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Social Power Dynamics Over Switching and
Stochastic Influence Networks

Ge Chen , Member, IEEE, Xiaoming Duan , Noah E. Friedkin , and Francesco Bullo , Fellow, IEEE

Abstract—The DeGroot–Friedkin (DF) model is a recently
proposed dynamical description of the evolution of indi-
viduals’ self-appraisal and social power in a social influ-
ence network. Most studies of this system and its varia-
tions have so far focused on models with a time-invariant
influence network. This paper proposes novel models and
analysis results for DF models over switching influence net-
works, and with or without environment noise. First, for a
DF model over switching influence networks, we show that
the trajectory of the social power converges to a ball cen-
tered at the equilibrium reached by the original DF model.
For the DF model with memory on random interactions, we
show that the social power converges to the equilibrium of
the original DF model almost surely. Additionally, this paper
studies a DF model that contains random interactions and
environment noise, and has memory on the self-appraisal.
We show that such a system converges to an equilibrium
or a set almost surely. Finally, as a by-product, we provide
novel results on the convergence rates of the original DF
model and convergence results for a continuous-time DF
model.

Index Terms—DeGroot–Friedkin (DF) model, opinion dy-
namics, social networks, social power evolution, stochastic
approximation.

I. INTRODUCTION

MODELS for the dynamics of opinions and social power:
Over the past decades, social networks have drawn
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tremendous attention from both academia and industry. The
study of opinion dynamics aims to characterize and understand
how individuals’ opinions form and evolve over time through
interactions with their peers. The first mathematical model for
opinion dynamics was proposed by French in [9] with further
refinements by Harary [16]. This model is based on distributed
opinion averaging and is now widely referred to as the DeG-
root model [8]. Closely related important variations include the
Friedkin–Johnsen affine model [12], [13] and the Hegselmann–
Krause bounded-confidence model [17].

Recently, by combining the DeGroot model of opinion dy-
namics and a reflected appraisal mechanism [6], [10], Jia et al.
[20] proposed a DeGroot–Friedkin (DF) model to describe the
evolution of individuals’ self-appraisal and social power (i.e.,
influence centrality) along an issue sequence. This influence net-
work model combines two steps. First, individuals update their
opinions on each issue as in the DeGroot averaging model,
where an interaction matrix characterizes the relative inter-
personal influence among the individuals. Second, based on
the opinion averaging outcome, individuals update their self-
appraisal via a reflection appraisal mechanism. In other words,
individuals’ self-appraisals on the current issue are elevated or
dampened depending upon their influence centrality (i.e., social
power) on the prior issue. Under an assumption that the relative
interaction matrix is constant, irreducible, and row stochastic, Jia
et al. [20] proved the convergence of individuals’ self-appraisals
in the DF model.

Since its introduction, the DF model has attracted a lot of
interest. Two articles study the DF model with varying assump-
tions on the interaction matrix. First, Jia et al. [19] extend the
convergence results to the setting of reducible interaction ma-
trices. Second, Ye et al. [27] show that, if the interaction matrix
switches in a periodic manner, then individuals’ self-appraisals
have a periodic solution. Additionally, several other dynamical
models have been proposed and analyzed. Mirtabatabaei et al.
extended the DF model to include stubborn agents who have
attachment to their initial opinions in [22]. Xu et al. [26] pro-
posed a modified DF model, where the social power is updated
without waiting for the opinion consensus on each issue, i.e., the
local estimation of social power is truncated; a complete anal-
ysis of convergence and equilibria properties was given when
the interaction matrix is doubly stochastic. Considering time-
varying doubly stochastic influence matrix, Xia et al. [25] inves-
tigated the convergence rate of the modified DF model, which
was proven to converge exponentially fast. A continuous-time
self-appraisal model was introduced by Chen et al. in [4]. It
is worth noting that, all the aforementioned existing works as-
sume the interaction matrix either is constant or has some special
time-varying structure, like double stochasticity or periodicity
[25], [27].
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Empirical evidence motivating new models: Empirical evi-
dence in support of the DeGroot model for opinion dynamics is
provided in [2] and support of the reflected appraisal mechanism
over issue sequences is provided in [10] and [11]. The data in
[11] established that: 1) the interaction matrix in the influence
network is not constant along the issue sequence; 2) the reflected
appraisal mechanism is indeed observed, whereby prior influ-
ence centrality predict future self-appraisals; and 3) a predictor
of self-appraisal that is even better than the prior social power
is the cumulative prior social power (i.e., the average of prior
influence centrality scores over the issue sequence). In other
words, individuals learn “their place in a social group” via an
accumulation of experiences rather than over a single episode.
It is worth mentioning that a similar learning mechanism based
on the averages of prior outcomes is widely adopted [18] in the
game theory and economics to model human behavior.

Motivated by the available empirical evidence, this paper pro-
poses and characterizes several DF models subject to switching
influence networks, and also the environment noise. Addition-
ally, we incorporate memory in our models so that, for example,
individuals may update their self-appraisal based on cumulative
prior influence centrality.

Useful tools: In what follows, we adopt useful stochastic
models and analysis methods from the field of stochastic ap-
proximation; these models and methods were originally aimed
at optimization and root-finding problems with noisy data. The
earliest methods of stochastic approximation were proposed by
Robbins and Monro [23] and aimed to solve a root finding prob-
lem. During more than 60 years of development, stochastic ap-
proximation methods have attracted a lot of interest due to many
applications such as the study of reinforcement learning [24],
consensus protocols in multiagent systems [3], and fictitious
play in the game theory [18]. For general noisy processes and
algorithms, a very powerful stochastic approximation tool is the
so-called “ordinary differential equations (ODE) method” (see
[21, ch. 5]), which transforms the analysis of asymptotic prop-
erties of a discrete-time stochastic process into the analysis of a
continuous-time deterministic process.

Statement of contributions: This paper proposes and ana-
lyzes multiple novel DF models with varying assumptions on
interaction and memory. First, we investigate a DF model with
switching interactions, i.e., we assume that the interpersonal
interaction matrix is time varying. Under such a model, we es-
tablish convergence results under both relevant settings, i.e.,
when the digraph corresponding to the interaction matrix is or
is not a star graph. In the former case, the trajectory of social
power converges to autocracy; in the latter case, the social power
converges into a ball centered at the equilibrium point reached
by the original DF model. Second, as a by-product of this anal-
ysis, we establish convergence rates for the original DF model
for both settings (with or without star topology).

Third, we consider a DF model with memory on the random
interaction matrix. In such a model the self-appraisal of each
individual is updated in the same manner as that in the original
DF model, but we assume the individual has memory on the in-
teraction weights assigned to others. For such a model we show,
using a stochastic approximation method, that the impact of the
stochasticity on the interaction matrix disappears asymptotic.
In other words, we prove that, for this model, the social power
converges to the same equilibrium point reached by the original
DF model almost surely.

Fourth, we study a DF model that contains random in-
teractions and environment noise, and has memory on the

self-appraisal. In this model, each individual remembers his/her
self-appraisal of last time (modeling, for example, the concept
of cumulative prior social power). While this model is quite
different from the DF model with memory on the interaction
matrix, we again establish using stochastic approximation meth-
ods (and under certain technical conditions) that the adoption
of memory leads to a vanishing effect of switch and noise and
that the system converges to an equilibrium point or a set al-
most surely. Fifth and finally, we also propose and characterize
a novel continuous-time DF model.

Organization: We review the original DF model in Section II.
Section III contains the convergence rate results for the DF
model and a new continuous-time DF model. We propose the DF
models with switching and stochastic interactions in Section IV.
A DF model with random interactions, environment noise, and
self-appraisal memory is analyzed in Section V. Section VI
concludes this paper.

Notations: A nonnegative matrix is row stochastic (resp.,
doubly stochastic) if its row sums are equal to 1 (resp., its
row and column sums are equal to 1). The digraph G(M)
associated to a nonnegative matrix M = {mij}i,j∈{1,...,n} is
defined as follows: the node set is {1, . . . , n}; there is a
directed edge (i, j) from node i to node j if and only if
mij > 0. The nonnegative matrix M is irreducible if its as-
sociated digraph is strongly connected. The n-simplex Δn

is {x ∈ [0, 1]n | ∑n
i=1 xi = 1} and its interior is Δo

n = {x ∈
(0, 1)n | ∑n

i=1 xi = 1}. Let ei ∈ Rn be the row vector whose
ith component is 1 and whose other components are 0. For
v ∈ Rn , let ‖v‖∞ := max1≤i≤n |vi | denote its infinity norm.
For a matrix M ∈ Rn×n , let ‖M‖max := max1≤i,j≤n |Mij |
denote the maximum norm. Given two sequences of posi-
tive numbers {g1(t)} and {g2(t)}, we say g1(t) = o(g2(t)) if
limt→∞ g1(t)/g2(t) = 0, and g1(t) = O(g2(t)) if there exist
two positive constants a and t0 such that g1(t) ≤ ag2(t) for all
t ≥ t0 . Let Z≥0 denote the set of nonnegative integers.

II. REVIEW OF THE ORIGINAL DF MODEL

The original DF model was proposed by Jia et al. in [20]. The
model considers a group of n ≥ 3 individuals who discuss a
sequence of issues under the DeGroot model. The column vector
y(s, t) ∈ Rn denoting the individuals’ opinions over issue s
evolves according to the following formula:

y(s, t + 1) = W (s)y(s, t)

where W (s) ∈ Rn×n is a row-stochastic influence matrix over
issue s. Then, for each individual i, her opinion is updated via a
convex combination

yi(s, t + 1) = Wii(s)yi(s, t) +
n∑

j=1,j �=i

Wij (s)yj (s, t).

Here, Wii(s) denotes the self-appraisal of individual i, and
Wij (s) = (1 − Wii(s))Cij for all i �= j, where the coefficient
Cij is the relative interpersonal weight that individual i accords
to individual j. Throughout this paper, the square matrix C is
a relative interaction matrix, that is row stochastic and zero
diagonal.

Denoting Wii(s) by xi(s) for simplicity as in [20], the influ-
ence matrix W (s) can then be decomposed as

W (s) = diag[x(s)] + (In − diag[x(s)])C.
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Fig. 1. Digraph G has a star topology if there exists a node i, called
the center node, such that all directed edges of G are either from or to
node i.

If W (s) is an irreducible row-stochastic matrix, according to
the Perron–Frobenius theorem W (s) has a unique dominant
left eigenvector π(W (s)) ∈ Rn , which is a row vector sat-
isfying π(W (s)) = π(W (s))W (x(s)), πi(W (s)) ≥ 0 for all
i ∈ {1, . . . , n}, and

∑n
i=1 πi(W (s)) = 1. Under some assump-

tions on C, the opinion vector y(s, t) asymptotically reaches
consensus, i.e., limt→∞ y(s, t) = [π(W (s))y(s, 0)]1n .

Let x(s) := (x1(s), . . . , xn (s)) be a row vector. To deal with
the evolution of x(s) across issues, a reflected appraisal mech-
anism is adopted as follows:

x(s + 1) = π(W (s)).

The meaning of this equation is that individuals’ self-weights
on current issue are their relative influence centrality (i.e., social
power) over prior issue. In summary, given an interaction matrix
C, the DF model is given by [20]

{
W (x(s)) = diag[x(s)] + (In − diag[x(s)])C
x(s + 1) = π(W (x(s))).

(1)

We adopt the same assumptions on C as in [20], i.e.,
we assume that C is irreducible. According to the Perron–
Frobenius theorem, C has a unique dominant left eigenvec-
tor c := (c1 , . . . , cn ) with ci > 0 for all i ∈ {1, . . . , n}, and∑n

i=1 ci = 1.
Lemma 2.1 ([20, Lemma 2.2]: Explicit formulation of the DF

model): Assume n ≥ 2 and C ∈ Rn×n is a row-stochastic, ir-
reducible, and zero-diagonal matrix whose dominant left eigen-
vector is c. Then, for any x ∈ Δn , the dominant left eigenvector
of the matrix diag [x] + (In − diag[x])C is

{
ei , if x = ei for all i = 1, . . . , n
(

c1
1−x1

, . . . , cn

1−xn

)
/
∑n

i=1
ci

1−xi
, otherwise.

Let G(C) be the digraph associated with C. The dynamics of
the DF model (1) depend on the topology of G(C) and a certain
topology, namely the star topology or star network, has to be
discussed separately. The star topology is shown in Fig. 1. A
star network has a unique center node when n ≥ 3.

We start by reviewing a preliminary result.
Lemma 2.2 ([20, Lemma 2.3]: Eigenvector centrality for rel-

ative interaction matrices): For n ≥ 3, let C be row stochastic,
irreducible, and zero diagonal whose dominant left eigenvector
is c and associated digraph is G(C). Then

1) if G(C) is not a star network, then ci ∈ (0, 1/2) for all
i ∈ {1, . . . , n};

2) if G(C) is a star network and let node i be its center node,
then ci = 1/2, and cj ∈ (0, 1/2), for j �= i.

Convergence results for the DF model (1) have been provided
in the cases when G(C) is or is not a star graph, respectively.

Lemma 2.3 ([20, Lemma 3.2]: DF model with star topol-
ogy): For n ≥ 3, consider the DF model (1) with row-stochastic,
irreducible, and zero-diagonal interaction matrix C. If the di-
graph associated with C is a star network with center node i,
then

1) (Equilibria) the equilibrium points of (1) are the auto-
cratic vertices {e1 , . . . , en};

2) (Convergence property) for any x(0) ∈ Δn\{e1 , . . . ,
en}, lims→∞ x(s) = ei .

Lemma 2.4 ([20, Th. 4.1]: DF model without star topology):
For n ≥ 3, consider the DF model (1) with row-stochastic, ir-
reducible, and zero-diagonal interaction matrix C. Assume the
digraph associated with C is not a star network and let c be the
dominant left eigenvector of C. Then

1) (Equilibria) the equilibrium points of (1) are {e1 , . . . ,
en , x∗}, where x∗ is the unique solution in Δ0

n of the
following equation with respect to x:

x =
(

c1

1 − x1
, . . . ,

cn

1 − xn

)/ n∑

i=1

ci

1 − xi
(2)

2) (Convergence property) for any x(0) ∈ Δn\{e1 , . . . ,
en}, lims→∞ x(s) = x∗.

III. NEW RESULTS ON DISCRETE-TIME AND

CONTINUOS-TIME DF MODELS

A. Convergence Rate of the Original DF Model

This subsection establishes the convergence rate of the orig-
inal DF model; these results are also useful for the subsequent
analysis.

Lemma 3.1 ([20, Lemma F.1]): Suppose n ≥ 3 and let x∗ ∈
Δo

n be the equilibrium point appearing in Lemma 2.4. For any
x ∈ Δo

n , assume xi

x∗
i

= max1≤k≤n
xk

x∗
k

and xj

x∗
j

= min1≤k≤n
xk

x∗
k

.

Then

1 − x∗
j

1 − xj
≤ 1 − x∗

k

1 − xk
≤ 1 − x∗

i

1 − xi
for all k ∈ {1, . . . , n}.

The following two novel lemmas are key results for the analy-
sis of convergence rate in the cases of star topology and nonstar
topology, respectively.

Lemma 3.2: Suppose n ≥ 3 and let c be the dominant left
eigenvector of C, where C ∈ Rn×n is a row-stochastic, irre-
ducible, and zero-diagonal matrix. If the digraph associated with
C is a star network with center node i, then for any x ∈ Δo

n

ci

1−xi∑n
j=1

cj

1−xj

> xi + xi(1 − xi)2(1 − 2max
j �=i

cj

)
.

Proof: By Lemma 2.2, we have ci = 1/2 so that
∑

j �=i cj =
1/2. Then

ci

1−xi∑n
j=1

cj

1−xj

=
1

2(1−xi )

1
2(1−xi )

+ 1
2xi

+
∑

j �=i

(
cj

1−xj
− cj

xi

)

=
1

2(1−xi )

1
2(1−xi )xi

+
∑

j �=i

(
cj

1−xj
− cj

xi

) . (3)
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Let c′ = maxj �=i cj . Then

∑

j �=i

( cj

1 − xj
− cj

xi

)
= −

∑

j �=i

cj (1 − xi − xj )
(1 − xj )xi

< −
∑

j �=i

cj (1 − xi − xj )
xi

= −1 − xi

2xi
+

∑

j �=i

cj xj

xi

≤ −1 − xi

2xi
+

c′(1 − xi)
xi

= − (1 − xi)(1 − 2c′)
2xi

.

Substituting this into (3), we have

ci

1−xi∑n
j=1

cj

1−xj

>

1
2(1−xi )

1
2(1−xi )xi

− (1−xi )(1−2c ′)
2xi

=
xi

1 − (1 − xi)2(1 − 2c′)

> xi + xi(1 − xi)2(1 − 2c′). (4)

�
Lemma 3.3: Suppose n ≥ 3 and let c be the dominant left

eigenvector of C, where C ∈ Rn×n is a row-stochastic, irre-
ducible, and zero-diagonal matrix. If the digraph associated
with C is not a star network, then, for any x ∈ Δo

n ,

max
i �=j

ci(1 − xj )x∗
j

cj (1 − xi)x∗
i

≤ 1 +
(

max
i �=j

xix
∗
j

xjx∗
i

− 1
)

max
i �=j

x∗
i

1 − x∗
j

where x∗ ∈ Δo
n is the equilibrium point defined in Lemma 2.4.

Proof: According to (2), we get

ci

(1 − x∗
i )x

∗
i

=
cj

(1 − x∗
j )x

∗
j

(5)

for any 1 ≤ i, j ≤ n. Hence

ci(1 − xj )x∗
j

cj (1 − xi)x∗
i

=
1 − xj

1 − xi
· ci/x∗

i

cj /x∗
j

=
1 − xj

1 − xi
· 1 − x∗

i

1 − x∗
j

. (6)

Without loss of generality, we assume

x1

x∗
1
≤ x2

x∗
2
≤ · · · ≤ xn

x∗
n

(7)

then by Lemma 3.1, we have

1 − x∗
1

1 − x1
≤ 1 − x∗

k

1 − xk
≤ 1 − x∗

n

1 − xn
for all 1 ≤ k ≤ n.

Substituting this inequality into (6), we obtain

max
i �=j

ci(1 − xj )x∗
j

cj (1 − xi)x∗
i

=
(1 − x∗

n )/(1 − xn )
(1 − x∗

1)/(1 − x1)

=
1 − x∗

n

1 − x∗
1
· 1 − x1

1 − xn
. (8)

Let δk = xk/x∗
k

x1/x∗
1

so that xk = δkx∗
kx1/x∗

1 . By (7), we have 1 =
δ1 ≤ δ2 ≤ · · · ≤ δn . Thus

1 − x1

1 − xn
=

∑n
k=2 xk

∑n−1
k=1 xk

=
∑n

k=2 δkx∗
k∑n−1

k=1 δkx∗
k

:=
z + δnx∗

n

z + x∗
1

(9)

where z =
∑n−1

k=2 δkx∗
k . From

n−1∑

k=2

x∗
k ≤ z ≤ δn

n−1∑

k=2

x∗
k

we know

z + δnx∗
n

z + x∗
1

= 1 +
δnx∗

n − x∗
1

z + x∗
1

≤ 1 + max

{
δnx∗

n − x∗
1∑n−1

k=2 x∗
k + x∗

1

,
δnx∗

n − x∗
1

δn

∑n−1
k=2 x∗

k + x∗
1

}

= max
{

1 − x∗
1 + (δn − 1)x∗

n

1 − x∗
n

δn (1 − x∗
1)

δn (1 − x∗
n ) − (δn − 1)x∗

1

}

=
1 − x∗

1

1 − x∗
n

max

⎧
⎨

⎩
1 + (δn − 1)

x∗
n

1 − x∗
1
,

δn

δn − (δn −1)x∗
1

1−x∗
n

⎫
⎬

⎭
.

(10)

Let

a∗ = max
i �=j

x∗
i

1 − x∗
j

= max
i �=j

x∗
i

x∗
i +

∑
k �=i,j x∗

k

< 1

so that

max

⎧
⎨

⎩
1 + (δn − 1)

x∗
n

1 − x∗
1
,

δn

δn − (δn −1)x∗
1

1−x∗
n

⎫
⎬

⎭

≤ max
{

1 + (δn − 1)a∗,
δn

δn − (δn − 1)a∗

}

= 1 + (δn − 1)a∗.

Substituting this inequality into (10) yields

z + δnx∗
n

z + x∗
1

≤ 1 − x∗
1

1 − x∗
n

(1 + (δn − 1)a∗). (11)

Putting together (7)–(9) and (11), we obtain

max
i �=j

ci(1 − xj )x∗
j

cj (1 − xi)x∗
i

=
1 − x∗

n

1 − x∗
1
· z + δnx∗

n

z + x∗
1

≤ 1 + (δn − 1)a∗ = 1 +
(xn/x∗

n

x1/x∗
1
− 1

)
a∗

= 1 +
(

max
i �=j

xix
∗
j

xjx∗
i

− 1
)

a∗.

�
The following theorem establishes novel convergence rates

for the original DF model.
Theorem 3.1 (Convergence rate of the original DF model):

For n ≥ 3, consider the DF model (1) with row stochastic, irre-
ducible, and zero-diagonal interaction matrix C. LetG(C) be the
digraph associated with C. For any x(0) ∈ Δn\{e1 , . . . , en}

1) if G(C) is a star network with center node i, then

‖x(s) − ei‖∞ = O(s−1)

2) if G(C) is not a star network, then

‖x(s) − x∗‖∞ = O(a∗s)
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where

a∗ = max
i �=j

x∗
i

1 − x∗
j

= max
i �=j

x∗
i

x∗
i +

∑
k �=i,j x∗

k

∈ (0, 1).

Proof: 1) First, for any x(s) ∈ Δn\{e1 , . . . , en}, by
Lemma 2.1, we have

x(s + 1) =
(

c1

1 − x1(s)
, . . . ,

cn

1 − xn (s)

)/ n∑

j=1

cj

1 − xj (s)

(12)

belongs to Δo
n , and thus, x(s) ∈ Δo

n for all s ≥ 1. Since node i
is the center node of the star network, by Lemma 2.2, we have
ci = 1/2 and cj < 1/2, for j �= i. Also, by (12) and Lemma 3.2,
we get for all s ≥ 1,

xi(s + 1) =
ci

1 − xi(s)
· 1
∑n

j=1
cj

1−xj (s)

> xi(s) + xi(s)(1 − xi(s))2(1 − 2max
j �=i

cj

)

which implies xi(s + 1) > xi(s) > · · · > xi(1), and

1 − xi(s + 1)

< 1 − xi(s) − xi(s)(1 − xi(s))2(1 − 2max
j �=i

cj

)

≤ 1 − xi(s) − xi(1)(1 − xi(s))2(1 − 2max
j �=i

cj

)
. (13)

Set

α := max
{

2(1 − x1(s)),
1

xi(1)(1 − 2maxj �=i cj )

}

.

We will prove 1 − xi(s) < α
s for all s ≥ 1 by induction. First,

1 − xi(2) < 1 − xi(1) ≤ α
2 . Also, if 1 − xi(s) < α

s holds for
some s ≥ 2, then the inequality (13) implies

1 − xi(s + 1) < 1 − xi(s) − (1 − xi(s))2

α

<
α

s
− α

s2 <
α

s + 1
where the second inequality uses that the maximum value of
z − z 2

α in the interval of [0, α
s ] with s ≥ 2 is reached at z = α

s .
By induction, we get 1 − xi(s) < α

s for all s ≥ 1. Finally, for
any j �= i, we get xj (s) < 1 − xi(s) < α

s for any s ≥ 1.
2) With the same arguments as those used in 1), we have

x(s) ∈ Δo
n for all s ≥ 1. By (12) and Lemma 3.3, we get that,

for any s ≥ 1,

max
i �=j

xi(s + 1)/x∗
i

xj (s + 1)/x∗
j

− 1 ≤
(

max
i �=j

xi(s)/x∗
i

xj (s)/x∗
j

− 1

)

a∗

≤ · · · ≤
(

max
i �=j

xi(1)/x∗
i

xj (1)/x∗
j

− 1

)

a∗s . (14)

Because
∑n

i=1 x∗
i =

∑n
i=1 xi(s) = 1, we have minj

xj (s)
x∗

j
≤ 1

for any s ≥ 0. Thus, from (14), we have

max
i

xi(s)
x∗

i

− 1 ≤ max
i �=j

xi(s)/x∗
i

xj (s)/x∗
j

− 1 = O(a∗s). (15)

This inequality and the fact that x∗
i > 0, for all i ∈ {1, . . . , n},

together implied the claimed statement. �

B. Continuous-Time DF Model

We here introduce a continuous-time DF model, which is
novel in its own and whose analysis will be used later.

Let c denote the normalized left dominant eigenvector of an
irreducible interaction matrix C and define g : Δn → Δn by

g(x) =

{
0, if x ∈ {e1 , . . . , en}
−x +

(
c1

1−x1
, . . . , cn

1−xn

)
/
∑n

i=1
ci

1−xi
, otherwise.

Assume that the graph associated with C is not a star network.
The continuous-time DF model is

ẋ(τ) = g(x(τ)), s ∈ R≥0 . (16)

Lemma 3.4 (Well-posedness of the continuous-time DF
model): For n ≥ 3, pick x(0) ∈ Δn\{e1 , . . . , en}. Then, the so-
lution to the continuous-time DF model (16) satisfies x(τ) ∈ Δo

n
for all τ > 0.

Proof: We start by showing that, for any x(0) ∈
Δn\{e1 , . . . , en}, there exists τ0 > 0 such that x(τ) ∈ (0, 1)n

for any τ ∈ (0, τ0 ]. In fact, this result holds obviously for x(0) ∈
Δo

n . When x(0) ∈ Δn\({e1 , . . . , en} ∪ Δo
n ), if xi(0) = 0, then

by (16), we have

lim
τ→0+

xi(τ) − xi(0)
τ

= gi(0) =
ci∑n

j=1
cj

1−xj (0)
> 0

which implies x(τ) ∈ (0, 1)n for small positive τ .
Next, we show xi(τ) cannot leave the interval (0, 1) for any

τ > τ0 and i ∈ {1, . . . , n}. Let cmax := maxi∈{1,...,n} ci . At
time τ , assume without loss of generality that x1(τ) = xmax(τ)
and xn (τ) = xmin(τ). Since the network we consider here is
not a star network, by Lemma 2.2, cmax < 1/2. If xmin ≥ 0 and
xmax(τ) = x1(τ) ∈ [ cma x

1−cma x
, 1), then, by (16)

ẋ1(τ) =
c1

(1 − x1(τ))
∑n

i=1
ci

1−xi (τ )
− x1(τ)

<
c1

(1 − x1(τ))( c1
1−x1 (τ ) + 1 − c1)

− x1(τ)

=
c1 − (1 − c1)x1(τ)

c1
1−x1 (τ ) + 1 − c1

≤ 0

which implies xmax(τ) will decrease. Thus, xmax(τ) will not
be larger than

max
{

xmax(τ0),
cmax

1 − cmax

}
:= b1 < 1.

At the same time, if xmin(τ) = xn (τ) ≤ cmin (1−b1 )
(n−2)cma x

, then

ẋn (τ) =
cn

(1 − xn (τ))
∑n

i=1
ci

1−xi (τ )
− xn (τ)

>
cn

(1 − xn (τ))( cn

1−xn (τ ) + cma x (n−2)
1−b1

)
− xn (τ)

=
cn − cma x (n−2)xn

1−b1

cn

1−xn (τ ) + cma x (n−2)
1−b1

≥ 0
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which implies xmin(τ) will increase. Collecting these two prop-
erties, we obtain x(τ) ∈ (0, 1)n , for any τ > 0.

Let S(τ) :=
∑n

i=1 xi(τ). By (16), we get

Ṡ(τ) = 1 − S(τ).

Solving this ODE yields S(τ) = b2e
−τ + 1. With the initial

condition S(0) = 1, we get S(τ) ≡ 1. Thus, we have x(τ) ∈
Δo

n for any sτ > 0. �
We next consider the convergence properties of this system

and establish a continuous-time version of Lemma 2.4.
Lemma 3.5 (Convergence of continuous-time DF model):

For n ≥ 3, consider the continuous-time DF model (16) with
row-stochastic, irreducible, and zero-diagonal interaction ma-
trix C. Assume the digraph associated with C is not a star
network and let c be the dominant left eigenvector of C. Then

1) (Equilibria) the equilibrium points of (16) are
{e1 , . . . , en , x∗}, where x∗ is the unique solution in Δ0

n

of (2);
2) (Convergence property) for any x(0) ∈ Δn\{e1 , . . . ,

en}, limτ→∞ x(τ) = x∗.
Proof: Define the Lyapunov function V (τ) by

V (τ) := log max
i �=j

xi(τ)/x∗
i

xj (τ)/x∗
j

.

Let Ī(τ) denote the index set {(i, j)} in which the maximum

value of xi (τ )/x∗
i

xj (τ )/x∗
j

is reached. For any τ > 0, if |Ī(τ)| = 1, with-

out loss of generality, we assume Ī(τ) = (1, n). Then, by (16),
we have

V̇ (τ) =
d

ds
log

x1(τ)/x∗
1

xn (τ)/x∗
n

=
ẋ1(τ)
x1(τ)

− ẋn (τ)
xn (τ)

=
1

∑n
i=1

ci

1−xi (τ )

(
c1

(1 − x1(τ))x1(τ)
− cn

(1 − xn (τ))xn (τ)

)

.

(17)

Also, by Lemma 3.3, we have

c1
(1−x1 (τ ))x1 (τ )

cn

(1−xn (τ ))xn (τ )
=

c1
(1−x1 (τ ))x∗

1
cn

(1−xn (τ ))x∗
n

·
x∗

1
x1 (τ )

x∗
n

xn (τ )

≤
(

1 +
(

x1(τ)/x∗
1

xn (τ)/x∗
n

− 1
)

r

)

· x∗
1/x1(τ)

x∗
n/xn (τ)

=
(
1 +

(
eV (τ ) − 1

)
r
)
e−V (τ )

= 1 − (1 − r)(1 − e−V (τ )) ≤ 1 (18)

where r = maxi �=j
x∗

i

1−x∗
j

= maxi �=j
x∗

i

x∗
i +

∑
k �= i , j x∗

k
< 1. Substi-

tuting (18) into (17) and using Lemma 3.4, we get

V̇ (τ) ≤ −
cn

(1−xn (τ ))xn (τ )
∑n

i=1
ci

1−xi (τ )
(1 − r)(1 − e−V (τ )) ≤ 0 (19)

where V̇ (τ) = 0 if and only if V (τ) = 0.
For the case when |Ī(τ)| > 1, the derivative of V (τ) may

not exist because its left derivative may not be equal to its right
derivative. Therefore, we use the Dini derivative instead. For

any τ0 ≥ 0, define

D+V (τ0) := lim sup
τ→τ +

0

V (τ) − V (τ0)
τ − τ0

.

From Danskin’s Lemma [7], it can be deduced that

D+V (τ) = max
(i,j )∈Ī (τ )

d

ds
log

xi(τ)/x∗
i

xj (τ)/x∗
j

≤ −(1 − r)(1 − e−V (τ )) min
(i,j )∈Ī (τ )

cj

(1−xj (τ ))xj (τ )
∑n

k=1
ck

1−xk (τ )

≤ 0 (20)

where the second line relies upon (19). Also, D+V (τ) = V̇ (τ)
if V (τ) is differentiable. By [15, Th. 1.13], we have that V (τ)
is decreasing in [0,∞), which implies that limτ→∞ V (τ) exists.
If limτ→∞ V (τ) = v > 0, then, because maxi∈{1,...,n}

xi (τ )
x∗

i
≥

1, we have lim infτ→∞ mini∈{1,...,n}
xi (τ )

x∗
i

≥ e−v > 0. Together

with (20), there exists a constant ε > 0 such that D+V (τ) ≤
−ε for all large τ , which implies limτ→∞ V (τ) = −∞. Thus,
we have limτ→∞ V (τ) = 0, which implies limτ→∞ x(τ) = x∗
because

∑n
i=1 x∗

i = 1 =
∑n

i=1 x(τ) for any τ ≥ 0. �

IV. DF MODELS WITH SWITCHING AND STOCHASTIC

INTERACTIONS

This section considers the case of time-varying relative inter-
action matrices. We first consider a DF model with switching
interaction, and then, propose a novel DF model with memory
on random interactions.

A. DF Model With Switching Interactions

Let {C(s) ∈ Rn×n}s∈Z≥0 denote a sequence of relative in-
teraction matrices, that is, a sequence of row-stochastic matrices
with zero diagonal. Given such a sequence, the DF model with
switching interactions is given by

{
W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s)
x(s + 1) = π(W (x(s))).

(21)

Let {G(C(s))}s∈Z≥0 be the sequence of the digraph associ-
ated with the sequence {C(s)}s∈Z≥0 . We will consider the cases
when every graph G(C(s)) in {G(C(s))}s∈Z≥0 is a star network
with fixed center node, or {G(C(s))}s∈Z≥0 is not a sequence of
fixed star network.

First, we suppose {G(C(s))}s∈Z≥0 is a sequence of star net-
works with a common center node i as described in the following
assumption.

Assumption 1 (Sequence of relative interaction matrices
with star topology): The sequence of relative interac-
tion matrices {C(s) ∈ Rn×n}s∈Z≥0 has the properties that
{G(C(s))}s∈Z≥0 is a sequence of star networks with common
center node i, and that there exists a constant ε > 0 such that
Cij (s) ≥ ε for all j �= i and s ≥ 0.

Proposition 4.1 (Convergence and convergence rate of the
DF model over star topologies with switching weights): For
n ≥ 3, consider a sequence of relative interaction matrices sat-
isfying Assumption 1 with common center node i, and the cor-
responding DF model with switching interactions (21). Then

1) the system (21) has an equilibrium point ei ;
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2) for any initial condition x(0) ∈ Δn\{e1 , . . . , en}, the
solution x(s) converges to ei with a rate of O(s−1).

Proof: The proof of statement 1) is identical to the proof
of the corresponding statement in [20, Lemma 2.3]; we do not
report it here in the interest of brevity.

Regarding statement 2), because each relative interaction ma-
trix C(s) is irreducible, C(s) has a dominant left eigenvector
c(s) = (c1(s), . . . , cn (s)). Assumption 1 and Lemma 2.2 im-
ply ci(s) = 1/2, and cj (s) ≥ ε, for j �= i, where ε is a positive
constant depending on ε in Assumption 1. Similar to (13), we
have

1 − xi(s + 1)

< 1 − xi(s) − xi(1)(1 − xi(s))2(1 − 2max
j �=i

cj (s)
)

≤ 1 − xi(s) − xi(1)(1 − xi(s))2
(

1 − 2
(

1
2
− ε

))

= 1 − xi(s) − xi(1)(1 − xi(s))22ε for all s ≥ 1.

Similar to the proof of Theorem 3.1(1), we get ‖x(s) − ei‖∞ =
O(1/s). �

For the case when {G(C(s))}s∈Z≥0 is not a sequence of the
star network, the DF model with switching interactions (21)
may not converge to an equilibrium point. However, if there
exists a row-stochastic, zero-diagonal, and irreducible matrix C
such that the difference between every C(s) of the sequence
{C(s)}s∈Z≥0 and C is sufficiently small, then the trajectories
converge to a ball centered around the equilibrium reached by
the original DF model (1). For any issue s, let c and c(s) be
the dominant left eigenvectors of C and C(s), respectively, and
define ξ(s) := c(s) − c.

By Lemma 2.1, for any x(s) ∈ Δn\{e1 , . . . , en}, the DF
model with switching interactions (21) has the following form:

x(s + 1) =
(c1 + ξ1(s)

1 − x1(s)
, . . . ,

cn + ξn (s)
1 − xn (s)

)
/

n∑

i=1

ci + ξi(s)
1 − xi(s)

.

(22)
So, in order to investigate the DF model with switching inter-
actions (21), we can analyze the system (22) instead. We next
present a third assumption.

Assumption 2 (Sequence of relative interaction matrices
with small variations): The sequence of relative interaction ma-
trices {C(s) ∈ Rn×n}s∈Z≥0 has the following property: there
exists an irreducible relative interaction matrix C such thatG(C)
is not a star network, and for all s ≥ 0 and i ∈ {1, . . . , n},

|ci(s) − ci |
ci

≤ r ⇐⇒ |ξi(s)| ≤ rci

where r ∈ (0, 1−a∗
1+a∗ ) is a constant with a∗ = maxi �=j

x∗
i

1−x∗
j

< 1
and x∗ = x∗(C) ∈ Δo

n denotes the equilibrium point of the DF
model (1), as established in Lemma 2.4.

Remark 4.1: We here elaborate on the sequences
{C(s)}s∈Z≥0 satisfying Assumption 2. Loosely speaking,
because the dominant eigenvalue of C is simple, if C(s) − C
is sufficiently small, then the left dominant eigenvector of C(s)
is close to that of C. Indeed, Funderlic and Meyer [5] reviewed
various perturbation bounds for the left dominant eigenvector
of a row-stochastic matrix. Specifically, [14, Sec. 3.4] states
‖ξ(s)‖∞ ≤ κ(C)‖C(s) − C‖∞, where κ(C) is an appropriate

function of C. Therefore, if

‖C(s) − C‖∞ ≤ 1
κ(C)

rcmin, with cmin = min
1≤j≤n

cj

then ‖ξ(s)‖∞ ≤ rcmin, and in turn, |ξi (s)|
ci

≤ ‖ξ(s)‖∞
cm in

≤ r. �
We are now ready to state the main result of this subsection.
Theorem 4.1 (Convergence of the DF model with switching

nonstar topologies): For n ≥ 3, consider a sequence of rela-
tive interaction matrices satisfying Assumption 2 and the corre-
sponding DF model with switching interactions (21). Then, for
any x(0) ∈ Δn\{e1 , . . . , en}

lim sup
s→∞

max
i �=j

xi(s)/x∗
i

xj (s)/x∗
j

≤ 1 +
2r

1 − r − (1 + r)a∗ (23)

where x∗, a∗, and r are defined in Assumption 2.
Proof: Let Ds =maxi �=j

xi (s)/x∗
i

xj (s)/x∗
j

and D∗=1+ 2r
1−r−(1+r)a∗ .

By (22) and Assumption 2, we get x(s) ∈ Δo
n for any s ≥ 1,

and

xi(s + 1)
xj (s + 1)

=
(ci + ξi(s))(1 − xj (s))
(cj + ξj (s))(1 − xi(s))

(24)

so that

Ds+1 = max
i �=j

(ci + ξi(s))(1 − xj (s))x∗
j

(cj + ξj (s))(1 − xi(s))x∗
i

≤ max
i �=j

(ci + rci)(1 − xj (s))x∗
j

(cj − rcj )(1 − xi(s))x∗
i

≤ 1 + r

1 − r
(1 + (Ds − 1)a∗) (25)

where the last inequality uses Lemma 3.3.
If Ds ≤ D∗, then, by (25)

Ds+1 − D∗ ≤ 1 + r

1 − r
(1 + (D∗ − 1)a∗) − D∗

=
(

1 + r

1 − r
a∗ − 1

)

D∗ +
1 + r

1 − r
(1 − a∗)

=
(1 + r)a∗ − 1 + r

1 − r
· 1 + r − (1 + r)a∗

1 − r − (1 + r)a∗

+
1 + r

1 − r
(1 − a∗) = 0 (26)

which implies Ds+1 ≤ D∗. If Ds > D∗, then, by (25) and (26)

Ds+1 − D∗ ≤ 1 + r

1 − r
a∗Ds +

1 + r

1 − r
(1 − a∗) − D∗

=
1 + r

1 − r
a∗(Ds − D∗) +

(
1 + r

1 − r
a∗ − 1

)

D∗

+
1 + r

1 − r
(1 − a∗)

=
1 + r

1 − r
a∗(Ds − D∗). (27)

Because 1+r
1−r a∗ < 1, combining (26) and (27) yields our

result. �
Remark 4.2: The bound in Theorem 4.1 can be written in

a more conservative and explicit form as follows. Because
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Fig. 2. Illustrating the convergence result of Theorem 4.1 with a∗ =
0.639. (a) Original DF model (1). (b) System (21) when r = 0.3 1−a ∗

1+a ∗ .

(c) System (21) when r = 0.5 1−a ∗
1+a ∗ . (d) System (21) when r = 0.7 1−a ∗

1+a ∗ .

∑n
i=1 x∗

i =
∑n

i=1 xi(s) = 1, we have minj
xj (s)

x∗
j

≤ 1 for any

s ≥ 0. Thus, from (23)

lim sup
s→∞

max
i

xi(s)
x∗

i

− 1

≤ lim sup
s→∞

max
i �=j

xi(s)/x∗
i

xj (s)/x∗
j

− 1 ≤ 2r

1 − r − (1 + r)a∗

which implies

lim sup
s→∞

‖x(s) − x∗‖∞ ≤ 2r maxi x∗
i

1 − r − (1 + r)a∗ .

�
To visualize the result of Theorem 4.1, we consider a three-

node network with a relative interaction matrix

C =

⎡

⎢
⎣

0 1
3

2
3

3
4 0 1

4
1
2

1
2 0

⎤

⎥
⎦.

In order to show the effect of {ξ(s)} on the radius of the conver-
gence ball, we generate {ξ(s)} that satisfies Assumption 2 and
simulate the DF model under switching interactions using (22).
The convergence results under different r are shown in Fig. 2. As
predicted, all the trajectories eventually converge into the ball
whose boundary are marked with red dots. The radius of the
convergence ball depends on r. Our simulation results suggest
the existence of a potential tighter bound than (23).

B. DF Model With Memory on Stochastic Interactions

As shown in the last section, the DF model with switching
interactions (21) does not converge to an equilibrium point in
general. We now consider a DF model where the sequence of

interaction matrices is a stochastic process, which individuals
observe and filter.

Assumption 3 (Stochastic relative interaction matrices with
constant conditional expectation): The sequence of interaction
matrices {C(s)}s∈Z≥0 is generated by a stochastic process with
the following properties:

1) each C(s) takes values in the set of row-stochastic, zero-
diagonal, and irreducible matrices;

2) there exists a relative interaction matrix C such that G(C)
is not a star network, and

E [C(s) |C(0), . . . , C(s − 1)] = C.

We next introduce a sequence of scalar numbers that is de-
terministic and that satisfies the standard tapering step-size as-
sumption, stated as follows.

Assumption 4 (Tapering step-size sequence): The determin-
istic sequence {a(s) ∈ R}s∈Z≥0 satisfies

1) a(s) ∈ [0, 1), for any s ≥ 0;
2)

∑∞
s=0 a(s)2 < ∞;

3)
∑∞

s=0 a(s) = ∞.
Our modeling approach is to use a stochastic approximation

algorithm to describe the evolution of the interaction matrix as
follows. Given a sequence of relative interaction matrices as in
Assumption 3 and step sizes as in Assumption 4, consider the
sequence {C(s)}s∈Z≥0 defined by, for all s ≥ 0,

C(s + 1) := (1 − a(s))C(s) + a(s)C(s + 1) (28)

with a deterministic relative interaction matrix C(0). The DF
model with memory on random interactions is given by (28)
combined with

{
W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s)
x(s + 1) = π(W (x(s))).

(29)

We remark that, in the iteration (28), each individual only re-
members the influence weights assigned to others.

Theorem 4.2 (Convergence of the DF model with memory on
random interactions): For n ≥ 3, consider a stochastic sequence
of relative interaction matrices satisfying Assumption 3 and
step sizes as in Assumption 4 with expected relative interaction
matrix C, and the corresponding system (28)–(29). Let x∗ =
x∗(C) ∈ Δo

n be the equilibrium point of the DF model (1) with
relative interaction matrix C (see Lemma 2.4).

Then, for any x(0) ∈ Δn\{e1 , . . . , en}, the solution x(s) of
the system (29) converges to x∗ a.s.

Proof: We start by applying [1, Th. 2.2] to (28). First, note
that

C(s + 1) = C(s) + a(s)(C(s + 1) − C(s))

⇐⇒ X(s + 1) = X(s) + a(s)(−X(s) + M(s + 1))

with X(n) = C(s) − C and M(s + 1) = C(s + 1) − C. This
final expression matches [1, eq. (1.1)] with h(X(s)) = −X(s).
Note that the four assumptions in [1, Th. 2.2] are satisfied,
because, adopting the notation in [1]

1) the conditions (A1) on the function h are satisfied by our
h(x) = −x;

2) the conditions (A2) on the martingale property and
boundedness of M(s) are satisfied by Assumption 3(2)
and because C(s) − C takes values in a bounded set;

3) the step-size sequence is tapering by Assumption 4;



590 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 2, FEBRUARY 2019

4) the conditions on ODE (1.2) are satisfied because 0 is
the unique globally asymptotically stable equilibrium of
ẋ(t) = −x.

Therefore, [1, Th. 2.2] implies X(s) → 0 a.s. as s → ∞, that
is, C(s + 1) → C a.s. as s → ∞.

Note that Assumption 3 implies that the relative interac-
tion matrix C is irreducible; let c be its left dominant eigen-
vector. Also note that C(s) is a.s. a row-stochastic, zero-
diagonal, and irreducible matrix for all s ≥ 0. Then, the
Perron–Frobenius Theorem implies that C(s) has a left dom-
inant eigenvector c + ξ(s) a.s. with ci + ξi(s) > 0 for any
i ∈ {1, . . . , n}. Let Ω′ be the set of events for which C(s) is
a row-stochastic, zero-diagonal, and irreducible matrix for all
s ≥ 0 and lims→∞ C(s) = C. Because lims→∞ C(s) = C a.s.,
we have P [Ω′] = 1. Also, for any sample in Ω′, by [5, Sec. 3.4]
or [14, Th. 2.3], we obtain

lim
s→∞ ξ(s) = 0. (30)

Finally, we show x(s) converges to x∗ for any sample in Ω′.
By (22) and the fact that c + ξ(s) > 0, we know that x(s) ∈ Δo

n
for any s ≥ 1. Similar to (25), we have

Ds+1 = max
i �=j

(ci + ξi(s))(1 − xj (s))x∗
j

(cj + ξj (s))(1 − xi(s))x∗
i

= max
i �=j

(1 + ξi(s)/ci)ci(1 − xj (s))x∗
j

(1 + ξj (s)/cj )cj (1 − xi(s))x∗
i

≤ 1 + ξi(s)/ci

1 + ξj (s)/cj
(1 + (Ds − 1)a∗) (31)

where Ds and a∗ are defined as in the proof of Theorem 4.1. By
(31), we can get

Ds+1 − 1 ≤
ξi (s)

ci
− ξj (s)

cj

1 + ξj (s)
cj

+
1 + ξi (s)

ci

1 + ξj (s)
cj

(Ds − 1)a∗.

Set

fs :=
ξi (s)

ci
− ξj (s)

cj

1 + ξj (s)
cj

and gs := 1 − 1 + ξi (s)
ci

1 + ξj (s)
cj

a∗.

By (30), there exists a constant s0 > 0 such that gs ∈ (0, 1)
for all s ≥ s0 ,

∑∞
s=s0

gs = ∞, and lims→∞ fs/gs = 0. By the
Lemma 6.1 in Appendix C, we get lims→∞(Ds − 1) = 0, which
implies lims→∞ x(s) → x∗ by

∑n
i=1 xi(s) = 1 =

∑n
i=1 x∗

i .
Our result implies that P [Ω′] = 1. �

To illustrate the convergence of the DF model with the inter-
action memory, we simulate the same network with the same
initial conditions as those used in the last subsection. The inter-
action matrix C(s) is generated as follows: for any s ≥ 0, we
let Ñ(s) be an n × n matrix with the same zero/nonzero pat-
tern as C and we select the nonzero elements Ñij (s) uniformly
and independently distributed in [−Cij , Cij ]. For any i �= j,
set Cij (s) := Cij + Ñij (s) − 1

n

∑n
k=1 Ñik (s). We then scale

(i.e., multiply by an appropriate constant) each row of N(s) so
as to guarantee that C(s) is row stochastic. This way, we know
E [C(s) |C(0), . . . , C(s − 1)] = C is satisfied. We can observe
from Fig. 3 that, after some oscillation, x(s) converges to the
same equilibrium of the original DF model as established by
Theorem 4.2.

Fig. 3. Illustrating the convergence result of Theorem 4.2. (a) DF model
with interaction memory (29). (b) Zoom-in of Fig. 3(a).

V. DF MODEL WITH STOCHASTIC INTERACTIONS,
ENVIRONMENT NOISE, AND SELF-APPRAISAL MEMORY

This section considers a DF model where the sequence of in-
teraction matrices is a stochastic process and there are noise and
memory on self-appraisals. As before, we also adopt a stochastic
approximation model to include memory in the system and, as
a byproduct, asymptotically eliminate the impact of interaction
randomness and environment noise.

The DF model with random interactions, environment noise,
and self-appraisal memory is given by
{

W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s)

x(s + 1) = (1 − a(s))x(s) + a(s)
[
π(W (x(s))) + ζ(s)

]

(32)
where {C(s)}s∈Z> 0 satisfies Assumption 3 and {ζ(s)}s∈Z> 0 is
a stochastic process denoting the environmental noise.

Theorem 5.1 (Convergence of the DF model with random in-
teractions, environment noise, and self-appraisal memory): For
n ≥ 3, consider a stochastic sequence of relative interaction ma-
trices satisfying Assumption 3 and step sizes as in Assumption 4,
and the corresponding system (32). Assume the following:

1) along every solution {x(s) ∈ Δn\{e1 , . . . , en}}s∈Z> 0 ,
and at every time s ≥ 0, we have π(W (x(s))) + ζ(s) ∈
Δo

n a.s.;
2) there exists a vector c̃ ∈ Δo

n with maxi c̃i < 1
2 such that,

along every solution {x(s) ∈ Δn\{e1 , . . . , en}}s∈Z> 0 ,
the sequence {β(s) ∈ Rn}s∈Z≥0 defined by

β(s) = E [π(W (x(s))) + ζ(s) |x(0), C(t), ζ(t), t < s]

−
( c̃1

1 − x1(s)
, . . . ,

c̃n

1 − xn (s)

)
/

n∑

i=1

c̃i

1 − xi(s)

satisfies a.s.
∞∑

s=0

a(s)‖β(s)‖∞ < ∞. (33)

Then, for any x(0) ∈ Δn\{e1 , . . . , en}, x(s) converges to
{x̃∗, e1 , . . . , en} a.s., where x̃∗ is the unique solution in Δo

n of
the equation

x =
( c̃1

1 − x1
, . . . ,

c̃n

1 − xn

)
/

n∑

i=1

c̃i

1 − xi
. (34)

It is important to clarify that the condition (33) is complex to
verify in general, since the dynamics are highly nonlinear and
the condition depends on evolution of the state x(s). However,
it can be checked that condition (33) is a weaker condition for
some special cases. For example, if C(s) converges sufficiently
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Fig. 4. Convergence of x(s) and verification of (33).

quickly to a constant matrix C a.s. and E[ζ(s)|ζ(t), t < s] con-
verges to zero sufficiently quickly, then the summability condi-
tion (33) is satisfied with c̃ equal to the dominant left eigenvector
of C, and system (32) converges.

In what follows, we present some simulation results for the
reduced Krackhardt’s advice network with n = 17. The interac-
tion matrix C(s) is generated as before in the simulation after
Theorem 4.2. The environment noise ζ(s) is also generated in
a similar way so that π(W (x(s))) + ζ(s) is still in Δo

n . The
sequence {a(s)}s∈Z> 0 is the harmonic sequence such that As-
sumption 4 holds. The condition (33) is verified numerically in
Fig. 4, where it is shown that x(s) converges to x̃∗ in this case.

Theorem 5.1 gives some conditions to guarantee that x(s)
converges to a set. If we add further assumptions x(s) can a.s.
converge to a fixed point.

Theorem 5.2 (Convergence of the DF model with random
interactions, environment noise and self-appraisal memory):
For the system (32), assume all conditions in Theorem 5.1 are
satisfied. In addition, assume there exist constants c′ ∈ (0, 1

2 ),
p1 ∈ (0, 1), d1 > 0, and γ > 1 such that for any s ≥ 0, x(s) ∈
Δo

n , and i ∈ {1, . . . , n},

P
[
πi(W (x(s))) + ζi(s)

≤ c′

c′ + (1 − c′)(1 − xi(s))

∣
∣x(s)

]
≥ p1 (35)

and a.s.

πi(W (x(s))) + ζi(s) ≤ xi(s) + d1(1 − xi(s))γ . (36)

If the tapering step-size sequence {a(s)}s∈Z> 0 satisfies
a(s) = d2/(s + 1) with d2 ∈ (0, 1], then, for any x(0) ∈
Δn\{e1 , . . . , en}, the solution x(s) converges a.s. to x̃∗, i.e.,
the solution to (34).

Remark 5.1: At the cost of a more complex analysis, it is
possible to obtain a version of Theorem 5.2 for general tapering
step-size sequences satisfying Assumption 4. �

It is important to clarify that the conditions (35) and (36) are
complex to verify. We provide the following assumption, which
is sufficient for conditions (35) and (36).

Assumption 5 (Random relative interaction matrices and en-
vironment noise): For any s ≥ 0 and x(s) ∈ Δn\{e1 , . . . , en},
assume

1) there exists constants d1 > 0 and γ > 1 such that ζi(s) ≤
d1(1 − xi(s))γ a.s. for i ∈ {1, . . . , n};

2) there exist two constants p1 , δ ∈ (0, 1) such that

P
[‖C(s)‖max ≤ δ |x(s)

] ≥ p1 .

Corollary 5.1: For the system (32), assume all conditions
in Theorem 5.1 and Assumption 5 are satisfied. If the tapering
step-size sequence {a(s)}s∈Z> 0 satisfies a(s) = d2

s+1 with d2 ∈
(0, 1], then, for any x(0) ∈ Δn\{e1 , . . . , en}, the solution x(s)
a.s. converges to x̃∗, i.e., the solution to (34).

The analysis of the DF model with random interactions and
environment noise (32) is much more complicated than that for
the system (29). Therefore, to prove Theorem 5.1, we adopt the
so-called ODE method of stochastic approximation. The proofs
of Theorem 5.2 and Corollary 5.1 are given in Appendixes A
and B, respectively.

A. Preliminary: A Basic Stochastic Approximation
Theorem

We here review a basic convergence theorem for the ODE
method in stochastic approximation, taken from [21, ch. 5.2].
Let θ(t) ∈ Rn be a state vector updated by

θ(t + 1) = ΠH

(
θ(t) + a(t)Y (t)

)
(37)

where ΠH (·) is the projection onto a constraint set H = {θ ∈
Rn | bi ≤ θi ≤ b̄i , i ∈ {1, . . . , n}} with bi < b̄i being con-
stants, and {a(t)}s∈Z> 0 is the tapering step-size sequence. The
projection ΠH is to restrict θ(t) to a bounded region and has the
following property: if θ ∈ H then ΠH (θ) = θ. Assume

1) supt≥0 E[‖Y (t)‖2
∞] < ∞;

2) a(t) ≥ 0,
∑∞

t=0 a(t) = ∞, and
∑∞

t=0 a2(t) < ∞;
3) there is a continuous function h(·) of θ and random vari-

ables β(t) such that
∑

t≥0 a(t)‖β(t)‖∞ < ∞ and

E[Y (t) | θ0 , Y (i), i < t] = h(θ(t)) + β(t).

A fundamental method to analyze the system (37) is to con-
struct an ODE whose dynamics are projected onto H as

θ̇(τ) = h(θ(τ)) + z(θ(τ)) (38)

where z(θ(τ)) is the projection or constraint term, i.e., the min-
imal term needed to keep θ(τ) in H . If x(τ) is an interior
point of H , then z(x(τ)) = 0. Let LH be the set of limit points
of the ODE (38), i.e., LH := {θ ∈ H : h(θ) + z(θ) = 0}. The
following lemma builds a connection between the protocol (37)
and the ODE (38).

Lemma 5.1 ([21, Th. 5.2.1]): For system (37), suppose the
conditions 1)–3) hold. For the ODE (38), let L1

H be a subset
of LH and let AH be a set that is locally asymptotically stable
in the sense of Lyapunov. If for any initial state not in L1

H the
trajectory of (38) goes to AH , then the system (37) converges
to L1

H ∩ AH a.s. for any initial state.

B. Proof of Theorem 5.1

We start by verifying that system (32) satisfies the conditions
of Lemma 5.1. Let

Y (s) := π(W (x(s))) + ζ(s) − x(s)

then, by (32), we get

x(s + 1) = x(s) + a(s)Y (s). (39)

By Assumption 4, we have x(s) ∈ Δn a.s. for all s ≥ 0, so
(39) is a special form of the system (37) when we choose
H = [−1, 2]n ⊃ Δn . The conditions (1) in Section V-A is guar-
anteed by the fact that Δn is a bounded set, and (2) in Section V-
A is guaranteed by Assumption 4.
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Replacing the vector c in the definition of the function g in
Section III-B by the vector c̃ in (33), we get

E [Y (s) |x(0), C(t), ζ(t), t < s] = g(x(s)) + β(s)

for any x(0) ∈ Δn\{e1 , . . . , en} and s ≥ 0, where β(s) satis-
fies

∑∞
s=0 a(s)‖β(s)‖∞ < ∞ a.s. by (33). Moreover, a.s. x(s)

cannot go out of Δn and g(x) is continuous for x ∈ Δn , so
we can take Δn as the full space and the condition (3) in
Section V-A still holds.

It remains to verify the conditions of Lemma 5.1 for the ODE
(38). From Lemma 3.4 (replacing c with c̃) and Lemma 3.5
(replacing c and x∗ with c̃ and x̃∗), we know that the solution of
the ODE (16) converges and never goes to the boundary of H =
[−1, 2]n , and it is a special form of the ODE (38). Thus, x(s) in
both the systems (16) and (39) cannot leave Δn a.s., and we can
take Δn as the full space. By Lemma 2.4, the solution set of the
equation g(x) = 0 in Δn is {x̃∗, e1 , . . . , en}. Also, for the ODE
(16), from Lemma 3.5, we get x̃∗ is locally asymptotically stable,
and for any initial state x(0) /∈ {e1 , . . . , en}, the trajectory goes
to x̃∗. By Lemma 5.1, we obtain that x(s) in protocol (39)
converges to {x̃∗, e1 , . . . , en} a.s.

VI. CONCLUSION

This paper introduces multiple versions of the DF model. We
consider switching interaction matrices and individual memo-
ries, and in doing so, we generalize the original deterministic DF
model to more realistic and richer models. Fluctuation and mem-
ory are natural phenomena when investigating the dynamics of
opinions and appraisal over social networks. Exact evaluations
and the absence of reflection are less likely to occur in real
human world.

We have presented several novel analysis results for these
variations of the original DF model. First, we have derived the
convergence rate for the original DF model when the associ-
ated digraph is or is not a star network, and we applied these
results to analyze the DF models with switching interactions.
We proved that the original DF model has an exponentially fast
convergence rate when the digraph is not a star network. Then,
we proposed a DF model with switching interactions. Again,
two cases were considered: in the star network case, the so-
cial power converges to autocracy; while in the nonstar network
case, individuals’ social power can only converge into a ball
centered around the equilibrium point of the original DF model
with the same relative interaction matrix. Third, we proposed a
DF model with memory on random interactions and proved that
this new model converges to the same equilibrium of the original
DF model almost surely. Finally, a stochastic-approximation DF
model was proposed by considering random interactions, envi-
ronment noise, and self-appraisal memory simultaneously. For
this most general, complicated, and realistic model, we proved
that, under appropriate technical assumptions, the trajectories
of individuals’ social power also converges.

Much work still remains to be done. First, one can simplify
condition (33) in Theorem 5.1, which is admittedly not easy to
verify. Second, it would be interesting and valuable to extend
the analysis to reducible graphs as Jia et. al considered in [19].
Furthermore, we can also consider similar extensions to other
representative appraisal models in the literature such as the mod-
ified DF model in [26] and the continuous-time self-appraisal
model in [4].

APPENDIX A
PROOF OF THEOREM 5.2

From Theorem 5.1, to obtain our result, we just need to show
that a.s. x(s) cannot converge to ei for any 1 ≤ i ≤ n. We will
prove this result by contradiction. Without loss of generality, we
assume P [lims→∞ x(s) = e1 ] > 0, then for any ε > 0, we have

lim
s→∞ P

[ ∞⋂

s ′=s

{x1(s′) > 1 − ε}
]

≥ P
[

lim
s→∞x(s) = e1

]
> 0.

(40)
By (40), there exists a constant s0 > 0 such that

P

[ ∞⋂

s=s0

{x1(s) > 1 − ε}
]

> 0. (41)

We will show (41) does not hold for some s0 and ε. Let

Is := I{π1 (W (x(s)))+ζ1 (s)≤ c ′
c ′+ (1−c ′) ( 1−x 1 ( s ) ) }

(42)

where c′ is the same constant appearing in (35). By the
Lemma 6.2 in Appendix C, there exists a constant p2 > 0 such
that for any s ≥ 0,Δs > 0 and x(s) ∈ Δo

n ,

P

[
s+Δ s −1∑

s ′=s

Is ′ ≤ p1Δs

2

]

≤ e−p2 Δ s (43)

where p1 is the same constant appearing in (35). We set s0 :=
�max{d1d2γ, (1 − 2c′)d2(γ − 1), 4/p2}� and

ε :=min

{
1 − 2c′

2(1 − c′)
, [(2γ − 1)d1d2 ]−

1
γ −1 ,

(
p1(1 − 2c′)
2(2 − p1)d1

) 1
γ −1

}

.

For large s and i ≥ 1, set As
i to be the event that Ns

i >
p1
2 � 2

p2
log s� with

Ns
i :=

s0 +i� 2
p 2

log s�−1
∑

s ′=s0 +(i−1)� 2
p 2

log s�
Is ′ .

From (43), we can get

P

[ � p 2 s
2 lo g s �⋂

i=1

As
i

]

≥
(
1 − e−p2 � 2

p 2
log s�

)� p 2 s
2 lo g s �

= 1 − p2

2s log s
+ o(s−2). (44)

Let y(s0) = x1(s0) and

y(s′ + 1) = y(s′)

+
d2

s′ + 1

{
−(1 − 2c′)(1 − y(s′)), if Is ′ = 1

d1(1 − y(s′))γ , otherwise

for s′ ≥ s0 . We show that if
⋂∞

s ′=s0
{x1(s′) > 1 − ε} happens,

then a.s. y(s′) ≥ x1(s′) for all s′ ≥ s0 . First, y(s0) = x1(s0);
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if y(s′) ≥ x1(s′), then for the case when Is ′ = 1, by (42), we
have

y(s′ + 1) − x1(s′ + 1) ≥ d2

s′ + 1

(
y(s′) − (1 − 2c′)(1 − y(s′))

− c′

c′ + (1 − c′)(1 − x1(s′))

)
. (45)

Also, since y(s′) > 1 − ε ≥ 1
2(1−c ′) ,

y(s′) − c′

c′ + (1 − c′)(1 − x1(s′))

≥ y(s′) − c′

c′ + (1 − c′)(1 − y(s′))

=
−c′ + y(s′)(1 − c′)

c′ + (1 − c′)(1 − y(s′)
(1 − y(s′))

>
−c′ + 1

2

c′ + (1 − c′)
(
1 − 1

2(1−c ′)

) (1 − y(s′))

= (1 − 2c′)(1 − y(s′)).

Substituting this into (45), we have y(s′ + 1) ≥ x1(s′ + 1).
Also, for the case when Is ′ = 0, by (36) and Lemma C.3 (1),
we have a.s.

y(s′ + 1) − x1(s′ + 1)

≥ d2

s′ + 1

(
d1(1 − y(s′))γ − d1(1 − x1(s′))γ

)
≥ 0.

By induction, we get y(s′) ≥ x1(s′) a.s. for all s′ ≥ s0 .
Next, we estimate the maximum possible value of y(s′). Set

s1 := s0 + � p2 s
2 log s �� 2

p2
log s�. Let z(s0) = x1(s0). For s0 ≤

s′ < s1 , set

s̃′ := (s′ − s0) mod

⌈
2
p2

log s

⌉

and let

z(s′ + 1) = z(s′) +
d2

s′ + 1
· (46)

{
d1(1 − z(s′))γ , if s̃′ < � 2

p2
log s� − Ns

i

−(1 − 2c′)(1 − z(s′)), if s̃′ ≥ � 2
p2

log s� − Ns
i .

We will show that if
⋂∞

s ′=s0
{y(s′) > 1 − ε} happens, then

y(s′) ≤ z(s′), for s0 ≤ s′ ≤ s1 . In fact, by Lemma C.3 (3)
in Appendix C, it can be deduced directly that y(s′) ≤ z(s′),
for s′ ∈ (s0 , s0 + � 2

p2
log s�], and by Lemma C.3 (1) and

(3) in Appendix C, we can get y(s′) ≤ z(s′), for s′ ∈ (s0 +
� 2

p2
log s�, s0 + 2� 2

p2
log s�]. By repeating this process, we get

y(s′) ≤ z(s′) for all s0 ≤ s′ ≤ s1 .
In the following part, we estimate the value of z(s1) under

the events
⋂� p 2 s

2 lo g s �
i=1 As

i and
⋂s1

s ′=s0
{z(s′) > 1 − ε}. Let

δ1 := d1ε
γ−1 > d1(1 − z(s′))γ−1 .

and z̄(s′) := 1 − z(s′). For any i ∈ [1, � p2 s
2 log s �] and s′ ∈ [s0 +

(i − 1)� 2
p2

log s�, s0 + i� 2
p2

log s� − Ns
i ), by (46), we get

z̄(s′ + 1) = z̄(s′) − d2d1

s′ + 1
z̄(s′)γ

> z̄(s′) − d2δ1

s0 + (i − 1)� 2
p2

log s� z̄(s′)

and then

z̄
(
s0 + i� 2

p2
log s� − Ns

i

)
> z̄

(

s0 + (i − 1)
⌈

2
p2

log s

⌉)

×
(

1 − d2δ1

s0 + (i − 1)� 2
p2

log s�

)� 2
p 2

log s�−N s
i

. (47)

Similarly, for s′ ∈ [s0 + i� 2
p2

log s� − Ns
i , s0 + i� 2

p2
log s�),

by (46), we get

z̄(s′ + 1) = z̄(s′) +
d2(1 − 2c′)

s′ + 1
z̄(s′)

≥ z̄(s′) +
d2(1 − 2c′)

s0 + i� 2
p2

log s� z̄(s′)

and then

z̄

(

s0 + i

⌈
2
p2

log s

⌉)

≥ z̄

(

s0 + i

⌈
2
p2

log s

⌉

− Ns
i

)

×
(

1 +
d2(1 − 2c′)

s0 + i� 2
p2

log s�

)N s
i

.

(48)

From (47), (48), and the assumption that
⋂� p 2 s

2 lo g s �
i=1 As

i happens,
we get

z̄(s1) > z̄(s0)
� p 2 s

2 lo g s �∏

i=1

⎡

⎣

(

1 +
d2(1 − 2c′)

s0 + i� 2
p2

log s�

)N s
i

×
(

1 − d2δ1

s0 + (i − 1)� 2
p2

log s�

)� 2
p 2

log s�−N s
i

⎤

⎦

> z̄(s0)
� p 2 s

2 lo g s �∏

i=1

⎡

⎣

(

1 +
d2(1 − 2c′)

s0 + i� 2
p2

log s�

) p 1
2 � 2

p 2
log s�

×
(

1 − d2δ1

s0 + (i − 1)� 2
p2

log s�

)� 2
p 2

log s�− p 1
2 � 2

p 2
log s�⎤

⎦.

(49)
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We can compute that

� p 2 s
2 lo g s �∑

i=1

p1

2

⌈
2
p2

log s

⌉

log

⎛

⎝1 +
d2(1 − 2c′)

s0 + i
⌈

2
p2

log s
⌉

⎞

⎠

=
p1

2

⌈
2
p2

log s

⌉ � p 2 s
2 lo g s �∑

i=1

d2(1 − 2c′)
s0 + i� 2

p2
log s� (1 + o(1))

=
p1d2(1 − 2c′)

2
(
log s − log log s

)
(1 + o(1))

and similarly

� p 2 s
2 lo g s �∑

i=1

(⌈
2
p2

log s

⌉

− p1

2

⌈
2
p2

log s

⌉)

· log

(

1 − d2δ1

s0 + (i − 1)� 2
p2

log s�

)

≥ −
(
1 − p1

2

)
d2δ1

[
2 log s

p2s0
+ (log s − log log s)

]

(1 + o(1))

≥ −
(
1 − p1

2

)
d2δ1

[
3
2

log s − log log s

]

(1 + o(1))

so by the condition that

ε ≤
( p1(1 − 2c′)

2(2 − p1)d1

) 1
γ −1 ⇐⇒ δ1 ≤ p1(1 − 2c′)

2(2 − p1)

⇐⇒
(
1 − p1

2

)3d2δ1

2
≤ 3p1d2(1 − 2c′)

8
and (49), we get 1 − lims→∞ z(s1) = lims→∞ z̄(s1) = ∞.
Combining this equality with (44), we obtain

P

[ ∞⋂

s ′=s0

{x1(s′) > 1 − ε}
]

≤ lim
s→∞

⎧
⎨

⎩
P

⎡

⎣

⎡

⎣

� p 2 s
2 lo g s �⋂

i=1

As
i

⎤

⎦

c⎤

⎦

+P

⎡

⎣

[ ∞⋂

s ′=s0

{x1(s′) > 1 − ε}
]

∩
⎡

⎣

� p 2 s
2 lo g s �⋂

i=1

As
i

⎤

⎦

⎤

⎦

⎫
⎬

⎭

≤ lim
s→∞ P

⎡

⎣

[ ∞⋂

s ′=s0

{y(s′) > 1 − ε}
]

∩
⎡

⎣

� p 2 s
2 lo g s �⋂

i=1

As
i

⎤

⎦

⎤

⎦

≤ lim
s→∞ P

⎡

⎣

[ ∞⋂

s ′=s0

{z(s′) > 1 − ε}
]

∩
⎡

⎣

� p 2 s
2 lo g s �⋂

i=1

As
i

⎤

⎦

⎤

⎦

= 0

which is contradictory with (41).

APPENDIX B
PROOF OF COROLLARY 5.1

Let c(s) = (c1(s), . . . , cn (s)) denote the left dominant eigen-
vector of C(s), then by Assumption 3 and Lemma 2.2, we
have ci(s) ≤ 1/2 for any i ∈ {1, . . . , n} a.s. Then, for any

x(s) ∈ Δ0
n , by Lemma 2.1 and Assumption 5(1), we have a.s.

πi(W (x(s))) + ζi(s)

≤ ci(s)/(1 − xi(s))∑n
j=1 cj (s)/(1 − xj (s))

+ d1(1 − xi(s))γ

<
1

2 − xi(s)
+ d1(1 − xi(s))γ

=
(1 − xi(s))2

2 − xi(s)
+ xi(s) + d1(1 − xi(s))γ

< xi(s) + (1 + d1)(1 − xi(s))min{γ ,2} (50)

which implies the condition (36) holds.
By the proof of Theorem 5.2, we need to verify the condition

(35) when x(s) is close to {e1 , . . . , en}. We consider the case
that xi(s) ≥ 1 − (2(1 + δ)d1)

−1
γ −1 . First, if ‖C(s)‖max ≤ δ <

1, then

ci(s) =
∑

j �=i

cj (s)Cji(s) ≤ (1 − ci(s))δ ⇐⇒ ci(s) ≤ δ

1 + δ
.

(51)
Let c′ := 1+2δ

2(1+δ) . If ci(s) ≤ δ
1+δ holds, then similar to (50),

we have

πi(W (x(s))) + ζi(s)

<
δ/(1 + δ)

δ
1+δ + (1 − δ

1+δ )(1 − xi(s))
+ d1(1 − xi(s))γ

=
c′

c′ + (1 − c′)(1 − xi(s))
+ d1(1 − xi(s))γ

−
[
c′
(
1 − δ

1 + δ

)
− δ

1 + δ
(1 − c′)

]
(1 − xi(s))

≤ c′

c′ + (1 − c′)(1 − xi(s))
. (52)

By Assumption 5(2), (51), and (52), we get (35) holds.

APPENDIX C
SOME LEMMAS

Lemma C.1: Suppose the nonnegative real number sequence
{ys}s≥1 satisfies

ys+1 ≤ (1 − as)ys + bs (53)

where bs ≥ 0 and as ∈ [0, 1) are real numbers. If
∑∞

s=1 as = ∞
and lims→∞ bs/as = 0, then lims→∞ ys = 0 for any y1 ≥ 0.

Proof: Repeating (53), we get

ys+1 ≤ y(1)
s∏

t=1

(1 − at) +
s∑

i=1

bi

s∏

t=i+1

(1 − at).

Here, we define
∏s

t=i(·) := 1 when i > s. Because∑∞
t=1 at = ∞, we have

∏∞
t=1(1 − at) = 0. Then, we just need

to prove that

lim
s→∞

s∑

i=1

bi

s∏

t=i+1

(1 − at) = 0. (54)
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Since lims→∞ bs/as = 0, for any real number ε > 0, there exists
an integer s∗ > 0 such that bs ≤ εas when s ≥ s∗. Thus

s∑

i=1

bi

s∏

t=i+1

(1 − at)

≤
s∗−1∑

i=1

bi

s∏

t=i+1

(1 − at) +
s∑

i=s∗
εai

s∏

t=i+1

(1 − at)

=
s∗−1∑

i=1

bi

s∏

t=i+1

(1 − at) + ε

(

1 −
s∏

t=s∗
(1 − at)

)

→ ε as s → ∞ (55)

where the first equality uses the classical equality

t∑

i=1

ci

t∏

j=i+1

(1 − cj ) = 1 −
t∏

i=1

(1 − ci)

with {ci} being any complex numbers, which can be obtained
by induction. Let ε decrease to 0, then (55) implies (54).

Lemma C.2: There exists a constant p2 > 0 such that for any
s ≥ 0, s1 > 0, and x(s) ∈ Δo

n ,

P

[
s+s1 −1∑

s ′=s

Is ′ ≤ p1s1

2

]

≤ e−p2 s1

where Is is defined by (42) and p1 is the same constant appearing
in (35).

Proof: From (35), we have for any s ≥ 0 and x(s) ∈ Δo
n ,

P [Is = 1] ≥ p1 . (56)

By Markov’s inequality, we have for any s ≥ 0, s1 > 0, θ > 0,
and x(s) ∈ Δo

n ,

P

[
s+s1 −1∑

s ′=s

Is ′ ≤ p1s1

2

]

= P

[

exp

(

−θ

s+s1 −1∑

s ′=s

Is ′

)

≥ e−θp1 s1 /2

]

≤ e
θ p 1 s 1

2 E

[

exp

(

−θ

s+s1 −1∑

s ′=s

Is ′

)]

= e
θ p 1 s 1

2 E

[
s+s1 −1∏

s ′=s

e−θIs ′

]

. (57)

Also, we can get

E

[
s+s1 −1∏

s ′=s

e−θIs ′

]

=
∑

z1 ,z2

z1z2P

[
s+s1 −2∏

s ′=s

e−θIs ′ = z1 , e
−θIs + s 1 −1 = z2

]

=
∑

z1 ,z2

z1P

[
s+s1 −2∏

s ′=s

e−θIs ′ = z1

]

· z2P

[

e−θIs + s 1 −1 = z2 |
s+s1 −2∏

s ′=s

e−θIs ′ = z1

]

=
∑

z1

z1P

[
s+s1 −2∏

s ′=s

e−θIs ′ = z1

](

1 − (1 − e−θ )

·P
[

Is+s1 −1 = 1|
s+s1 −2∏

s ′=s

e−θIs ′ = z1

])

≤ E

[
s+s1 −2∏

s ′=s

e−θIs ′

)
(
1 − (1 − e−θ )p1

]

≤ · · · ≤ (
1 − (1 − e−θ )p1

)s1 (58)

where the first inequality uses (56). For small positive θ,

θp1

2
+ log

(
1 − (1 − e−θ )p1

)
= −θp1

2
+ O(θ2)

so that we can choose suitable θ > 0 and obtain

e
θ p 1 s 1

2

(
1 − (1 − e−θ )p1

)s1 ≤ e−
θ p 1 s 1

3 .

Combining this with (57) and (58) yields

P

[
s+s1 −1∑

s ′=s

Is ′ ≤ p1s1

2

]

≤ e
θ p 1 s 1

2

(
1 − (1 − e−θ )p1

)s1 ≤ e−
θ p 1 s 1

3 .

�
Lemma C.3: For any s ≥ max{d1d2γ, (1 − 2c′)d2(γ − 1)}

and x ∈ [1 − [(2γ − 1)d1d2 ]−
1

γ −1 , 1), define

fs(x) := x +
d2d1(1 − x)γ

s

gs(x) := x − d2

s
(1 − 2c′)(1 − x)

where d1 , d2 , γ, and c′ are the same constants appearing in The-
orem 5.2. Then

1) fs and gs are strictly monotonically increasing functions;
2) (fs+1 ◦ gs)(x) := fs+1(gs(x)) < (gs+1 ◦ fs)(x);
3) let s2 ≥ s1 > 0 be arbitrarily given, and set

H := hs+s2 −1 ◦ hs+s2 −2 ◦ · · · ◦ hs

where hs ′(s ≤ s′ ≤ s + s2 − 1) equals to fs ′ or gs ′ and the total
number of f is not larger than s1 . If

(hs ′ ◦ hs ′−1 ◦ · · · ◦ hs)(x) ≥ 1 − [(2γ − 1)d1d2 ]−
1

γ −1

for any s′ ∈ [s, s + s2), then

H(x) ≤ (gs+s2 −1 ◦ · · · ◦ gs+s1 ◦ fs+s1 −1 ◦ · · · ◦ fs) (x).
(59)
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Proof:
1) For any 0 < x1 < x2 < 1, we set Δ := x2 − x1 , and then

fs(x2) − fs(x1)

= Δ +
d1d2

s
(1 − x1)γ

[(
1 − Δ

1 − x1

)γ

− 1
]

= Δ +
d1d2

s
(1 − x1)γ

∞∑

i=1

(
γ

i

)(
− Δ

1 − x1

)i

> Δ − d1d2

s
γ(1 − x1)r−1Δ > 0

when s ≥ d1d2γ. Also, gs(x2) < gs(x1) holds obvi-
ously.

2) Set a := 1 − 2c′ and z := 1 − x, then we have

gs+1(fs(x))

= x +
d2d1(1 − x)γ

s
− d2a

s + 1

(
1 − x − d2d1(1 − x)γ

s

)

= x +
d2d1z

γ

s
− d2a

s + 1

(
z − d2d1z

γ

s

)
(60)

and

fs+1(gs(x))

= x − d2a

s
(1 − x) +

d1d2

s + 1

(
1 − x +

d2a

s
(1 − x)

)γ

= x − d2az

s
+

d1d2

s + 1

(
z +

d2a

s
z
)γ

. (61)

Also, if s ≥ d2a(γ − 1), then

(
1 +

d2a

s

)γ

= 1 +
d2aγ

s
+

d2a

s

∞∑

i=2

(
γ

i

)(d2a

s

)i−1

< 1 +
d2aγ

s
+

d2a

s

∞∑

i=2

γ

i!
< 1 +

2d2aγ

s
.

(62)

By (60)–(62), we have

gs+1(fs(x)) − fs+1(gs(x))

=
(

1
s

+
d2a

s(s + 1)
− 1

s + 1

(

1 +
d2a

s

)γ)

d1d2z
γ

+
(

1
s
− 1

s + 1

)

d2az

>
1 + d2a − 2γd2a

s(s + 1)
d1d2z

γ +
d2az

s(s + 1)

>
d2az

s(s + 1)
(− (2γ − 1)d1d2z

γ−1 + 1
) ≥ 0

where the last inequality uses the condition that x ≥ 1 −
[(2γ − 1)d1d2 ]−

1
γ −1 .

3) Let s∗ be total number of f in H . For the case when
s2 = s1 = s∗, (59) holds obviously.

For the case when s2 > s1 and s∗ = s1 , if H is not equal
to gs+s2 −1 ◦ · · · ◦ gs+s1 ◦ fs+s1 −1 ◦ · · · ◦ fs , we can find s′ ∈

[s, s + s2 − 2] such that hs ′ = gs ′ and hs ′+1 = fs ′+1 . Then, by
2), we have

(fs ′+1 ◦ gs ′ ◦ hs ′−1◦ · · · ◦ hs) (x)

= (fs ′+1 ◦ gs ′) [(hs ′−1 ◦ · · · ◦ hs)(x)]

< (gs ′+1 ◦ fs ′) [(hs ′−1 ◦ · · · ◦ hs)(x)]

= (gs ′+1 ◦ fs ′ ◦ hs ′−1 ◦ · · · ◦ hs) (x).

Combining this with 1) yields
(
hs+s2 −1 ◦ · · · ◦ hs ′+2 ◦ fs ′+1 ◦ gs ′ ◦ hs ′−1 ◦ · · · ◦ hs

)
(x)

= (hs+s2 −1 ◦ · · · ◦ hs ′+2)
[
(fs ′+1 ◦ gs ′ ◦ hs ′−1 ◦ · · · ◦ hs)(x)

]

< (hs+s2 −1 ◦ · · · ◦ hs ′+2)
[
(gs ′+1 ◦ fs ′ ◦ hs ′−1 ◦ · · · ◦ hs)(x)

]

=
(
hs+s2 −1 ◦ · · · ◦ hs ′+2

◦ gs ′+1 ◦ fs ′ ◦ hs ′−1 ◦ · · · ◦ hs

)
(x).

Repeating the aforementioned process, we get (59).
For the case when s∗ < s1 ≤ s2 , by the aforementioned dis-

cussion, we have
(
hs+s2 −1 ◦ hs+s2 −2 ◦ · · · ◦ hs

)
(x)

≤ (gs+s2 −1 ◦ · · · ◦ gs+s∗ ◦ fs+s∗−1 ◦ · · · ◦ fs) (x)

< (gs+s2 −1 ◦ · · · ◦ gs+s1 ◦ fs+s1 −1 ◦ · · · ◦ fs) (x)

where the last inequality uses 1) and gs ′(x) < fs ′(x).
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modified DeGroot-Friedkin model with doubly stochastic relative inter-
action matrices,” in Proc. Amer. Control Conf., Boston, MA, USA, Jul.
2016, pp. 1054–1059, doi: 10.1109/ACC.2016.7525054.
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