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ABSTRACT OF THE THESIS

Understanding the Market Value

and Utility of High-Variance

Starting Pitchers

by

James Francis Lepore

Master of Applied Statistics

University of California, Los Angeles, 2018

Professor Frederic R. Paik Schoenberg, Chair

While Major League Baseball has long been at the forefront of sports analytics, the most

commonly used metric to evaluate the quality of a pitcher’s performance is called the ”Earned

Run Average” (ERA) which is a global figure with no consideration for the distribution of

values. This paper investigates the relationship between observed win percentages among

pitchers that exhibit high start-to-start variation in the quality of their starts (consistent

pitchers) relative to pitchers that exhibit low start-to-start variation in the quality of their

starts (inconsistent pitchers). Logistic regression is first leveraged to transform the tradi-

tional components of ERA, runs allowed and innings pitched, into a proxy for expected win

probability. Then, through the use of bootstrap sampling, a simulation of hypothetical pitch-

ers is created to compare the difference in actual and expected win totals among pitchers

that exhibit different distributional characteristics. Finally, the “Probability of Superiority”

between opposing pitchers in individual games is calculated in an attempt to identify op-

timal matchups. In summary, a statistically significant pattern of outperforming expected

win totals is found among pitchers with higher start-to-start variation. However, over the

time period analyzed, pitchers at the major league level are much more similar than they

are different. As a result, the magnitude of the difference in actual and expected win totals
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between consistent and inconsistent pitchers — while statistically significant — is arguably

not large enough to be considered practically significant.
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CHAPTER 1

Introduction

Even before Michael Lewis put the frugal, yet perennially overachieving, Oakland Athletics

and their analytically inclined general manager Billy Beane on the map in 2003 with his

book Moneyball: The Art of Winning an Unfair Game, statistics have long been at the

center of America’s pastime. The box score, a collection of statistics that memorialized the

performances of pitchers and hitters for specific games, was developed by Henry Chadwick

in 1858 [Puerzer, 2002]. In the early 1970s, a second baseman, and future manager, of

the Baltimore Orioles Davey Johnson wrote a baseball simulation in FORTRAN to try to

convince his manager at the time, Earl Weaver, to bat him second in the order [Porter, 1984].

Around the same time, in 1971, the Society for American Baseball Research (SABR) was

founded, and the term “Sabermetrics” (statistics for baseball) was coined by Bill James when

he began writing his annual Baseball Abstracts in 1977 [Puerzer, 2002].

While statistics are used in all sports to try to gain a competitive advantage, the appeal

and relatively rapid adoption in Major League Baseball is likely the product of two major

factors. The first factor is that, perhaps more than any other major sport, baseball comes

down to a series of individual matchups between a hitter and a pitcher. While winning

and losing is most definitely a team effort, to have a game decided by such controlled,

individualized events makes it ripe for analytics. The second factor is that baseball is one

of the few major American sports with no salary cap. The idea behind Moneyball was that

small market teams like the Oakland Athletics, who in 2002 had a $44 million payroll, needed

to exploit market inefficiencies in order to compete with large market teams like the New

York Yankees, who in 2002 had a payroll over $125 million [Lewis, 2003].

While countless new statistics have become commonplace in a sabermetrician’s lexicon
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over the last few decades, the sabermetrics community still favors summary statistics over

distributional statistics. The goal of this paper is to examine whether there is any additional

utility, both in terms of comparative market value and in-game strategy, in understanding

the difference between starting pitchers who are consistent (a low game-to-game variation in

quality of performance), and pitchers who are inconsistent (a high game-to-game variation in

quality of performance). To this end, logistic regression is employed to develop a measure of

quality for each start, and analyze the start-to-start variation in starting pitchers from 1998

until 2017. Then, through the use of simulation techniques and bootstrap random sampling,

the difference in actual and expected win percentages among starting pitchers with different

distributional characteristics is explored. Finally, whether the use of distributional statistics,

such as the probability of superiority, can be leveraged for in-game strategy is examined.

1.1 Data from Retrosheet

Creating distributional statistics requires access to the individual plays that represent every

matchup between a hitter and a pitcher. Retrosheet is a website run by a team of volunteers

that has compiled essentially every play in Major League Baseball since 1930. There are

currently 30 teams in Major League Baseball, and each team plays 162 games a season.

A single season can have almost 200,000 plays across all of the games. For the following

analyses, research is limited to the 1998 season through the 2017 season. In 1998, Major

League Baseball underwent an expansion to the current 30 team format with the introduction

of the Arizona Diamondbacks and the Tampa Bay Devil Rays (later renamed as just the

Rays), so this year serves as a good starting point for analysis. In all, there were 3,855,054

individual plays across 48,588 games in this time frame that were analyzed.

1.2 Background and Related Work

Traditionally, the primary measure used to evaluate a pitcher’s quality is called their “Earned

Run Average” (ERA). An ERA is essentially the number of earned runs a pitcher allows
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normalized by 9 innings (the length of a game). For example, if a pitcher gives up 3 earned

runs in 6 innings, that equates to a half of a run per inning, which would be 4.5 earned

runs allowed per 9 innings (a 4.50 ERA). One of the primary concerns with this statistic is

that there are multiple ways to achieve the same ERA. For example, a 4.50 ERA can also

be the result of pitching 8 innings and giving up 4 earned runs. It is unclear if starts with

these equivalent ERAs actually have the same effect on helping their team win. Another

potential issue is that ERA is not robust to outliers so, when averaged out over multiple

starts, ERA gives unequal weight to different starts because runs and innings pitched are

simply considered on the aggregate. This means that one bad start can impact an ERA

in a way that is not consistent with a pitcher’s overall value to their team. While many of

the ERA’s sabermetric cousins, such as “Fielding Independent Pitching” (FIP) and “Skill-

Interactive ERA” (SIERA), provide more predictive measures by taking out some of the

randomness in ERA, they still suffer from these same basic concerns.

In 1985, a sportswriter for the Philadelphia Inquirer named John Lowe made the first

attempt at looking at starts on a more individual basis with a metric that he called a “Quality

Start” (QS) [Neyer, 2006]. A QS is a counting statistic that is awarded to a pitcher for every

start he pitches at least 6 innings while giving up 3 or fewer earned runs. As mentioned,

a start with 6 innings and 3 earned runs allowed yields an ERA of 4.50. However, a start

with 9 innings and 4 earned runs allowed yields an ERA of 4.00, but does not qualify as

a “Quality Start.” From 1998-2017, the historical win percentage for starts of exactly 6

innings and 3 runs allowed was under 48%, while the historical win percentage for starts of

exactly 9 innings and 4 runs allowed was about 66%. While the QS is certainly a step in the

right direction in terms of accounting for start-to-start performance, it is clear that it still

reflects an element of arbitrariness.

With so much publicly accessible data available, baseball is fortunate to have a deep

community of sabermetrically inclined fans who publish opinions and research on numer-

ous well-respected websites. One of those websites is called Baseball Prospectus, which was

founded in 1996, and publishes daily articles online, as well as an annual book. In 2004,

Michael Wolverton posted an article on Baseball Prospectus that focused on the relation-
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ship between a starting pitcher’s win/loss record and ERA. Much like ERA, conventional

pitcher win/loss records have long been considered to be subject to too much random noise

and factors that are out of the pitcher’s control (like the defense behind him, or the runs

his team scores, or even the ballpark he plays in) to be considered useful in player evalua-

tions. In Wolverton’s article, he proposes a set of alternative statistics he calls the “Support

Neutral Win/Loss” (SNWL) and the “Support Neutral Value Added” (SNVA). Wolverton

accounts for some of the problems associated with the conventional statistics by first ad-

justing for park and league scoring levels and considering all runs (earned or unearned) as

equal, but the real “benefit of the Support-Neutral numbers is that they look at each start’s

contribution to winning individually rather than a season’s run total cumulatively, so a sin-

gle disastrous outing can’t have the disproportionate impact that it can have on a starter’s

ERA” [Wolverton, 2004]. To illustrate this, Wolverton posits an example, reproduced here

in Table 1.1.

Table 1.1: Wolverton Example of Two Pitchers with Identical ERAs

Start 1 Start 2

Pitcher A 0 Innings Pitched, 10 Runs 8 Innings Pitched, 0 Runs

Pitcher B 4 Innings Pitched, 5 Runs 4 Innings Pitched, 5 Runs

The point of Wolverton’s example is that innings pitched and runs allowed can be dis-

tributed across starts in many different ways. The simple fact that two pitchers have pitched

the same number of innings and given up the same number of runs should not necessarily

indicate that they both provided equal value to their respective teams. Wolverton explains:

Their ERAs are equal, but Pitcher A’s starts are likely to lead to more wins than

Pitcher B’s. An average team has a good chance of going 0-2 behind Pitcher

B’s two starts, but that same team is almost guaranteed to win Pitcher A’s

second game. The Support-Neutral stats account for the fact that the 10 runs
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concentrated in Pitcher A’s one start don’t do the same amount of damage as

the ten runs spread among Pitcher B’s two starts [Wolverton, 2004].

Wolverton, unfortunately, stops short of fully exploring this relationship between wins

and start-to-start variation, instead focusing on a few specific examples for the given season

he was analyzing. Another article, published in 2013 on FanGraphs by Matt Hunter, also

explores differences from expected win percentages by using historical averages to do case

studies of specific pitchers widely considered by baseball fans to be either consistent or

inconsistent [Hunter, 2013]. Both authors reached the similar theoretical conclusion that it

is better to be inconsistent than consistent. This paper further investigates this theory on a

more generalized level.

Finally, on FanGraphs in 2015 (citing the Hunter article from 2013), Henry Druschel

attempted to answer the question of whether or not consistency/inconsistency is even a trait

that is predictable from year to year [Druschel, 2013]. That is to say, even if Wolverton

and Hunter are correct in their hypotheses that there is more value added by inconsistent

pitchers, the results would only be useful if consistency, or the lack thereof, is a non-random

trait that certain pitchers exhibit more than others. Druschel used a metric developed by

Bill James called the “Game Score” that essentially sums points assigned to certain aspects

of a starter’s performance (such as positive points for innings pitched and strikeouts, and

negative points for runs allowed, walks, and hits) into one aggregate score using weights that

tend to put things on a scale from 0 to 100 with a 50 being average. Looking at the standard

deviation in average “Game Scores” from 2013 to 2014, Druschel claimed that the resulting

correlation “is a pile of random points” with an “R2 value that is basically 0,” ultimately

coming to the conclusion that, “while inconsistency is a hidden way for a pitcher’s results to

be better than they look, it doesn’t appear to be a skill.”

While this is a useful result, there are a couple factors that Druschel fails to consider

when reaching his conclusion that consistency is not a predictable trait. The first is with

regard to his use of “Game Score” as his measure of quality. “Game Score” intentionally

includes inputs into its calculation that are fielding and park independent that a pitcher
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largely controls himself, like walks and strikeouts, which would inherently reduce start-to-

start variation. Druschel’s analysis also only looks at the correlation between two seasons.

In any given season, from 1998-2017, pitchers only start an average of about 16 games a

season, and at most make 36 starts. It would not be surprising to observe large variances

both within and between seasons given the small sample sizes that Druschel is dealing with.

1.3 Problem Statement

Specifically, this paper addresses the question of whether traditional statistics, like ERA, tend

to undervalue high-variance pitchers relative to low-variance pitchers. This question can best

be illustrated on a two-dimensional plane. On the horizontal (x-axis), there is some measure

of a starting pitcher’s average quality across all of their starts. On the vertical (y-axis), there

is the start-to-start variation associated with that average quality. Assuming that quality

and variance are monotonically increasing, at the origin there are starting pitchers that are

consistently bad; their average quality is bad, and they have no start-to-start variation.

On the other end of the x-axis, there are pitchers that are consistently good. The phrases

“inconsistently bad” and “inconsistently good” are almost oxymorons. There is only one

way for a pitcher to give his team, on average, a 0% or 100% chance to win, and that is by

performing at that level in every one of their starts. On the other hand, pitchers who give

their teams, on average, a 50% chance of winning can achieve this average in many different

ways. In the middle, but still laying on the x-axis, are those starting pitchers that can be

considered “consistently average” by giving their team exactly a 50% chance of winning every

game. Alternatively, a starting pitcher could give their team a 0% chance to win in half of

their starts, and a 100% chance to win in the other half of their starts, and still arrive at

the same average 50% chance of winning. This last case represents the maximum variance

possible, which will be discussed in more detail in Section 2.1. The result is a triangle

that represents the entire spectrum of possible combinations of quality and consistency that

starting pitchers can achieve, which is illustrated notionally in Figure 1.1.
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Figure 1.1: Theoretical Spectrum of Starting Pitcher Performance

Consider a metric of quality that measures expected win percentage using traditional

summary statistics that do not account for variation. Then, if one were to draw a straight

line up from any point on the x-axis until it hit the side of the triangle, every pitcher that

falls on that line would have the same expected win percentage. The question becomes, do

any of the pitchers consistently outperform their expected win percentage in reality? It is

obviously most preferable to be consistently good, and least preferable to be consistently bad,

so this paper focuses on those pitchers that tend towards the average (represented by the

yellow and purple sub-sections in Figure 1.1). Is it better to be a pitcher who is consistently

average, or to be a pitcher who is sometimes above average and sometimes below?
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CHAPTER 2

Methods

2.1 Deriving a Metric for Quality Using Logistic Regression

The first step in attempting to answer the question of whether consistency matters, is defin-

ing what is meant by “quality.” Traditionally, Major League Baseball has used ERA, or

more generally “Runs Allowed per 9 Innings” (RA/9) which includes both earned and un-

earned runs. Wolverton proposed a “Support Neutral” alternative, Hunter used historical

win percentages, and Drushel borrowed Bill James’s “Games Score.” While all of these

methods have their merits, in many ways they go too far in their adjustments to exclude

factors that are beyond a pitcher’s control. The components of RA/9, namely runs allowed

and innings pitched, are factors that are well understood to directly relate to wins and losses.

The problem is simply the way RA/9 aggregates and normalizes over 9 innings confounding

the relative value of similar RA/9 over different numbers of outs recorded. Additionally, it

is possible for a single game RA/9 to be infinite if the pitcher gave up runs and recorded no

outs, so calculating variances would technically be impossible. Ideally, we could convert the

components of RA/9 into a metric that gives each start an equal weight, and at the same

time gives some relative value to starts such that two starts with different inputs, but similar

impacts on wining, are close in scale. To derive this metric, this paper employs the use of

logistic regression [Faraway, 2016].

Logistic regression is used when the dependent variable is dichotomous (i.e. wins versus

losses). In this case, the relationship between the number of runs given up and the number

of outs recorded by a starting pitcher, and whether or not the team ultimately ended up

winning the game, is of interest. In order to handle the categorical dependent variable, it is
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transformed using a “logit” link function which is the natural log of the odds that the team

ultimately ended up winning the game.

Ln
(

P

1− P

)
= β0 + β1X1 + β2X2 + ε (2.1)

Equation 2.1 shows the form of the logistic regression with the “logit” link function. As

mentioned, P in this case is defined as the probability that the team ultimately ends up

winning the game, X1 is the number of outs a pitcher records, X2 is the number of runs

that the pitcher allows, and ε is the error associated with the standard logistic distribution.

The regression boils down to finding the β parameters that best fit the distribution of

wins. Ultimately, the equation gives back coefficients in terms of log odds. Equation 2.2

illustrates how the log odds can then be combined and re-transformed to back out predicted

probabilities.

P =
eβ0+β1X1+β2X2

1 + eβ0+β1X1+β2X2
(2.2)

One of the benefits of this approach is that the sum of all of the predicted probabilities

will be exactly equal to the number of wins in the data. This approach can be thought of

as dividing the wins across each start proportional to the relationships between the inputs

and the actual results of the game. Traditionally, logistic regression is used for predictive

analytics. In this case, the emphasis is on creating a metric that gives some idea of the

relational quality of the starts that were used as inputs in the model. To achieve this,

logistic regression is leveraged as a sort of transformation technique to convert outs recorded

and innings pitched into a predicted winning percentage. That said, it could be dangerous to

extend these coefficients into making predictions for future starts because a key assumption

of logistic regression was violated. In this data, there are matched pairs of starters by each

game. What this means is that the results are not independent of each other within each

game because if one starter wins, it means that the other must lose. Table 2.1 shows an

example of the output of the logistic regression (Expected Win Probability) next to historical

win probabilities for starts made from 1998-2017.
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Table 2.1: Starts with an Expected Win Percentage Greater than 75%

Outs Recorded Runs Allowed Expected Win Probability Historical Win Probability

30 0 0.911 0.800

27 0 0.890 0.988

26 0 0.882 0.960

25 0 0.874 0.876

24 0 0.865 0.899

30 1 0.864 0.667

23 0 0.855 0.918

22 0 0.845 0.812

28 1 0.844 0.000

21 0 0.835 0.858

27 1 0.834 0.928

20 0 0.824 0.852

26 1 0.822 0.964

19 0 0.812 0.789

25 1 0.811 0.838

18 0 0.800 0.831

24 1 0.798 0.800

17 0 0.787 0.779

23 1 0.785 0.823

16 0 0.773 0.732

22 1 0.772 0.760

15 0 0.759 0.764

21 1 0.757 0.751

27 2 0.756 0.830
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Looking at Table 2.1, the expected win probabilities and historical win probabilities

are fairly consistent. However, there are a few examples that make it clear why it can be

dangerous to simply use historical win probabilities. For example, there is very little reason

why recording 25 outs and giving up no runs should result in a lower win probability (0.876)

than recording 24 outs and giving up no runs (0.899) other than the fact that a starter would

only pitch into the 9th and get pulled after recording one out if the game is close. Likewise,

recording 28 outs and giving up one run is clearly not a game that the starter should have

a 0% chance of winning. Using historical averages can leave you susceptible to small sample

sizes and random noise. A typical game only has 27 outs, so it is not surprising that there

is only one outing in the entire 20-year sample of data where a pitcher recorded exactly 28

outs and gave up one run. This small sample size issue is likewise the case with all observed

starts with more than 27 outs recorded. Another observation that can be observed from the

table is that giving up exactly one fewer run is roughly considered equivalent in terms of

expected win probability to getting 6 more outs (2 more innings). As an example of this

pattern, the last two records in the table show that the expected win probability of recording

21 outs and allowing one run is 0.757, while the expected win probability of recording 27

outs and allowing two runs is right behind at 0.756.

Now that a metric has been derived that gives equal weight to each start, and provides

some level of meaningful comparison between starts with different characteristics, where

pitchers fall on the theoretical spectrum of starting pitcher performance can be observed.

The other benefit from using a metric that is on the scale of 0 to 1, aside from interpretability,

is that the maximum variance can be easily computed. If X is always between 0 and 1, then

it must be true that X2 ≤ X, and therefore E[X2] ≤ E[X]. The maximum variance possible

given X then becomes:

Max V ar[X] = E[X]− E[X]2 = E[X] ∗ (1− E[X]) (2.3)

Equation 2.3 then implies that the tip of the triangle will be at 0.5∗0.5 = 0.25. Technically

speaking, the variances that will be calculated in this paper are sample variances and so 0.25
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is not actually the maximum because we are dividing by (N − 1) rather than just N , but

for illustration purposes it is a close enough approximation. Figure 2.1 shows how starting

pitchers that made at least 36 starts (essentially one full season’s worth of starts) from

1998-2017 fall on the spectrum. What becomes immediately clear is that, while the triangle

represents the full range of theoretical outcomes, in reality starting pitchers at the major

league level, both “good” and “bad,” are a lot more similar than they are different.

Figure 2.1: Theoretical Spectrum of Starting Pitcher Performance Among Pitchers with At Least

36 Starts (1998-2017)

It is now important to show that the derived metric for expected win probability is in

fact correlated with actual win percentage. By construction, this should be the case, but

that does not necessarily imply that the correlation is strong, or even meaningful. Figure 2.2

shows the proportion of actual wins versus expected win probability, as well as the line of
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best fit between the two, for all 627 starters who made at least 36 starts from 1998-2017.

The coefficient for the expected win probability is 1.02, which means that there is roughly

a one-to-one relationship between actual win proportion and expected win probability. This

value is statistically significant at the α = 0.05 level of significance, providing evidence to

reject the null hypothesis that there is not a linear relationship between a starter’s expected

win probability and their actual win percentage. The R2 value of 0.372 can be interpreted

to mean that 37.2% of the variation in actual win percentage can be explained just by the

variation in the expected win probability.

Figure 2.2: Actual Versus Expected Win Probability Among Pitchers with At Least 36 Starts

(1998-2017)

The absolute correlation between RA/9 and expected win probability is 0.99, which

further confirms the point that the logistic regression approach is simply transforming the

components of RA/9 into a metric with more desirable properties. RA/9 has an R2 value

of 0.358 when regressing it on actual win percentage, meaning that just by transforming the
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components of RA/9 using logistic regression explains an additional 1.4% of the variation

in actual win percentage. The question is now boiled down to, can any of the additional

variation observed in Figure 2.2 be explained by taking into account start-to-start variation?

Put another way, does the inclusion of start-to-start variation significantly improve our

ability to predict a pitcher’s actual win percentage?

2.2 Simulating Theoretical Distributions with Bootstrap Random

Sampling

In order to fully test the theory that inconsistent starting pitchers are more likely to out-

perform their expected win totals, bootstrap random sampling to simulate four hypothetical

starting pitchers is employed [Efron and Tibshirani, 1994]. The advantage of this approach

is two-fold. While innings and runs allowed are likely independent of team and ballpark ef-

fects over the long run, a starter’s actual win percentage is not. Some starting pitchers may

pitch their entire career for a perennial championship contender, while others may never

come close to experiencing the postseason. Simply looking at the magnitude and signifi-

cance of the regression coefficient for the start-to-start variation could obscure some of this

dependency. If instead the entire pool of starts is considered and then randomly assigned to

different pitchers, this dependency can be detached from individual pitchers. Essentially, a

sort of controlled experiment can be artificially created by randomizing out the things that

are not of interest, while fixing the things that are. In this case, the start-to-start variation is

the parameter of interest, so if all starts from 1998-2017 are classified as either being “good,”

“bad,” or “average” based on their expected win probability, what pools to sample from to

get desired expected win probabilities and start-to-start variation can be controlled. The

second advantage of this approach is that, given how close the observed starting pitchers

are on the spectrum, the hypothesis that high-variance pitchers are more likely to outper-

form their expected win percentages can be tested on a more global and theoretical level by

simulating pitchers with a more diverse set of characteristics.

For each of the simulated pitchers, 100 starts will be sampled, with replacement, from
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specified combinations of different pools of starts (good, bad, or average) 100,000 times. For

each of the 100 start samples, the difference between the pitcher’s expected win totals and

actual win totals will be calculated. After all 100,000 samples are collected, the resulting

distributions can be visualized, and 95% confidence intervals can be approximated by looking

at the 2,500th and 97,500th largest values. Figure 2.3 shows the average distributional

characteristics of each of the four simulated pitchers across all of the bootstrap random

samples. The red star in the bottom left-hand corner symbolizes a hypothetical pitcher that

is consistently bad, the green star in the bottom right-hand corner symbolizes a hypothetical

pitcher that is consistently good, the purple star in the middle at the bottom symbolizes a

hypothetical pitcher that is consistently average, and the yellow star in the middle close to

the top symbolizes a hypothetical pitcher that is inconsistently average. Through simulation,

the observed games are stretched into distributions that inch closer to the theoretical edges

of the triangle such that it will be easier to observe the relationship between start-to-start

variance and the difference between actual and expected win percentages.

Figure 2.3: Theoretical Spectrum of Starting Pitcher Performance with Simulated Pitchers
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2.3 Playing Matchups with the Probability of Superiority

While understanding the value of pitcher volatility on an aggregate level is the main focus of

this paper, there is also the possibility that pitcher consistency has individual game utility.

Consider, for example, the Major League Baseball (MLB) playoffs. There are six divisions

in the MLB across two leagues. The winner in each division makes the playoffs, and then the

two next best teams in each league earn the right to play each other in a one game wild card.

It may be a simple enough solution for each team to just send out their best starter in terms

of ERA, but is it possible that in certain situations understanding the starter’s distribution

of starts relative to their opponent’s distribution of starts can provide an edge?

Consider you are the manager of a team in this one game wild card matchup facing a

consistently good pitcher who always gives his team a 75% chance of winning. Your team’s

two best options both have an average win percentage of 50%, but one is perfectly consistent

(all starts at 50%), while the other is perfectly inconsistent (half of his starts he gives his team

a 0% chance of winning, and the other half he gives his team a 100% chance of winning). In

this extreme scenario, the inconsistent pitcher actually has a 50/50 shot at posting a better

start by expected win probability than the consistently good pitcher, as compared to the 0%

chance that the consistently average pitcher has.

In 1992, a paper by Kenneth McGraw and S.P. Wong gave a name to this type of

statistic called the “Common Language Effect Size,” or the “Probability of Superiority.” The

probability of superiority is quite simply defined as the probability that a randomly selected

observation from one distribution will be greater than a randomly selected observation from

another distribution [McGraw and Wong, 1992]. For every matchup in the data, one can

determine a pitcher’s probability of superiority for that game based on each of the starters’

distribution of the quality of their starts prior to that game. Whether these past distributions

are predictive for the current start when considered together can then be examined.

For this paper, probabilities of superiority were calculated for every game in the data

where both starters recorded at least 36 starts since 1998 prior to that game. For example,

Figure 2.4 depicts the distributions for Mike Mussina’s and Gustavo Chacin’s 36 starts prior
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to their matchup on April, 30, 2004. In the 36 starts prior to this game, Gustavo Chacin, of

the Toronto Blue Jays, averaged a 0.521 expected win probability, compared to the virtually

identical 0.520 expected win probability of Mike Mussina, of the New York Yankees. Despite

having a slight edge in average expected win probability, Gustavo Chacin’s probability of

superiority was only 0.480. The overlayed histograms in Figure 2.4 show that Gustavo

Chacin had a disproportionate number of starts that yielded an expected win percentage

between 50% and 60% compared to Mike Mussina (9 starts to 3 starts). Meanwhile, Mike

Mussina was much more variable, with 18 starts above a 60% win expectancy (compared to

13 starts for Chacin), and 15 starts below a 50% win expectancy (compared to 14 starts for

Chacin). In the matchup between the two on April 30, 2004, Gustavo Chacin pitched six

innings while allowing two runs (corresponding to a respectable expected win percentage of

60.3%), while Mike Mussina outperformed him with six innings pitched while allowing only

one run (a 71.1% expected win percentage). The Yankees ended up winning that game by a

score of 4-1. While this is only one example, and there are countless other factors at play, it

illustrates the potential of considering distributional statistics for individual game matchups.

Figure 2.4: Distributions of Expected Win Probabilities for Example of Matchup Where One

Starter Has a Higher Average Expected Win Probability, but a Lower Probability of Superiority
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CHAPTER 3

Results

3.1 Evaluating the Relationship Between Pitcher Volatility and

Actual Win Percentage

To investigate the hypothesis that high-variance pitchers systematically outperform similarly

situated low-variance pitchers, recall the scatterplot in Figure 2.2. The difference between the

points and the line of best fit are called the residuals (actual - predicted). These residuals

represent the amount that the regression over-, or under-, predicted each starter’s actual

win proportion given their average expected win probability. If the hypothesis is true, high-

variance pitchers would be consistently underpredicted (positive residuals) relative to low-

variance pitchers, who would be overpredicted (negative residuals). Table 3.1 shows this

relationship between the residuals shown in Figure 2.2 and pitcher variance for the 627

pitchers that made at least 36 starts from 1998-2017.

Table 3.1: Regression of Residuals on the Standardized Percentage of Maximum Possible Variance

Among Pitchers with At Least 36 Starts (1998-2017)

Estimate Std. Error t-value Pr(>|t|)

(Intercept) -0.0000 0.0022 -0.00 1.0000

Standardized % of Max Possible Variance 0.0048 0.0022 2.17 0.0303*

Recall that the spectrum of theoretical combinations of quality and consistency for pitch-

ers (Figure 1.1) formed a triangle. This implies that the domain of variances is not constant

across all average expected win probabilities. Equation 2.3 showed the formula for deriving
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maximum variances given values on a scale from 0 to 1. Using this formula, each pitcher’s

observed variance can then be divided by their maximum possible variance, given their av-

erage expected win probability, resulting in the percentage of maximum possible variance

for each pitcher. These values are then further standardized by subtracting them from the

overall mean and dividing by the overall standard deviation for ease of interpretation.

Table 3.1 indicates that for a one unit increase in the standard deviation of maximum

possible variance, the residual is underpredicted by an average of 0.0048 (or ∼0.5%). This

increase, while modest, is significant at the α = 0.05 level of significance. This means

that the difference between actual win proportions and expected average win probabilities is

in fact more positive (underpredicted) as start-to-start variance, relative to the maximum,

increases. Put another way, pitchers with a higher start-to-start variance, relative to the

maximum possible variance, tend to outperform their expected average win probabilities.

Having such a small relative effect is likely due to the fact that there simply is not a lot of

variation between pitchers at the major league level after at least a season’s worth of starts

(Figure 2.1). So, while this approach generalizes the relationship between start-to-start vari-

ance and actual win percentage, the theory can be tested further using the bootstrapping

technique described in Section 2.2 to simulate pitchers with much more distinguishable char-

acteristics. Threshold values were chosen such that a “good” start was the largest subset of

starts that averaged at least an 88% win expectancy, a “bad” start was the largest subset of

starts that averaged at most a 12% win expectancy, and an “average” start averaged around

a 50% win expectancy.

Table 3.2 shows these distributional summary statistics for the four simulated pitchers

outlined in Section 2.2. For each of those four simulated pitchers, the average number of

actual wins, the average number of expected wins, and the average start-to-start variation

across the 100,000 samples was calculated. Of interest, is how the difference between the

expected number of wins and the actual number of wins varies across the random samples. If

the hypothesis that high-variance pitchers outperform similarly situated low-variance pitch-

ers is true, the expected difference between actual and expected wins across the samples

would be larger for the “Inconsistently Average” pitcher. Each sample consisted of 100 ran-
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domly sampled starts for each of the simulated pitchers, and so for ease of interpretation the

actual and expected counts in Table 3.2 can be considered as percentages.

Table 3.2: Distributional Summary Statistics for Simulated Pitchers Across 100,000 Samples

Simulated Starter Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Consistently Bad Actual Wins 2.00 11.00 13.00 13.54 16.00 30.00

Consistently Bad Expected Wins 9.98 11.65 11.97 11.97 12.29 14.11

Consistently Bad Variation 0.00 0.00 0.00 0.00 0.00 0.00

Consistently Good Actual Wins 89.00 97.00 98.00 97.83 99.00 100.00

Consistently Good Expected Wins 88.67 88.86 88.89 88.89 88.92 89.07

Consistently Good Variation 0.00 0.00 0.00 0.00 0.00 0.00

Consistently Avg. Actual Wins 25.00 45.00 49.00 48.80 52.00 70.00

Consistently Avg. Expected Wins 49.21 50.38 50.60 50.60 50.83 51.98

Consistently Avg. Variation 0.00 0.00 0.00 0.00 0.00 0.00

Inconsistently Avg. Actual Wins 45.00 54.00 56.00 55.69 57.00 69.00

Inconsistently Avg. Expected Wins 48.88 50.20 50.43 50.43 50.66 51.86

Inconsistently Avg. Variation 0.14 0.15 0.15 0.15 0.15 0.16

Table 3.2 confirms that the simulated distributions converged around the anticipated val-

ues for win expectancy and variation (essentially 0 for all but the “Inconsistently Average”

pitcher). It can also be observed that for all but the “Consistently Average” pitcher, the

actual win percentage converged to a higher number than the expected win percentage. This

lends credence to the theory that being consistently average is the worst of the four major

categories on the spectrum in terms of outperforming expected wins. Using the results of

the simulation, the difference between actual and expected wins can be tested by calculating

the difference in these averages within each of the 100,000 samples and taking the 2,500th

and 97,500th largest values to get an approximation of the 95% confidence interval. If the

confidence interval contains 0, the null hypothesis that the particular simulated distribution

consistently results in more wins than expected would be rejected. Figure 3.1 shows the box-
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plot of these differences for both the simulated “Inconsistently Average” and “Consistently

Average” pitchers.

Figure 3.1: Simulated Difference Between Actual and Expected Win Totals by Pitcher Type

The results are seemingly paradoxical at first glance. The inconsistent pitcher appears

to actually be more consistent in terms of his difference from expected, while the consistent

pitcher has a much wider range of outcomes. In fact, the interquartile range (the spaces

that are colored in Figure 3.1) for the consistent pitcher is almost double the size of the

inconsistent pitcher (6.75 to 3.46, respectively). This phenomenon can be understood by

thinking back to the extreme example of a pitcher with a 50% expected win probability with

half of his starts yielding a 100% chance of winning, while the other half of his starts yield

a 0% chance of winning. In this case, the difference between his actual and expected wins

must be exactly 0 since he wins all of his good starts, but he has no chance to win any of

his bad starts. On the other hand, the pitcher that gives his team exactly a 50% chance

to win every game he pitches in could conceivably win or lose all of his starts. Basically,
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by pitching at the extremes, inconsistent pitchers eliminate a lot of the luck associated with

winning and losing. What this means is that, while providing more consistent results, an

inconsistent pitcher’s upside may actually be more limited compared to a similarly situated

consistent pitcher.

While certainly an interesting result, the primary motivation behind this exercise was to

see if the inconsistent pitcher significantly outperformed his expected number of wins. To

this end, the 95% confidence interval for the difference in actual and expected wins for the

inconsistent pitcher ranged from 0.38 to 10.59. Meanwhile, the 95% confidence interval for

the difference in actual and expected wins for the consistent pitcher ranged from -11.54 to

8.00. This means that there is reason to believe that, at the α = 0.05 level of significance,

inconsistent pitchers systematically outperform their expected win totals while consistent

pitchers do not.

While it is not surprising that the consistent pitcher had a much wider confidence inter-

val, the fact that the intervals are not centered around the same point is important. This

fact implies that there may actually be an advantage to pitching at the extremes, as was

hypothesized. Figure 3.2 shows a 5,000 point moving average of actual and expected win

percentages that can be used to investigate the hypothesis that there are certain levels of

expected win percentage that consistently over-, or under-, estimate actual win percentage.

To create this, all starts were first sorted from lowest to highest expected win percentage,

and then the average expected win percentage for the first 5,000 observations was calculated.

Then, moving up one observation at a time, the average expected win percentage was recal-

culated using the last 5,000 observations from that point. Similarly, the 5,000 point moving

average of actual win percentage was calculated, and then paired to their associated average

expected win percentage over the same set of observations. This smooths out the averages

to help identify expected win percentages that are consistently above or below the actual

win percentages observed.

Figure 3.2 shows that groups of starts that averaged a 25.4% win expectancy or lower

had consistently higher actual win percentages. Likewise, groups of starts that averaged a

win expectancy of 77.5% or higher had consistently higher actual win percentages. Mean-
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while, groups of starts that had an average win expectancy between 44.5% and 66.4% had

consistently lower actual win percentages.

Figure 3.2: 5,000 Point Moving Average of Actual and Expected Win Percentages

The three colored sections of Figure 3.2 illustrate exactly why the simulated consistently

average pitcher was the only one of the group that did not outperform their expected wins.

The thresholds for the “average” starts pool in the simulation were win expectancies between

44% and 56%, a range that is almost entirely within the red region of Figure 3.2. The “good”

and “bad” pools, on the other hand, were entirely in the green regions. This means that

there are thresholds at both the lower and upper tails where the return, in terms of actual

wins, is greater than the cost of runs allowed and innings pitched. In other words, there

is not the same “return on investment” across all average expected win probabilities. This

pattern leads to the result that pitchers who are consistently average underperform relative

to pitchers that pitch at the extremes.

23



3.2 Evaluating Whether Pitcher Volatility is a Predictable Trait

We are now armed with the knowledge that start-to-start variation explains a statistically

significant, albeit relatively small, amount of the variation left over from the difference

between actual and expected win percentages. It is next prudent to investigate whether

pitcher volatility is a trait pitchers exhibit that can be relied upon as a factor when evaluating

them. To this end, we can now look at whether a pitcher’s start-to-start variance in their

last 36 starts is predictive of start-to-start variance in their next 36 starts. Essentially, does

a full season’s worth of starts give any indication about what can be expected of them in

terms of volatility in their next full season’s worth of starts?

The predictability of start-to-start variation can be evaluated using linear regression.

Framed in this way, a pitcher’s last 36 starts will be the predictor, and the pitcher’s next 36

starts will be the dependent variable. To achieve this, all of a given pitcher’s starts from 1998

to 2017 will be split into a 36-point moving variance. A 36-point moving variance means

that the start-to-start variance in a pitcher’s first 36 starts will be the first predictor variable,

and their variance in their next 36 starts will be the first dependent variable. Then, moving

one game at a time, these variances will be recalculated and treated as new observations for

inputs into the regression. If Ni is the number of starts that pitcher i makes from 1998-2017,

then each pitcher with at least 72 starts (36 to predict for, and 36 to predict with) will

have (Ni − 71) different observations in this moving variance regression. Table 3.3 shows

the results of this regression after adjusting for the maximum possible variance given the

pitcher’s average expected win probability in the respective 36-start grouping.

Table 3.3: Regression of the Percentage of Maximum Possible Variance in Last 36 Starts on

Percentage of Maximum Possible Variance in Next 36 Starts (1998-2017)

Regular Cluster-Robust

Estimate SE t-value SE t-value Pr(>|t|)

(Intercept) 19.1587 0.0965 198.60 0.4795 39.95 0.0000***

% of Max Possible Variance 0.0924 0.0045 20.56 0.0227 4.08 0.0000***
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In linear regression, one of the primary assumptions is that each observation is indepen-

dent of the next. Here, this assumption is violated as multiple observations per pitcher that

are, by definition of a moving variance, correlated with each other have been introduced.

This violation must be accounted for or else the confidence interval associated with the pre-

dictor will be too narrow, and thus the hypothesis test associated will lead to a conclusion

of statistical significance too frequently.

To handle this violation, “Cluster-Robust Standard Errors” are used which allow corre-

lation within a “cluster” of observations, which in this case are represented by each unique

starting pitcher [Millo, 2017]. This means that within a pitcher the moving variances are al-

lowed to correlate, while moving variances between pitchers are still considered independent.

Table 3.3 shows the standard error (SE) and the t-value for both the regular regression and

the “Cluster-Robust” regression. The t-value after adjusting the standard error drops from

20.56 to 4.08. Even after this adjustment, the corresponding p-value still implies that, at

the α = 0.05 level of significance, there is enough evidence to conclude that the percentage

of the maximum possible variance in a pitcher’s last 36 starts is a statistically significant

predictor of the percentage of the maximum possible variance in the pitcher’s next 36 starts.

Once again, while statistically significant, the magnitude of this impact is relatively small

at 0.0924. This means that for a 1% increase in the percentage of maximum possible variance

in a pitcher’s last 36 starts, the percentage of maximum possible variance in the pitcher’s

next 36 starts would be expected to increase, on average, by roughly 0.09%. While nowhere

near a one-to-one relationship, there does appear to be some positive linear relationship with

start-to-start variation from one season’s worth of starts to the next.

Due to the fact that the start-to-start variances themselves are small in magnitude, and

the fact that pitchers in reality tend to be fairly clumped together on the spectrum, one other

approach is to do an analysis of variance (ANOVA) [Dobson and Barnett, 2008]. An ANOVA

tests for the difference between different group means by analyzing the within group variance

and the between group variance relative to each other. If the variance between groups is

small relative to the within group variance, then there is not enough evidence to suggest

that the group means themselves differ from each other. On the other hand, if the between
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group variance is much larger than the within group variance, it is reasonable to conclude

that the group means are in fact different. In other words, groups are considered different

if the observed variance between group means is much larger than the variance exhibited

between observations within groups.

Put into the context of this paper, if consistency is indeed a predictable trait, the year-

to-year variance in start-to-start variance within pitchers would be small relative to the

variance between the mean year-to-year variance in start-to-start variance between pitchers.

Table 3.4 shows the results of the ANOVA after dividing each pitcher’s starts into groups of

36 among pitchers who made at least 72 starts from 1998 to 2017. In this case, starts are

simply ordered by date and split into groups of 36, so there is no overlap of starts like there

is with the moving variance approach.

Table 3.4: Analysis of Variance for the Mean Percentage of Maximum Variance Possible by Every

36 Starts Among Pitchers Who Made at Least 72 Starts (1998-2017)

Df Sum Sq Mean Sq F-value Pr(>F)

Between Pitcher 412 1.02 0.00 1.32 0.0001***

Within Pitcher 1904 3.57 0.00

Table 3.4 indicates that the variance between pitchers was significantly larger than the

variance within pitchers. Broken down, the “Mean Sq” column is the “Sum Sq” column

divided by the “Df” (degrees of freedom) column, and the “F-value” test statistic is simply

the discussed ratio of the mean square of the “Between Pitcher” and the “Within Pitcher”

mean square. The exact conclusion that can be drawn from an ANOVA is that at least one

pitcher had a sample mean percentage of maximum variance possible that was statistically

different than the others, at the α = 0.05 level of significance. While the ANOVA does not

allow for a general conclusion, it does at least indicate that start-to-start variation is not

an entirely random process, and that for at least for some pitchers there is a consistency of

variance relative to the others.
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3.3 Investigating the Market Value of Pitchers by Start-to-Start

Variation

Now that we have explored the effects of start-to-start variation on actual win percentages,

and determined that there is at least some degree of predictability of start-to-start variance

within pitchers, we can turn our attention to how variation effects a pitcher’s monetary

value. To analyze this, we can focus on total earnings over the 20 years covered by the data

from 1998-2017. Using this as the dependent variable, a model can be constructed to make

an inference on the effect start-to-start variation had on total earnings over this period.

The salary that a player earns, especially over the course of multiple seasons, can be

highly dependent on unique circumstances. Quality of performance, injury history, the year

a player hits free agency, or whether a player values length over average annual salary in a

contract can all dramatically affect how much a player makes over a given time frame. As

such, building a model to predict career earnings would be an onerous task. In inferential

statistics, we only wish to determine the relationship between a predictor variable and the

dependent variable. To make this inference, the model only needs to account for factors that

are correlated with both the predictor of interest and the dependent variable. In this case,

how start-to-start variation impacts a pitcher’s earnings is of interest. Therefore, everything

that has an effect on both start-to-start variation and total earnings needs to be considered.

Additional factors may increase the overall predictive power of the model, but if the factors do

not correlate to start-to-start variation then that relationship and its corresponding inference

will remain unchanged. For this exercise, the analysis is limited to the 469 pitchers with

salary data who debuted after the start of 1998 and made at least 36 starts.

Once again using the standardized percentage of maximum possible variance as the pre-

dictor of interest, variables with which it might be correlated were identified. To start, it

is still likely that there is some relationship between average expected win probability and

start-to-start variation even though it has already been converted to a percentage of the

maximum. Indeed, the correlation between the two variables is roughly -0.263, meaning

that as average expected win probability increases, a pitcher is more likely to be consistent
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even relative to the maximum. Also, while the sample is limited to only pitchers who made

at least 36 starts, it is still expected that pitchers closer to that minimum may exhibit more

of the extreme variances observed in the data before it has fully stabilized. The correlation

between these two variables is roughly 0.116 and does in fact display the pattern of dispersed

variances at low numbers of starts before becoming more dense at higher numbers of starts.

Particularly with salary data, it is also important to check for any necessary transforma-

tions before modeling. Often, salaries are right-skewed (most people earn relatively little,

while a few people make a lot). Figure 3.3(a) shows that the earnings in this data are in-

deed right-skewed, and Figure 3.3(b) shows these earnings with a logarithmic transformation

applied to help normalize the distribution.

(a) (b)

Figure 3.3: Distribution of Total Earnings (1998-2017)

Figure 3.4 illustrates the relationships between the log-transformed total earnings and

the predictor variables identified. As shown in Figure 3.4(a), the relationship between log

total earnings and average expected win probability is positive and linear as anticipated.

Figure 3.4(b) shows that the number of starts that a pitcher makes appears to have a clear

quadratic relationship to the logarithm of total earnings, meaning that it increases fast at low

quantities of starts before tapering off as the pitcher makes more starts. When the dependent

variable is log-transformed, the log-linear coefficients can be approximately interpreted as

percent changes when the coefficient is small. Therefore, the resulting quadratic relationship

between number of starts and total earnings makes intuitive sense as early on a player should
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have a larger percent increase in total earnings before the additional yearly salary associated

with more starts only becomes a small fraction of the total earnings. Finally, Figure 3.4(c)

shows a parabolic relationship between log total earnings and the standardized percentage of

maximum possible variance. For average percentages of maximum possible variance (those

around 0), there appears to be no discernable pattern with regard to log total earnings,

but for standardized percentages of maximum possible variance that are large in magnitude,

there appears to be a negative correlation with log total earnings.

(a) (b)

(c)

Figure 3.4: Scatterplots of Predictor Variable Relationships to Log Total Earnings (1998-2017)
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Not considering any of the other relationships at the moment, the form displayed in

Figure 3.4(c) implies that perhaps starting pitchers with average variability were actually

being valued more fairly than either inconsistent or consistent pitchers during this time frame.

Table 3.5 shows the results of the regression that considers all of these factors together.

Table 3.5: Regression on Log Total Earnings (1998-2017)

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 9.7623 0.4142 23.57 0.0000***

Avg. Expected Win Probability 5.9390 0.8670 6.85 0.0000***

Number of Starts 0.0296 0.0011 25.81 0.0000***

(Number of Starts)2 -0.0000 0.0000 -14.59 0.0000***

Standardized % of Max Possible Variance 0.0175 0.0330 0.53 0.5971

(Standardized % of Max Possible Variance)2 -0.0131 0.0194 -0.68 0.4991

The resulting model has an R2 value of 0.8529, meaning that it explains roughly 85.3% of

the variation in total earnings for this subset of pitchers. Average expected win probability,

number of starts, and the number of starts squared are all statistically significant at the

α = 0.05 level of significance. On the other hand, even with a relatively simple model, the

standardized percentage of maximum possible variance is not statistically significant at any

meaningful level of alpha. Given that the model already explains over 85% of the variation

in total earnings, even if some variables were omitted that would correlate with the variance

and change the magnitudes of the related coefficients, it is unlikely to change the sign or

lack of significance of the results.

While not statistically significant, the relationship between variance and total earnings

can still be explored. If the average expected win probability and the number of starts is fixed,

then total earnings can be predicted across varying levels of the standardized percentage

of maximum possible variance. Figure 3.5 tells us that, regardless of the actual dollar

amounts, pitchers that are 0.67 standard deviations above the group mean percentage of

maximum possible variance are expected to have, on average, the maximum total earnings
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among all possible standardized percentages of maximum possible variance for any fixed

average expected win probability and any fixed number of starts. If anything, it appears

that perhaps consistent pitchers in this subset were valued less on the market relative to

average and high-variance pitchers.

Figure 3.5: Predicted Total Earnings Over Varying Standardized Percentages of Maximum Pos-

sible Variance

3.4 Determining the Value of Distributional Statistics for

Evaluating Pitching Matchups

Up to this point, the patterns and impact of start-to-start variation on winning has been an-

alyzed on a global level across the full dataset. In Section 2.3, the concept of the “Probability

of Superiority” was introduced. The probability of superiority was defined as the probability
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that a randomly selected start from one pitcher resulted in a larger expected win probability

than a randomly selected start from another pitcher. The question is whether the probabil-

ity of superiority can be used as a way to compare individual pitchers and potentially make

decisions regarding pitching matchups in particular games.

To investigate if the probability of superiority is indeed a useful metric in determining

pitching matchups, the probability of superiority is first calculated for every game where both

starters recorded at least 36 starts prior to the game in question. Each eligible game is then

split into two categories. The first category is games where one of the starting pitchers had

a probability of superiority over 50%, but a lower average expected win percentage in their

last 36 starts than their opponent. The second category is games where the starting pitcher

had a probability of superiority less than or equal to 50%, and a lower average expected win

percentage in their last 36 starts than their opponent.

In both categories described above, the starting pitcher being analyzed has a lower ex-

pected win percentage than his opponent. If taking into account the probability of superiority

is indeed a useful metric for evaluating pitching matchups, then it would be expected that

the group that has a probability of superiority over 50% would significantly outperform the

group that does not. As it turns out, there are only 199 games over the 20-year sample

where a pitcher had a probability of superiority over 50%, but a lower average expected

win percentage in their last 36 starts than their opponent. Even within these 199 games,

the difference in average win percentage between the two starters is never more than 2.7%.

Once again, in reality we see that pitchers are much more similar than they are different

at the major league level. Nonetheless, in these 199 games the starter with the probability

of superiority over 50% recorded the better start 50.8% of the time despite having a lower

average expected win percentage than their opponent. Over this same period, there were

6,083 games where the starter had a probability of superiority less than or equal to 50%, but

an average expected win percentage less than 2.7% lower in their last 36 starts than their

opponent. This 2.7% cutoff is used to make sure that the two groups compare starts where

the pitchers are in relatively similar standing with the only major difference being the prob-

ability of superiority. In these 6,083 games, the starter with the probability of superiority
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less than or equal to 50% posted a better start 46.6% of the time.

In summary, among games where the pitcher had an average expected win percentage

less than 2.7% lower than their opponent in their last 36 starts, pitchers with probabilities

of superiority over 50% posted a better start in terms of expected win percentage more often

than pitchers with probabilities of superiority less than or equal to 50%. The resulting 4.2%

difference in favor of those pitchers with a probability of superiority over 50% can be tested

more formally using a one-tailed Chi-squared test of proportions. The corresponding p-value

of 0.1214 indicates that the 4.2% difference is not statistically significant at the α = 0.05 level

of significance. Therefore, there is not enough evidence to support the claim that having a

probability of superiority over 50% results in the pitcher posting a better start than their

opponent in matchups where the pitcher has an average expected win percentage less than

2.7% lower than their opponent in their last 36 starts.
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CHAPTER 4

Conclusion

On a general level, across the entire 20-year sample, high-variance pitchers systematically

overperformed the results that would be expected looking at only runs allowed and innings

pitched. While passing the statistical significance threshold at the α = 0.05 level of sig-

nificance, this effect may not be practically significant given that win percentage increases

by only 0.5% for every standard deviation above the group mean percentage of maximum

possible variance. For example, even if a pitcher is two standard deviations above the group

mean percentage of maximum possible variance, then over 100 starts they would be expected

to win on average only one more game than a pitcher with the same average expected win

percentage, but a percentage of maximum possible variance that is only average. The cause

behind such a small effect became evident after plotting actual pitchers on the theoretical

spectrum of starting pitching quality in Figure 2.1. While every coordinate within the tri-

angle is theoretically possible, in reality starting pitchers at the major league level are much

more similar than they are different.

Nonetheless, even if only marginally, the theory that high-variance pitchers outperformed

similarly situated low-variance pitchers held true in practice. In order to fully understand

the relationship between start-to-start variation and actual win percentage, a technique

was devised to simulate four hypothetical pitchers by bootstrap sampling from different

pools of starts to fix average expected win percentages and start-to-start variation, while

randomizing out the other effects that were not of interest. Figure 2.3 showed how the

resulting four simulated pitchers stretched towards the theoretical edges of the triangle,

allowing for comparisons of pitchers with much more distinct characteristics. Testing for the

difference in actual versus expected win totals between the “Inconsistently Average” and
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“Consistently Average” pitchers yielded results consistent with the hypothesis that high-

variance pitchers outperformed similarly situated low-variance pitchers. Figure 3.1 illustrated

that, while the “Consistently Average” pitcher had a much wider range of possible outcomes,

the “Inconsistently Average” pitcher systematically outperformed his expected win total.

Once it was shown that high-variance pitchers outperformed similarly situated low-

variance pitchers both in theory and in practice, the next phase investigated whether start-

to-start variance is a predictable trait. Using a moving variance regression, as well as an

analysis of variance, it was shown that start-to-start variation between groups of 36 starts

were predictive of each other. Essentially, pitchers exhibited an element of consistency in

start-to-start variation between years relative to the differences in yearly start-to-start vari-

ation between each other. So while the linear effects of the start-to-start variation between

the groups of starts may not have been one to one, there was still statistically significant

evidence that consistency is in fact a pattern that pitchers display.

Knowing that start-to-start variation is predictive from year to year among pitchers, and

there is a pattern of underprediction of actual win totals among high-variance pitchers, the

analysis next focused on the impact of start-to-start variance on total earnings. Looking

only at pitchers that debuted after 1998 and made at least 36 starts, a pitcher’s percentage

of maximum possible variance was not found to have a statistically significant effect on total

earnings. Given the marginal effect found in reality regarding the underprediction of actual

win totals among high-variance pitchers, it is unsurprising that there was not a significant

difference in total earnings between low-variance and high-variance pitchers. In fact, if

anything, Figure 3.5 showed that, while consistent pitchers were less likely to outperform

their expected win total, they were perhaps not given enough credit for their wide range of

possible outcomes. For a team that is confident in their offensive output, a pitcher that is

consistently average may actually represent a value on the market.

Finally, an analysis of whether taking into account a pitcher’s distribution of starts rela-

tive to their opponent’s distribution of starts could be used by managers to decide potential

pitching matchups was conducted. Using a metric called the “Probability of Superiority,” it

was shown that pitchers that held the edge in this distributional statistic were more likely
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to post a better start in terms of runs allowed and innings pitched than their opponent even

if the pitcher had a lower average expected win percentage than their opponent in their last

36 starts. Unfortunately, only 199 games in the 20 year sample involved a pitcher with a

probability of superiority over 50%, but a lower average expected win percentage than their

opponent in their last 36 starts. As such, the resulting 4.2% difference in favor of those

pitchers with a probability of superiority over 50% was not statistically significant.

In all, the hypothesis that high-variance pitchers are more likely to outperform their ex-

pected win totals than low-variance pitchers proved true in both theory and reality. However,

given how similarly major league pitchers have performed over the last 20 years in terms

of start-to-start variation, these differences are arguably practically insignificant in terms of

their potential value in driving financial and in-game decisions. That said, Tommy Lasorda,

a two-time World Series champion as the manager of the Los Angeles Dodgers, famously

observed, “No matter how good you are, you’re going to lose one-third of your games. No

matter how bad you are you’re going to win one-third of your games. It’s the other third that

makes the difference.” With such a small margin distinguishing “good” teams and “bad”

teams, even an advantage of only a game or two can make all the difference. As such, know-

ing that the inclusion of start-to-start variation significantly improves our ability to predict

actual win percentage, even modestly, is still a valuable finding. It is also possible that one of

the reasons why pitchers at the major league level have such similar start-to-start variation

is because inconsistent pitchers are so undervalued that they are not given an opportunity

to pitch enough games to be analyzed, which if true would imply that savvy teams could

unlock meaningful value by taking chances on pitchers who had otherwise been considered

too erratic.
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CHAPTER 5

Limitations and Future Work

The intent of this paper was to examine the hypothesis that high-variance pitchers are more

likely to outperform their expected win totals than similarly situated low-variance pitchers

on a general level. As such, this paper focused on observable patterns across large swaths

of data that included multiple years and multiple pitchers. While on this global level the

results were marginal, now that the theory has been shown to be true, there are potential

applications on a more micro scale. Much like what was shown in the case-study work

done by Wolverton and Hunter, start-to-start variation may still be the explanation for why

individual pitchers seem to consistently outperform their expectations. As such, monetary

and in-game decisions on an individual pitcher basis may still provide an advantage. Once

theories have been proved generally, specific analyses hold more weight as being plausible

factors to consider.

Although it is true that many things in baseball can be broken down into discrete events

between pitchers and hitters, wins and losses are made up of so many of these events that

they are still subject to a lot of noise when it comes to prediction. The models used in

this paper are simply a starting point meant to be built upon and fine-tuned. One example

of a factor not considered when building the metric for expected win probability was the

year-to-year change in league offensive output. Over the course of baseball history, offensive

production has had its ebbs and flows (the “Steroid Era,” the “Dead Ball Era,” and most

recently the “Juiced Ball Era”). In some years, a start of 6 innings and 3 runs allowed is

a lot better comparative to the rest of the league than in other years. For this paper, this

effect was omitted because the goal was simply to divide wins as evenly as possible assuming

all else was equal other than the inputs to RA/9.
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Another area for further exploration is with regard to evaluating market value. Salary

data is hard to come by, and identifying years where players were eligible for free agency,

and what types of idiosyncrasies were built into contracts that gave a player more value

than simply the dollar amount, makes modeling difficult. As such, the total earnings model

employed in this paper is aggregate and very general. While the model only intends to make

an inference about the relationship between total earnings and start-to-start variation, the

absence of all variables that correlate with both factors can lead to what is called “omitted

variable bias.” While this paper addresses why it is believed that the conclusions would

remain the same, there are many more potential factors that certainly would effect total

earnings that could also possibly be correlated with start-to-start variation.

Perhaps the biggest area ripe for further exploration is how distributional statistics effect

relief pitchers. Relief pitchers are the pitchers that come into a game after the starter leaves,

and as such they have many more appearances, but far fewer innings, than starters. While

the variation between starters in reality was too small to see much of an effect, outing-

to-outing variation between relievers is likely far greater in magnitude due to their limited

number of innings pitched. ERAs in particular for relievers are highly volatile as one bad

outing can have a larger impact on their average since it is normalized by 9 innings. Imagine

a situation where a reliever is asked to preserve a one run lead. Just as was discussed with

starting pitchers, it might be best to simply use the team’s best reliever in terms of ERA.

However, consider one option is to use a reliever who 75% of the time gives up no runs,

but the other 25% of the time he gives up two runs. That reliever’s ERA may actually be

less than a reliever that half of the time gives up no runs, but the other half of the time

gives up one run. If the team only cares about preserving the one run lead, then it may be

advantageous to consider the reliever’s distribution of outings and choose the one that gives

up no runs 75% of the time. On the other hand, if the team had a two run lead, the reliever

that never gives up more than one run would be the smart choice.
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