
UC San Diego
Technical Reports

Title
A Flow-based Task Scheduling Strategy for Distributed Systems

Permalink
https://escholarship.org/uc/item/4qg4z253

Authors
Nandy, Sagnik
Ferrante, Jeanne
Carter, Larry

Publication Date
2003-05-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qg4z253
https://escholarship.org
http://www.cdlib.org/

A Flow-based Task Scheduling Strategy for

Distributed Systems

Sagnik Nandy Jeanne Ferrante Larry Carter

Department of Computer Science and Engineering
University of California at San Diego
{snandy, ferrante, carter}@cs.ucsd.edu

Abstract

This paper investigates the problem of allocating a large number of independent,

equal sized tasks on a distributed grid-like platform. We develop an efficient, au-

tonomous, scalable, dynamic and generally applicable protocol for this purpose. The

A-FAST protocol embodies the idea of pressure guiding the flow in fluid networks.

It uses the number of unprocessed tasks buffered at each node in place of ”pressure”

to decide whether to move tasks to neighboring nodes. Simulations show that the

A-FAST protocol performs well over a wide set of random networks, averaging more

than 99% of the optimal performance. Such a protocol has the potential to aid the

efficient deployment of large, data intensive applications on heterogeneous peer-to-

peer computing platforms.

Key Words : Heterogeneous computing, peer-to-peer computing, network flows,

scheduling.

1 Introduction

The advent of high speed networks has given rise to a range of applications consisting of a
large set of tasks which can be distributed across a grid-like platform and solved concur-
rently. Some such problems include collaborative computing efforts such as SETI@home
[27], factoring large numbers [7], the Mersenne Prime Search [22] and distributed com-
puting problems organized by companies such as Entropia [10]. This forms the driving
motivation of our work, which aims to schedule a large number of independent, equal-sized
tasks, in an online scenario, across a dynamic and heterogeneous computing platform.
Existing scheduling algorithms may be unsuitable for these scenarios owing to the large
size and dynamic nature of the underlying platforms. We seek a scheduling strategy with
the following properties:

1

• Efficient - The strategy should result in high overall throughput.

• Generic - It should be applicable to all kinds of networks, regardless of topology.

• Scalable - The strategy should be applicable to networks of very large size.

• Autonomous - It should use minimal (or no) global information. In particular it
should not require network-wide information. This is extremely important for the
scalability of the algorithm.

• Dynamic - The algorithm needs to be able to adjust to networks where, due to
contention or other reasons, the bandwidths and computation speeds change over
time.

• Practical - The strategy should be easy to implement in real life scenarios.

For the successful deployment of data intensive applications across large scale
networks all the above mentioned features are desired. This is the key problem we address
in this paper.

In order to handle dynamic networks scalably, we require an adaptive or incre-
mental algorithm, rather than one that recomputes its allocations from scratch each time
there is a change. The autonomic behavior of fluid networks, using pressure as a guiding
force, forms the key inspiration for our work. We propose an autonomous scheduling pro-
tocol that uses the number of unprocessed tasks in a processor’s buffer as an analogue to
pressure. This pressure is used to decide when to move a task to a neighboring node. Using
this idea, the protocol eliminates the need for centralized control over scheduling. Initial
simulations show that the protocol achieves more than 99% of the optimum throughput
over a range of dynamic networks, while preserving the above mentioned properties.

The rest of the paper is organized as follows - Section 2 discusses the related
work in this area, Section 3 describes the protocol in detail and Section 4 discusses various
implementation aspects. In Section 5 we present experimental results showing performance
under various conditions and in Section 6 we discuss some future research directions in
this area.

2 Related Work

Scheduling independent tasks across heterogeneous sets of resources is a well known prob-
lem [15, 2, 5, 26, 11, 19, 20, 14, 29]. We differ from previous approaches in that we
develop a distributed, autonomous and generic scheduling strategy suitable for large-scale
and dynamic computing platforms on which centralized control may not feasible.

Several research efforts have formulated this problem as a max-flow problem [6],
[30]. However, the most popular max-flow algorithms, including Ford-Fulkerson [17],
Edmonds-Karp [9] and Goldberg [13], use some form of global information to make
network-wide decisions. The former two involves finding a path from the source to the

2

sink, and the latter uses a notion of height for the source that depends on the total number
of nodes in the network. There are also algorithms that solve the max-flow problem in
parallel. [16] uses more processors than nodes in the system, which undesirable in prac-
tice. [28] avoids the use of additional processors, but uses a notion of timesteps across the
network. This involves network-wide synchronization and is difficult to achieve in large
networks. Moreover, all these techniques were designed specifically for static systems. In
practice, system properties, such as node speed, bandwidth, network topology, change over
time, making these techniques unsuitable.

Research has also gone into calculating max flows for changing networks. In
[24], it is assumed that one knows ahead of time when and by how much the network will
change. In [23] and [1], changes are detected in real time, but the algorithms require global
knowledge or decision making. Thus, these algorithms aren’t autonomous and dynamic in
the sense that we are looking for.

Our previous work [4], [18] presented an autonomous algorithm that, when the
network is a tree, achieves the optimum throughput for a static network, and our exper-
iments show that the protocol reacts quickly to changes in the network. However, it is
often difficult to model large generic networks as trees. [3] proved that the problem of
finding the best tree from a given network is NP-Complete and that there exists networks
for which the performance of the optimal tree can be unboundedly worse than the whole
network’s performance. Thus even though considerable research has gone into different
variants of our problem, a definitive solution addressing all the issues is yet to be found.

3 The A-FAST Task Scheduling Protocol

We begin with a formal description of the problem. We are given a labelled, directed graph
G = (N, E, P, C) representing the network. Each node Ni ǫ N represents a computing
resource (processor, computer, cluster etc.) of processing speed pi ǫ P , measured in tasks
solved per unit time. Each edge in the graph (Ni, Nj) ǫ E is labelled with a value cij ǫ C
which represents the number of tasks that can be sent across the link per unit time. All
tasks are of equal size1 and initially reside in the source node N0. The graph (N, E, P, C)
can change during execution. Nodes and edges can be added to or deleted from N and E
(except for N0, which is always present) and the values in P and C can also change. Our
objective is to maximize the overall throughput of the network i.e. maximize the number
of tasks completed per unit time.

The A-FAST protocol exploits the fact that incoming tasks can be buffered in a
node. Our protocol uses buffer occupancy as an analog of pressure, which autonomously
controls the flow of tasks. In Section 5, we will see that the use of buffers in a dynamic
network can even give better results than that given by the optimal max-flow solution.

1Although we have not yet performed the experiments, we believe that if tasks are of different sizes,

but have a constant computation-to-communication ratio, that the behavior of algorithms will be similar

to the equal-size task problem. An interesting open question is how to make scheduling decisions when

the ratios are different but known.

3

We divide task receiving, task sending and task processing as separate procedures.
Nodes begin by advertising their buffer occupancy to all their immediate neighbors, re-
questing tasks. On receiving a request, a node compares the requester’s buffer occupancy
to its own to decide whether to service the request. This is similar to fluid motion where
fluids flow from a region of higher pressure to a region of lower pressure. It allows us
to do away with the need for a centralized scheduler, and instead make all scheduling
decisions locally. If a node does not service a request, it replies to the requesting node
of its decision. On being serviced by a neighbor, a node immediately requests another
task. But if its request is denied, it waits for a while before making another request. To
process a task, a node takes a task from its buffer. If the buffer is empty the node waits
till it receives a task. Since we do not have a centralized scheduler, asynchrony becomes
a serious issue, and the buffer manager has to ensure that it doesn’t request more tasks
than it can handle. To deal with this problem, we introduce the notion of Intermediate
Buffers (IB). Any task or denial reply sent from Ni to Nj is sent to IBij. Tasks in IBij

are then transferred to the main Task Buffer (TBj) of the node. Figure 1 provides a high
level example.

TB0

TB1 TB2

IB01 IB02

IB21 IB12

N0

N1 N2

b0 > b1
b0 > b2

b1 > b2

TB3 N3

IB23

IB32

b2 > b3

N0 has more tasks in its buffer than N1 and
 N2 and therefore supplies them tasks

Tasks for N2 coming from
 N0 are sent to IB02
IB02 then transfers tasks to
 the task buffer TB2

N1 and N2 are connected and tasks flow from
N1 to N2 since N1 has more tasks in its buffer.

Figure 1. An example of the A-FAST protocol

3.1 The Protocol in Detail

We assume that for each communication edge (Ni, Nj) ǫ E used by our application, there
is a buffer IBij residing in node Nj. Each such buffer can hold one task. Additionally,
each node Ni, has a task buffer TBi. TBi has a capacity of mi “slots”, where each slot
can hold one task. Each of the slots in TBi is in one of the following states:

• S1: the slot is “empty”.

• S2: a task is being transferred into the slot from one of the IBjis.

• S3: the task in the slot is getting executed by Ni.

4

• S4: the task in the slot is being sent to node Nj i.e. it is being transferred from TBi

into IBij.

• S5: the slot holds a task and is currently not in any of the above states.

Task buffers can have multiple slots in states S1, S2, S4 and S5, but for simplicity
we will assume that only one task at a time can be in state S3. We define the buffer
occupancy, bi of a node to be the number of slots in state S5 at the current time. We say
“TBi is full” when the number of slots ei in state S1 is zero.

Initially all tasks reside in the source node N0. All other nodes begin by requesting
tasks from their neighbors. This is also the protocol that nodes follow when they join the
network - once an existing node discovers a new node, it sends it a request for a task.
Similarly, when a node joins the network it sends a task request to all its neighbors. Every
task request from node Ni is accompanied by its current value of bi.

Figures 2, 3 and 4 give the protocols for requesting, receiving and performing
a task in detail. Some sections of the protocols have been highlighted. These sections
use the shared variables bi and ei, and they should be synchronized to run correctly,
either by acquiring locks if each protocol is a separate process, or by doing the shaded
sections atomically if a single buffer manager procedure handles all three protocols. The
Wait primitive should be implemented using a periodic polling mechanism that prevents
livelock.

OnRecvReqest(j, bj) { // request from Nj

	 i = CurrentNode;

	 if (bi > bj) { 	// node has more tasks than requesting node

	 bi = bi - 1;

	 send(task, Nj); // send single task to Nj
	 ei = ei + 1;

	 }

	 else {

	 send(refuseMsg, Nj); // refuse Nj

	 }

}

Figure 2. Protocol nodes follow on receiving a request

5

OnRecvData(j, mj) { // message from Nj

	 i = CurrentNode;

	

	 if (mj is a task) {

		 Wait(until ei > 0);

		 ei = ei - 1;

		 transfer task from IBji to TBi ;

		 bi = bi + 1;

		 requestData(j, bi); // request more tasks from Nj

	 }

	 else {

		 Wait(TimeToWait); // wait for a while

		 requestData(j, bi); // request tasks again

	 }

}

// wait for an empty slot for the task

Figure 3. Protocol nodes follow on receiving a response

ProcessTask() {

	 i = CurrentNode;

	 if (bi > 0) { // TBi not empty

		 dispatch task for processing;

		 bi = bi - 1;

		 perform task;

		 ei = ei + 1;

	 }

	 else {

		 Wait(till bi > 0);

	 }

}

Figure 4. Protocol for processing a task

3.2 Discussion of the Protocol

The basic philosophy behind our protocol is simplicity. Each node tries, by sending re-
quests to its neighbors, to keep its Intermediate Buffers full. But a request is only satisfied
if the requester has fewer tasks than the provider. Intuitively, the protocol should adapt to
both a computation-dominated system as well as a communication-dominated one: faster
nodes empty their buffers faster and their pressure decreases, making them likely to receive
more tasks. Similarly if a link is fast, tasks will be delivered faster across it, decreasing
the pressure at the provider node, leading to more tasks being sent to that node.

An interesting aspect of the protocol is that it does not use the values of (N, E,
P, C). Since these are the parameters that are most likely to change [12] and are difficult
to predict accurately, it seems preferable not to bind the scheduling strategy strongly to
them. Although there are techniques for estimating these parameters dynamically ([31],
[32], [8]), these estimates may consume considerable effort and not work well for large-scale
heterogeneous systems. Some strategies deal with this by using upper bound values for P
and C. This can be misleading in shared networks and multi-tasked systems, where these
values change rapidly over time.

6

Our protocol, on the other hand, works on a supply-on-demand basis. It uses the
notion of Task Buffers and Intermediate Buffers, parameters which are completely under
the control of the node. Ni sends a task to Nj only on receiving a request from Nj and
similarly Nj sends a request for a new task as soon as it gets a task from Ni. Assuming
the request messages are small and the latency of the link is low, the number of tasks
flowing from Ni to Nj is nearly equal to the available bandwidth of the link (if the node
has enough tasks to send) at that time. This might not hold true in high latency networks
but can be dealt with by bundling multiple jobs together into a larger task to amortize
the effect of latency (Section 5.2.2). Similarly, when a node finishes a task it starts the
next task (if it is available). With sufficient amount of tasks in the TB this number will
be nearly equal to the total processing power available to the node at that time.

Thus we hope that the protocol makes maximum use of the resources if they are
available but does not bind its success to the maximum availability of resources - adjusting
automatically to system changes.

4 Extending the Basic Protocol

This section discusses some of the problems the protocol might run into and possible
solutions to these problems through extensions made to the basic protocol.

Since tasks get moved around the system autonomously using our protocol, it is
possible for a task to keep getting moved across the system unboundedly without getting
executed. This can be solved by imposing a simple priority rule based on which tasks
are chosen from TB to be processed - nodes perform tasks from their TB based on the
issued time of the tasks. Since all tasks originate from the source node N0, they can be
time stamped before being distributed. This does not involve any global notion of time
across the network as N0 is the only node that time-stamps tasks, giving all time-stamps
a common frame of reference.

Another possible problem with our protocol is the frequent use of messages to
request and refuse tasks. This is done to autonomously detect changes in flow direction
and also to avoid nodes from using “stale” values of bi. Even though message sizes are
expected to be small compared to task sizes, the protocol might consume a considerable
fraction of the network bandwidth in low bandwidth networks. This can be dealt with by
either increasing the value of TimeToWait (thereby reducing the frequency of redundant
messages) or by maintaining at each node a list of neighbors it is currently sending tasks
to and not sending task requests to them. Both these schemes will reduce message transfer
across the system but might increase the response time of the protocol to system changes.
As suggested earlier, it would also help bundle work together into larger tasks. This will
however require larger buffers and might also increase the startup time and responsiveness
of the protocol.

Our protocol makes use of several memory-to-memory data transfers (IB to TB,
TB to the execution process etc.). In a heavily loaded system this can affect the perfor-
mance and we might want to reduce the amount of copying by using existing techniques

7

such as “container shipping” [25].

5 Experimental Results

To test the effectiveness of A-FAST, we simulated a range of networks and tested the
protocol on them. The simulations were run using the basic protocol described in Section
3, with none of the extensions suggested in Section 4. The experiments provided additional
insight into various aspects of the protocol, enabling us to improve its overall efficiency.

5.1 Simulation Methodology

We study various metrics that reflect the performance of our protocol. Each test case
made use of the parameters - n (number of nodes in the network), c (upper limit on the
bandwidth of any edge cij), l (upper limit on the latency — the time to send a request
or refusal message) and p (upper limit on the processing speed pi of any nodes), i.e. if
(Ni, Nj) ǫ E then cij ǫ [1, c] and lij ǫ [0, l]. The actual values were chosen uniformly at
random from the indicated range (note: for latency the actual value was the chosen value
× 10−3). For each set of values, multiple experiments were run,2 and the average of these
runs are plotted.

To generate random graphs we first generated a random tree. This was done by
connecting two random nodes first and thereafter connecting a node from the connected
set and the unconnected set randomly till we had a connected set of n nodes. We then
chose a random number between 0 and (n − 2)(n − 1)/2. This number represented the
number of additional edges in the graph. These additional edges were inserted by ran-
domly selecting two unconnected nodes and connecting them. Table 1 shows the average
number of edges in the generated graphs for some of the value of n.

Number of Nodes 10 20 30 40 50 60 70 80 90 100

Average Edges 5.11 10.11 15.11 19.97 24.75 30.66 34.50 39.87 41.7 44.92

Table 1. Average edge count of the test cases

5.2 Results

This section presents the results of the simulations where we evaluate our protocol based
on a number of criteria.

5.2.1 Performance in Comparison to Optimal Throughput

We ran A-FAST on randomly generated networks with n = 10 to 100. For all the ex-
periments TimeToWait was set to 0.010. To calculate the optimal throughput we used

2At least ten, and typically 50 to 70, randomly-generated graphs were used for each problem size.

8

an existing implementation of the max-flow problem [21]. In the initial experiments, we
set the latency l = 0, so that the optimum max-flow rate might be achieved. The other
parameters for the simulation were c = 30 and p = 30. The results are shown in Figure
5. We see that A-FAST averaged around 99.5% of the cumulative optimal throughput
over all the runs, even including the start-up time of the protocol. The results would be
even better if we had run the simulations longer, since the lower rate of execution during
“start-up” would be amortized over a longer time — the graph suggests that the actual
performance and the optimal differ by only an additive constant. Results are shown for n
= 20, 40, 60, 80, 100. The results for n = 10, 30, 50 etc. are also similar but have been
omitted for clarity.

0 5 10 15 20 25 30

Number Of Timesteps

0

5000

10000

15000

20000

N
u
m

b
er

 O
f

T
as

k
s

C
o
m

p
le

te
d

n = 100 Optimal

n = 100 Observed
n = 80 Optimal

n = 80 Observed
n = 60 Optimal

n = 60 Observed
n = 40 Optimal

n = 40 Observed
n = 20 Optimal

n = 20 Observed

Figure 5. Performance of the algorithm compared to Optimal Max-Flow

5.2.2 Effect of Latency

The initial experiments assumed zero latency. However, in the presence of latency, the
total time to first request and then transfer a task increases, thereby affecting performance.
Figure 6 shows the results for various values the value of l, using p=30 and c=30. Note
that for the largest latency, l = 30, the time to send a request is chosen uniformly between
0 and 0.03. Meanwhile, the faster edges — those with cij near to 30 — require only 0.033
time to communicate a task. Thus, the overhead of requesting a message is comparable
to the transfer time on the more important (faster) edges. In most practical scenarios, it
should take much longer to transfer a task than a (small) request message. Nevertheless,
the graph shows that there isn’t a catastrophic drop in performance as latency increases.
In practice, task transfer times are likely to be large compared to latency. If not, as
mentioned earlier, we can bundle small jobs together to form larger tasks.

9

0 5 10 15 20 25 30

(l) = Upper Bound on Latency

70

80

90

100

Pe
rc

en
ta

ge
 o

f
O

pt
im

al
 A

ch
ie

ve
d n = 10

n = 30
n = 50
n = 70

Figure 6. Effect of Latency on Performance

5.2.3 Effect of Buffer Size

Another parameter of the protocol is the maximum capacity of the Task Buffers. In our
experiments, all the TBi’s (except for the source node) initially have the same number of
empty slots, emax. To study the effect of buffer size on performance, we ran simulations
on the same graph (p=30, c=30, l=0) but varied the value of emax. The results are shown
in Figure 7. It is observed that the value of emax needed to achieve high performance is
not dependent on the problem size (for emax ≈ 10 we reach 97% of the optimal through-
put for all values of n). This shows that the protocol does a good job of synchronizing
communication with computation.

0 5 10 15 20 25

(e) = Maximum number of epty slots in TB

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f O
pt

im
um

 T
hr

ou
gh

pu
t

n = 20
n = 40
n = 60
n = 80

max

Figure 7. Effect of Buffer Size on Performance

5.2.4 Effect of System Changes

To study how the protocol identifies and adapts to changes in the system, we ran the
simulations for 20 timesteps and then changed the system parameters. We increased or

10

decreased the speeds of nodes and edges with a probability of .30. The magnitude of these
changes were a random percentage uniformly distributed between 0 and 40% of their orig-
inal values. Figure 8 shows that the protocol successfully and quickly adapts, without
external information and intervention, to these changes.

0 10 20 30 40

Number Of Time Steps

100

150

200

250

300

350

400

N
u

m
b

er
 o

f
T

as
k

s
P

er
fo

rm
ed

n = 20 Observed (decrease)

n = 20 Optimum (decrease)

n = 40 Observed (decrease)

n = 40 Optimum (decrease)

n = 60 Observed (decrease)

n = 60 Optimum (decrease)

n = 20 Observed (increase)

n = 20 Optimum (increase)

n = 40 Observed (increase)

n = 40 Optimum (increase)

n = 60 Optimum (increase)

n = 60 Optimum (increase)

Figure 8. Effect of single set of changes in the system

Real systems properties, however, might change continuously. To study the effect of con-
tinuous changes on the protocol we changed the system every 4 timesteps. Nodes and
links had a probability of 0.40 of changing. The magnitude of these changes varied from
10% to 99%, with equal probability of increasing or decreasing. The average throughput
over the entire run for a given percentage change was calculated. We also recorded the
minimum and maximum throughput as a percentage of the optimal (found by summing
the optimal max-flow of each time period) over all the runs to give an idea of the best and
worst cases of the protocol in dynamic systems. Figure 9 and Table 2 show these results.

11

20 40 60 80 100

Magnitude of Percentage Change

90

91

92

93

94

95

96

97

98

99

100

P
er

ce
nt

ag
e

of
 O

pt
im

al
 T

hr
ou

gh
pu

t
n = 20
n = 40
n = 60

Figure 9. Effect of rapid and continuous set of changes in the system

P Min(n=20) Max(n=20) Min(n=40) Max(n = 40) Min(n=60) Max(n=60)
10 98.71 101.11 98.81 99.70 99.01 99.82
20 98.92 100.97 98.97 99.89 98.35 99.79
30 98.10 101.12 98.39 99.90 98.51 99.72
40 98.89 104.53 97.98 100.62 98.45 100.19
50 97.64 100.64 97.91 104.46 97.74 100.12
60 96.72 101.65 97.05 99.60 97.15 100.03
70 97.31 107.64 96.00 101.51 93.67 99.94
80 91.26 112.42 94.77 105.69 91.54 99.58
90 96.44 110.87 93.56 105.05 92.34 98.86
99 94.84 113.16 91.02 106.44 84.86 100.50

Table 2. Observed minimum and maximum overall throughput

It is observed that there can be a drop in performance for continuous and sudden
large changes. This happens because continuous large changes modify the system behavior
almost completely. Our protocol normally takes around 3-4 timesteps to stabilize. Since
we change the underlying system drastically every 4 timesteps it is almost like starting
anew. However, it is seldom the case that real networks change by such large magnitudes.
Even for rapid changes on the order of 99%, our protocol manages to achieve an overall
throughput of around 94%. For rapid changes up to magnitudes of 50% the protocol
achieves more than 99% of the optimal throughput.

An interesting observation can be made from the table: there are several instances
of the protocol significantly outperforming the max-flow solution. This happens because
none of the solutions to the max-flow problem use buffers as a task repository. Only
the exact amount that can be consumed by a node is transferred, which may not utilize
some links completely. With our protocol, links are completely utilized (if there is empty
buffer space) and so additional tasks get stored in the TB. If the performance of the link

12

drops then the tasks from the TB can be used to give the impression that the link is still
running at a higher speed. Consider the 2-node network in Figure 11. Since N1 performs
10 tasks/sec, a max-flow based scheduling approach would only send 10 tasks/sec across
the link. Our protocol, however would utilize the link completely and send 15 tasks/sec as
long as TBN is not full. Now assume that the link speed drops to 5 tasks/sec after some
time. The max-flow solution would now send 5 tasks/sec and N will perform 5 tasks/sec.
However, using our protocol, N will access tasks from TBN , allowing it to perform 10
tasks/timestep for some additional time (based on capacity of TBN). Thus the overall
throughput using our protocol will be higher than that of a max-flow like approach. This
supports our claim that buffers should be incorporated in scheduling strategies.

S N

15 tasks/sec

10 tasks/sec

TBN

Figure 11. Sample network

6 Conclusion and Future Work

This paper suggests a new scheduling protocol that is efficient and can scale and au-
tonomously adjust in dynamic heterogeneous networks. We have discussed how the proto-
col can be implemented efficiently in practice and how various parameters can be adjusted
to suit specific needs. Experimental results were provided to show the effect of various
parameters on the functioning of the protocol. Simulations showed the protocol to be
efficient, achieving more than 99% of the optimal throughput on average. The need for
such protocols is likely to grow as we start using the world wide web not only as an infor-
mation medium but also as a computing resource. We are currently looking into a number
of different aspects of this problem. Some of these include - a theoretical bound on the
performance of the protocol, the effect of unequal-sized tasks, the effect of dependency
between tasks, the issue of fault tolerance etc. Finally, we would like to implement the
protocol in practice and evaluate it on real life networks and systems.

References

[1] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying Static Network Protocols
to Dynamic Networks. In In Proc. 28th IEEE Symp. on Foundations of Computer
Science, pages 358–370, October 1987.

[2] D. Andresen and T. McCune. Towards a Hierarchical Scheduling System for Dis-
tributed WWW Server Clusters. In Proceedings of the Seventh International Sympo-
sium on High Performance Distributed Computing (HPDC-7), pages 301–308, July
1998.

13

[3] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies for
master-slave tasking on heterogeneous processor grids. Technical Report RR2002-12,
ENS-Lyon, LIP, 2002.

[4] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric
Allocation of Independent Task on Heterogeneous Platforms. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS’02), Fort Laud-
erdale, Florida, April 2002.

[5] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Schedul-
ing Parameter Sweep Applications in Grid Environments. In Proceedings of the 9th
Heterogeneous Computing Workshop (HCW’00), pages 349–363, May 2000.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, MIT Press.
pages 579–615, 1990.

[7] J. Cowie, B. Dodson, R. Elkenbrach-Huizing, , A. K. Lenstra, P.L. Montgomery, and
J. Zayer. A World Wide Number Field Sieve Factoring Record: On to 512 Bits.
Advances in Cryptology, pages 382–394, 1996. Volume 1163 of LNCS.

[8] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Ser-
vices for Distributed Resource Sharing. In 10 th IEEE Symp. On High Performance
Distributed Computing, 2001.

[9] Jack Edmonds and Richard M. Karp. Theoretical improvements in the algorithmic
efficiency for network flow problems. Journal of the ACM (JACM), 19:248–264, 1972.

[10] Entropia Inc. http://www.entropia.com, 2001.

[11] S. Flynn Hummel, J. Schmidt, R. Uma, and J. Wein. Load-Sharing in Heterogeneous
Systems via Weighted Factoring. In Proceedings of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’96), pages 318–328, Jun 1996.

[12] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications and High Performance Comput-
ing, 11(2):115–128, Summer 1997.

[13] Andrew V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Com-
puters. PhD thesis, Department of Electrical Engineering and Computer Science,
MIT, 1987.

[14] T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Experimental
Study. Journal of Parallel and Distributed Computing, 47:185–197, 1997.

[15] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks
on non-identical processors. Journal of the ACM (JACM), 24(2):280–289, 1997.

14

[16] Donald B. Johnson. Parallel algorithms for minimum cuts and maximum flows in
planar networks. Journal of the ACM (JACM), 34(4):950–967, 1987.

[17] L. R. Ford Jr. and D. R. Fulkerson. Flow in Networks, Princeton University Press.
1962.

[18] B. Kreaseck, H. Casanova L. Carter, and J. Ferrante. Autonomous Protocols for
Bandwidth-Centric Scheduling of Independent-task Applications. In Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS’03), Nice,
France, April 2003. To appear.

[19] C.P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors.
IEEE Transactions on Software Engineering, 11:1001–1016, 1984.

[20] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Match-
ing and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing
Systems. In 8th Heterogeneous Computing Workshop (HCW’99), pages 30–44, Apr.
1999.

[21] Max-Flow Solution. http://elib.zib.de/pub/Packages/mathprog/maxflow/index.html.

[22] Mercenne Prime Search. http://www.mercenne.com.

[23] N. Nagy. The maximum flow problem: A real-time approach. Master’s thesis, Queen’s
University, 2001.

[24] A. Orda and R. Rom. On Continuous Network Flows. In Operations Research Letters,
pages 27–36, February 1995.

[25] J. Pasquale, E. Anderson, and P. K. Muller. Container shipping: Operating system
support for I/O-intensive applications. In IEEE Computer, volume 27, pages 84–93,
March 1994.

[26] A. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs: Greed-
ier Is Not Better. In Proceedings of the IEEE International Conference on Cluster
Computing (Cluster’01), Newport Beach, California, pages 124–131, October 2001.

[27] SETI@home. http://setiathome.ssl.berkeley.edu, 2001.

[28] Y. Shiloach and U. Vishkin. An O(n2log n) parallel max-flow algorithm. Journal of
Algorithms, (3):128–146, 1982.

[29] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new paradigm
for load scheduling in distributed systems. Cluster Computing, 6(1):7–17, January
2003.

[30] Kevin Daniel Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Cornell
University, 1999.

15

[31] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future Gener-
ation Computer Systems, 15(5–6):757–768, 1999.

[32] Richard Wolski, Neil T. Spring, and Jim Hayes. Predicting the CPU availability of
time-shared unix systems on the computational grid. Cluster Computing, 3(4):293–
301, 2000.

16

