
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Progress on H5Part: A Portable High Performance Parallel Data Interface for
Electromagnetics Simulations

Permalink
https://escholarship.org/uc/item/4qg326vw

Authors
Adelmann, Andreas
Gsell, Achim
Oswald, Benedikt
et al.

Publication Date
2008-06-09

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qg326vw
https://escholarship.org/uc/item/4qg326vw#author
https://escholarship.org
http://www.cdlib.org/

Progress on H5Part: A Portable High Performance Parallel Data Interface for
Electromagnetics Simulations ∗

A. Adelmann, A. Gsell, B. Oswald, T. Schietinger, PSI, Villigen, Switzerland
W. Bethel, J.M. Shalf, C. Siegerist, K. Stockinger, LBNL/NERSC, Berkeley, California, USA

Abstract

Significant problems facing all experimental and compu-
tational sciences arise from growing data size and complex-
ity. Common to all these problems is the need to perform
efficient data I/O on diverse computer architectures. In
our scientific application, the largest parallel particle sim-
ulations generate vast quantities of six-dimensional data.
Such a simulation run produces data having an aggregate
data size up to several TB per run. Motived by the need
to address data I/O and access challenges, we have imple-
mented H5Part, an open source data I/O API that simplifies
the use of the Hierarchical Data Format v5 library (HDF5).
HDF5 is an industry standard for high performance, cross-
platform data storage and retrieval that runs on all con-
temporary architectures from large parallel supercomput-
ers to laptops. H5Part, which is oriented to the needs of
the particle physics and cosmology communities, provides
support for parallel storage and retrieval of particles, struc-
tured and in the future unstructured meshes. In this paper,
we describe recent work focusing on I/O support for parti-
cles and structured meshes, and provide data showing per-
formance on modern supercomputer architectures like the
IBM POWER 5.

MOTIVATION

Modern large-scale parallel simulations produce data
volumes that are on the orders of TBs. One of the main
challenges is how to store and retrieve this data efficiently
and how to share it among scientists of specific communi-
ties. In order to address these problems we have developed
H5Part [1], a high-performance data API that is particularly
targeted for the accelerator modeling community.

H5Part uses HDF5 [2] as the underlying storage for-
mat which has the following benefits: 1) Machine inde-
pendence: No byte-swapping is necessary for accessing
binary data created on different machines. 2) Language
independence: Data can, for instance, be written using
the Fortran API and read using the C/C++ API. 3) Self-
describing: Data is accessed by names rather than position.
For instance, read the values of the dataset px. 4) High-
performance: Data is stored in native binary format and is
only automatically translated if the machine that reads the
data requires a different format. 5) Parallel I/O: Data is

∗This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098

written in parallel into a single file using MPI-I/O.

DATA MODELS IN H5PART
H5Part supports two types of data models. One

model (H5Part) stores time varying unstructured datasets
with multiple variables per datum; The other model
(H5Block) stores multidimensional, timevarying block-
structured fields. Both data models support parallel read-
ing and writing of the respective data. We will now explain
these two data models in more detail.

H5Part: Particle Data
The data model for particle data supports storage and re-

trieval of multiple timesteps where each timestep can con-
tain several datasets of the same length. By definition, each
timestep must have the same number of datasets. Typi-
cal particle data consists of the three-dimensional Cartesian
positions of particles (x, y, z) as well as the corresponding
three-dimensional momenta (px, py, pz). These six vari-
ables are stored as six HDF5 datasets. The dataset type
can be either integer or real. H5Part also allows storing at-
tribute information for the file and the timesteps.
A simplified pseudo code for storing particle data with n
timesteps is shown below. Note that if a file is opened in
parallel, the data is partitioned and written in parallel based
on the number of particles.

if(not parallel);
filehandle=OpenFile(filename,mode)

else
filehandle=OpenFile(filename,mode,mpicomm)

SetNumberOfParticles(filehandle);
loop(step=1,NSteps);

compute data
SetStep(filehandle,step);
WriteData(filehandle,fieldname1,data1);

...
WriteData(filehandle,fieldname<n>,data<n>);

CloseFile(filehandle);

The internal HDF5 file structure of the above example
with 2 timesteps is as follows:
GROUP "/" {

GROUP "Step#0" {

DATASET "px" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "py" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "pz" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "x" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "y" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

DATASET "z" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (1000) / (1000) }

}

}

GROUP "Step#1" {

... same information as in Step#0

}

}

H5Block: Block-Structured Data
H5Block inherits all features of H5Part such as multi-

ple timesteps, file and timestep attributes etc. but also sup-
ports scalar fields and vector fields. Examples of these two
types of data are the potential and electrical field of a par-
ticle simulation. Since H5Block stores multidimensional
datasets, the data partitioning strategy among the proces-
sors must be specified explicitly for each data dimension.
Find below the pseudo code for partitioning a 3D scalar
field with dimensionality 16, 16, 128 among two proces-
sors:

fh=OpenFile(filename,mode)
if processor 0
Define3DFieldLayout(fh, 0, 15, 0, 15, 0, 63);

else
Define3DFieldLayout(fh, 0, 15, 0, 15, 64, 127);

Write3DScalarField(fh,fieldname1,data1);
CloseFile(fh);

Below we show the internal HDF5 file structure of
H5Block. Note that the 3D scalar field potential consists
of one data set. The 3D vector field electrical field consists
of three datasets. All datasets are three-dimensional.

GROUP "Block" {

GROUP "Potential" {

DATASET "0" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

}

GROUP "Electrical Field" {

DATASET "0" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

DATASET "1" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

DATASET "2" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { (128, 16, 16) / (128, 16, 16) }

}

}

DATA MINING AND VISUALIZATION
Massive parallel applications in science generally scale

at least linearly with the number of processors. The bal-
ance between generation of data and the capability to
(post)process, i.e. analyze, them is of increasing impor-
tance. Data that cannot be looked at in an acceptable time
frame are essentially lost.

Data Visualization with VisIt
VisIt [6] is an open source scientific visualization ap-

plication that supports most of the common visualization
techniques on structured and unstructured grids. One of

its advantages is that it employs a distributed and parallel
architecture in order to handle extremely large data sets in-
teractively.

We have developed plugins for reading and visualizing
both particle and field data. Figure 1 shows a visualization
of the scalar field “potential” and the particle data “px” for
timesteps 3 and 42 of our simulation data.

Figure 1: VisIt is able to read and visualize H5Part data.
Windows 1 (top left) and 3 (top right) display the scalar
field “potential” for the timesteps 3 and 42. Windows 2
(bottom left) and 4 (bottom right) display the particle data
“px” for the same timesteps.

H5PartROOT
H5PartROOT is a tool to visualize large data files pro-

duced with the H5Part interface to HDF5. It is based on the
ROOT framework for data analysis [5] developed at CERN.
The main Graphical User Interface (GUI) allows conve-
nient navigation between time steps and between several
datafiles for quick comparisons at the click of a mouse. The
basic functionality of the tool ranges from plotting one-,
two-, and three-dimensional particle distributions to line
plots of step attributes such as emittance (projected, slice
and screen), rms beam size and centroid position, which
are either read in directly from the datafile or reconstructed
from the particle distribution at the current time step. More
sophisticated fitting procedures and moment determination
are available via the corresponding ROOT classes.

The H5PartROOT software essentially consists of two
classes, which both inherit from ROOT classes to ensure
access to the full range of features provided by the ROOT
framework, for both interactive sessions and compiled and
linked executables. The first class creates the main GUI,
the second one stores the data of one HDF5 datafile lo-
cally in ROOT-native data containers and supplies various
methods to retrieve, plot and manipulate the data. The
methods of the data class are connected to the GUI via
the so-called signal/slot mechanism. This technique was
originally designed for the Qt toolkit and was recently
adopted by ROOT. H5PartROOT provides a stand-alone

executable, which launches a GUI ready for use. More-
over, H5PartROOT classes may also be linked as a shared
library to a standard ROOT session supporting the full
H5PartROOT functionality from within ROOT interactive
sessions or macros. Figure 2 shows a screenshot of a typi-
cal H5PartROOT session.

Figure 2: A snapshot of the H5Root Graphical User Inter-
face.

PERFORMANCE
In this section we analyze the performance of H5Part and

compare the results with MPI-I/O. All experiments are ex-
ecuted on an IBM p575 POWER 5 system using up to 8
nodes, where each node consists of 8 CPUs. In total, the
benchmarks were run on 8 to 64 CPUs using the GPFS
filesystem. One of the major tuning parameters of H5Part is
whether to choose collective or non-collective I/O. In order
to answer the question, we ran a large set of performance
measurements using the IOR-benchmark [3]. We chose
the IOR benchmark since it allows one to study the perfor-
mance of applications with different access patterns. Our
performance results suggest that non-collective I/O is sig-
nificantly faster than collective I/O for the H5Part-specific
access pattern where the data sets are evenly partitioned
among the parallel processors. Hence, all our performance
benchmarks are based on non-collective I/O.

In our first set of benchmarks we used 108 particles with
6 attributes and 5 timesteps. In total, these experiments
write some 24 GB of data. Figure 3 (left) shows the per-
formance of H5Part, MPI-I/O and POSIX-file I/O using
between 8 and 64 CPUs. Note that H5Part and MPI-I/O
write a single large file whereas POSIX-I/O writes one
file per processor. The results demonstrate that H5Part
shows performance similar to MPI-I/O. This result con-
firms that H5Part does not introduce any significant per-

formance overhead compared to MPI-I/O. We also see that
POSIX-file I/O scales nearly linearly with the number of
processors.

Figure 3: Performance of H5Part compared with POSIX
and MPI-I/O, where the total size of the written data is con-
stant (left plot), or increases with the number of processors
(right plot).

In our next set of experiments we increased the data size
with the number of processors. In other words, we in-
creased the problem size as we increased the number of
processors. Again, we used 108 particles with 6 attributes
but we varied the number of timesteps between 4 and 32
for 8 to 64 CPUs. In total, the amount of data that is writ-
ten is between 19 and 152 Gigabytes. The results of Fig. 3
(right) demonstrate the similar performance of H5Part and
MPI-I/O.

The performance results show that H5Part is capable of
writing extremely large files showing good performance.
The advantage of writing one large file in parallel over writ-
ing many smaller files is better usability. Managing one file
is clearly simpler than managing a large set of files.

CONCLUSIONS AND FUTURE WORK
We are currently working on integrating the FastBit

bitmap indexing technology [4] for accelerating queries of
data stored in H5Part. An example of such a query is (px

> 1.34) AND (potential < 2e7). A formal definition of an
API for unstructured finite element data has been written,
the implementation will start this summer. We will investi-
gate additional performance tuning possibilities of H5Part
in order to achieve even better scalability.

REFERENCES
[1] A. Adelmann, R.D Ryne, C. J. Shalf, Siegerist, “H5Part: A Portable

High Performance Parallel Data Interface for Particle Simulations”,
PAC 2005.

[2] HDF5 Home Page, http://hdf.ncsa.uiuc.edu/HDF5.

[3] Interleaved or Random (IOR) benchmarks. http://www.llnl.

gov/icc/lc/siop/downloads/download.html

[4] L. Gosink, J. Shalf, K. Stockinger, K. Wu, W. Bethel, “HDF5-
FastQuery: Accelerating Complex Queries on HDF Datasets using
Fast Bitmap Indices”, SSDBM 2006.

[5] ROOT – an Object-Oriented Data Analysis Framework, http://
root.cern.ch/.

[6] VisIt – a free interactive parallel visualization and graphical analysis
tool, http://www.llnl.gov/visit/.

