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EFFECTIVENESS OF 1D GROUND RESPONSE ANALYSES AT PREDICTING SITE 
RESPONSE AT CALIFORNIA VERTICAL ARRAY SITES 

 

Kioumars Afshari and Jonathan P. Stewart 

Department of Civil & Environmental Engineering 

University of California, Los Angeles 

 

Abstract 

We investigate the ability of 1-D ground response simulations to match observed levels 
of site amplification from California vertical arrays. Using 10 vertical arrays, we find simulations 
to best match data using a VS-based damping model from the literature. We find a higher 
percentage of California sites, as compared to KiK-net sites from Japan, to have a reasonable 
match of empirical and theoretical transfer function shapes. The empirical transfer functions also 
have a greater degree of event-to-event consistency than has been found previously in Japan. 
Cases with poor matches highlight that 1-D simulations can fail to accurately model site 
response.  

 

Introduction 

Evaluating the role of local site conditions on ground shaking is an essential part of 
earthquake ground motion prediction, which can be done using ergodic models or site-specific 
analyses. One-dimensional (1D) simulation of shear waves propagating vertically through 
shallow soil layers, also known as ground response analysis (GRA), is a common approach for 
capturing the effects of site response on ground shaking. In GRA, different approaches have been 
used for modeling soil behavior, namely linear, equivalent-linear (EL), and various nonlinear 
(NL) methods. Much attention has been directed in recent research to which of these approaches 
is best suited to a particular problem, with the intention of guiding the selection of an appropriate 
method of analysis (e.g., choosing when NL is preferred to EL) (e.g., Kim et al., 2015; 
Kaklamanos et al, 2013, 2015; Zalachoris and Rathje, 2015). However, a crucial issue that has 
received much less attention is the degree to which 1D simulations (the essential assumption 
behind all GRA methods) are effective.  

While site response can include important contributions from the wave propagation 
mechanics simulated in GRA, site response as a whole is considerably more complex. True site 
response represents the difference between ground motions for a given site condition and what 
would have occurred had the site had a reference condition (typically rock with a particular VS30). 
Processes that can control site response in this context include surface waves, basin effects 
(including focusing and basin edge-generated surface waves), and topographic effects. Because 
GRA only simulates a portion of the physics controlling site response, there should be no 
surprise that it is not always effective at accurately predicting site effects. 

Validation and testing of 1D GRA is possible by studying recordings from vertical array 
sites. The KiK-net array in Japan (Aoi et al., 2000) provides a large inventory of vertical arrays 
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that has been extensively used for validation purposes (Thompson et al., 2012; Kaklamanos et al, 
2013, 2015; Zalachoris and Rathje, 2015). As described in the next section, when viewed as a 
whole, these KiK-net data challenge the notion that 1D GRA provides a reliable estimate of site 
response. Were this result found to be widely applicable, it would upend a good deal of current 
practice that relies on GRA to estimate first-order site response. Our objective in this study, for 
which this paper provides preliminary results, is to utilize the growing body of vertical array data 
from California to investigate applicability of 1D GRA to predict observed site response. In 
short, we seek to answer the question – are the poor matches of 1D GRA from the KiK-net array 
a product of particular geological conditions at the sites in that array, and hence not generally 
applicable in California?  

 

Prior Work Utilizing KiK-net Array Sites 

Thompson et al. (2012) studied 100 KiK-net sites in Japan in order to assess the 
variability in site amplification and the performance of linear 1D GRA. These sites have 
recorded a large number of surface and downhole (in rock) recordings. The presence of multi-
depth records enables the calculation of empirical transfer functions (ETFs) directly from surface 
G(f,x1) and downhole G(f,x2) amplitude spectra: 

 1

2

( , )( )
( , )

G f xH f
G f x

=  (1) 

where H(f) is the ETF. For GRA, they used the program NRATTLE, which is a part of the 
ground motion simulation program SMSIM (Boore, 2005). NRATTLE performs linear GRA 
using quarter-wavelength theory. In order to minimize the potential for nonlinear effects, only 
records having a ground surface PGA < 0.1 g were selected. 

ETFs were computed with Eq. (1) using available data meeting certain selection 
requirements. In total, 3714 records from 1573 earthquakes were considered for the 100 KiK-net 
sites. The mean and 95% confidence intervals were computed across all selected recordings at a 
given site, with the example results (for two sites) given in Figure 1. Transfer functions from the 
quarter-wavelength GRA are also shown in Figure 1 (these are referred to as theoretical transfer 
functions, TTFs). The input parameters for NRATTLE include shear wave velocity (VS), soil 
density, and the intrinsic attenuation of shear-waves ( 1

SQ− ) which represents damping. Profiles of 
VS are available from the KiK-net web site (http://www.kyoshin.bosai.go.jp). Soil density was 
estimated from P-wave velocity using the procedures suggested by Boore (2008), and 1

SQ− was 
estimated using a grid-search algorithm to optimize the fit to H(f).  

Figure 1 (a) provides an example of poor fit between the ETF and TTF whereas Figure 1 
(b) shows a good fit. Goodness-of-fit was quantified using Pearson’s sample correlation 
coefficient (r); a value of r=0.6 was taken by Thompson et al. as the threshold for good fit. The 
corresponding r values for the two sites in Figure 1 are 0.10 for the poor fit site and 0.79 for the 
good fit site. Dispersion curves (phase velocity vs. frequency) for the two example sites are 
shown in Figure 1. The results show that there is a large degree of variability in the dispersion 
curves for the poor-fit site and consistency in the dispersion curves for the good-fit site. These 
and other similar results for additional sites indicate that geologic complexity, as reflected by 



3 
 

spatial variability in the Rayleigh wave velocity structure, may correlate to the accuracy of GRA 
prediction. More complex geologic structure would be expected to produce 3D site effects that 
are not captured by GRA. 

 

 
Figure 1. Examples of a poor fit (a) and good fit (b) between ETF and TTF at two KiK-net sites 

along with the dispersion curves from multiple SASW tests for both sites (adapted 
from Thompson et al., 2012) 

 

Results for the 100 considered sites show that only 18% have a good fit between ETFs 
and TTFs, indicating 1D GRA fails to provide an accurate estimation of site response for a larger 
majority of KiK-net sites. Subsequent to Thompson et al. (2012), Kaklamanos et al. (2013) use 
subsets of KiK-net sites where a good ETF-TTF fit was obtained to study the issue identified in 
the introduction (i.e., when increased levels of sophistication in nonlinear modeling is needed in 
GRA). In this study, we do not screen sites to identify those for which the ETF matches the 
shape of a TTF; instead we seek to understand how frequently such a match is achieved in 
relatively weak motion data from California vertical array sites.   
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Inventory of Vertical Arrays and Their Recordings in CA 

We have collected site data for 39 vertical arrays in California as listed in Table 1. Our 
main source of site properties and ground motion data is the Center for Engineering Strong 
Motion Data (CESMD) website (http://www.strongmotioncenter.org/). Velocity profile data is 
available for some of the sites, and ground motion time series can be downloaded through a 
search engine. In addition, CESMD maintains an FTP folder containing a database of weaker 
motions for all vertical array and surface-only sites. We have also considered four sites owned 
and maintained by the University of California at Santa Barbara (UCSB). The site information 
and recorded motions for these sites are available at http://nees.ucsb.edu/.  

Interestingly, a major factor limiting the inventory of usable vertical array sites in 
California is the availability of VS profile data; of the 39 vertical arrays, we have been able to 
collect usable VS profile data for 30 sites (26 CESMD, 4 UCSB), and boring logs are available 
for 24 sites (22 CESMD and 2 UCSB). Given the relative cost of array installation (high) vs VS 
profile development (low), a priority in future work should be to fill this data gap.  

For our study, we utilize vertical array sites with measured VS profile and having at least 
five pairs of surface/downhole recordings to increase the statistical significance of ETFs. The 
location of the vertical array sites are shown in Figure 2. The sites shown in blue were 
considered in the present work. . 

 
Figure 2. The location of vertical array sites in California (The sites used in this study are shown 

in blue) 

 

http://www.strongmotioncenter.org/
http://nees.ucsb.edu/
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Table 1. Summary of site characteristics for California vertical arrays. Sites considered in 
present work are bolded.  

Station 
NO Station Name Owner Low-amp. 

recs?1 # Rec Latitude Longitude VS30 (m/s) 
VS profile 

 Depth 
 (m) 2 

Geotech 
log? 2 

58137 
Alameda - Posey & 
Webster Geotech 

Array 

CGS - 
CSMIP NA 7 37.790 -122.277 208 

(inferred) N Y 

67265 
Antioch –  

San Joaquin River  
N Geo. Array 

CGS NA 1 38.038 -121.752 Problematic 60*  N 

67266 
Antioch –  

San Joaquin River  
S Geo. Array 

CGS N 1 38.018 -121.752 272 105 Y 

47750 Aptos - Seacliff  
Bluff Array 

CGS - 
CSMIP NA 4 36.972 -121.910 463 N** N 

68321 
Benicia – 

Martinez Br N 
Geotech Array 

CGS - 
CSMIP N 3 38.051 -122.128 582 31 Y 

68323 
Benicia – 

Martinez Br S 
Geotech Array 

CGS - 
CSMIP N 4 38.033 -122.117 546 31 Y 

13186 
Corona – 

I15/Hwy 91  
Geotech Array 

CGS - 
CSMIP N 2 33.882 -117.549 349 37 Y 

68206 

Crockett –  
Carquinez Br  

Geotech  
Array #1 

CGS - 
CSMIP N 4 38.054 -122.225 345 43 Y 

68259 

Crockett –  
Carquinez Br  

Geotech 
Array #2 

CGS - 
CSMIP N 4 38.055 -122.226 -- N Y 

1794 

El Centro –  
Meloland 

Geotechnical  
Array 

CGS - 
CSMIP Y 32 32.774 -115.449 182 240 Y 

89734 
Eureka - 

Geotechnical  
Array 

CGS - 
CSMIP Y 23 40.819 -124.166 194 225 Y 

58968 
Foster City – 
San Mateo Br  
Geotech Array 

CGS - 
CSMIP N 1 37.573 -122.264 195 31 N 

58964 
Half Moon  

Bay - Tunitas  
Geotech Array 

CGS - 
CSMIP N 2 37.358 -122.398 309 39 Y 

58487 
Hayward - I580/238 

West Geotech  
Array 

CGS N 1 37.689 -122.107 223 88 Y 

58798 
Hayward –  

San Mateo Br 
Geotech Array 

CGS N 1 37.617 -122.154 185 93 Y 
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Station 
NO Station Name Owner Low-amp. 

recs?1 # Rec Latitude Longitude VS30 (m/s) 
VS profile 

 Depth 
 (m) 2 

Geotech 
log? 2 

24703 
Los Angeles – 

La Cienega  
Geotech Array 

CGS - 
CSMIP Y 19 34.036 -118.378 241 280 Y 

24400 Los Angeles - 
Obregon Park 

CGS - 
CSMIP Y 23 34.037 -118.178 449 64 Y 

14783 
Los Angeles –  
Vincent Thm 

Geo Array W1 

CGS - 
CSMIP N 3 33.750 -118.275 149 192 N 

14784 
Los Angeles –  
Vincent Thm 

Geo Array W2 

CGS - 
CSMIP N 3 33.750 -118.278 149 195 N 

14786 
Los Angeles –  
Vincent Thos  
W Geo Array 

CGS - 
CSMIP N 1 33.750 -118.280 149 192 Y 

24185 
Moorpark - 

Hwy118/Arroyo  
Simi Geo. Array 

CGS - 
CSMIP NA 1 34.288 -118.865 -- N Y 

58204 
Oakland –  
Bay Bridge  

Geotech Array 

CGS - 
CSMIP NA 3 37.821 -122.327 Problematic 155* N 

58526 
Palo Alto –  

Dumbarton Br W 
Geotech Array 

CGS NA 1 37.499 -122.129 123 N** Y 

36529 Parkfield – 
Turkey Flat #1 

CGS - 
CSMIP N 3 35.878 -120.359 907 N** N 

36520 Parkfield – 
Turkey Flat #2 

CGS - 
CSMIP N 1 35.882 -120.351 467 N** N 

89289 Petrolia - Downhole 
[abandoned] 

CGS - 
CSMIP NA 1 40.317 -124.292 -- N N 

68797 
Rohnert Park - Hwy 

101 
Geotech Array 

CGS - 
CSMIP N 2 38.347 -122.713 223 47.5 N 

23792 

San  
Bernardino 
 - I10/215 W  

Geotech Array 

CGS - 
CSMIP N 5 34.064 -117.298 271 92 Y 

3192 
San Diego –  

Coronado East 
Geotech Array 

CGS - 
CSMIP N 2 32.698 -117.145 315 89 Y 

3193 
San Diego –  

Coronado West 
Geotech Array 

CGS - 
CSMIP N 2 32.688 -117.164 209 102 Y 

58961 
San Francisco –  

Bay Bridge  
Geotech Array 

CGS - 
CSMIP N 3 37.787 -122.389 387 36 Y 
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Station 
NO Station Name Owner Low-amp. 

recs?1 # Rec Latitude Longitude VS30 (m/s) 
VS profile 

 Depth 
 (m) 2 

Geotech 
log? 2 

58267 
San Rafael –  

Richmond Brdg 
Geotech Array 

CGS N 1 37.943 -122.481 921 42 N 

24764 Tarzana –  
Cedar Hill B 

CGS - 
CSMIP N 4 34.161 -118.535 302 N N 

58642 Treasure Island - 
Geotechnical Array 

CGS - 
CSMIP N 3 37.825 -122.374 159 120 N 

68310 
Vallejo - Hwy 
37/Napa River  
E Geo. Array 

CGS - 
CSMIP Y 17 38.122 -122.275 509 42 Y 

UCSB 
Arrays 

Garner Valley 
Downhole  

Array 
UCSB -- 20 33.401 -116.403 240 210 Y 

UCSB 
Arrays 

Wildlife  
Liquefaction  

Array 
UCSB -- 45 33.058 -115.318 203 98 Y 

UCSB 
Arrays 

Borrego Valley  
Field Site UCSB -- 21 33.259 -116.321 350 230 N 

UCSB 
Arrays 

Hollister  
Digital Array UCSB -- 23 36.453 -121.365 359 185 N 

1NA: Not applicable; we have not sought low-amplitude recordings because site not useful due to lack of VS profile. 
N: Data may be available but not yet obtained. 

2Y: Data available; N: Data not available. 
* Top 20m is missing in the VS measurements. 
** There is VS measurements, but not available at CESMD website. 

 

Data Selection and Processing 

Unprocessed records for the sites identified in the previous section were downloaded 
from CESMD and the nees.ucsb websites. Acceleration time series were visually inspected to 
identify and exclude low-quality, noise-dominated records. The data were processed using 
procedures developed in the NGA-West2 research project (Ancheta et al., 2014) and coded into 
an R routine (T. Kishida, personal communication, 2015). Low-cut and high-cut corner 
frequencies have been identified for each record by visual inspection, and low- and high-pass 
acausal Butterworth filters are used for filtering high and low frequency noise in the frequency 
domain. Baseline correction is also applied as needed.  

Figure 3 shows an example of a record processed using these procedures, including time 
series (acceleration, velocity, displacement for processed record) and Fourier amplitude spectra 
and pseudo-acceleration response spectra at 5% damping for the unprocessed and processed 
versions of the record. Based on the records we have been able to access and process thus far, the 
usable database currently includes 10 sites and 225 record pairs. Figure 4 shows the number of 
usable records as a function of period; the decrease as period increases is due to application of 



8 
 

low-cut corner frequencies in the record processing. The longest usable period is taken as 
(0.877/fc), where fc is the low-cut corner frequency selected in record processing.   

 
Figure 3.  Example of record processed using PEER protocols developed in NGA-West2 project 

(Ancheta et al., 2014), including (a) acceleration time series, (b) velocity time series, 
(c) displacement time series, as well as (d) Fourier amplitude spectra and (e) pseudo-
acceleration response spectra (PSA) at 5% damping for raw and filtered records. 
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Figure 4. Number of available record pairs in the database according to their longest usable 

periods. 

 

Analysis of Empirical Transfer Functions 

Empirical transfer functions (ETFs) representing site response between the downhole and 
surface accelerometers are computed from ratios of Fourier amplitudes as given in Eq. (1). ETFs 
are only used over the usable frequency range based on record processing. The ETF is taken as 
the geometric-mean of ETFs for the two horizontal components of the recordings (at their as-
recorded azimuths) for each site. The results shown subsequently are smoothed through the use 
of a Tukey (moving cosine) window with a width of 33 frequency steps (window width of 
approximately 0.5 Hz) in the frequency domain. This window size was selected for approximate 
compatibility with the prior work of Thompson et al. (2012).   

We assume a log-normal distribution for ETF ordinates and compute for each site the 
median (µln) (equivalent to the exponent of the natural log mean) and the natural log standard 
deviation of ETF (σln) at each frequency using all available record pairs. Figure 5 shows example 
ETFs for all record pairs at the San Bernardino and Obregon Park sites along with the median 
and 95% confidence intervals of ETF. For plotting purposes, we show results over a frequency 
range between 0.5 and 10 Hz, which encompasses the usable frequency range for all records and 
focuses attention on frequencies that significantly contribute to PSA ordinates.  
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Figure 5. Empirical transfer functions plots for (a) San Bernardino site with low ETF variability, 

and (b) Obregon park with high ETF variability. 

 

The two sites in Figure 5 have relatively low and high site response variability, as 
represented by frequency-dependent standard deviation term σln. In order to represent this 
variability with a single metric that can be compiled for each site, we take the median σln across 
the 0.5-10 Hz frequency range. These values are provided in Figure 5, being 0.11 for the low-
variability site and 0.32 for the high-variability site.  

 

Analysis of Theoretical Transfer Functions 

Theoretical transfer functions (TTF) are computed by visco-elastic 1D GRA in 
DEEPSOIL. We exclude recordings with strong ground shaking (PGA at surface instrument > 
0.1 g) so as to minimize nonlinear effects. Figure 6 shows histograms of PGA and PGV for the 
downhole instrument records used in the present work. We acknowledge that there are some 
records for which improved results could be obtained with EL procedures but have not 
undertaken such analyses to date with this data set.  

 
Figure 6. Histograms of PGA (a) and PGV (b) for downhole recordings used in this study. 
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Input soil properties for the visco-elastic analysis include the VS profile, layer mass 
densities (assumed based on soil types and material descriptions), and material damping. Unlike 
Thompson et al. (2012), we utilize alternate approaches for estimating small-strain soil damping 
instead of back-calculating this parameter to optimize the ETF-TTF fit. These steps of 
considering alternate damping models are undertaken because best practices for selection of 
small-strain damping (Dmin) are not well established (Stewart et al., 2014). Alternate approaches 
for modeling small-strain soil damping are described in the next section, which is followed by 
example results.  

Damping Models  

Laboratory-Based Models. We apply the traditional approach of taking damping from 
geotechnical laboratory cyclic testing, whereby the damping at small strains is taken as min

LD . We 
estimate laboratory-based min

LD  using Darendeli (2001) relations for clays and silts, and Menq 
(2003) relations for granular soils. The input parameters for the min

LD  models are plasticity index 
(PI), overconsolidation ratio (OCR), and effective stress for Darendeli (2001), and mean grain 
size (D50), coefficient of uniformity (Cu), and effective stress for Menq (2003). The min

LD  
relations can only be used when geotechnical log and/or description of soil conditions are 
available for the site. 

Depth-Dependent Q Factors. The effective material quality factor (Qef) can be estimated based 
on shear wave velocity using an empirical model developed by Campbell (2009) as follows:  

 ef 7.17 0.0276 SQ V= +  (2) 

Eq. (2) was derived by Campbell (2009) so as to match target site attenuation parameter (κ0) for 
a sediment column in Memphis Tennessee. The value of Qef from Eq. (2) can be readily 
converted to soil damping as follows:  

 min
ef

100(%)
2

D
Q

=  (3) 

This approach for modeling Dmin does not require a geotechnical log. 

Damping Estimated from κ0 Model. Anderson and Hough (1984) showed that the shape of the 
Fourier amplitude spectrum for ground acceleration at high frequencies can be described as: 

 0( ) exp( π )A f A fκ= −  (4) 

where κ is the controlling spectral decay parameter. Adopting the Hough and Anderson (1988) 
relationships and using notation from Campbell (2009), site attenuation parameter (κ0) can be 
computed as: 

 1 1
0 0 0

( ) ( )
zrock

ef SQ z V z dzκ κ − −= + ∫  (5) 

where 0
rockκ is the attenuation parameter for the bedrock, which sometimes matches the site 

condition at the downhole sensor. Using Eq. (3) to convert Qef to D, we re-write Eq. (5) as: 
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 1min
0 0 0

2 ( ) ( )
100

zrock
S

D z V z dzκ κ −= + ∫  (6) 

We take 0
rockκ = 0.007 sec as the mean estimate for western North America (Campbell, 2009), 

which then allows iterative adjustment of the Dmin profile to match a target κ0 value. The target κ0 
value is taken from an empirical global model conditional on VS30 (Van Houtte et al., 2011): 

 0 30ln( ) 3.490 1.062ln( )SVκ = −  (7) 

for which the standard error is 0.505 for the intercept and 0.076 for the slope. 

We begin with the laboratory-based estimate of the Dmin profile ( min
LD ) and add a value (ΔDi) at 

layer i. Modifying Eq. (6), we have: 

 
( )min 1

0 0 0

2 ( )
( )

100

L
z irock

S

D z D
V z dzκ κ −

+ ∆
= + ∫  (8) 

We use three approaches for considering the depth-variation of ΔDi: depth-invariant, depth-
dependent per a prescribed relation, and VS-dependent ΔD: 

1- Depth-invariant ΔDi = ΔD0: 

 0iD D∆ = ∆  (9) 

2- Visual inspection of min
LD  profiles at the subject sites, suggest that the following relation 

approximately captures typical trends for the soil conditions present at the sites:  

 ( ) ( ) 0.04
min min 0 ( )L L

iD z D z z −= =  (10) 

where z is the depth of the center of the layer in meters. This relation gives more weight 
to shallower layers. We propose a model for ΔDi that follows this same trend:  

 0.04
0 ( )i iD D z −∆ = ∆  (11) 

3- The VS-dependent model is motivated by the negative correlation that exists between 
min
LD  and VS at most sites. Based on visual inspection and some trial and error, we apply 

the following relation:  

 
0.3

0 200
S

i
VD D

−
 ∆ = ∆  
 

 (12) 

where VS is the shear wave velocity for the layer in meters per second.  
Eqs (9), (11), and (12) allow for single parameters (ΔD0) to produce ΔDi profiles, which can be 
used with Eq. (8) to compute κ0. In our case, we take κ0 from Van Houtte et al. (2011) and use 
Eq. (8) to compute three values of ΔD0 for each site. For sites without a geotechnical log we do 
not have the min

LD  profile – in these cases we assume min
LD  = 0 for use with the above procedures.  
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Example Application 

We apply the procedures described in the previous subsection for the El Centro-Meloland 
vertical array site. Figure 7 shows the geotechnical log, VS profile, and damping profiles derived 
from the three approaches presented in the previous section. A considerable difference between 
damping profiles from the three approaches is evident, with the lab-based damping being 
smallest, the damping derived from κ0 being largest, and the Campbell (2009) relation providing 
intermediate values. The alternate methods for capturing the depth-dependence of ΔDi are seen 
to be of second-order importance as compared to the variations from the three modeling 
approaches for damping.  

 
Figure 7. Site characteristics for El Centro-Meloland site including simplified geotechnical log, 

VS profile, and soil damping profile estimated using empirical lab-based damping 
models by Darendeli (2001) and Menq (2003), damping derived from Qef model by 
Campbell (2009), and damping derived from κ0 model by Van Houtte et al. (2011) 
(three alternate depth relations for ∆D).  

 

Using the VS profile, damping profiles (five alternatives), and estimated soil densities, we 
perform visco-elastic GRA in DEEPSOIL, and compute surface-downhole theoretical transfer 
functions (TTFs). As the downhole sensor is recording both up-going and down-going waves, we 
take the boundary condition at the base of the model as rigid (Kwok et al., 2007). The visco-
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elastic analysis is performed in the frequency domain, and the site amplification predicted by the 
model is independent of the input motion. The resulting TTF is shown in Figure 8 for the El 
Centro-Meloland site. No smoothing was applied to these TTFs.  

The overall shape and the position of the peaks in TTF plots (corresponding to modal 
frequencies of the site) are controlled by the VS profile, and hence do not vary across damping 
models. However, the level of amplification at high frequencies is sensitive to damping levels, 
being much higher for low-damping approaches (lab-based) as opposed to high-damping 
approaches (κ0-based).  

 
Figure 8. Plots of TTF vs. frequency using different approaches for estimating damping. El 

Centro-Meloland site 

 

Model-Data Comparisons and Interpretation 

Model-data comparisons can be visual by plotting together TTFs and ETFs. However, it 
is also useful to evaluate the goodness of fit, which we quantify with Pearson’s sample 
correlation coefficient r (also used by Thompson et al., 2012) and the mean residual of the 
transfer function ( R ). We define both metrics here and show example results.  

Pearson’s sample correlation coefficient (r) 

We use this parameter as a measure of how well the model predictions and the data are 
correlated. Parameter r quantifies how well the shapes of the transfer functions align, including 
the locations and shapes of peaks. Parameter r is insensitive to relative overall levels of 
amplification, which is quantified in the next subsection. We calculate the Pearson’s sample 
correlation coefficient for ith earthquake and jth analysis (based on damping estimation approach) 
as follows for a given site: 
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( )( )

( ) ( )2 2

ETF ( ) ETF TTF ( ) TTF

ETF ( ) ETF TTF ( ) TTF

i i j j
ij

i i j j

f f
r

f f

− −
=

− −

∑
∑ ∑

 (14) 

where we take the summations between fmin = 0.1 and fmax = 10 Hz. The summation is performed 
over all frequency points between fmin and fmax. The average value of r across all events (rj) for a 
given site is denoted r .  

Mean Transfer Function residual ( R ) 

We quantify bias in the prediction of site response transfer functions by computing the 
mean residual of predictions over all frequency points between fmin and fmax. The residuals are 
calculated for the ith earthquake and jth damping estimation approach as follows: 

 ( ) ( )( ) ln ETF ( ) ln TTF ( )ij i jR f f f= −  (15) 

where Rij is the prediction residual. We average Rij over all events and frequency points to 
calculate the overall bias for a site, which is denoted by jR . For sites with reasonably high values 
of r , bias jR  provides an indication of how well alternate damping models fit the data.  

Results and Interpretation 

Figure 9 shows model-data comparisons for two example sites in which the fit is 
reasonably good (El Centro-Meloland) and relatively poor (San Bernardino). Figure 9 plots 
median for ETFs as well as TTFs based on the three principle soil damping models (we only 
show results for the second of the three κ0-based approaches, given a lack of sensitivity). The 
TTFs in Figure 9 are smoothed in an equivalent manner to the ETFs.  

For the El Centro-Meloland site (Fig 9a), the higher value of r = 0.30 indicates relatively 
good alignment between the shapes of the ETF and TTF (the summary statistics shown in Fig. 9 
apply for the Campbell 2009 damping formulation). In contrast, the San Bernardino site has a 
shape misfit between ETF and TTF and r =0.06. The general level of site amplification at high 
frequencies is better matched using the Campbell (2009) damping model than the other two 
models considered (the min

LD  model under-damps, the κ0-based model over-damps). This result 
most often holds for other sites as well.  

Based on preliminary results obtained thus far, California r  values are higher, and 
median σln values are lower, than their counterparts for the KiK-net arrays in Japan. This 
suggests that the ability of GRAs to match observation is better for the California vertical arrays 
than for KiK-net sites. This likely results from California sites mostly being located within large 
sedimentary basins, whereas KiK-net sites are often on firmer ground conditions (often 
weathered rock or thin soil over rock). The California sites with poor matches of data to model, 
including the San Bernardino array, tend to be located near basin edges, where heterogeneous 
velocity structure is relatively likely to be present.  
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Figure 9. Comparison of ETF and TTFs for sites with good (El Centro-Meloland) and poor (San 

Bernardino) matches. Indicated values of r and R are based on Campbell (2009) 
damping model. 

 

Conclusions 

The motivation for this work is to examine whether the very low rate of match between 
1-D ground response analysis (1D GRA) results and vertical array data observed in prior 
research in Japan (KiK-net array) is also found in vertical array data from California. We have 
compiled basic information for 39 vertical array sites in California; however, to date we have 
been able to use only 10 of these sites. In some cases, sites are not usable because of lack of 
measured VS profiles. We compute theoretical transfer functions by performing 1D GRA using a 
visco-elastic procedure with three different damping models. We compute empirical transfer 
functions from the recordings that are generally of sufficiently low amplitude that the site 
response can be considered to be approximately linear. Pearson’s sample correlation coefficients 
( r ) are used to quantify the alignment of transfer function shapes and mean residuals ( R ) are 
used to quantify average data-model bias.  

Our results show that a VS-based damping model derived for sites in the eastern US 
(Campbell 2009) provides a better match of GRA results to data than damping evaluated from 
laboratory tests or damping derived to be compatible with relationships with spectral attenuation 
parameter κ0. We find that a higher percentage of California sites, as compared to KiK-net sites, 
have a reasonably good match of empirical and theoretical transfer functions, as demonstrated by 
higher (on average) r values. The empirical transfer functions also have a greater degree of 
event-to-event consistency, as reflected by lower (on average) standard deviations of empirical 
transfer function ordinates. While these results are encouraging, it is notable that cases with a 
poor match also occur at some of the California sites investigated here, suggesting that 1D GRA 
does not provide a suitable means by which to estimate site response for those sites. 
Understanding on an a priori basis, when GRA is unlikely to be effective remains an unsolved 
problem and an important priority for future research.  
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