compared with models of conventional risk factors (Fig. 2), 
models adding the gut microbiome score yielded a ∆C-statistic of 
0.004 (95% CI 0–0.008) for T2D and 0.005 (95% CI −0.003 to 0.013) for 
prostate cancer. In the subanalysis of T2D using NMR-based glucose 
as an additional conventional risk factor (Extended Data Fig. 3c), the 
effect of the gut microbiome score was slightly attenuated (HR 1.16 per 
s.d., 95% CI 1.07–1.26, P = 5.38 × 10−4) and the ∆C-statistic yielded by 
adding gut microbiome score to conventional risk factors was 0.003 
(95% CI −0.001 to 0.006).

Integrating polygenic, metagenomic and conventional factors
We then investigated the combined predictive performance of PRSs, 
the gut microbiome and conventional risk factors of their respective 
diseases using Cox regression models (Table 2). Although age was the 
strongest individual predictor for incident CAD and prostate cancer, 
adding the PRS and the gut microbiome score to the age increased the 
C-statistic by 0.049 (95% CI 0.030–0.066) and 0.032 (95% CI 0.011–
0.052), respectively. For T2D, adding the PRS and the gut microbiome 
score improved the C-statistic over age by 0.076 (95% CI 0.057–0.095). 
For incident AD, adding the PRS improved the C-statistic over age by 
0.019 (95% CI 0.011–0.026), whereas adding the gut microbiome score 
did not improve the C-statistic. For all four diseases, the model combin-
ing disease-specific conventional risk factors, PRSs and gut microbiome 
scores achieved higher C-statistics than models based on any risk fac-
tors separately (Table 2). The combined model achieved ∆C-statistic 
over conventional risk factors of 0.024 (95% CI 0.013–0.035) for CAD, 
0.014 (95% CI 0.007–0.021) for T2D, 0.017 (95% CI 0.009–0.024) for 
AD and 0.031 (95% CI 0.011–0.05) for prostate cancer.

The subgroup analyses for CAD, T2D and AD showed consistent 
results in general. In the sex-stratified Cox model for CAD (Extended 

Table 1 | Characteristics of participant risk factors for the 
diseases studied

Cases Non-cases P value

CAD n = 333 n = 4,760

Male, n (%) 225 (67.57) 2,015 (42.33) 3.62 × 10−19

Baseline age (years) 56.81 ± 9.74 47.55 ± 12.40 4.58 × 10−39

BMI (kg m−2) 27.91 ± 3.96 26.46 ± 4.24 4.27 × 10−11

SBP (mmHg) 144.90 ± 20.07 134.10 ± 19.36 3.36 × 10−23

Total cholesterol (mmol l−1) 6.02 ± 1.09 5.58 ± 1.05 9.57 × 10−13

HDL (mmol l−1) 1.37 ± 0.39 1.53 ± 0.41 1.84 × 10−14

Smoking, n (%) 106 (31.83) 1,165 (24.47) 3.87 × 10−3

Exercise, n (%) 52 (15.62) 1,182 (24.83) 9.03 × 10−5

Prevalent diabetes, n (%) 26 (7.81) 137 (2.88) 1.56 × 10−5

Family history, n (%) 130 (39.04) 1,142 (23.99) 4.25 × 10−9

T2D n = 579 n = 4,718

Male, n (%) 306 (52.85) 2,114 (44.81) 2.84 × 10−4

Baseline age (years) 53.26 ± 10.57 48.37 ± 12.89 1.14 × 10−18

BMI (kg m−2) 29.98 ± 4.18 26.13 ± 3.99 1.27 × 10−88

SBP (mmHg) 142.67 ± 20.81 134.50 ± 19.65 4.67 × 10−21

Total cholesterol (mmol l−1) 5.84 ± 1.20 5.58 ± 1.04 2.43 × 10−6

HDL (mmol l−1) 1.35 ± 0.35 1.54 ± 0.41 9.72 × 10−32

Triglyceride (mmol l−1) 1.91 ± 1.29 1.32 ± 0.83 8.41 × 10−6

Smoking, n (%) 160 (27.63) 1,155 (24.48) 0.103

Exercise, n (%) 82 (14.16) 1,168 (24.76) 3.80 × 10−9

Family history, n (%) 251 (43.35) 1,159 (24.57) 2.57 × 10−20

AD n = 273 n = 5,074

Male, n (%) 128 (46.89) 2,349 (46.29) 0.852

Baseline age (years) 64.29 ± 6.52 48.21 ± 12.46 1.07 × 10−93

BMI (kg m−2) 28.08 ± 4.05 26.59 ± 4.24 1.38 × 10−9

SBP (mmHg) 144.82 ± 20.59 135.01 ± 19.90 5.60 × 10−16

DBP (mmHg) 79.63 ± 10.08 79.14 ± 11.17 0.489

Total cholesterol (mmol l−1) 5.84 ± 1.12 5.57 ± 1.05 1.07 × 10−4

HDL (mmol l−1) 1.50 ± 0.45 1.51 ± 0.41 0.304

Alcohol consumption  
(g per week)

62.63 ± 138.15 82.76 ± 123.58 1.77 × 10−8

Smoking, n (%) 46 (16.85) 1,279 (25.21) 1.50 × 10−3

Exercise, n (%) 44 (16.12) 1,219 (24.02) 2.62 × 10−3

Prevalent T2D, n (%) 18 (6.59) 128 (2.52) 4.03 × 10−4

Prevalent stroke, n (%) 13 (4.76) 100 (1.97) 7.20 × 10−3

Prevalent psychiatric 
disorders, n (%)

12 (4.40) 121 (2.38) 0.045

Prostate cancer n = 141 n = 2,323

Baseline age (years) 59.79 ± 7.66 49.39 ± 12.62 1.79 × 10−22

BMI (kg m−2) 27.45 ± 3.03 27.07 ± 3.81 0.086

Alcohol consumption  
(g per week)

113.70 ± 147.06 123.40 ± 152.37 0.819

Smoking, n (%) 23 (16.31) 716 (30.82) 1.97 × 10−4

Exercise, n (%) 34 (24.11) 607 (26.13) 0.693

Family history, n (%) 62 (43.97) 794 (34.18) 0.022

Numerical variables are shown as mean ± s.d. Categorical variables are shown as the number 
of individuals and percentage of their respective disease status group. P values of two-sided 
Mann–Whitney U-test and Fisher’s exact test are reported for numerical and categorical 
variables, respectively.
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Data Fig. 2d), adding the PRS and the gut microbiome score increased 
C-statistics by 0.050 (95% CI 0.030–0.068) over age and 0.025 (95% 
CI 0.013–0.038) over all conventional risk factors in individuals with-
out baseline use of antihypertensives or lipid-lowering medications. 
For T2D (Extended Data Fig. 3d), adding the PRS and gut microbi-
ome score improved the C-statistic over age by 0.073 (0.051–0.092) 
and the combined model increased the C-statistic by 0.010 (95% CI 
0.003–0.016) compared with the model of conventional risk factors 
including NMR-based glucose. In the subgroup analysis for AD in those 
aged >60 years at baseline, adding the PRS improved the C-statistic over 
baseline age by 0.077 (95% CI 0.043–0.108), while the gut microbiome 
score did not show improvement.

In the combined models (Supplementary Tables 2–5), PRSs were 
found to be significantly associated with CAD (HR per s.d. 1.68, 95% 
CI 1.50–1.88, P = 4.39 × 10−19), T2D (HR per s.d. 1.41, 95% CI 1.29–1.54, 
P = 1.38 × 10−14), AD (HR per s.d. 1.93, 95% CI 1.73–2.15, P = 3.85 × 10−32) 
and prostate cancer (HR per s.d. 1.72, 95% CI 1.46–2.02, P = 1.05 × 10−10). 
The gut microbiome score was associated with T2D (HR per s.d. 1.19, 

95% CI 1.10–1.29, P = 2.11 × 10−5) and prostate cancer (HR per s.d. 1.19, 
95% CI 1.01–1.41, P = 0.041).

In subgroup analyses (Supplementary Tables 6–8), similar 
effects of PRSs were found for CAD (HR per s.d. 1.77, 95% CI 1.56–2.02, 
P = 3.05 × 10−18), T2D (HR per s.d. 1.40, 95% CI 1.27–1.53, P = 3.43 × 10−12) 
and AD (HR per s.d. 1.88, 1.65–2.13, P = 8.33 × 10−23); the effect of the gut 
microbiome score remained significant for T2D (HR per s.d. 1.15, 95% 
CI 1.06–1.25, P = 1.07 × 10−3) after adjusting for NMR-based glucose and 
other conventional risk factors.

Discussion
While the interplay between host genetics and the gut microbiome has 
been increasingly recognized and studied31,51,52, few studies have inves-
tigated their combined impact on complex disease risk. The present 
study presents a joint analysis of genotyping data, gut metagenomics 
data and clinical metadata for four common complex diseases (CAD, 
T2D, AD and prostate cancer) in a large prospective population-based 
cohort. We compared popular published PRSs for each disease, baseline 
gut metagenomics and conventional risk factors for predicting the 
onset of each disease over a median of 17.8 years of follow-up. Our analy-
ses reinforce the evidence that baseline age is the dominant individual 
risk factor for CAD, AD and prostate cancer, and adding the PRS and 
gut microbiome substantially improved the predictive performance 
to a similar capacity achieved by the combination of all conventional 
risk factors. We further demonstrated that PRSs improved prediction 
performance over the combination of conventional risk factors for all 
diseases studied, yet there was only mild evidence that the gut micro-
biome improved prediction performance when modeled jointly with 
conventional risk factors. The information (for example, features and 
coefficients) necessary to independently apply our integrated predic-
tive models are provided in Supplementary Tables 2–5.

As expected, in our study, a higher PRS was significantly associ-
ated with higher disease incidence for all four diseases, consistent 
with previous studies. Also expected, we found that PRSs for all four 
diseases improved predictive ability over conventional risk factors, 
adding to the body of evidence9,14 that PRSs have potential clinical 
utility to complement traditional risk factors. Consistent with prior 
work, we demonstrated that PRSs improved prediction of CAD, T2D 
and prostate cancer independently of and in addition to family his-
tory, a strong risk factor for all diseases studied53–57. Notably, for AD, 
with the risk of development attributed to genetics being estimated at 
70% (ref. 58), the PRS improved the C-statistic over conventional risk 
factors, including age by 0.017 in all studied participants and 0.064 in 
participants aged ≥60 years at baseline.

Although the ∆C-statistics for gut microbiome scores over conven-
tional risk factors were small, we observed significant improvement 
in sex-stratified prediction models over baseline age alone for CAD, 
T2D and prostate cancer26,59–61. In accordance with previous studies, 
we found a significant inverse signal between baseline α diversity and 
incident T2D62, which could be partially explained by possible media-
tion effects of gut microbiota-derived metabolites correlating with 
lower microbial diversity (for example, imidazole propionate) and 
insulin resistance63,64. We also found significant associations between β 
diversity and incident T2D, which might indicate a shift in microbiome 
composition involved in disease pathogenesis and progression26,65,66.

Our results suggest that the physiological and metabolic processes 
influenced by risk-associated changes in the gut microbiome vary 
across diseases. For CAD and T2D, the gut microbiome score exhibited 
predictive performance comparable to SBP, cholesterol levels and 
triglycerides. For CAD, AD and prostate cancer, the microbiome score’s 
predictive effects were largely captured by baseline age; however, this 
was true to a lesser extent with T2D (Extended Data Fig. 6). The vari-
ability in the predictive capacity of the gut microbiome might be par-
tially explained by the reciprocal relationship between host aging and 
microbial alterations, where age-related and disease-related changes 
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Fig. 1 | Prediction performance of PRSs and conventional risk factors. 
a–d, C-statistics of Cox models of disease-specific CRFs and PRSs for incident 
CAD (n = 5,093) (a), T2D (n = 5,297) (b), AD (n = 5,347) (c) and prostate cancer 
(n = 2,464) (d). CRFs and PRSs are modeled individually and jointly. Cox 
proportional hazard models for CAD, T2D and AD are stratified by sex. The  
C-statistics are depicted alongside their 95% CIs as dots and error bars.
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of gut microbiota bidirectionally interact with age-related diseases 
such as CAD, AD and prostate cancer67.

Our study has limitations. First, the gut microbiome and conven-
tional risk factors were measured only once at the initial assessment. 
Although the gut microbiome remains largely stable during adulthood, 
the microbial community is influenced by environment and cohabita-
tion in the long term38,68,69; thus their effects on future disease may 
change from what we estimated here. In particular, the assessment of 
predictive capacity for the gut microbiome might be hindered by the 
overlapping nature of changes in the microbiome and aging-related 
processes that lead to disease67. Second, owing to unavailability, we 
did not assess the impact of family history of AD, a risk factor that may 
also capture important aspects of shared environment influencing gut 
microbiome composition70,71. Third, the generalizability of the micro-
biome and integrated risk models to other external cohorts could not 
be investigated owing to the paucity of large prospective studies with 

similar data types. The composition of the human gut microbiome dif-
fers across geographically and culturally distinct settings, which can be 
attributed to variations in host genetics, immunity and behavioral fea-
tures72,73. Last, our study cohort comprised European ancestry (Finnish) 
participants; thus predictive performance of the PRS and improvement 
over conventional risk factors may not generalize to other demograph-
ics and healthcare systems, particularly as the predictive performance 
of the PRSs derived in Europeans is known to be attenuated when 
applied to populations of non-European ancestries74–76.

In summary, this work presents one of the first studies on pre-
diction of incident common complex diseases integrating PRSs, gut 
metagenomics and clinical metadata. Our study highlights potential 
limitations in the use of the human gut microbiome for improving 
clinical risk prediction despite its association with incident disease; 
however, larger studies are warranted to better quantify potential 
incremental gains. Overall, we show that integrating PRSs and gut 
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Fig. 2 | Prediction performance of gut microbial features and conventional 
risk factors. a–d, C-statistics of Cox models of disease-specific CFRs and gut 
microbial features for incident CAD (n = 5,093) (a), T2D (n = 5,297) (b), AD 
(n = 5,347) (c) and prostate cancer (n = 2,464) (d). CRFs and gut microbiome 

scores are modeled individually and jointly. The α diversities and five PCs of  
CLR abundance are modeled with adjustment for all disease-specific CRFs.  
Cox proportional hazard models for CAD, T2D and AD are stratified by sex.  
The C-statistics are depicted alongside their 95% CIs as dots and error bars.

http://www.nature.com/nataging


Nature Aging | Volume 4 | April 2024 | 584–594 589

Analysis https://doi.org/10.1038/s43587-024-00590-7

metagenomic scores can maximize predictive capacity for common 
diseases over conventional risk factors alone.

Methods
Study design
The FINRISK surveys have been conducted to investigate risk factors 
for major chronic noncommunicable diseases every 5 years since 1972 
in Finland77. This work was based on the FINRISK 2002 cohort, which 
contains metagenome data linked to comprehensive metadata at a 
baseline clinical visit and prospective follow-up and has been studied 
for the association between gut microbiota and various health out-
comes4,26,28,29,31,78. The study included independent and representative 
population samples of six geographical areas of Finland: (1) North 
Karelia, (2) North Savo, (3) Turku and Loimaa, (4) Helsinki and Vantaa,  
(5) Oulu and (6) Lapland; these were randomly drawn from the National 
Population Information System47. With an overall participant rate of 
65%, the FINRISK 2002 cohort comprised a total of 8,783 individuals, 
including both men and woman, out of 13,498 invitees aged 25–74 years. 
The participants filled in self-administered questionnaires, undertook 
health examinations conducted by trained personnel at the study 
sites and donated biological samples including venous blood and 
stool. All participants gave written informed consent and the study 
protocol was approved by the Coordinating Ethics Committee of 
the Helsinki University Hospital District (ref. no. 558/E3/2001). The 
FINRISK participation was voluntary and no financial compensation 
was paid. The surveys were conducted in accordance with the World 
Medical Association’s Declaration of Helsinki on ethical principles. 
In the present study, we included individuals whose genotyping data 
and shotgun metagenomics sequencing of stool samples were both 
available. We excluded individuals with (1) low reads of metagenomic 
sequencing (total mapped reads <100,000), (2) baseline pregnancy, 
(3) BMI ≤40 kg m−2 or <16.5 kg m−2 and (4) antibiotic use up to 1 month 
before baseline. Altogether, samples from 5,676 participants were 
eligible for the present study.

Baseline examination and sample collection
Demographic factors, physiological measurements, lifestyle factors, 
biomarkers and biological samples were collected at baseline in 200247. 
Questionnaires and invitation to health examinations were mailed to all 
subjects. Self-administered questionnaires included information such 
as participant’s background, medical history, diet and self-reported 
family history of some diseases. Questionnaires were in paper form 
and saved to electronic format. The health examination and blood 
sampling were performed by trained nurses at local health centers 
or other survey sites. Physical measurements such as weight, height 
and BP were obtained during the health examination. Venous blood 
samples were collected for the full cohort. The samples were collected 
after the participants were fasted for ≥4 h and centrifuged at the field 
survey sites. The fresh samples were transferred daily to the central 
laboratory of the Finnish Institute for Health and Welfare and analyzed 
over the next 2 days.

Stool samples were collected from willing participants at home 
by using an ad hoc kit constructed in-house at the Finnish Institute for 
Health and Welfare with detailed instructions and a scoop method. 
The participants were advised to collect the sample preferably in the 
morning, but any time convenient to the participant was considered 
acceptable. The samples were mailed overnight between Monday 
and Thursday to the laboratory of the Finnish Institute for Health and 
Welfare under winter conditions in Finland and immediately stored 
at −20 °C on receipt to minimize potential effects of temperature on 
variation in microbiome composition79. Special care was taken to avoid 
delayed transit at the post office over the weekend. The sample col-
lection was done under winter conditions with average temperatures 
well below 0 °C in Finland from January 2002 to March 2002, and no 
special arrangements were made with regard to the temperature dur-
ing transportation. Although possible short-term exposure of samples 
to room temperature after collection may result in slight variations in 
the detection and relative abundances of rare taxa80, these variations 
are relatively minor considering the low environmental temperatures 
and the primary focus of the present study on common taxa. The stool 
samples were kept unthawed until 2017 when they were transferred to 
the University of California San Diego for sequencing.

Disease endpoints, exclusion criteria and factors
We studied four incident diseases: CAD, T2D, AD and prostate cancer. 
The participants were followed up until 31 December 2019 using EHR 
linkage to the Finnish national registries. Disease cases were identi-
fied based on International Classification of Diseases (ICD)81 codes, 
Anatomical Therapeutic Chemical (ATC) codes, from the Care Reg-
ister for Health Care (hospital discharges and specialized outpatient 
care), Finnish Cancer Register and the Drug Reimbursement and 
Purchase Registers. CAD cases were defined by ICD-10 I20.0|I21|I22, 
ICD-9 410|4110, ICD-8 410|4110; T2D cases were defined by ICD-10 E1  
(refs. 1–4), ICD-9 250, ICD-8 250, Kela drug reimbursement code 215 
and ATC A10B; AD cases were defined by ICD-10 G30|F00, ICD-9 331.0, 
ICD-8 290.10, Kela reimbursement code 307, reimbursement with ICD 
code G30|F00|3110 and ATC N06D; prostate cancer cases were identi-
fied in the Finnish Cancer Register. Follow-up time was extracted from 
EHRs and determined by the years to the first incident event, or death, 
or end of the follow-up study period.

The conventional risk factors for CAD were defined as follows: 
age, sex, BMI, SBP, total cholesterol, HDL-cholesterol, current smok-
ing status, exercise, any prevalent diabetes and parental history of 
myocardial infarction12. Smoking status was defined as current use of 
tobacco products at baseline. Exercise was defined as regular exercise 
for at least 3 h per week or regular competitive sports training accord-
ing to responses to self-administered questionnaires. Individuals with 
missing values of risk factors were excluded. Individuals with prevalent 
diagnosis of heart diseases were excluded. A total of 5,093 individuals 
were considered for CAD analyses. In the subanalysis of CAD, partici-
pants with baseline use of antihypertensives or lipid-lowering medica-
tions were further excluded, resulting in a subset of 4,293 individuals.

Table 2 | C-statistics and 95% CIs of sex-stratified Cox regression models for PRSs, gut microbiome scores and conventional 
risk factors

Model Age Age + PRS Age + microbiome 
score

Age + PRS +  
microbiome score

CRFs CRFs + PRS + 
 microbiome score

Disease C-statistic (95% CI)

CAD 0.719 (0.695–0.743) 0.766 (0.742–0.789) 0.722 (0.698–0.747) 0.767 (0.744–0.791) 0.771 (0.748–0.793) 0.794 (0.772–0.817)

T2D 0.625 (0.605–0.646) 0.675 (0.654–0.695) 0.665 (0.644–0.685) 0.702 (0.681–0.722) 0.785 (0.768–0.802) 0.799 (0.783–0.816)

AD 0.880 (0.864–0.895) 0.898 (0.883–0.914) 0.880 (0.864–0.895) 0.898 (0.883–0.914) 0.883 (0.868–0.899) 0.900 (0.885–0.915)

Prostate cancer 0.769 (0.739–0.798) 0.797 (0.766–0.828) 0.774 (0.745–0.802) 0.801 (0.770–0.832) 0.773 (0.744–0.802) 0.804 (0.774–0.834)

CRFs, conventional risk factors.
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For T2D, the risk factors included age, sex, BMI, SBP, total choles-
terol, HDL, triglycerides, current smoking status, exercise and parental 
history of any diabetes26,54. After individuals with incomplete values of 
risk factors, any prevalent diabetes, baseline use of diabetes medication 
and HbA1c (if available) ≥6.5% were excluded, a total of 5,297 individu-
als were involved in T2D analyses. In an additional subanalysis of T2D, 
baseline glucose determined by the Nightingale Health NMR platform 
from frozen serum samples was included as an additional risk factor in 
a subset of 4,911 individuals.

For AD, the risk factors included age, sex, BMI, SBP, DBP, total 
cholesterol, HDL, average weekly alcohol consumption, current smok-
ing status, exercise, prevalent T2D, prevalent stroke and any preva-
lent psychiatric disorders including depression, bipolar disorder and 
schizophrenia82. We excluded individuals with missing values of risk 
factors and prevalent dementia, which resulted in 5,347 individuals for 
analyses of AD. The subanalysis of AD in participants aged ≥60 years at 
baseline included 1,220 individuals.

For prostate cancer analyses, the risk factors included age, BMI, 
average weekly alcohol consumption, exercise, current smoking sta-
tus and parental history of any cancer83. Only male participants were 
studied. After individuals with incomplete risk factors and prevalent 
diagnosis of prostate cancer have been excluded, a total of 2,464 indi-
viduals remained for analyses of prostate cancer.

Characterization of gut microbiome
DNA extraction was performed using the MagAttract PowerSoil DNA 
kit (QIAGEN) and the Earth Microbiome Project protocols84. The library 
generation was carried out with a miniaturized version of the Kapa 
HyperPlus Illumina-compatible library prep kit (Kapa Biosystems)85. 
The DNA extracts were normalized to 5 ng of total input per sample 
using an Echo 550 acoustic liquid-handling robot (Labcyte Inc.). Enzy-
matic fragmentation (1/10 scale), end-repair and adapter-ligation 
reactions were performed using a Mosquito HV liquid-handling robot 
(TTP Labtech Inc.). Sequencing adapters were based on the iTru pro-
tocol86, where short universal adapter stubs are ligated first followed 
by addition of sample-specific barcoded sequences in a subsequent 
PCR step. Amplified and barcoded libraries were quantified by the 
PicoGreen assay and sequenced on an Illumina HiSeq 4000 instrument 
to an average depth of ~900,000 reads per sample. The stool shotgun 
sequencing was successfully performed in 7,231 individuals. Adapters 
and low-quality sequences were trimmed with Atropos v.1.1.5 (ref. 87) 
and host reads were removed with Bowtie2 v.2.3.3 (ref. 88) against 
the human genome assembly GRCh38. The shotgun metagenomic 
sequences were analyzed with Oecophylla (https://github.com/bio-
core/oecophylla) based on Snakemake workflow85,89. Stool metagen-
omes were classified using Kraken2 v.2.1.0 (ref. 90) and a customized 
index database based on species definitions from 258,406 reference 
genomes (comprising 254,090 bacterial and 4,316 archaeal genomes) 
from GTDB release R06-RS202 (27 April 2021)91. Bracken v.2.5.0  
(ref. 92) was used to re-estimate abundances after Kraken2 classifica-
tion. A threshold of 250 reads per taxon was used to define a positive 
hit, which resulted in 4,026 species identified with a mean prevalence 
rate of 4.74%. After removing samples with total mapped read counts 
<100,000 reads per sample, taxonomic profiles from 7,205 individu-
als were retained for analyses with 698,067 reads per sample median 
depth, a minimum of 100,082 reads per sample and a maximum of 
19,671,923 reads per sample.

Genotype data processing and polygenic score calculation
Genotyping was undertaken using Illumina genome-wide SNP arrays 
(HumanCoreExome BeadChip, Human610-Quad BeadChip and 
HumanOmniExpress)56. After samples with ambiguous gender, missing-
ness >5%, excess heterozygosity and non-European ancestries had been 
removed and variants with missingness >2%, Hardy–Weinberg equilib-
rium P < 1 × 10−6 and minor allele count <3 were excluded, the samples 

were prephased with Eagle2 v.2.3. A Finnish-population-specific refer-
ence panel consisting of 2,690 high-coverage, whole-genome sequenc-
ing and 5,092 whole-exome sequencing samples was used with IMPUTE2 
v.2.3.2 to perform genotype imputation. Postimputation quality control 
was applied using PLINK v.2.0. Variants with INFO score <0.7, minor 
allele frequency <1% and Hardy–Weinberg equilibrium P < 1 × 10−6 were 
excluded. Samples with missing rate >10% were excluded. A total of 
7,967,866 variants and 7,281 samples remained after quality control.

For all diseases studied, we calculated PRSs in the FINRISK 2002 
cohort using external summary statistics in the Polygenic Score Cata-
log48. We considered previously published scores that were developed 
mainly based on large European populations and did not include FIN-
RISK 2002 participants in their development. The Polygenic Score 
Catalog IDs of the PRSs for CAD, T2D, AD and prostate cancer were 
PGS000018 (ref. 12), PGS000036 (ref. 42), PGS000334 (ref. 43) and 
PGS000662 (ref. 45), respectively. Each PRS was computed by mul-
tiplying the genotype dosage of each risk allele at each variant by its 
weight and summing across all variants in the respective score with 
PRSice-2 (ref. 93). The final PRSs consisted of 1,396,966 variants for 
the CAD PRSs, 129,793 for the T2D PRSs, 21 for the AD PRSs and 181 for 
the prostate cancer PRSs.

Statistics and reproducibility
Cox proportional hazard models stratified by sex were first fit for 
time on study for each incident disease on each of their respective 
conventional risk factors and PRSs separately. Next, a model combin-
ing disease-specific PRSs and conventional risk factors was fit for each 
disease. Prostate cancer was obviously studied only in men; its respec-
tive analysis did not include sex stratification. The ability of models to 
distinguish between cases and non-cases was assessed and compared 
with Harrell’s C-statistic, a performance metric for evaluating model 
discrimination based on censored survival data. Proportional hazard 
assumptions were examined by Schoenfeld residuals. HR, 95% CIs and 
two-sided Wald’s test P values were reported for risk factors. Statistical 
significance was determined with a P-value threshold of 0.05.

The gut microbiota diversities were measured with species-level 
abundance data before filtering taxa by relative abundance and preva-
lence. Rarefaction was not directly performed to avoid loss of data 
and samples had total mapped reads >100,000 after filtering. The α 
diversity of the gut microbiome was measured by Shannon’s diversity, 
chao1 and evenness using raw counts. As the original Shannon index 
can exhibit bias owing to unobserved taxa, a nearly unbiased estima-
tor of Shannon entropy proposed by Chao et al. using subsampling 
taxa and extrapolation was implemented49,94,95. The β diversity was 
estimated separately in samples by applying PCA on centered log 
ratio (CLR) transformed abundance data, that is, using the Aitchison 
distance, after disease-specific exclusion criteria were applied. Cox 
proportional hazard models were fit for time on study for each disease 
on gut microbiome α diversity and the first five PCs of CLR abundance, 
adjusting for conventional risk factors and stratified by sex (except for 
prostate cancer analyses).

We subsequently focused on common and abundant taxa that 
were detected with a prevalence >1% and relative abundance >0.1% in 
at least 10% of samples. After excluding rare and less prevalent taxa, 235 
species-level taxonomic groups were obtained and CLR transformed 
for prediction modeling. For each incident disease studied, we evalu-
ated the predictive capacity of the gut microbiome composition using 
Ridge logistic regression models of species-level CLR abundance with 
repeated cross-validation (three-fold, repeated ten times) stratified 
for disease status where the training and testing data were separate 
in each iteration. The prevalidated predicted values in the testing sets 
based on the optimal cross-validated models trained on species-level 
CLR abundances were used as the gut microbiome scores in assessing 
the association between the gut microbiome and incident disease. The 
optimal λ value of Ridge models was determined from a grid search 
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space ranging from 0.0001 to 100. The prediction performance was 
assessed using AUROC. For comparison, random forests were per-
formed using repeated cross-validation with the same resampling of 
each iteration. Overall, random forests were outperformed by Ridge 
regression, with average cross-validated AUROC of 0.551 (range 0.540–
0.559) for CAD, 0.570 (0.564–0.579) for T2D, 0.542 (0.531–0.560) for AD 
and 0.562 (0.540–0.577) for PC. For each disease studied, sex-stratified 
(except for prostate cancer) Cox regression model was fit for time on 
study on the gut microbiome score by itself and with adjustment of 
disease-specific conventional risk factors.

Finally, we investigated whether disease-specific PRSs and micro-
biome scores made independent contributions to predicting disease 
risk. For each incident disease, sex-stratified (except for prostate cancer) 
Cox models were fit on disease-specific PRSs and microbiome scores 
separately and in combination, adjusting for age at baseline; Cox models 
were also fit on baseline age alone for comparison. Sex-stratified (except 
for prostate cancer) Cox models were then fit on disease-specific PRSs, 
gut microbiome scores and conventional risk factors, and compared 
with Cox models combining disease-specific conventional risk factors. 
Covariates and their respective coefficients in Cox regression models 
for all diseases studied are reported in Supplementary Tables 2–8.

Statistical analysis was performed with R v.4.2.1 and v.3.6.0, R pack-
ages data.table v.1.14.2, survival v.3.2.13, compositions v.2.0.4, iNEXT 
v.3.0.0, otuSummary v.0.1.2, caret v.6.0.90, glmnet v.4.1.3 and v.2.0.18, 
boot v.1.3.28, pROC v.1.18.0, ggplot2 v.3.3.5, gridExtra v.2.3, grid v.4.1.2 
and cowplot v.1.1.1. The present study is observational so randomiza-
tion or blinding does not apply. The survey was a population-based 
study of individuals drawn from the Finnish National Population 
Register stratified by geographical area, sex and 10-year age group47. 
Exclusion criteria based on quality control standards, baseline char-
acteristics of participants and disease-specific factors are detailed in 
Methods where relevant. Data distribution was assumed to be normal, 
but this was not formally tested. No statistical methods were used to 
predetermine sample sizes but our sample sizes are similar to those 
reported in previous publications26,29,31.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The FINRISK data for the present study are available with a written appli-
cation to the THL Biobank as instructed on the website of the Biobank 
(https://thl.fi/en/web/thl-biobank/for-researchers). A separate permis-
sion is needed from FINDATA (https://www.findata.fi/en/) for use of 
the EHR data. Metagenomic data are available through the European 
Genome–Phenome Archive (EGAD00001007035). PRSs are available 
through the Polygenic Score Catalog (https://www.pgscatalog.org). 
GTDB R06-RS202 is available through http://gtdb.ecogenomic.org. 
Genome assembly GRCh38 is available at http://genome.ucsc.edu. 
The models and statistical source data generated in the analysis are 
provided as Supplementary tables and source data. All other data 
supporting the findings of the present study are available from the 
corresponding author upon reasonable request.

Code availability
The codes for the main analyses are deposited at https://github.com/
dpredprj/PRS_GMS_prediction.
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Extended Data Fig. 1 | Significant associations between PRSs and incident 
diseases. Cox proportional hazards models of disease-specific PRSs and 
conventional risk factors are fit for (a) CAD (n = 5,093), (b) T2D (n = 5,297), (c) AD 

(n = 5,347) and (d) prostate cancer (n = 2,464). Cox models for CAD, T2D and AD 
are stratified by sex. Hazard ratios (HRs) of risk factors are depicted alongside 
their 95% confidence intervals (CIs) as dots and error bars.
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Extended Data Fig. 6 | Cox proportional hazards models of disease-specific 
gut microbiome scores and conventional risk factors for (a) incident 
CAD (n = 5,093), (b) T2D (n = 5,297), (c) AD (n = 5,347) and (d) prostate 
cancer (n = 2,464). The gut microbiome score is modelled individually and in 

combination with conventional risk factors. Cox models for CAD, T2D and AD are 
stratified by sex. Hazard ratios (HRs) of risk factors are depicted alongside their 
95% confidence intervals (CIs) as dots and error bars.
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