UC Irvine
ICS Technical Reports

Title
Steps Toward Automatic Theory Formation

Permalink
https://escholarship.org/uc/item/4gh627ni

Author
Brown, John Seely

Publication Date
1973-06-01

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4qh627nr
https://escholarship.org
http://www.cdlib.org/

STEPS TOWARD AUTOMATIC
THEORY FORMATION

John Seely Brown

TECHNICAL REPORT #31 - JUNE 1973

Presented at the "International Joint Conference on Artificial Intelligence",
. August 1973 '



ABSTRACT

This paper describes a theory formation system which can discover a
partial axiomization of a data base represented as extensionally defined
binary relations. The system first discovers all possible 1ﬁtensiona1
definitions of each binary relation in terms of the others. It then
detérmines a minimal set of these relations from which the others can be
dgfined. It then attempts to discover all the ways the relations of thfs
minimal set can interact with each other, thus generating a set of
inference rules. Although the system was originally designed to explore
automatic techniques for theory constructioﬁ for question—answefing
systems, it is currently being expanded to funct%on as a symbiotic

system to‘he]p social scientists explore certain kinds of data bases.



Introduction

For over a decade researchers in Al have been designing question-
answering systems which are capable of deriving "implicit" facts from a
sparse data base. Whether these systems use an axiomatic theorem proving
approach or a procedurally oriented approach, they all must eventually
face the problem of characterizing the generic knowledge or structural
redundéncies of their particular domain of discourse. Even the simplest of
such domains contains countless subtleties which somehow must be captured
before a complete characterization can be achieved.

In this paper we discuss the problem of automatica]iy constructing

such é characterization. Our research has not been directed toward a
theoretical investigation of this general problem as in Plotkin! but rather
towards constructing and experimenting with a prototype system which has
been applied to large and structurally rich domains. We will provide
numefbus examples to show what is involved in forming conjectures about
"apparent" structural redundancies in a given data base (model) and how
such conjectures can be heuristically validated. The search for structure
is inherently combinatorial. We will therefore discuss some ways to
control the combinatorial explosion involved in forming and validating
structural conjectures. Finally, we.w111 discuss ways in which such a

- system might be used to help a social scientist diécover structural

theories about a set of observations over some "worid". Indeed, our eventual -

aim is to expand this system into a tool for such uses.



Problem Definition

Before describing our system, a definition of the vague term
“structural redundancies" is in order. Let us consider a data base
consisting of the complete extensions of'a collection of binary relations
R={R;...R }. That is, for each R;€ R the data base contains all the
tfip]es (x R; y) for each (xsy) Ri' The structural redundancies of this
data base fall into three basic categories. The first category occurs
Where one of the relations is intensionally definable in terms of other
relations in this data base. For example, suppose we have the three
relations of Grandparent, Parent, and Spouse, each extensionally defined
over some fixed universe P of people. Then, assuming the extensions of
each relation are complete, we could discover the structural redundancy

that for every (x,y)€ Grandparent there exists a z such that:
(x,y)€ Grandparent iff (x,z) € Parent and (z,y)€ Parent

or Grandparent = Parent/Parent where "/" denotes composition. If we

.represented the extensions of all the relations as a directed Tabelled graph, -

then for every arc of the form: » |
e e R v

there would be a path of the form "Parent ~— Parent" bridging the triple

(x Grandparent y) i.e.:



Parent

In other words, if "Grandparent = Parent/Parent" holds, then the data
base-graph will always have a path of length two whose labels are "Parent"
and ?Parent" bridging every arc labelled "Grandparent".

’An intensional definition of a relation can also be recursive as would

be the case with the definition of Paréent in terms of Spouse, e.g.:
Parent = Spouse/Parent

In this case, for every arc of the form (x Parent y) there are two other

arcs of the form (x Spouse z) and (z Parent y), i.e.:

- %—-— Spc-)us"e ‘-—?

- Paremt Parent

The second kind of structural redundancy occuré where-the existence
of a path in the graph forms a sufficient but not a necessary condition for
some other arc to exist: For example, suppose we augment our data base to
inc]udg the extensions of the Sibling and Cousin relations over the sahe

domain P. We would then discover that for every path of the form



(x Sibling z) and (z Cousin y) there was always an arc of the form

(x Cousin y). Such a pattern would lead to the rule:
Sibling/Cousin => Cousin

The third and simplest kind of structural redundancy occurs where the

relation itself has certain logical properties such as:

Transitive
Symmetric
Reflexive
Irreflexive

. The first two kinds of redundancies. cover how a givén relation interacts
‘with éther relations in R, whereas the last kinds cover only how a relation
interacts with itself.

The structural patterns comprising all three categories form the basis
of a logical theory (or axiomatic characterization) of the data base in tﬁe
following way:

Initially, the data base consists of the complete extensionaI
definitions of all the given relations. After our system discovers all
the intensional definitions of the relations, then some subset of these
re]ations can be selected (to be called the atomic relations) from which
the extension of all the remaining ré]ations can be derived.* The extension
- of a non-atomic relation can be computed by knowing only its intensional
definition in terms of the selected atomic relations. Consequently, <
the extensional definitions of all non-atomic relations can be discafded
with no loss of information. In addition, the extensions of the atomic

relations can be pruned by using structural properties in the sehond and

*Techniques to selgct'the atomic sets are not discussed here but are discussed
at Tength in Brown>.

4



third categories. For example, if an atomic relation is symmetric, then
half of its extension can be eliminated without loss of information. With
respect to the two structural redundancies:
Parent = Spouse/Parent
Spouse symmetric
half of the parent and spouse extensions can be likewise discarded.
What remains after all the redundant extensions have been eliminated is a
kernel set of extensions. |
The structural rules defined by the set of intensional definitions,

' the logical properties of the atomic relations and the implicational
statements in conjunction with a kerﬁe] set of extensions suffice to
determine the complete extensions of all the relations. These rules plus
the kernel set of data form a logical theorx of the original extensional
relations. ‘Note that the complete extensional set of relations is

necessarily a logical model of the resultant “"theory". The fact that this'
| model (or equivalently -- the extensionally defined relations) is finite,
as far as our system is concerned, presents the interesting situation that
our system will often produce numerous.ru1es that hold for this finite
collection of data but which appear to be idiosyncratic. vThat'is, if the
collection of data is really a sample from some potentially infinite model,

‘then of course numerous "rules" may be found that might prove to be false

when the data base is enlarged.

On Discovering Intensional Definitions

The basic idea underlying the discovery of intensional definitions is
quite simple. Suppose we are trying to discover all the possible definitions

of Riél R. Since Ri exists in the data base, it has a set of 2-tuples which



represent its extension. We commence our process by arbitrarily choosing
one of these 2-tuples (xi,yi) and then searching for all possible simple
directed paths that start at Xi and end at'yi. We then delete the inter-
mediate nodes of each such path leaving only an ordered list of the labels
of the path which we will call a Labelled Path Sequence (LPS). The end
result of this process is a list of distinct LPS's, each stemming from at
Teast one specific path from X; to yi. (Several X; => ¥ paths can
collapse onto one LPS.)

Depending on storage limitations etc., we repeat this process several

times, choosing a different 2-tuple from R;'s extensions for each repetition.

In this manner we construct a collection-of lists L:

= {L ,L ...L }
11 X2 ¥y
where each Lx.y. represents all the distinct LPS's bridging the 2-tuple
ivi
(xi ¥;)-
From these 1ists we create some conjectures concerning Ri's intensional
definition by forming the intersection of all the Lx. Tists, i.e.:

il

k
c=A1L,
i=1 %dy

(Computing this intersection can be quite costly, so some care is required
- in choosing a good data structure for these 1ists.5 ‘If this intersection
is non-empty, then the LPS's that lie in this intersection form the first -
set of conjectures and are therefore passed to the verifying procedufes to |
determine if there are any counter-examples to these conjectures. If an
LPS survives this check then it represents an intensional definition for

Ri' For example, suppose Ry - R2 - R3 is an LPS which is in common to

6 .



all the ny‘s. It is then conjectured that Ri = R]/RZ/R3. The intermediate
nodes that were removed from the various paths underlying this LPS are

possible bindings for the extensional variables 2152, in the expression:

On the other hand, the verifier determines whether for every x, y, and
z; and z, that satisfy the right-hand side of the above expression, the
2—tup]é (x,y) is necessarily contained in Ri's extension. If this is not
true then the conjectured definition is considered to be "over—genera]“.

A more interesting case arises when the intersection of all the
ny's is empty. In such situations there is no simple éompositiona]
} defiﬁition for Ri' Instead, its definition (if_there is one) must involve
a disjunct. An obvious strategy to pursue is to keep intersecting}the

ny

intersection, leaving a non-empty intersect. Then, starting with this

's until the intersect becomes empty. At that point, undo the last

removed list, recommence forming the intersection with it and the next
list and so on. For example, suppose we have L1,L2,L3,L4,L5,L6 as six

lists of LPS's with the following properties:

Ly = L AL

bieg = LigAlg=?

Lygs = Ly Alg =0
L56 = L5v A L6

We are left with three sets of non-empty intersections, namely L12,L34,L56.

The conjectured definitions for Ri would then be of the form:

7 .



R; = any LPS from L]Z\J any LPS from L

i 34

~/ any LPS from Lee

Thus an intensional definition of Ri would be a disjunct of relational

compositions.
A moment's reflection on the above intersection process reveals that
the outcome of these intersections can be critically dependent on the
order in which the 1lists are intersected. For example, the lists L],LZ,L4
might very well form a non-void intersection and likewise the lists ‘

L

3',LS,LG. If this were the case, we would then have unfolded a simpler set

of conjectured definitions of the form:

R. = any LPS from L]24\/ any LPS from L

i 356

A dramatic example of this effect fo]1ows..

Given'a moderately large data base of several hundred 2-tuples over
thirty kinship relations, we were frying to discover some definitions of
"Parent". The resultant intersections computed with the original ordering
of the LPS 1ists (using a considerably more sophisticated algorithm for
choosing what 1ist to merge next) 1edvto the disjuhctfve sets of conjectures
found in Table 1la. bHowever, a further search revealed a still better
ordering yielding the conjectures found in Table 1b.
~ Having great faith in Occam'é Razor, we only attempt to verify
conjectures that emerge from the minimal number of disjunctive intersections.
Finding an optimal grouping of the L 1ists that lead to this minimal
property is combinatorially equivalent to the classical covering prob]emsz.'
However, unlike many covering problems, a fair]y simple heuristic turns out
to be quite satisfactory (see Brown3 for more’details).

8



TABLE Ta
Conjectural Definitions for Parent Under Initial Ordering

Grandparent/Nephew
Grandparent/Niece
Grandparent/Cousin/Nephew
Grandparent/Cousin/Niece

Sibling/Uncle Grandparent/Son/Sibling
Sib1ing/Sibling/Uncle Grandparent/Nephew/Sibling
SibTing/0ffspring/Grandmother Grandparent/Nephew/Brother
SibTing/Son/Grandmother _ Grandparent/Brother/Niece
Parent = Spouse/Sibling/Uncle Vv  Sibling/Uncle/Cousin V. Grandparent/0ffspring/Sibling:
’ SibTling/Uncle/Sibling Grandparent/Daughter/Sibling

Sibling/0ffspring/Grandparent . Grandparent/Niece/Sibling
Sibling/0ffspring/Grandfather Grandparent/Niece/Brother
Sibling/Son/Grandparent Grandparent/Sibling/Niece
Sibling/Son/Grandfather Grandparent/Sibling/Nephew

Grandparent/Sister/Nephew
Spouse/Grandparent/Nephew
Spouse/Grandparent/Niece

TABLE 1b

Conjectural Definitions for Parent Under "Optimal" Ordering
Mother . Father
Mother/Sibling - Father/Sibling
Spouse/Father Spouse/Mother

Parent = Wife/Father "4 Husband/Mother
Mother/Daughter/Father Father/Daughter/Mother
Spouse/Father/Sibling Spouse/Mother/Sibling

Wife/Father/Sibling , Spouse/Mother/Sibling



A grouping for these 1lists which leads to the minimal number of non-
null intersections induces a clustering of R.'é extension (i.e. group
together all the (x,y)'s that generated the LPS's of each disjunct).

Often this clustering can indirectly induce a clustering or even a
partition on either Ri s domain or range. This c]ustering should reflect
some "internal" structure of the objects themselves. Considering the

above Parent example reveals that the clustering of 2-tuples induced by

the definitions of Table 1b shared the property that the first component of

each of them were female. Likewise, the first component of the other

2-tuples were all male. But, as far as the system knew, no object in the .
domain’had any distinguishing characteristics whatsoever. Thus, in some
sense, the system had unfolded the necessary information to conjecture two
unary predicates theretofore completely unknown to it. Justification of
these predicates often requires supporting evidence which may be forth-

coming if, in considering other relations, similar clusterings are induced.

Discovering Rules of Inference

We will concern ourselves only with discovering inference rules of a
very restricted form. These-rules will be either of the form:
1) Ry/Ry/.../R =>R
(where R itself could be also on the left)

dr of tﬁe form:

2) | (Ry/R,/.../R) | =] R | _ N
R. 172 e R R o
i J i j |
In the latter case, the relations under the vertical bar denote a
required context before this rule can be applied. The similarity of these

rules to context free and context sensitive grammars is not accidental. In

10



fact, these inference rules are directly usable by the question-answering
system detailed in Brown4.
Discovering the first type of inference rule would appear to be
straight-forward. We need merely locate a sequence of relations whose
compositional extension is contained within the extension of R. The

problem, however, lies not in finding such sequences but in finding "useful"

sequences. Although we have no way of making this distinction precise, we

‘realize that in creating an axiom system for a question-answerer we often

want more than just a minimal independent set of axioms. We want axiomé
that enable us to answer "usual" questions without undue inferencing.
Believing that typical questions often relate to subparts of the intensional
definitions we sought ways to use the structure of the relations themselves
in isolating potentially "useful" rules.

One way to isolate these rules would be to use the intensional
definitions themselves. Specifically, any recursive definition is a
particularly good candidate such as:

' Spouse/Parent => Parent

Another way to generate potentially useful rules would be to discover
definitions for a particular relation which turn out not to cover R's
extension when their defining subspace is en]arged.' An example of such a
definition might be: |

Cousin = Sibling/Cousin
(Sibling/Cousin => Cousin)

which could arise from a data base in which every family had two children.
But again, the key problem is finding ways that the structure of a relation
can, itself, delimit "interesting" subsets of its own extensions so that

we don't have to rely on chance for providing such éubspaces.

1A

U



One way in which the structure of a relation can induce a natural

partition on its extension is by possessing a disjunctive definition.
This, as mentioned above, splits the relation's extension into groups of
2-tuples covered by the particular disjunctive terms. For example, using
the Parent example, we are led to form the trivial rules:

Father => Parent

Mother => Parent

Husband/Mother => Parent

Wife/Father => Parent
However, the disjunctive definition underlying these rules has the property
that the two disjuncts are disjoint. That is, if (x,y) is satisfied by one
of the disjuncts, it necessarily is not contained in the other. By
searching for disjunctive definitions whose disjuncts can overlap, and in
which one of the disjuncts covers a maximal portion of the given relation's
extension, we discover such rules as:

Parent/Sibling => Parent

Sibling/0ffspring => Offspring

Offspring/Spouse => Offspring

Father/Cousin => Uncle

Another way to utilize the structure of a relation in isolating

subspaces stems from the co-occurrence of compositional sequences in a

. given disjunct of its definition. For example, in considering a data base

of over five hundred facts, we discovered the standard definition of

Brother-in-Law:

Husband/Sis/Spouse Husband/Sister <
Brother/Spouse +/ Husband/Sib/Spouse v Husband/Sib '
Spouse/Sister/Spouse Spouse/Sister

Let us consider the last disjunct which asserts that:

1) Husband/Sister = Husband/Sibling
2) Husband/Sister = Spouse/Sister
3) Husband/Sibling = Spouse/Sister

12

o ATyt ettt <% —oebeem st e



Line 1 suggests that in the "context" of "Husband" the relations "Sister"
and "Sibling" function equivalently, or we could say that:

4) Sister => Sibling
5) Sibling => Sister,

when conditioned on the left with'"Husbénd". Clearly, the notion of
"context" is quite important for, although the rule "Sister => Sibling"
could be independently discovered from the definition "Sibling = Sister a4
Brother”, and hence would always be true, the rule "Sibling => Sister"
fs, in general false. Using the expanded form of this rule, i.e.,
(x, Sibling, y) => (x, Sister, y) we see that the rule is true whenever x
is a female. One way to guarantee x's femininity is to require that x be
in the range of the "Husband" relation. In other words, the Husband
relation delimits a subset of the domain of "Sister" and "Sibling".
When restricted to this subdomain, these relations coincide (we again stress
that the data base contains no such unary predicates as Male or Female.

A considerably more subtle example of the powers of contextual con-
straint is manifested in two definitions for "Nephew" that emerged from one
of our data bases:

a) Nephew = Brother/Niece
b) Nephew = Son/Parent/Niece

The rule of inference which follows from this is:

Son/Parent| => Brother
Niece

At first glance, the right-hand contextual relation (Niece) seems quite
unnecessary, for a son of a parent would seem to be a brother. However, in
exploring the "Son" relation with our system no such rule emerges. This is-
because the path seeking process under]yingvthe construction of LPS's

prevents the forming of paths with loops. Consequently, the possibility of

13




the "son of a parentf being himself is necessarily prevented. However, in
checking the over-generality of this‘definition, the verifier checks the
entire extension of this conjecture and thus detects the need for an
ineqda]ity predicate. However, in the context of "Niece", it does survive
be;ause the reflexive (self-looping) cases of "Son/Parent" are necessarily
male and hence fall outside this context! |

The use of "context" can be more subtle than the mere delimitation of
the domains or ranges of relations. For example, when we weke exploring a
definition for Uncle, two disjuncts always co-occurred (a strong hint of
the1existence of structural cause). The definitions were:

| Uncle = Brother-in-Law/Parent

Uncle = Husband/Sister-in-Law/Parent
At first glance, we nﬁght think that:.

"Husband/Sister-in-Law => Brother-in-Law"
Considering Figure 1, we realize that although (y,i)éiSister-in-Law, that
(x,zzngrother-in—Law. However, the correct ru]é of inference requires a
right context of |"Parent" (i.e., demanding that z must be a parent to

someone) :

Husband/Sister-in-Law] => Brother-in-Law
‘ Parent

Given the situation shown in Figure 2, we see that if z 1is a parent to q
then in fact z must also have a spouse (say) w. Hence x would be a
Brother-in-Law to w. In other words, the right hand coniext of "Parent"
forces z to have a spouse w simply by asserting that 2z 1is the pa}ent <

of q.

14



husband ~J

sister-m-law —

Figure 1.

bro‘l'her-m—/aw

Qm : hﬁ‘r

~ Figure 2.

15°



On Checking for Over-Generality
The result of intersecting the LPS lists is a collection of conjectural

definitions for the particular relation R under study. A property of any

such -conjectural definition is:
Py (X)) [(x.y)ER => (x,y)€ Conjectural Definition]’

As mentioned before, the problem of over-genera]ity lies in verifying the

converse of this property:

P,: (x)(y) [(x,y)&Conjectural Definition => (x,y)E€R].

At first glance, the verification seems straight—forwérd: simply compute
the extension of the conjectural definition and test for its inclusion in
the extension of R. if it is included, then the conjectural definition

has been verified. The problem of efficiently performing this computation

is the concern of associative memory processors Tike TRAMP5

and, as such,
will not be discussed here. Such verification is obviously possible, but
it is expensive for large data bases.

We were primarily intefested in developing heuristic techniques that
could be used to efficiently detect over-general conjecfures. After these
heuristics were applied, exhaustive techniques could be applied to the Few'
femaining~definitions so as to remove any doubt about their validity.

Our heuristic procedures are based oﬁ the concept of "the inverse image

of x with respect to a binary relation R" informally defined as the set

of all y's such that the range of x overlaps the range of y..

16



Def: The inverse 1mage of x with respect to a binary relation R,
denoted IR(x), is:

IR(x) = {y|3z3(x,2)R and (y,z)R}

(note that inverse images do not form equivalence relations on the domain
of the given relation). In a similar manner, we can define the inverse
image of x with respect to a conjectural definition of R.

| Our heuristic procedure picks an object x 1in the domain of the
relation R being defined and computes both the sets IR(x) and I"Def"(x).
It then checks to see if the set I"Def"(x) is equivalent to the set IR(x).
If not, it rejects the "Def"; otherWise it chooses a new x from R's
doméin and repeats this procedure until the domain of R has been exhausted.
A faster but less complete version of this heuristic doesn't bother to
exhaust R's domain but chooses only one element from each inverse image
class. These checks are only heuristic since they 'do not take into
Consideration the local connections of the relations within each inverse ;
image class, but that is precisely why they are fast!

An example of the power and Timitations of this heuristic may be seen

from another data base (of over a hundred facts) analyzed by this system.

17



TABLE 2

Conjectured Definitions of "Niece"
Prior to Heuristic Check

Cousin/Daughter
Cousin/Offspring
Cousin/Daughter/Spouse
Cousin/Cousin/Daughter
Cousin/Cousin/0ffspring
Offspring/Uncle/0ffspring
Offspring/Uncle/Daughter
Daughter/Uncle/Offspring
Daughter/Uncle/Daughter
Offspring/Aunt/0ffspring
Offspring/Aunt/Daughter
Daughter/Aunt/0ffspring
Daughter/Aunt/Daughter
Cousin/Cousin/Nephew
Cousin/Offspring/Spouse

The definitions for the binary relation “Niece" were first explored.
Table 2 1ists the conjectural definitions resulting from intersecting the
LPS Tists. These definitions were then subjected to the above heuristic
check which resulted in the definitions givén in Table 3. Of the original
fifteen intensional definitions eleven were rejected by our check and the
remaining definitions were all correct.

TABLE 3

Conjectured Definitions of "Niece"
Remaining After Heuristic Check

Daughter/Aunt/Daughter
Daughter/Aunt/Offspring
Daughter/Uncle/Daughter
Daughter/Uncle/Offspring
The need for developing heuristics for speeding up the verification of
conjectured definitions is better appreciated when we understand the‘complex. -
interactions between the generation of conjectures and their subsequent
verification. In fact, there is a constant switching of control between

these two phases. For example, suppose the first set of definitions

18



conjectured were subsequently disproved in the verification phase, Then
all the paths in the data graph thaf lead to these conjectures would have
to be temporarily "blocked" and a new set of conjectures would have to be
invehted. These new conjectures would then have to be verified, and so on,
unti] all the conjectures passed the verification phase.

Our experiments have revealed that, for most of our test data, this
process of conjecturing, verifying and blocking is often repeated a dozen
or so times before a set of conjectures are formed which cannot be disproved
within the data itself. Consequently, our system must typically verify

many more conjectures than appear in the final output.

Some Experiences

We have applied this system (implemented in L6 on a 16-K PDP-9) to
several types of data, the most common of which is kinship data; We
primarily worked on kinship data because, a]thoﬁgh we know what to expect,
the kichness of its structure can present many challenges. Also, by
'choosing a domain that is intuitively understandable, it is easier to spot
the more subtle relationships among the obvious. Although this domain is
trivial in many respects, it was a great surprise to us to take a reasonably
large data base, generated -- for test purposes -- from the family free.
shown in Figure 3 below, and pérform a search for all the structural

relationships that might have passed unnoticed from our Biased viewpoint.

19



Figure 3

Family Tree Underlying an Extensional Data
Base of Approximately 580 "Facts"

20 .



Two' types of patterns could appéar. On one hand, definitions might
emerge that reflected idiosyncracies of this particular data which would
"disappear" if we considered more data. On the other hand, completely
valia definitions might appear which were logically equivalent to ones we
already knew, but which might be "simpler" re]atibe to some criterion.

Both types of unexpected patterns may be seen in the first set of definitions

- discovered for the Uncle relation on this data base (see Table 4). Clearly
the first two of these definitions reflect the idiosyncracy that every -
uncle is married. The third definition which is complete yet involves no
disjuncts and as such might be considered simpler than the standard two
disjunct definition:
Uncle = Brother/Parent V Husband/Sibling/Parent
It was not until these definitions were manually over-ridden* and indeed
a fair number more before our system came up with the "traditional"
definition.
TABLE 4
First Definitions of Uncle
1) Spouse/Aunt
2) Husband/Aunt
*3) Brother-in-Law/Parent

Spouse/Sister-in-Law/Parent
5) Husband/Sister-in-Law/Parent
6) Brother-in-Law/Spouse/Parent

Appendices 1 and 2 give a feeling for the surprising multitude of

structural definitions found on this data base. For example, Appendix 1

Ny

contains some of the three hundred definitions of "Uncle" which were

discovered just on the above data base. The second appendix reveals the

* In this system, the user has the freedom to reject definitions even if
they have been accepted by the verifier and thus search for additional
definitions which involve more disjunctions than the current ones.

21



first set of definitions discovered for some of the other kinship relations.
Note, for eXamp]e, the seven universally valid definitions for "Cousin",

Not all our experimenting has been Timited to kinship relations.
Another domain that has been analyzed was made up of tﬁe extensional
definitions of the accessibility relations between squares on a chess board
for the various chess pieces. More precisely, the data base consists of
a universe of 64 objects -- representing the squares of a chess board --
and a éo1]ection of extensionally defined re]ationsf Some of these relations
are geometric (e.g. East, Just-East, Positive-Diagonal) and the others are
chess moves represented as binary relations. For example, (x,y) Knight

means that a knight can move in one step from x to y; The task was to

_ discover the definitions of the legal moves of the various chess pieces

in terms of the other chess pieces and/or in terms of the geometric relations.
Although space precludes a thorough description of our findings, we
indicate below some of the discovered definitions:
TABLE 5
Discovered Geometric Definitions

(Abbreviations: JW
JN

Just-West, JE = Just-East,
Just-North, JS = Just-South)

JW/WEST
WEST = JW ~\/ WEST/MWEST
WEST/JuW

Discovered Chess (Accessibility) Relations
~ Queen =" BishopV Rook
- Knight = JW/IN/IN V JE/INJIN V JE/JE/IN

JW/JW/IN v JW/IW/JS \/ IW/JS /IS
JE/JS/JS v JE/JE/JS

22



Weaknesses

There are seQera] limitations to our systém that deserve further
attention. The first concerns the difficult area of characterizing when
something :ggggg_be true. A1l the definitions and axibms invented by our
system express positive assertions. That is, our system never discovers
the crucial fact that siblings can't marry and hence a father cannot be
an uncle to his own child. Of course, we can hedge this problem by
including just the right additional relations which cover precisely what
can't hold over the original set but this quickly gets us into a cémbinatoria]
explosion. For example, we could include the relation "Non-Uncle" whose
extension is the complement of Uncle and then perhaps we could uncover:

Father => Non-Uncle. |
Somehow such a solution seems unpleasing since once the positive assertions
have been characterized one might hope that they could be combined with a
few negative assertions to imply all the potential negative assértions.

The second major limitation is that our system expects its sample
data base to be complete, i.e., missing no data and containing no
erroneous data. There are numerous ways to circumvent this Timitation,
~some of which have been implemented. For example, the verification phase
not only checks a conjecture but isolates, for any rejection, the counter-
examples. The user can then decide whether or not to over-rule the
verifier by deleting from the data base these "counter-examples". However,
a considerably more provocative approach to the problem should be possible. =
Relying on Occam's Razor, we might consider the entire set of discovered
definitions and see how a particular set of changes on the data base
affects the complexity of not only the definitions of the relation under
study, but also the collection of definitions for all the relations. Since

23



“altering a giveh relation's extension affects not only its own definition
but also the definitions of all the other relations definable in terms of
this relation, we would expect a dramatic global simplification for the

"correct" changes to the data.

Further:Plans

In addition to exploring the above issues we plan to investigate how to
achieve more of a synergistic effect between the user and the computer in
seeking the underlying structure of his data. The system is being
re-implemented in LISP on a PDP-10 in hopes of having a friendlier
environment for exploring the symbiotic uses of this kind of a theory

formation system.

Acknowledgement

I am deeply indebted to Dr. Robert K. Lindsay for defining this

research problem and for helping me understand some of its ramifications.

24



References

1.  Plotkin, G. D. "A Further Note on Inductive Generalization," in
‘Machine Intélligence, Vol. 6, New York, New York: American Elsevier
Publishing, 1971.

2. Lawler, E. L. "Covering.Prob]ems: Duality Relations and a New Method
of Solution." J. SIAM Applied Math, XIV (Sept. 1966), pp..1115-1132.

3. Brown, J. S. Unpublished Doctoral Dissertation, University of Michigan;
or ICS TR #17, University of California at Irvine.

4. Brown, J. S. "Question Answering Through Parsing" ICS TR #28,
University of California at Irvine. .

5.  Ash, W., and Sibley, E. H. "TRAMP: an Interactive Associative
" Processor with Deductive Capabilities." Proceedings ACM National
Conference. Las Vegas, August, 1968.

25



(1)

Uncle

(2)

Uncle

(3)

Uncle

Appendix 1

Definitions of Uncle Arranged in Order of Output

Spouse/Aunt

Husband/Aunt
Bro-in-Law/Parent
Spouse/Sis-in-Law/Parent
Husband/Sis-in-Law/Parent
Bro-in-Law/Spouse/Parent

Bro-in-Law/Father
Bro-in-Law/Spouse/Mother
Bro-in-Law/Husband/Parent
Bro-in-Law/Husband/Mother

Brother/Parent

Brother/Spouse/Parent

Brother/Father N
Fath-in-Law/Husband/Cousin
Brother/Father/Sibling
Brother/Spouse/Mother
Brother/Husband/Parent
Brother/Husband/Mother
Sibling/Fath-in-Law/Spouse

Brother/Fath-in-Law/Spouse

Spouse/Sister/Parent
Husband/Sibling/Parent
Husband/Sister/Parent
Bro-in-Law/Sister/Aunt



Appendix 2

Synopsis of DiscoveredvDefinitions'for Data Base Underlying Figure 3

(1)

Cousin =

(2)

Fath-in-Law=

(3)

Grandchild =

(4)

Parent. =

(5)
Offspring =

(6)
Grandparent=

Offspring/Uncle
Offspring/Aunt
Offspring/Spouse/Aunt
Offspring/Husband/Aunt
Offspring/Spouse/Uncle(*)
Offspring/Wife/Uncle (*)
Offspring/Sibling/Parent
Offspring/Bro-in-Law/Parent
Offspring/Sis-in-Law/Parent

Father/Spouse
Spouse/Moth-in-Law
Husband/Moth~in-Law
Father/0Offspring/Moth-in-Law
Father/Son/Moth-in-Law
Father/Sibling/Spouse(*)
Husband/Mother/Spouse
Husband/Parent/Spouse

Offspring/Offspring
Offspring/Spouse/0ffspring
Offspring/0ffspring/Spouse

Offspring/Sibling/0ffspring(*)

Father
Spouse/Mother
Husband/Mother

Son
Son/Spouse

Parent/Parent
Parent/Spouse/Parent
Parent/Sibling/Parent
Spouse/Parent/Parent

27

Moth-in-Law=

" Mother/Spouse

Spouse/Fath-in-Law
Wife/Fath-in-Law
Mother/Sibling/Spouse
Wife/Father/Spouse
Wife/Parent/Spouse
Spouse/Father/Spouse
Mother/Father/Fath-in-Law
Mother/0ffspring/Fath-in-Law

Mother
Spouse/Father
Wife/Father

Dau htef
Daughter/Spouse



Appendix 2
(cont.) .

(7) ‘
Fath-in-Law/Parent
Father/Parent
Spouse/Grandmother
Husband/Grandparent
Husband/Grandmother
Fath~in-Law/Spouse/Parent
Father/Spouse/Parent
‘ Father/0ffspring/Grandparent
Grandfather = Father/Offspring/Grandmother
Father/Son/Grandparent
Father/Son/Grandmother
Father/Sibling/Parent
Spouse/Mother/Parent
Husband/Parent/Parent
Husband/Mother/Parent
| Spouse/Moth-in-Law/Parent
Husband/Moth-in-Law/Parent
Fath-in-Law/Daughter-in-Law/Grandparent
Fath-in-Law/Daughter-in-Law/Grandmother

(8)
Son/Sister ' ..
. . Son/Sis-in-Law
Nephew = ggg;ﬁﬁg;gﬁéﬁ;?ﬁ??n . Son/Spouse/Sis-in-Law
! g Son/Husband/Sis-in-Law
Son/Husband/Sister

28





