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Abstract

The trend towards precision-based therapeutic approaches dictated by molecular alterations offers 

substantial promise for men with metastatic castration resistant prostate cancer (mCRPC). 

However, current approaches for molecular characterization are primarily tissue based, 

necessitating serial biopsies to understand changes over time and are limited by the challenges 
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inherent to extracting genomic material from predominantly bone metastases. Therefore, a 

circulating tumor cell (CTC)-based assay was developed to determine gene expression across a 

panel of clinically relevant and potentially actionable prostate cancer related genes. CTCs were 

isolated from the whole blood of mCRPC patients (n=41) and multiplex qPCR was performed to 

evaluate expression prostate cancer related target genes (n=78). A large fraction of patients (27/41, 

66%) had detectable CTCs. Increased androgen receptor (AR) expression (70% of samples) and 

evidence of Wnt signaling (67% of samples) was observed. The TMPRSS2:ERG fusion was 

expressed in 41% of samples and the aggressive prostate cancer associated long non-coding RNA 

SChLAP1 was upregulated in 70%. WNT5a (HR 3.62, 95% CI 1.63 – 8.05, p=0.002), AURKA 
(HR 5.56, 95% CI 1.79 – 17.20, p=0.003), and BMP7 (HR 3.86, 95% CI 1.60 – 9.32, p=0.003) 

were independently predictive of overall survival (FDR<10%) after adjusting for a panel of 

previously established prognostic variables in mCRPC (Halabi nomogram). A model including 

Halabi, WNT5a, and AURKA expression, termed the miCTC score, outperformed the Halabi 

nomogram alone (AUC=0.89 vs. AUC=0.70). Understanding the molecular landscape of CTCs has 

utility in predicting clinical outcomes in patients with aggressive prostate cancer and provides an 

additional tool in the arsenal of precision-based therapeutic approaches in oncology.

Introduction

Prostate cancer is the most common cancer diagnosis and the second leading cause of 

cancer-related deaths among men in the United States [1]. While most patients harbor 

indolent versions of the disease, a large subset experience metastatic progression, 

recurrence, and resistance to therapy. Although the androgen signaling pathway is the most 

common driver of prostate cancer disease progression, a number of other genes and 

pathways have been recognized as potential prognostic markers and therapeutic targets, and 

after an initial response to androgen deprivation, metastatic prostate cancer will often 

progress to castrate resistant disease (mCRPC) [2–8].

Multiple adaptive mechanisms have been delineated that combat pharmacologic androgen 

starvation in men with mCRPC, including androgen receptor (AR) amplification, splicing, 

and mutation, or initiation of parallel androgen synthesis and proliferative pathways [9–11]. 

Wnt signaling is one such pathway that has been implicated as a downstream mediator of 

AR signaling in mCRPC and it has been suggested that AR-regulated noncanonical Wnt 

signals promote prostatic tumor growth, the development of osteoblastic metastasis, prostate 

cancer stem cell self-renewal and proliferation, and resistance to anti-androgen therapy [12–

16].

Through extensive tissue-based sequencing, it is now clear that prostate cancers harbor 

diverse, clinically actionable drivers of disease progression that may inform both prognosis 

and potential response to therapy [4, 17–19]. While these findings highlight the promise of 

precision oncology testing in prostate cancer, the utility of these techniques may be limited 

both by the challenges of extracting viable tissue from bone metastases and the need for 

serial sampling as new resistance mechanisms arise [18, 20].

Emerging comprehension in the realm of circulating tumor cell (CTC) biology has unveiled 

the potential for non-invasive, continuous monitoring of cancer and previous studies have 
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established a correlation between CTC, primary tumor, and metastatic tissue gene expression 

profiles [21, 22]. Previous efforts to inform disease severity in prostate cancer have relied 

simply on the presence or absence of CTCs, but these studies have not yielded adequate 

clinical utility to guide therapeutic decision-making for individual patients [23–26]. 

Additionally, genomic profiling of cell-free DNA (cfDNA) represents another feasible and 

clinically informative liquid biopsy avenue in mCRPC [27, 28]. While newly developed 

approaches show promise in CTC detection, including CTC-iChip and the AdnaTest, the 

overall landscape of liquid approaches to assess changes in tumor behavior in men with 

mCRPC represent a major unmet clinical need as robust, readily reproducible methods for 

isolation and subsequent characterization of CTCs in prostate cancer remain elusive [9, 29, 

30].

To facilitate non-invasive detection of genomic alterations and molecular expression in these 

patients, we developed and implemented a qPCR-based platform for analysis of CTCs from 

men with mCRPC. This approach was modeled after commercially available, tissue-based 

qPCR platforms for prostate cancer profiling, with the primary goal of eventual integration 

into clinical workflows [31, 32]. Given that CTCs likely represent cells from disparate 

metastatic sites, we hypothesized that understanding the expression of key genes of interest 

within CTCs could have unique utility in precision medicine approaches to predict clinical 

outcomes in patients with advanced prostate cancer [33].

Methods

CTC isolation, gene expression determination, and platform validation

Circulating tumor cells were isolated from 5 mL whole blood using anti-EpCAM antibody 

conjugated microbeads (Thermo Fisher Scientific). DAPI, CD45, FITC, and PCa-CT-PE 

(antibody cocktail: PSMA, EGFR, and pan-cytokeratin) were used to confirm the identity of 

CTCs. Following washing and cell lysis, mRNA from CTCs was captured using 

Oligo(dT)25 mRNA Dynabeads (Thermo Fisher Scientific). Reverse transcription was 

performed to obtain cDNA, followed by preamplification to generate target gene amplified 

libraries, and multiplex qPCR was then performed to evaluate a panel of 96 genes, including 

controls (Supplementary Table 1). Genes were selected based on relevance to prostate cancer 

progression and metastasis, as well as EMT and cancer stem cell biology. To account for 

leukocyte contamination, blood processed from 27 healthy controls was used as a baseline 

referent. To evaluate gene amplification efficiency for both pre-amplification and real-time 

PCR, prostate cancer cells (1.65 × 104 cells, including equal amount of PC3, VCaP and 

LNCaP) were lysed with 1 mL lysis buffer. Ten fold serial dilution was applied with lysis 

buffer to obtain samples equal to 3300, 330 33, 3.3, and 0.33 cells per 200 uL to evaluate the 

linear relationship between cell number and Ct value of individual genes (Fig. S1). To 

further validate the RT and amplification steps, we included Array control RNA Spikes 

(Thermo Fisher AM1780), using primers from the Fluidigm RNA Spikes Assay kit 

(100-5582) to validate the reverse transcription, preamplification, and qPCR steps. The kit 

contains RNA from E.coli with no known homology to mammalian sequences. Spike mix 

was prepared as described in the Fluidigm delta gene assay protocol, PN 100-4904 J1. Three 

of the RNA spikes were used, Spike-1 (750 nucleotides), Spike-4 (1000 nucleotides) and 
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Spike-7 (1474 nucleotides) and mixed. Ct value of each RNA spike was acquired with 

qPCR. The average value plus standard deviation of Ct value from different spikes was 

calculated and plotted against the copy number of different spikes, which showed a linear 

correlation between Ct value and copy number (R2 = 0.95) (Fig. S1).

For platform validation, 180 GFP-labeled prostate cancer cells (PC3, LNCaP, VCaP) were 

sorted into 5 mL whole blood from a normal donor. Cells were captured using 

immunomagnetic bead enrichment and visualized by immunofluorescence. Cells were then 

counted, rather than lysed, to measure the recovery rate. Additionally, 300 PC3 & LNCaP 

cells were spiked into 5 mL of whole blood from healthy controls and captured by 

immunomagnetic bead enrichment, followed by staining with DAPI, CD45, and PCa-CT 

(antibody cocktail: PSMA, EGFR, and pan-cytokeratin) to visualize CTCs. To validate gene 

expression after CTC isolation, 10 prostate cancer cells (PC3, LNCaP, or VCaP) were spiked 

into 5 mL of whole blood from a normal control. CTCs were captured by immunomagnetic 

bead enrichment, lysed, and gene expression was then assessed by qPCR. qPCR gene 

expression was compared with known microarray profiles for each of these lines in order to 

evaluate whether the expression profiles matched that of what was expected for PC3, 

LNCaP, and VCaP cells.

Normalization of qPCR gene expression data

For each sample, gene expression of 96 genes was determined from qPCR in a 384-well 

format as described above. Cycle threshold (Ct) values were normalized using the delta-delta 

Ct method as previously described [34]. Briefly, genes within each sample were first 

normalized against endogenous controls by subtracting the sample-specific average Ct value 

for ACTB, HMBS, and TUBA-1B. For each gene, the resulting delta Ct values were 

corrected for background from contaminating blood cells by subtracting the average delta Ct 

value for that gene across the 27 healthy donor reference controls to obtain delta-delta Ct 

values. Undetermined Ct values were imputed as 40 (Supplementary Table 2). Finally, gene 

expression was quantified as 2^(-delta-delta Ct) which we refer to as ‘normalized 

expression.’ All analyses were performed with log2(normalized expression + 1), with the 

logarithm serving as a variance-stabilizing transformation and the addition of the constant 

serving to compress expression values comparable to background. In addition, we set gene 

expression values to zero when the underlying Ct value was greater than 35 as Ct values in 

this range are generally not quantifiable.

Classification of samples as CTC positive or negative

Given that this protocol involves cell lysis rather than visualization and enumeration, we 

established a model for identifying CTCs using the gene expression of eight epithelial 

markers: CD326, CDH1, CDH2, DSG2, EGFR, KRT8, KRT18, and KRT19. CTC-positive 

controls were created using serial dilutions of prostate cancer cell lines, PC3 and LNCaP, 

spiked into whole blood from healthy donors. Data from 27 healthy donor controls were 

used as negative controls. We first performed a principal components analysis to verify the 

accuracy of these genes for distinguishing positive from negative controls. The first principle 

component clearly separates positive from negative controls, with the second component 

primarily separating cell lines (Fig. S2). These two components account for 92% and 4% of 
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variance for these samples, respectively. The weights of each gene on this component are 

shown as a bar graph in Figure S2. We define an ‘epithelial score’ (ES) as the weighted sum 

of the eight epithelial marker genes using these weights. We then built a classification model 

for identifying new samples with CTCs using this epithelial score in a logistic regression. 

The fitted model is:

P CTCs present   gene expression = exp a + b ∗ ES / 1 + exp a + b ∗ ES , a = − 7.80, b = 0.94

Patient samples were considered CTC positive if they are above the conservative threshold 

of 75% on the estimated probability using the model above. In both the control and clinical 

setting, the majority of samples were towards the very high or very low end of the CTC 

probability model (Fig. S2).

Cox proportional-hazard survival models

The primary endpoint for this study was overall survival, and in order to identify CTC-based 

genes associated with mortality, we performed univariate Cox regression analysis in CTC 

positive patients for each of the measured genes [35]. The Halabi nomogram was utilized to 

account for baseline clinicopathologic variables, including ECOG performance status, 

disease site, opioid analgesic use, albumin, hemoglobin, alkaline phosphatase, and PSA in a 

multivariate Cox model. We obtained 18-month survival probabilities from https://

www.cancer.duke.edu/Nomogram/firstlinechemotherapy.html. We subtract this probability 

from one to define a ‘Halabi’ score so that hazard ratios above one indicate increased risk of 

death. Cox bivariate regression analyses were then performed for each gene, adjusting for 

Halabi score, to identify genes associated with mortality independent of measureable clinical 

factors.

Cox regression was performed for 78 genes, after removing endogenous controls (ACTB, 

HMBS, TUBA-1B), epithelial markers (CD326, CDH1, CDH2, DSG2, EGFR, KRT8, 

KRT18, KRT19), blood-cell markers (CD20, CD45), artificial RNAs used in assay 

development (Spike1, Spike4, Spike7), alternate primers for SChLAP1, and SPANXB2. 

Log-transformed normalized expression values for each gene were rescaled by the 

interquartile range in order to make hazard ratios easier to interpret. Models were fit using 

the R function coxph in the survival package [36]. Genes were ranked using p-values from 

bivariate proportional hazards models with a single gene and the Halabi score as predictors. 

These p-values were transformed to FDR q-values using the Benjamini-Hochberg method 

[37]. The three genes significant at <10% FDR in the CTC positive cohort, AURKA, BMP7, 

and WNT5A, were selected for further analysis. Cox regression and Kaplan-Meir analysis 

was performed to assess whether CTC positive or negative status was associated with 

survival within the cohort. To aid in the interpretation of hazard ratios, we repeated the 

analysis using CTC probability based on our epithelial score as a continuous variable. This 

probability “p” was scaled using the transform: 2*(p-0.5), so that one unit change can be 

thought of as going from p=0.25 to p=0.75.
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Determining prognostic potential of selected genes

We constructed waterfall plots based on expression of WNT5a, AURKA, and BMP7 for the 

39 patients (26 CTC positive) with at least 6-month follow up with bars colored by vital 

status at 6 months. In these plots, patients in the CTC-positive subgroup were ordered from 

lowest to highest normalized expression and patients without CTCs ordered below the CTC-

positive group. To assess significance in these plots, we used the hypergeometric distribution 

to test whether deaths were over-represented in the top 25% of patients.

We next examined composite scores using these three genes. First, in the CTC-positive 

group we assigned patients points for each gene, with normalized expression values in the 

50–75th percentiles given one point, and those above the 75th percentile given two points. 

Then, we defined prognostic scores by adding point values across either all three genes or 

one of the three two-gene pairs. For these four scores, we constructed receiver operating 

characteristic (ROC) curves for predicting vital status at 6-months using the survivalROC 
function with smoothing parameter lambda=0.002 from the survivalROC package in R [38, 

39].

From the ROC analysis, we identified the best performing genes (WNT5a and AURKA) and 

added those to the Halabi score to generate a combined molecular and clinical signature. The 

resulting miCTC score ranges continuously from 0–5, with integer values of 0, 1, 2, 3 or 4 

coming from AURKA and WNT5A gene-expression. We use 1 minus the Halabi 18-month 

survival probability as the ‘Halabi component’ of the score. As before, we use the 

survivalROC function in R to construct ROC curves for predicting survival at 6 months (180 

days) using the miCTC and Halabi scores. Confidence intervals for the difference in AUCs 

between these two curves were computed using the appropriate quantiles from 10,000 

bootstrap samples. Finally, we define a ‘high-risk’ subgroup as those patients having a 

miCTC score of two or more, with others forming a ‘low-risk’ subgroup. We compare these 

risk groups using Kaplan-Meier survival curves and assess significance using the log-rank 

test. Survival curves and log-rank p-values are computed using the survfit and survdiff 
functions from the survival package [40].

Survival analysis

Formalin-fixed paraffin embedded prostatectomy samples were from two published 

retrospective patient cohorts from the Mayo Clinic (n=780) [41–43]. As previously 

described, RNA extraction and hybridization to Affymetrix Human Exon 1.0 ST Arrays 

(Affymetrix, Santa Clara, CA) were performed in a CLIA-certified, clinical operations 

laboratory (GenomeDx Biosciences, Inc, San Diego, CA). Microarrays were normalized 

using Single Channel Array Normalization [44]. Microarray data are available with NCBI 

GEO accession numbers GSE46691 and GSE62116. The miCTC score was applied to the 

retrospective samples as described above. Kaplan-Meier curves were generated for the 

pooled Mayo Clinic cohorts and hazard ratio estimates were generated using Cox 

proportional hazards modeling.

All cell lines were obtained from the American Type Culture Collection (Manassas, VA) and 

cell lines were maintained using standard conditions. To ensure identity, all cell lines were 
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genotyped at the University of Michigan Sequencing Core using Profiler Plus (Applied 

Biosystems) and compared with profiles of respective cell lines available from ATCC. Cell 

authentication and mycoplasma testing was performed for all cell lines. This study was 

approved by the Institutional Review Board (IRB# HUM00052405), and written informed 

consent was obtained from all patients for collection and analysis of samples in accordance 

with recognized Declaration of Helsinki guidelines.

Results

Development of CTC isolation and gene expression analysis platform

CTC isolation and subsequent gene expression analysis was conducted using an anti-

epithelial cell adhesion molecule (EpCAM) coated microbead protocol, followed by 

multiplex qPCR of 78 prostate cancer related genes plus internal controls (Fig. S3). Our 

panel contained genes previously shown to be involved in prostate cancer aggressiveness, 

metastasis, or progression, including TMPRSS2:ERG, PSA, AR, WNT5a, NKX3.1, EGFR, 

and SChLAP1 [16, 45–49]. Recovered cells were identified by cell surface staining for 

EpCAM and absent staining for CD45, a common leukocyte marker [50]. In order to assess 

the performance of this platform, small numbers of cells (n=10) were spiked into 5 mL of 

whole blood. Gene expression analysis of these cells showed expression profiles that were 

congruent with previous microarray analyses of these cell lines, supporting the validity of 

our isolation and expression analytic platform (Fig. S4).

Isolation and analysis of CTCs from whole blood of patients with mCRPC

To characterize the CTC gene expression pattern in patients, we evaluated 41 patients with 

mCRPC (Table 1). The median age was 68 (IQR 61–75) and median PSA was 19.7 ng/mL 

(IQR 3.6–70.6 ng/mL). At the time of enrollment, all patients were on luteinizing hormone 

releasing hormone (LHRH) agonist therapy (leuprolide, goserelin), 5 patients were on 

additional treatment with abiraterone, 11 on enzalutamide, 8 on docetaxel, 4 on cabazitaxel, 

1 on radium 223, and 1 on dexamethasone. Patients had received a median of two prior 

therapies (IQR 1–3). All patients had a minimum of 90 days follow up and there were 21 

(51.2%) deaths. The median time to next therapy was 251 days (IQR 119–329) and patients 

received a median of one subsequent therapy (IQR 0–1).

CTC positivity was determined based on a model using the gene expression of eight 

epithelial markers (Fig. S2) and we identified 27 (66%) patient samples with detectable 

CTCs. In our protocol, CTC positive samples are identified after expression profiling, and 

each profile is potentially a mixture of CTC targets and contaminating blood cells, as this is 

an enrichment rather than pure isolation approach. For the healthy controls, due to the 

absence of epithelial CTCs, all RNA in the sequence library is from contaminating blood 

cells. As described in the Methods, gene expression in patient samples is normalized to both 

endogenous controls and then to expression in healthy controls to account for background 

contamination. In order to define potential thresholds regarding positive or negative 

expression of a given gene in CTCs, we used k-means clustering for each gene to find 

subgroups among 27 healthy controls and 27 CTC positive samples. When the composition 

of these two groups was such that one had significantly more CTC positive samples than 
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healthy controls (as determined by a Chi-squared test), we used the midpoint between the 

cluster means to define a threshold at which to call specific samples “positive” for a given 

gene. Using this approach, 19 samples (70%) showed increased expression of AR and 15 

(55%) showed significant expression of AR-V7, with 14 (52%) shared between these two 

groups. Increased downstream AR signaling was seen in 14 (52%) samples based on joint 

expression of KLK2 (PSA), and NKX3-1, and 18 (67%) samples showed significant 

upregulation of Wnt signaling based on expression of WNT5a, WNT5b, and BMP7. Among 

epithelial-mesenchymal transition (EMT) genes, 9 samples (33%) expressed SOX2 and 21 

(67%) had elevated levels of TWIST1, with 7 samples (26%) expressing both genes. 

Similarly, clustering jointly on MDK and CCNA2, 15 samples (56%) showed high levels of 

cell cycle activity. Among long non-coding RNAs (lncRNA) associated with prostate cancer, 

19 samples (70%) showed elevated levels of the lncRNA SChLAP1, but only 8 (30%) 

showed increased PCA3 levels. The TMPRSS2:ERG gene fusion was significantly 

expressed in 11 samples (41%) and based on concordant expression across two distinct 

amplicons, evidence for the TM2:ETV1 fusion was seen in 4 samples (15%) (Fig. 1A).

To acquire a clinically relevant gene signature, we sought to identify genes expressed in 

CTCs independently associated with survival. To do this, we performed univariable and 

multivariable Cox regression analyses of individual genes and used a previously validated 

prognostic model to account for baseline clinicopathologic variables in mCRPC [51]. 

Increased expression of WNT5a (HR 3.62, 95% CI 1.63 – 8.05, p=0.002), AURKA (HR 

5.56, 95% CI 1.79 – 17.20, p=0.003), and BMP7 (HR 3.86, 95% CI 1.60 – 9.32, p=0.003) 

were strongly associated with earlier mortality (FDR<10%) after adjusting for the Halabi 

nomogram score. Other genes implicated in prostate cancer biology, including WNT5b, 

KLK2, and PSA were significantly associated with overall survival on univariate, but not 

multivariate, analysis (Fig. 1B). CTC positive or negative status alone was not significantly 

associated with survival in a Kaplan-Meir analysis (p=0.143) or univariate Cox model (HR 

1.9, 95% CI 0.6 – 5.7, p=0.28) comparing the two groups. CTC status was also not 

significantly associated with survival in a bivariate model controlling for Halabi 18-month 

survival probability (HR 1.2, 95% CI 0.3 – 4.0, p=0.81). We repeated this analysis using the 

CTC epithelial score as a continuous variable, and it was marginally significant in the 

univariate analysis (HR 3.4, 95% CI 1.0 – 11.9, p=0.06) but not the bivariate model adjusted 

for Halabi 18-month survival probability (HR 2.1 95% CI 0.5 – 8.5, p=0.28) (Fig. S5).

Development of a CTC-based prognostic score

Given the ability of WNT5a, AURKA, and BMP7 expression to independently predict 

survival in this cohort and their previously elucidated roles in metastatic, variant forms of 

prostate cancer and treatment resistance, we hypothesized that increased expression of these 

genes within CTCs would correlate with worse prognosis [16, 52–54]. Focusing on these 

three genes, we confirmed that early mortality (≤6-months) occurred more frequently in 

patients with higher expression of WNT5a, AURKA, and/or BMP7 individually (Fig. 2A). 

We next developed prognostic models in the 27 CTC-positive patients using composite 

scores for all three genes and evaluated individual combinations of genes to optimize the 

model. Scores were determined by normalizing the expression values for each gene. One 

point was given for expression of a given gene in the 50–75th percentile of the CTC cohort 
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and two points for expression above the 75th percentile. While all three genes were 

individually prognostic, a composite score comprising WNT5a and AURKA expression 

outperformed all other combinations (AUC=0.91) (Fig. 2B).

This data was then used to derive a CTC-based prognostic score (hereafter referred to the 

Michigan CTC [miCTC] score). This score ranges from 0–5, with values of 0, 1, 2, 3 or 4 

derived from AURKA and WNT5A gene expression (0–2 points for expression of each gene 

as described above). In order to account for baseline clinical variables, the Halabi nomogram 

score was incorporated as the fifth component into the overall score using the 18-month 

survival probabilities calculated from the Halabi nomogram (see Methods) (Fig. S6). For 

CTC-negative patients, this meant the miCTC score was based solely on the Halabi survival 

probability and the absence of WNT5A or AURKA gene expression. The miCTC score 

outperformed the Halabi nomogram alone (AUC=0.89 vs. AUC=0.70) across the entire 41 

patient cohort (Fig. 2C). When categorizing the present cohort into high-risk (miCTC ≥2) vs. 

low-risk (miCTC <2) subgroups, Kaplan-Meier analysis demonstrated significant 

differences in overall survival over time (Fig. 2D).

External application of miCTC score using known sequencing data from prostate cancer 
tissue

To further assess the performance of the miCTC prognostic signature, we first evaluated the 

level of concordance of gene expression between our qPCR-based platform and tissue-based 

RNA-sequencing data for a subset of patients enrolled in an ongoing mCRPC profiling study 

[55]. In the 7 patients with both CTC-based qPCR and tissue-based RNA-seq data, a 

significant level of correlation existed among CTC-to-tissue gene expression (spearman 

correlation=0.38, p=0.0002), suggesting the genomic data obtained from CTCs accurately 

reflected tissue-based disease (Fig. 3A-B). We then queried the tissue-based expression of 

WNT5a and AURKA across a larger database containing samples from normal prostate 

tissue, localized prostate cancer, and metastatic samples to globally understand the 

landscape of WNT5a and AURKA expression [18, 56]. As expected, WNT5a and AURKA 
expression was found to be significantly upregulated in metastatic samples compared to 

normal prostate or localized prostate cancer tissue, further supporting the relevancy of these 

genes in mCRPC (Fig. 3C). Calculation of the miCTC score (using gene expression only) in 

this cohort revealed a significantly increased proportion of samples with high-risk scores 

(miCTC ≥2) in the metastatic group (92%) compared to the primary cancer group (52%) 

(p<0.001) (Fig. 3D).

miCTC score predicts long-term clinical outcomes in high-risk prostate cancer

Lastly, we applied the gene expression component of the miCTC score to a previously 

published radical prostatectomy cohort in order to assess its ability to predict long-term, 

objective outcomes in patients with high-risk, clinically localized prostate cancer [41–43]. 

This cohort included 780 patients with a median follow-up of 11.2 years after prostatectomy. 

A total of 513 patients (65.8%) suffered biochemical recurrence following prostatectomy, 

288 (36.9%) developed metastatic disease, 166 (21.3%) died of their disease, and 336 

(43.1%) died of any cause. WNT5a and AURKA expression were determined from the 

genomic data and used to calculate the miCTC score (on a scale of 0–4 without the 
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additional factor of the Halabi score). These scores were then matched with clinical 

outcomes. As shown in the Kaplan-Meir analyses, high-risk and increasing miCTC scores 

were associated with a greater risk of biochemical recurrence, metastasis, and death, and 

decreased prostate cancer-free survival when compared to those with lower-risk miCTC 

scores (Fig. 4A-D).

Discussion

Given the relative simplicity of obtaining single blood draws, CTCs obtained from whole 

blood may provide a compelling source of molecular information, and previous studies have 

shown that CTCs closely reflect the clinical and functional characteristics of solid tumors 

[57, 58]. While the clinical significance of the presence of CTCs has long been theorized, 

improvements in the downstream manipulation and comprehensive molecular 

characterization of liquid biopsy tools are more recent. For example, a plasma based real-

time PCR test for the qualitative detection of defined mutations of the epidermal growth 

factor receptor (EGFR) gene was recently developed to aid in the selection of non-small cell 

lung carcinoma (NSCLC) patients for treatment with erlotinib [59]. The cobas EGFR 

Mutation Test, along with the CellSearch platform [50, 60, 61], currently represent the only 

FDA approved liquid biopsy tests that may help guide first-line treatment decisions in 

patients, further underscoring the significant impact prospective cfDNA and CTC-based 

diagnostic and prognostic tools may have.

While AR-V7 expression in CTCs has received a great deal of attention, we sought to 

develop a reproducible platform allowing CTC-based expression analysis across a broader 

panel of prostate cancer related genes. This targeted approach was selected to improve the 

efficiency of the assay and potential clinical applicability, given the challenges inherent to 

CTC isolation and subsequent gene expression profiling. Although an unbiased approach 

would capture increased genetic heterogeneity and support the discovery of novel gene 

targets, it would be increasingly difficult to differentiate possible prognostic targets from 

genetic noise, especially using a qPCR based approach [62]. Additionally, the likelihood of 

type 1 errors due to multiple testing are substantially greater with a broad, unbiased 

approach. Our primary goal was to utilize this platform to identify clinically relevant genes 

able to predict key oncologic outcomes in mCRPC.

In this cohort of mCRPC patients on a variety of therapies, AR-V7 expression was not 

significantly associated with survival. However, a number of findings appeared to support 

the clinical validity of the approach utilized here. First, the expression data demonstrated a 

high degree of AR signaling in a majority of samples, with over half of samples showing AR 

splice variants. Second, we detected a global increase in pro-metastatic factors within CTCs, 

including genes involved in EMT, cell cycle regulation, and lncRNA-mediated tumor 

suppression [49, 52, 53, 63]. Third, in patients with matched tissue-based gene expression 

available, there was a close correlation between the tissue and CTC-based results. Lastly, the 

tissue-based analysis in the localized disease setting provides evidence that the markers 

identified in our CTC-based approach also have applicability in earlier stage disease. While 

a “proof of concept” rather than a validation, the crude miCTC score based solely on 
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expression was applied to clinical outcomes in prostatectomy patients as a preliminary 

analysis to further corroborate the prognostic relevance of the genes identified here.

Strikingly, our results add further support to the importance of noncanonical Wnt signaling 

as an alternative resistance pathway contributing to prostate cancer progression and worse 

clinical outcomes. While Wnt signaling has been previously linked to prostate cancer 

aggressiveness through various cellular functions [13, 14, 18, 64, 65], our data strongly 

corroborates another recent study linking Wnt signaling to anti-androgen resistance in CTCs 

[16]. Additionally, Beltran and colleagues established the role of AURKA in prostate cancer 

proliferation and, in particular, in driving the development of neuroendocrine prostate cancer 

(NEPC). This has led to an ongoing phase II trial of Aurora Kinase A inhibition in NEPC 

(NCT01799278) [4, 53]. The miCTC score, driven by WNT5a and AURKA expression, 

reliably predicts overall survival in this development cohort, suggesting CTC genomics may 

mirror tissue-based drivers of variant or lethal prostate cancer.

The present study is limited by its relatively small sample size, and further prospective 

validation in larger cohorts will be required in order to confirm the clinical validity of these 

findings. Additionally, patients in this study were on a variety of therapies at the time of 

analysis. Evaluation of more homogenous cohorts is needed in order to ascertain the impact 

of specific therapeutic modalities on changes in gene expression over time and to develop 

predictive signatures of therapeutic response. However, the high event rate allowed us to 

identify several potential prognostic markers after adjusting for baseline clinical 

characteristics and determining false discovery rates.

While our CTC isolation protocol allows for simple, rapid processing of samples with high 

sensitivity, the approach itself has inherent limitations. Specifically, this protocol does not 

allow for CTC enumeration and no cell morphological assessment can be conducted. As a 

result, gene expression is not adjusted for number of CTCs and may be impacted by CTC 

quantity within a sample. However, the lack of correlation between epithelial score and 

survival indicates that CTC quantity itself is not a useful marker with this platform. 

Additionally, given that the platform is based on enrichment rather than isolation, gene 

expression analysis requires adjustment for background leukocyte contamination. Finally, as 

with other epithelial-based CTC detection approaches, the enrichment platform utilized here 

could miss CTCs that have undergone EMT and no longer express EpCaM on their cell 

surface [66].

These limitations notwithstanding, we developed a clinically relevant, multigene signature 

from CTCs using a scalable qPCR-based platform. Though external validation is needed, 

this molecular signature appears to strongly inform prognosis in patients with advanced 

prostate cancer. The strong prognostic performance of this signature in a tissue-based 

analysis of a large prostatectomy cohort further supports the potential clinical applicability 

of this data. We anticipate that this approach will facilitate serial patient assessments over 

time and identification of molecular changes as they occur in response to therapy. With 

continued improvement in the ability to determine key drivers of tumor progression using 

CTCs, we anticipate that this non-invasive, liquid-based approach will circumvent the need 
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for invasive extraction of genomic material from bone metastases and guide precision 

medicine therapeutics in prostate cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of implication

Analysis of circulating tumor cell gene expression reveals a clinically prognostic “liquid 

biopsy” signature in patients with metastatic castrate-resistance prostate cancer.
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Fig. 1. CTC gene expression analysis reveals WNT5a, AURKA, and BMP7 are independently 
associated with overall survival in mCRPC
(A) A heatmap representation of the top 20 independently predictive genes as determined by 

Cox proportional hazards model. Each column represents a different sample and each row 

represents a separate gene. The heatmap color spectrum corresponds to lower relative 

expression (white) and higher relative expression (red). The left colored column represents 

the associated functional pathway for each separate gene (B) WNT5a, BMP7, and AURKA 

(highlighted in blue) are independently associated with overall survival with p <0.05 and 

FDR <10% when adjusting for Halabi variables.
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Fig. 2. A score combining Halabi, WNT5a and AURKA improves prediction of overall survival 
at 6 months over Halabi alone
(A) Survival status at 6 months based on normalized expression of WNT5a, AURKA, and 

BMP7 in 39 (26 CTC positive) patients with mCRPC. The hypergeometric distribution was 

used to test whether deaths were over-represented in the top 25% of patients. Deaths were 

significantly over-represented at the 1% level for all three genes (p<0.001). (B) Receiver 

operating characteristic (ROC) curve compares accuracy of WNT5a, AURKA, and BMP7 

expression for predicting overall survival at 6 months. (C) ROC curve compares accuracy of 

Halabi score alone (AUC=0.70) vs. miCTC score (AUC=0.89) combining Halabi score, 

WNT5a, and AURKA expression. (D) Kaplan- Meier curves depicting overall survival in 

patients with high vs. low miCTC score. Left curve represents entire mCRPC patient cohort 

(CTC+/−), right curve represents only CTC positive mCRPC patients.
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Fig. 3. Concordance of CTC gene expression by qPCR with known tissue-based RNA-seq 
expression
(A) Global analysis of expression for select genes in CTCs of 7 patients after isolation and 

qPCR via platform with known RNA-seq data from MI-ONCOSEQ (spearman correlation = 

0.38, p=0.0002) (B) AR (r2=0.57), KLK2 (r2=0.51), and PSA (r2=0.64) show concordance 

of expression between CTC qPCR and RNA-seq from MI-ONCOSEQ of 7 patients (C) 

Analysis of expression of AURKA and WNT5a by RNA-seq in an external cohort* (D) 

calculated miCTC score in external cohort of patients with primary and metastatic prostate 
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cancer* (numbers within each pie represent number of samples with that specific miCTC 

score), *primary tumor samples obtained from TCGA, metastatic samples from SU2C
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Fig. 4. miCTC score predicts long-term outcomes in patients with high-risk prostate cancer
Kaplan-Meier curves showing high risk (miCTC ≥2) and increasing miCTC score is 

associated with decreased (A) biochemical recurrence free survival (p=0.004) (B) metastasis 

free survival (p=0.005) (C) overall survival (p=0.002) (D) and prostate cancer specific 

survival (p=0.04) in high-risk, clinically localized prostate cancer (Mayo Clinic)
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Table 1

Demographics and baseline characteristics of mCRPC patient cohort

 Overall
n (%)

CTC positive
n (%)

CTC negative
n (%)Variable

All 43 27 (63) 16 (37) p-value

Age+ 68 (61–75) 64 (59–74) 71 (68–75) 0.943

Race 0.537

Caucasian 41 (96) 25 (92) 16 (100)

African American 1 (2) 1 (4) 0 (0)

Hispanic 1 (2) 1 (4) 0 (0)

ECOG PS    0.235

0 18 (42) 9 (33) 9 (56)

1 23 (53) 16 (59) 7 (44)

2 2 (5) 2 (8) 0 (0)

Metastatic Site    

Bone 29 (67) 18 (67) 11 (69)

Visceral 9 (21) 6 (22) 3 (19)

Regional LN 21 (49) 12 (44) 9 (56)

Distant LN 4 (9) 3 (11) 1 (6)

# of Metastatic sites    

1 15 (35) 9 (33) 6 (38)

2 16 (37) 9 (33) 7 (44)

3 11 (26) 8 (30) 3 (19)

4+ 1 (2) 1 (4) 0 (0)

Prior Local Therapy    

Surgery 17 (40) 11 (26) 6 (38)

Radiation 11 (26) 8 (30) 3 (19)

Opioid Analgesic Use 18 (42) 16 (59) 2 (13) 0.001

Albumin+ 4.1 (3.8–4.3) 4.1 (3.8–4.3) 4.1 (3.95–4.3) 0.769

Hemoglobin+ 12.55 (11.1–13.0) 12.5 (10.4–13.2) 12.6 (11.95–13.25) 0.898

Alkaline Phosphatase+ 103 (78.5–183) 153 (84–209) 85.5 (72.5–105) 0.008

PSA+ 19.75 (3.55–70.6) 31.2 (4.7–100.5) 12.45 (12.1–32.1) 0.101

+
median value (IQR)
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