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Abstract

Background: With the increasing popularity of calcium imaging in neuroscience research, 

choosing the right methods to analyze calcium imaging data is critical to address various scientific 

questions. Unlike spike trains measured using electrodes, fluorescence intensity traces provide an 

indirect and noisy measurement of the underlying neuronal activities. The observed calcium traces 

are either analyzed directly or deconvolved to spike trains to infer neuronal activities. When both 

approaches are applicable, it is unclear whether deconvolving calcium traces is a necessary step.

Methods: In this article, we compare the performance of using calcium traces or their 

deconvolved spike trains for three common analyses: clustering, principal component analysis 

(PCA), and population decoding.

Results: We found that (1) the two approaches lead to diverging results; (2) estimated spike 

trains, when smoothed or binned appropriately, usually lead to satisfactory performances, such as 

more accurate estimation of cluster membership; (3) although estimate spike train produce results 

more similar to true spike data than trace data, we found that the PCA results from trace data 

might better reflect the underlying neuronal ensembles (clusters); and (4) for both approaches, 

decobability can be improved by using denoising or smoothing methods.
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Comparison with existing methods: Our simulations and applications to real data suggest 

that estimated spike data outperform trace data in cluster analysis and give comparable results for 

population decoding. In addition, the decobability of estimated spike data can be slightly better 

than that of calcium trace data with appropriate filtering / smoothing methods.

Conclusion: We conclude that spike detection might be a useful pre-processing step for certain 

problems such as clustering; however, the continuous nature of calcium imaging data provides a 

natural smoothness that might be helpful for problems such as dimensional reduction.

Keywords

Spike detection; Neural activity; Neural calcium imaging; Analysis; Population decoding; 
Neuronal ensembles

1. Introduction

With the technical advances in optical imaging devices, sensitive genetically encoded 

indicators, and pre-processing methods (Tian et al., 2009; Dombeck et al., 2010; Ghosh 

et al., 2011; Grienberger and Konnerth, 2012; Chen et al., 2013; Yang and Yuste, 2017), 

calcium imaging has been increasingly adopted as a supplement or substitute to the 

traditional electrophysiological measurements of neuronal firing activities. Compared to 

electrophysiological methods, imaging methods offer flexibility in a number of ways such 

as targeting specific neuronal subpopulations of interest, improved spatial resolutions, longer 

follow up time, and increased number of neurons that can be simultaneously recorded. One 

trade-off for the greater flexibility is the requirement of more sophisticated pre-possessing, 

as the measurement of neuronal activities from calcium imaging is indirect, and its estimate 

of calcium concentration is complicated by several factors such as measurement noise and 

contamination from non-neuronal cells (Johnston et al., 2020). As a consequence, each 

calcium trace is only a proxy of the underlying spiking activities with a reduced signal-to-

noise ratio and temporal resolution. Thus, recent comparisons of electrophysiology and 

calcium imaging data are timely to guide us on how to interpret the results obtained from 

calcium imaging data. Using matched neuron populations and experimental conditions, Wei 

et al. (2020) compared electrophysiology and calcium data on temporal dynamics (within 

each trial), trial-type selectivity, sources of variances, and population decoding. As calcium 

imaging has been widely adopted in longitudinal studies to track the activities of large 

populations of neurons, an emerging follow-up question is whether the recorded calcium 

traces should be analyzed directly or deconvolved to estimate the underlying spike trains 

first.

Despite the continued improvement in the quality of calcium imaging, extracting 

the underlying spike activities that would otherwise be accurately measured by 

electrophysiology data is still one major challenge in analyzing calcium imaging data. 

As a result, numerous spike deconvolution methods have been proposed, from the simple 

thresholding with 2–3 standard deviations away from the calcium trace baseline to formal 

and fully Bayesian models, such as Yaksi and Friedrich (2006), Vogelstein et al. (2010), 

Pnevmatikakis et al. (2016), Deneux et al. (2016), Jewell and Witten (2018), Pachitariu 

et al. (2018), Berens et al. (2018), Stringer and Pachitariu (2019), Pnevmatikakis (2019), 
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Giovannucci et al. (2019), and three of our recent work on multi-trial data (Johnston et al., 

2020; Shen et al., 2021; D’Angelo et al., 2021). Comparisons between estimated and true 

spike data from simulated or benchmark data usually showed that deconvolution leads to 

satisfactory results; on the other hand, the estimated spikes might be inconsistent across 

methods, which produces different estimates of firing rate, number of tuned neurons, and 

distribution of estimated firing rates (Evans et al., 2019).

Some research problems, such as investigating temporal coding (Abeles et al., 1993; Abbott, 

1994; Theunissen and Miller, 1995) and estimating instantaneous firing rates, require 

the precise timing of action potentials. In addressing many other scientific questions, 

however, either calcium traces or estimated spike data can be used. For visualization 

purposes, both heat maps of calcium traces and raster plots of estimated spike trains 

are commonly presented. Cluster analysis is a routine practice to group neurons or trials 

with similar temporal patterns using spike train or estimated spike train data (Adler et al., 

2012; Humphries, 2011; Diana et al., 2019). Due to the increased availability of calcium 

recordings, in recent work, calcium trace data have also been directly used for clustering 

(Ozden et al., 2008; Dombeck et al., 2009; Barbera et al., 2016). For example, cluster 

analysis of calcium trace data suggests that spatially compact neural clusters exist in awake 

mouse motor cortex at not only macrocircuitry but also microcircuitry levels (Dombeck 

et al., 2009). These clusters may represent cell assemblies that are stable over days; their 

dynamics often represent unique behavioral states and carry useful encoding information 

for behaviors (Barbera et al., 2016). When calcium imaging data are available, one can 

conduct cluster analysis using either calcium traces or the deconvolved spike data (Romano 

et al., 2017). In this situation, one natural question is should one conduct cluster analysis on 

calcium traces or the deconvolved data?

A related analysis is principal component analysis (PCA), which aims to extract components 

(linear combinations of time series from multiple neurons) that can keep as much as 

possible the variation in the original data. In neuroscience, PCA is frequently performed 

for dimension reduction and data visualization. Quantifying the dimensionality, which 

is defined as a function of the corresponding eigenvalues, may also shed light on the 

dynamics of the underlying neural circuit connectivity of various tasks and stimuli (Gao 

et al., 2017). For example, it is widely believed that, for a population of neurons, high 

dimensionality and low correlation imply coding efficiency whereas low dimensionality and 

high correlation produce robust/reliable coding (Stringer et al., 2019). PCA analysis can 

be conducted using either electrically recorded spikes trains or optically recorded calcium 

imaging data (Cunningham and Byron, 2014). One advantage of calcium recording over 

electrophysiology recording is that calcium imaging allows a large number of neurons to 

be recorded simultaneously over several weeks. A popular method to compactly visualize 

the neuronal dynamics is to plot PCA trajectories over time using the first two or three 

components (Churchland et al., 2012; Cunningham and Byron, 2014). Because calcium 

traces are continuous, it is more tempting and straightforward to conduct PCA using calcium 

traces than using the estimated spike data, which are binary. In PCA analysis of spike train 

data, filtering methods (Paiva et al., 2010) such as Gaussian kernel (Churchland et al., 2012) 

are often applied to spike trains because PCA is more natural for continuous data. When 

the components of the true spike activities are of interest, PCA based on calcium trace data 
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might not be desirable, as a substantial source of the variation might be from the random 

noise and slow decay in calcium intensity, rather than the signals of action potentials. 

Thus, one important question is whether deconvolution will help recover the true underlying 

components.

Another important analysis in neuroscience is decoding, which refers to finding the mapping 

from neural activities to either external stimuli such as presented images and experimental 

types or animal behavioral outcomes such as movements, speed, positions, and decision 

making. An interesting question is whether and how information is represented in an 

ensemble of neurons. Thus, population decoding methods have been widely adopted to 

investigate the joint activities of a group of neurons using spike train data (Brown et 

al., 2004). For example, Yang and Masmanidis (2020) analyzed simultaneously measured 

spike train data from two brain regions to compare their population decoding of choices 

in a two-alternative choice task. With the increased popularity of calcium imaging, more 

and more population decoding analyses are conducted using calcium traces. In many 

published studies, the calcium trace data were first deconvolved to spike train data before 

being used for population decoding. A recent study (Wei et al., 2020) found that, as 

expected, the decoding accuracy of the deconvolved spike data from calcium traces was 

much lower than the electrophysiology data; however, counter-intuitively, calcium trace data 

have higher predictability than both their deconvolved spike train data and the less noisy 

electrophysiology data. One possible explanation suggested by Wei et al. (2020) is, due 

to the slow decay rate of the observed calcium transients, the calcium trace data naturally 

perform “integrating” rather than instantaneous decoding. This is evidenced by the improved 

predictability of the electrophysiology data when a filter of 1 s was applied. It is unknown 

whether it is beneficial to conduct deconvolution when “integrating effects” are taken into 

consideration to make a fair comparison between calcium traces and their deconvolved spike 

trains.

In this paper, our goal is to assess the necessity of spike estimation for calcium trace data 

in three widely used methods, which are cluster analysis, PCA analysis, and population 

decoding.

2. Cluster analysis

K-means is perhaps the easiest to understand and the most widely used clustering method. 

The idea is to allocate a neuron to the cluster with the nearest centroid. Its improved versions 

have also been used in clustering either neurons or trials. For example, the meta k-means, 

which is a consensus clustering method that aggregates clustering results from multiple runs 

of k-means, has been developed to increase the clustering stability of neurons (Ozden et al., 

2008). Another example is the fuzzy k-means, which accounts for clustering uncertainty by 

assigning cluster probabilities to each trial or neuron (Dunn, 1973; Bezdek, 2013). Here we 

use the conventional k-means, due to both its simplicity and popularity in cluster analysis of 

calcium traces. Because of the trial-to-trial and neuron-to-neuron variation in the magnitudes 

of peak fluorescence intensity, we use the correlation distance metric.
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2.1. Results based on simulated data

We first compare the clustering accuracy of calcium traces and their deconvolved spike 

trains using a simulation study, where both the true spike trains and the underlying cluster 

structure of the neurons are known. The spike train data we analyze are a subset of the spike 

trains simulated by Fellous (2004). Each simulated data set consists of three clusters, which 

are treated as three neuron clusters here. The 35 neurons (spike trains) within each cluster 

share 4–6 spikes with the spike times uniformly distributed between the time interval (0–1 

s). The following three ways are used to generate spike noises at various levels.

• 15% spike events are dropped randomly.

• X extra random spikes are added to each train.

• All the spike times are jittered by a value drawn from a normal distribution with 

mean 0 and standard deviation J million second (ms).

We consider seven noise levels (Table 1), from well-separated clusters to very “fuzzy” 

clusters. The raster plots in Fig. 1 show two sets of spike trains with the left panel 

representing low noise (level 2) and the right panel representing high noise (level 8). In 

Fellous (2004), 30 data sets were generated for each of the seven noise levels to account 

for variations in data simulations. Each fluorescence trace is generated for a given spike 

train using an AR(1) model (Vogelstein et al., 2010). In the AR(1) model, the calcium 

fluorescence for a neuron at a single trial, denoted by y(t), t = 1, ⋯, T, is modeled using the 

following first-order auto-regressive model

y(t) = c(t) + ϵ(t), ϵ(t) N 0, σ2 ,
c(t) = γc(t − 1) + s(t),

(1)

where c(t) denotes the underlying true calcium concentration, s(t) represents the non-

negative change in calcium concentration between time points t − 1 and t with s(t) > 

0 indicates a spike at time t, γ is the decay rate of calcium transients, and σ2 denotes 

the variance of the noise in measuring calcium concentration. We choose the following 

parameters: the rate of decay γ = 0.96, the magnitude of each spike s(t) = 1 for any s (t) > 

0, and four levels of Gaussian noise σ ∈ {0.1, 0.2, 0.3, 0.4}. These values coverage realistic 

levels of noise in calcium trace, from easy to challenging in spike deconvolution. In addition, 

to mimic realistic decay rates of genetically encoded indicators, we re-scale the data to 100 

time data points with a sampling rate of 15 Hz. To estimate spikes from simulated calcium 

data, we use the ℓ0 penalized approach of Jewell and Witten (2018) for each calcium trace.

We perform cluster analysis using the k-means with three clusters to all the three types of 

data, namely, the calcium traces, the estimated spike trains from calcium traces, and the true 

spike trains. Due to the sparsity of spike data, we apply a Gaussian filter with a relatively 

small bandwidth (σ = 1/5 s) to the spike data such that a little bit of continuity is gained 

without losing too much of the binary characteristic of spike data. More discussions on data 

smoothing using Gaussian filter or binning are provided in Section 3.2.

The clustering accuracy is quantified using two metrics – the Rand index (Rand, 1971) and 

the normalized mutual informationI(A, B) (Danon et al., 2005) between the estimated and 
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true cluster memberships. Both metrics measure the consistency between two categorical 

variables, with the maximum value 1 indicating perfect agreement. Not surprisingly, as 

presented in Fig. 2, the true spike data have the best clustering performance. Importantly, 

estimated spikes perform better than calcium trace at almost all noise levels.

In practice, the true number of clusters is unknown. To examine whether the results are 

sensitive to the choice of the number of clusters, we also calculate the Rand indices and 

mutual information for four and five clusters. The results (not shown) lead to the same 

conclusion, i.e., estimated spike data perform uniformly better than calcium traces on 

clustering.

2.2. A decision-making task

We then compare neuron clusters estimated from trace data to those from estimated spike 

data in two real studies. These applications fall into the situation of no ground truth, as 

neither the true number of clusters nor the clustering membership is unknown a priori. 

Similar to Pachitariu et al. (2018), who used concordance between repeated trials as a 

metric for estimated spikes, we use Rand index to examine the between-trial consistency 

for estimated clusters. This method is particularly relevant for the first study, as the calcium 

imaging data during a decision-making task were collected after the participating mice had 

mastered the task. Thus, it is reasonable to treat trials with the same behavior outcome as 

repeated trials. In this multi-trial experiment, mice were first trained to discriminate pole 

location using their whiskers and report the perceived pole position by licking the correct 

lickport to receive a small drop of water reward (Li et al., 2015; Wei et al., 2020). Their 

neuronal activities in the left anterolateral motor cortex region were then measured using 

two-photon calcium imaging using GCaMP6s. Each 5-s long trial consisted of three epochs: 

sample epoch (mice presented with a vertical pole), delay epoch (the pole was removed), 

and response epoch (mice cued to give a response). The behavioral outcome of each trial is 

“correct” (i.e., 31 trials of correctly lick the left lickport and 21 trials correctly lick the right 

lickport) or “incorrect” (i.e., eight trials of incorrectly lick the left lickport and 13 trials of 

incorrectly lick right lickport).

For a randomly chosen mouse with 67 neurons, K-means was used to cluster the neurons 

into four clusters. The results from three or five clusters are not omitted because they 

lead to similar conclusions. Presented in the left and right upper panels of Fig. 3 are the 

heat maps of Rand index matrices between trials using trace or estimated spike (Gaussian 

filtered with σ = 1/3s), suggesting that estimated spike data with Gaussian filtering lead to 

increased trial-to-trial agreement in neuron clusters. The histogram of the difference in Rand 

index between the two data types for all trial pairs is given in Fig. 4 (right lower panel, 

red-colored). To examine whether this difference is statistically significant, we compared the 

mean of the observed differences to those from shuffling the labels of the two data types 

1000 times. Presented in the blue histogram of Fig. 3 is the histogram of the differences 

from one random permutation. The p-value is less than 0.001, suggesting the improvement 

in trial-to-trial agreement by estimated spike data is significant.

An interesting question is whether the estimated clusters from these two data types, i.e., 

calcium trace and estimated spike data, are consistent. The Rand index matrix between 
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clusters estimated from trace or estimated spike data (Fig. 3, lower left panel) indicates that 

there is only moderate concordance between clusters from trace and estimated spike data. 

Note that the blue bands are caused by trials with one empty cluster from the trace data.

2.3. A fear-based contextual discrimination experiment

The example provided in Section 2.2 is a representative example of repeated trials. As a 

comparison, in this study, calcium recording started in the first learning trial and lasted for 

a few weeks; therefore, neural dynamics are expected as a result of the learning process and 

neural plasticity. For this reason, incorporating neuronal dynamics in firing rate estimation is 

likely to improve spike detection and firing rate estimation.

In one of our previous studies (Johnston et al., 2020), mice were trained to recognize 

two contexts via fear conditioning (foot shock). Meanwhile, fluorescence miniature 

microscopes (Ghosh et al., 2011) were used to track cell populations in contextual 

discrimination experiments in mice’s hippocampus using a genetically encoded calcium 

indicator (GCaMP6f) for up to 60 days. The whole experiment included four stages: 

habituation (mice freely exploring environment), learning (a stimulus context with foot 

shock), extinction (no foot shock), and relearning (stimulus reinstated).

We analyze a mouse whose 141 neurons were measured in 21 trials, with the first 11 trials 

in the learning stage and the last 10 trials in the relearning stage. The calcium data collected 

10 s before and 60 s after foot shock were used for analysis. Note that several decisions 

need to be made before clustering, such as the number of clusters, the degree and the way 

that spike trains are smoothed. To check whether the comparison results between trace and 

estimate spike are sensitive to those choices, we examine combinations of these factors, 

including K ∈ {3, 4, 5} clusters, Gaussian filtering with σ ∈ 1
15 , 1

5 , 1
3 , 2

3 , 1  second, and bin 

size ∈ 1
15 , 2

15 , 1
5 , 1

3 , 2
3 , 1  second.

However, the Rand index values can be very low for binned data with a size less than 1/3 

s. This is presumably due to the discreteness with small bin sizes. Shown in Fig. 4 is the 

Rand index matrices of trace data (upper left), spike data with a Gaussian filter of 1/3 s 

(upper right), binned data with a size of 1/3 s (bottom left), and trace vs spike (Gaussian 

filtered, bottom right) when K = 5 clusters are assumed. Importantly, the Gaussian filtered 

spike data achieve higher trial-to-trial agreement with most large Rand index values close 

to the diagonal (i.e., neighboring trials). Using the permutation method described in Section 

2.2, the p-values of significant difference are less than 0.01 for Gaussian filtered (σ = 1/3s) 

vs trace and less than 0.05 for binned (size = 1/3 s) vs trace. Of particular interest is the high 

consistency of the relearning trials, especially when Gaussian filtered spike data were used 

for clustering. This may suggest that a stable neuronal ensemble has been formed. For the 

trace vs spike plot (lower right, Fig. 4), the value in the ith row and jth column is the Rand 

index between the clusters of the ith trial based on trace and the clusters of the jth trial based 

on spike data. The high Rand index values on the diagonal suggest that trace and spike data 

at least show good agreement on the same trials, which is expected.
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Similar conclusions are obtained when the neurons are clustered into three or four clusters. 

Due to the lack of ground truth in neuron clusters, caution should be taken when relating 

results to potential misspecifications of cluster numbers.

3. Principal component analysis (PCA)

PCA is a classical method of dimension reduction. In PCA analysis of neuron data, the aim 

of PCA is to project neurons into a low-dimensional subspace and the extracted components 

are linear combinations of individual neurons. It has been widely used in analyzing large-

scale neuron data (Chapin and Nicolelis, 1999; Paiva et al., 2010; Churchland et al., 2012; 

Harvey et al., 2012; Bekolay et al., 2014; Cunningham and Byron, 2014; Kobak et al., 

2016; Stringer et al., 2019). For example, choice-specific neuron trajectories were reported 

in the parietal cortex during a virtual-navigation decision task (Harvey et al., 2012). Using 

a delayed response task, Wei et al. (2020) compared PCA between electrophysiology and 

calcium imaging data, and found that the proportions of explained variance of the first three 

PCs are quite different between calcium trace and electrophysiological data. In this article, 

we will use both the simulated and real data presented in Section 2 to examine the difference 

between trace and spike data in PCA analysis.

3.1. PCA results based on simulated data

We first computed an interesting summary metric of the distribution of the eigenvalues – the 

effective dimension of an embedding (Victor and Purpura, 1997), which is also noted as the 

dimensionality (Gao et al., 2017). It is defined as E =
∑λi

2

∑λi2
 where λi is the i-th eigenvalue 

of the covariance matrix of calcium traces/true spike trains/estimated spike trains between 

neurons. The result in the left panel of Fig. 5 shows that the dimensionality calculated from 

estimated spike data is more similar to that from the true spikes, especially when the noise 

levels of spike and calcium are low. At the lowest noise level (level 2, left panel of Fig. 

1), there are three clear clusters. The effective dimension from the trace data with a small 

Gaussian noise is the closest to the true number of clusters than that from spike or estimated 

spike data. As the noise level increases, three clusters might not be adequate because there 

is more variation across neurons (right panel of Fig. 1). As a result, it is expected that the 

effective dimension should increase as the spike noise level increases from level 2 to level 

8. All data types, except the trace with a large Gaussian noise, demonstrate this expected 

trend (Fig. 5, left panel). On the other hand, the effective number from the true or estimated 

spike data is much larger than three, even for a noise level with three noticeable clusters such 

as level 6 (Fig. 1, right panel); as a comparison, the estimated dimension from trace data is 

still small. One possible explanation is that the slow decay in calcium fluorescence might 

compensate for the jittering noises of spike times.

To understand whether the loadings from spike data agree with those from trace data, 

we plotted the cumulative proportions of explained variances by the 10 leading principal 

components for the data set at spike noise level 3 and calcium noise σ = 0.1. As illustrated 

in the right panel of Fig. 5, the curves based on the true spike trains (black) are very similar 

to those based on the estimated spike trains (blue) but different (marginally significant) from 
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those based on the calcium traces (red). Although the estimated spike data are closer to the 

true spike data in terms of spectral characteristics, such as effective dimension and percent 

of variance explained, the trace data seem to be more robust against jittering noise in spike 

times.

3.2. PCA results for the fear-based discrimination data

We next examine the effective dimensions computed from calcium traces or estimated spikes 

for the fear-based contextual discrimination experiment. As described in Section 2.3, each 

session is 70 s long with a sampling rate of 15 Hz. The resulting number of data points 

is over 1000, which allows us to examine the effect of binning spike trains, in addition to 

Gaussian smoothing. The following σ (for Gaussian) and bin size are considered: {1/15, 1/5, 

1/3, 2/3, 1} second. Shown in Fig. 6 is the results using selected smoothing parameters. The 

effective dimension seems to decrease during the learning stage and vary less during the 

relearning, which might suggest the formation of neural ensembles after learning. However, 

given the small number of trials, there is not enough information to make a conclusion on 

the trend of effective dimensions over time.

When comparing the effective dimensions across data types and smoothing methods, we 

notice that the trace data provide similar results with smoothed spike data using a Gaussian 

filter with σ = 1 s. Similarly, binning with a size of 1 s is similar to Gaussian filtering 

with σ = 1/3 s, and binning with a size of 2/3 s is similar to Gaussian filtering with σ = 

1/5 s. It should be kept in mind that here we focus on a single summary of PCA analysis, 

i.e., effective dimension. As PCA is a multi-purpose tool (such as dimension reduction and 

visualization), trace and spike data might differ in multiple ways. For instance, based on our 

own experience, neuron trajectories could vary substantially with the chosen data type and 

smoothing method. It is worth conducting more research on PCA with calcium imaging.

4. Population decoding analysis

4.1. Data “pre-processing”

Our goal in this section is to investigate whether deconvolution is helpful in population 

decoding. Wei et al. (2020) reported that electrophysiology and estimated spike data are 

less informative in population decoding at each time bin. This is somewhat surprising but 

not totally unexpected. There are several possible explanations such as the integration effect 

of the calcium trace data (Wei et al., 2020) and the sparsity of spike data in each time 

window. One support of these explanations is that the one-second filtered electrophysiology 

data reached higher peak decoding accuracy than the original analysis of electrophysiology 

data with a bin size 67 ms. In fact, temporal filtering is a common practice in population 

decoding, and choosing the appropriate filtering encourages data integration temporally, 

leading to improved decoding accuracy (Yates et al., 2020; Tu et al., 2020; Park et al., 

2014). For this reason, we consider both an instantaneous approach, which uses the original 

calcium trace resolution (15 Hz), and the 1 s filtered analysis, which uses the sum of a 

current time point and its previous fourteen time points for each neuron.
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In addition, it has been known that coding timescales vary across cortical areas, stimulus 

types, and choice contexts (Runyan et al., 2017). For example, sensory cortices were often 

reported to have short coding timescales at both individual and population levels (Barbera 

et al., 2016; Runyan et al., 2017), whereas the posterior parietal cortex showed improved 

population decoding accuracy for behavioral choices when a cumulative decoding, rather 

than instantaneous decoding, was conducted (Runyan et al., 2017), Extended Fig. 7). They 

reasoned that the longer timescale could be due to the coupling of neurons in the posterior 

parietal cortex. In their analysis, cumulative decoding refers to a decoding strategy that 

either uses all the data up to a given time point (Runyan et al., 2017) or uses all available 

time points (Berens et al., 2012). In this article, in addition to the 1 s filtered method, we 

examine two other approaches to take neural firing history into consideration: the cumulative 

approach uses the total number of spikes up to a time t for each neuron, and the history 

approach uses the whole time course up to time t for each neuron. Statistically, at each 

given time t, our cumulative approach is a simple linear decoder that can be obtained from a 

multiple logistic regression. Compared to both the 1 s filtered and the cumulative approach, 

the history approach is more data-driven in that the weights of different time points are 

determined by the data. The details of the history method are described in Section 4.3.

4.2. Data types

Note that the spike detection framework based on the AR(1) model in Eq. (1) not 

only produces estimated timestamps of spike events but also provides estimates of spike 

magnitudes, denoted by s(t). The spike magnitude s(t) was originally motivated by the 

number of spikes in a small time bin (Vogelstein et al., 2010). Due to pre-processing 

such as data normalization, the interpretation of a positive s(t) is not clear; nevertheless, it 

might still provide useful quantitative information related to spike counts and is therefore 

useful for population decoding. Another quantity estimated by the AR(1) model is the 

calcium concentration c(t). The estimated c(t) can be considered as a denoised version of 

the observed calcium trace. Interestingly, c(t) can also be viewed as a filtered version of 

the underlying spike train. As spike train filters are often applied in various spike train 

analyses in neuroscience research, it is reasonable to use the estimated c(t) as a candidate 

for population decoding. Thus, we will focus on the following four types of data: the raw 

calcium traces, the estimated spike trains, the estimated changes s (t), and the estimated/

denoised traces c(t).

4.3. Prediction methods

Taken together, the data types and ways of pre-processing create various combinations of 

decoding, as illustrated in Table 2. Note that in real studies, the category of spike train might 

be spike train data from electrophysiology measurements or estimated spike trains from 

calcium trace data.

When decoding using traces and cumulative counts, we apply a linear support vector 

machine (SVM) (Cortes and Vapnik, 1995) with 5-fold cross-validation on the training 

data. To assess the dependency of results on predictive models, we also used Fisher’s linear 

discriminant analysis. Because they give similar results in the scenarios we consider, only 

results from SVM will be reported.
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For the history decoding approach, predictors are a matrix of the time series (up to time 

t) from a neuron population. Traditional methods such as SVM reshape the matrices into 

vectors, causing a loss of structural information such as time history. Here we apply a sparse 

support matrix machine method (SSMM) (Zheng et al., 2018), which is a regularized binary 

matrix classifier that uses a ℓ1 penalty to ensure sparsity and a nuclear norm penalty to 

encourage low rank of the coefficient matrix. Given a set of samples Xi, yi i = 1
n , Xi ∈ ℝp × q

is the ith predictor matrix and yi ∈ {1, − 1} is its corresponding label. The proposed SSMM 

(Zheng et al., 2018) is based on support vector machine (Cortes and Vapnik, 1995) and it 

combines a hinge loss with a new regularization on the regression coefficient matrix W. The 

objective function of SSMM is presented as:

argminW, b λ‖W‖1 + τ‖W‖* + ∑
i = 1

n
1 − yi tr WTXi + b +

where Xi, W ∈ ℝp × q. It minimizes the penalized hinge loss with both an ℓ1 norm ‖W‖1 and 

a nuclear norm ‖W‖* on W. The ℓ1 norm controls the sparsity of W and the nuclear norm 

encourages W to be low-rank. An efficient algorithm to solve the optimization problem 

was presented in Zheng et al. (2018), in which a generalized smooth hinge loss with 

Lipschitz-continuous gradient was used. The computational cost is O n2pq .

The tuning parameters λ and τ in SSMM control the sparsity and rank of the input matrix, 

respectively. Zheng et al. (2018) reported that positive values of the tuning parameters τ and 

λ often give better results than no regularization. We used a 5-fold cross-validation to the 

training data to choose their optimal tuning parameters.

4.4. Decoding accuracy for the water lick data

The water lick data has been described in Section 2.2. The primary goal of the original 

study was to compare electrophysiology and imaging data for measuring neuronal activities 

in the anterior lateral motor cortex (Wei et al., 2020). Although the electrophysiology 

and calcium imaging recordings were separate, neuron populations of matched depth were 

measured from the same delayed response task. Here we analyzed the calcium imaging 

data for 1493 neurons from 4 mice with adeno-associated virus expressing GCaMP6s and 

electrophysiology data for 720 neurons from 19 mice. To match the temporal resolution of 

calcium trace data, the spike train data from electrophysiology recordings were temporally 

subsampled to 15 Hz. Note that the data we downloaded from https://doi.org/10.6084/

m9.figshare.12786296.v1 have been pre-processed. We also followed several other strategies 

used in Wei et al. (2020), such as resampling trials to cope with the limited number of 

trials, resampling the same number of neurons when comparing different data types, and 

using cross-validation to choose tuning parameters (60% data for training and 40% data for 

testing). The full description of the experiments and data processing is available from Wei 

et al. (2020) and further backgrounds about the experimental design can be found in other 

articles from the same lab (Li et al., 2015; Wei et al., 2019). Fig. 7 presents the decoding 

accuracy, which is defined as the proportion of correct predictions in testing data, of the 

prediction methods in Table 2. The top panel replicated the reported difference between the 
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decodability of the calcium trace and the electrophysiology recordings (Wei et al., 2020). 

Although electrophysiology data showed earlier latency (defined as the time reaching %70 

decoding accuracy), surprisingly, it had lower instantaneous decoding accuracy (the solid 

black curve) than the calcium trace data, which are noisy measurements of neural activities. 

This difference might be due to the integration effect of the calcium trace data, as a calcium 

transient is characterized by a rapid rise but slow decay. This hypothesis is supported by the 

improved decoding accuracy of the 1-second filtered electrophysiology data. However, the 

1-second filtered electrophysiology data lost the early latency. As a comparison, the spike 

history, a new method considered here, outperforms the calcium trace data in all time bins 

without losing its early latency. Thus, when used appropriately, the less noisy spike train 

data from electrophysiology recordings do achieve both earlier latency and higher maximum 

decodability.

The lower panel of Fig. 7 focused on the effects of deconvolving calcium traces. Consistent 

with Wei et al. (2020), the estimated spike data has lower instantaneous decodability (the 

solid red curve) than both calcium traces and electrophysiology data. The magnitude of 

changes, i.e., s(t) has a similar instantaneous accuracy rate (the solid blue curve). However, 

their cumulative, 1 s filtered, and history decoders have much higher accuracy, with the 

cumulative and 1 s filter decoders outperforming the calcium trace data. It is worth pointing 

out that the estimated calcium concentrations (“estimated calcium trace”), which is a 

denoised version of the calcium traces, also demonstrate higher decoding accuracy than the 

original calcium traces. These results indicate that the decodability of a neuron population 

can be improved by appropriate analysis of the deconvolved data.

One noticeable difference between the two plots in Fig. 7 is that the cumulative approach 

works better than the history approach for electrophysiology data but worse for the estimate 

spike data. There are several possibilities for this inconsistency. First, estimating spike 

trains is challenging due to multiple factors. For example, when firing rate is high and 

kinetics is slow, adjacent spikes cannot be accurately estimated due to the overlapping 

fluorescence responses (Ali and Kwan, 2019). In this situation, the number of spikes might 

be underestimated. For neurons that are active in bursts, such as pyramidal cells, we are only 

able to detect the starting time of a calcium event rather than individual spikes (Stefanini 

et al., 2020). Second, the observed difference of different decoding methods in this study 

need to be verified using similar experimental settings and neural populations. Additionally, 

it is not known whether the results depicted in Fig. 7 can be generalized to other tasks or 

neural populations. Nevertheless, the results indicate that decodability can be improved by 

smoothing discrete data (electrophysiology data and estimate spike data) and denoising the 

raw calcium trace data through deconvolution.

5. Discussion

In this article, we assessed the necessity of spike estimation by comparing it with calcium 

trace data in three analyses: cluster analysis, PCA, and population decoding. Using 

simulated data, we showed that deconvolution tends to improve clustering accuracy. In 

our analysis of real studies, the estimated spike trains produced neural clusters with higher 

trial-to-trial concordance. In addition, when analyzed using appropriate predictive models 
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and smoothing methods, they give slightly more accurate results in population decoding. 

However, the PCA results from trace data seem to be more reasonable, especially in the 

presence of high noise in spike times. In practice, we recommend analyzing both trace and 

estimated spike data, as they might provide supplementary information to each other.

For computational efficiency, we chose a recently published ℓ0 penalized method (Jewell and 

Witten, 2018) to estimate spike trains from calcium traces. Because different deconvolution 

methods have varying accuracy in spike estimation, it is expected that the comparison results 

depend on the choice of deconvolution methods, as reported in (Evans et al., 2019). On the 

other hand, given the consistent observations in our study and previous studies (Evans et 

al., 2019; Wei et al., 2020), it is reasonable to assume that the difference between choosing 

calcium trace and estimated spike data is mainly due to the nature of the data, such as 

quantitative vs binary, continuous vs sparse, and delayed/integrated vs instantaneous.

In examining cluster analysis, we used a prefixed number of clusters. In practice, this is 

unknown. Further, it has been shown that the number of clusters changes during behavioral 

states (Paz et al., 2005). Similarly, we conducted PCA one trial at a time. It might be useful 

to examine PCA results in a refined temporal resolution to characterize dynamics population 

activity (Rossi-Pool et al., 2017). It is interesting to examine how trace or spike data 

characterize the evolution and dynamics of neural ensembles at different time resolutions.

The results also likely vary with the specific analysis methods chosen, such as the choice 

of clustering methods. There is a rich body of literature on clustering, PCA, and population 

decoding methods that are tailored for spike train and calcium imaging data. For example, 

clustering methods that account for clustering uncertainty by relaxing the strict membership 

(Dunn, 1973; Bezdek et al., 1984; Bezdek, 2013) or by aggregating clustering results from 

multiple runs of k-means (Ozden et al., 2008). For PCA, kernel-based methods have been 

developed to handle the sparsity of spike train data (Carnell and Richardson, 2005; Paiva 

et al., 2009; Schrauwen and Van Campenhout, 2007, 2010); recently, novel PCA methods 

have been proposed for PCA analysis of neuron responses. For example, the cross-validated 

PCA extracts reliable components by removing trial-to-trial variability or unrelated cognitive 

or behavioral variables (Stringer et al., 2019). In the demixed PCA (Berens et al., 2012; 

Kobak et al., 2016), the variation in data is demixed into task-related components using 

a decomposition method that is similar to the variance (covariance) decomposition in 

multivariate analysis of variance (MANOVA). We chose the most basic ones, i.e., k-means, 

the conventional PCA, and linear decoders as they might be researchers’ first choices. 

While adopting more sophisticated methods might further improve the performance of both 

calcium traces and the deconvolved spike data, we expect that the main conclusion remains.
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Fig. 1. 
Raster plot of a simulated spike data set with G = 3 groups (separated by red lines) and 35 

spike trains in each cluster. Left: with X = 3 random spikes and J = 3 ms jitter. Right: with X 
= 11 random spikes and J = 15 ms jitter.

Shen et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2022 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Clustering results for simulated data over seven spike noise levels. For the ease of 

visualization,only two calcium noise levels are presented: σ = 0.1 and σ = 0.4. Presented are 

means and 95% confidence intervals over 30 data sets in each simulation setting. Left: Rand 

index. Right: mutual index.
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Fig. 3. 
Rand index obtained from a mouse in 71 repeated sessions of a decision-making task. The 

results are based on the assumption of four clusters. The range of values in the heat maps is 

from 0.45 (dark blue) to 0.75 (dark red). Note the diagonal elements of the three above Rand 

index matrices are all equal to the maximum value 1. For better visualization, we manually 

set them as missing. Each element in the heat map matrix is the Rand index for a pair of 

trials. The red lines on one each heat map separate the trials according to the trial types. 

Specifically, from left to right and top to bottom: correctly lick the left lickport (31 trials), 

correctly lick the right lickport (21 trials), incorrectly lick the left (8 trials), and incorrectly 

lick the right (13 trials). Upper Left: Rand index based on calcium traces; Upper Right: Rand 

index using Gaussian filtered spike trains with σ = 1/3 s; Lower Left: trace vs spike, with the 

value in the ith row and jth column being the Rand index between the clusters of the ith trial 

based on trace and the clusters of the jth trial based on spike data. In several trials, the trace 

data produced three, rather than four clusters; as a result, the Rand index between those trials 

and other trials is low, creating blue-colored (low Rand index values) lines in the heat maps. 

Lower Right: histograms of the observed and permuted Rand indices.
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Fig. 4. 
Rand index for the fear conditioning data obtained from a mouse in 31 shock sessions. The 

results are based on the assumption of five clusters. The range of values in the heat maps is 

from 0.65 (dark blue) to 0.85 (dark red). Note the diagonal elements of the three above Rand 

index matrices are all equal to the maximum value 1. For better visualization, we manually 

set them as missing. Each element in the matrix is the Rand index for a pair of trials. The 

first 11 trials were obtained during the learning stage and the last 10 trials were from the 

relearning stage. Upper Left: Rand index based on calcium traces; Upper Right: Rand index 

using estimated spike trains (Gaussian filtered with σ = 1/3 s); Lower Left: Rand index using 

estimated spike trains (binned with a bin size of 1/3 s). Lower Right: trace vs spike, with the 

value in the ith row and jth column being the Rand index between the clusters of the ith trial 

based on trace and the clusters of the jth trial based on spike data.
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Fig. 5. 
Effective dimension and cumulative proportion of variance explained. Left: the effective 

dimension computed using three data types (black color for true spike, blue color for 

estimated spike, and red for trace) for seven spike noise levels ({2, 3, ⋯, 8}) and two 

calcium noise levels (solid for σ = 0.1 and dashed for σ = 0.4). Right: cumulative proportion 

of variance explained for the data at spike noise level 3 and calcium noise level σ = 0.14. 

The solid lines present explained variance of a data type by itself (black for true spike, 

blue for estimated spike, and red for trace). The blue dashed line is for the variance in true 

spike that is explained by components from estimated spike data; the red dashed line is the 

variance in true spike that is explained by components from trace data.
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Fig. 6. 
Effective dimensions estimated using the fear-based discrimination data. Blue: Gaussian 

filtered spike data (estimated) with σ ∈ {1/5, 1/3, 1} second. Red: trace data. Green: binned 

spike data (estimated) with a size of 2/3 s or 1 s.
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Fig. 7. 
Decoding results for the water lick data. The decoding accuracy is averaged over 100 

subsamples. In each subsample, 50 neurons are randomly selected and 500 trials are sampled 

from each neuron. Vertical dashed lines from left to right: the start time of sample epoch, 

delay epoch of calcium imaging data, delay epoch of electrophysiology, and response epoch. 

Top: decoding accuracy using electrophysiology and calcium imaging data. Solid black: 

instantaneous decoding using electrophysiology data; dashed black: cumulative decoding 

using electrophysiology data; dotted black: decoding based on electrophysiology history. 

Dash-dotted line: 1 s filtered decoding using electrophysiology data. Green line: calcium 

trace. Bottom: decoding accuracy using calcium traces and estimated spike data. Solid 

green: calcium traces; dot-dashed green: denoised traces. Solid red: instantaneous decoding 

using estimated spikes; dotted red: spike history; dashed red: cumulative spikes; dot-dashed 

red: 1 s filtered spike data. Solid blue: instantaneous decoding using spike magnitude; dotted 

blue: spike magnitude history; dashed blue: cumulative spike magnitude; dot-dashed blue: 1 

s filtered spike magnitude.
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Table 1

The noise levels in the simulated spike trains from Fellous (2004). X is the extra number of random spikes 

added to per spike train; J is the standard deviation when jittering the spike times. The labels of the noise 

levels from Fellous (2004) are used.

Noise level 2 3 4 5 6 7 8

X 2 3 4 8 11 15 20

J 1 3 5 10 15 20 30
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Table 2

Population decoding methods. The “1 s filtered”, “cumulative”, and “history” methods are excluded for trace 

data due to lack of justification.

Calcium trace Estimated trace c (t) Spike train s (t)

instantaneous ✔ ✔ ✔ ✔

1 s filtered ✔ ✔

cumulative ✔ ✔

history ✔ ✔
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