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The effect of the definition 
of ‘pandemic’ on quantitative 
assessments of infectious disease 
outbreak risk
Benjamin J. Singer1*, Robin N. Thompson2,3 & Michael B. Bonsall1

In the early stages of an outbreak, the term ‘pandemic’ can be used to communicate about infectious 
disease risk, particularly by those who wish to encourage a large-scale public health response. 
However, the term lacks a widely accepted quantitative definition. We show that, under alternate 
quantitative definitions of ‘pandemic’, an epidemiological metapopulation model produces different 
estimates of the probability of a pandemic. Critically, we show that using different definitions alters 
the projected effects of key parameters—such as inter-regional travel rates, degree of pre-existing 
immunity, and heterogeneity in transmission rates between regions—on the risk of a pandemic. Our 
analysis provides a foundation for understanding the scientific importance of precise language when 
discussing pandemic risk, illustrating how alternative definitions affect the conclusions of modelling 
studies. This serves to highlight that those working on pandemic preparedness must remain alert to 
the variability in the use of the term ‘pandemic’, and provide specific quantitative definitions when 
undertaking one of the types of analysis that we show to be sensitive to the pandemic definition.

In the early stages of an infectious disease outbreak, it is important to determine whether the pathogen respon-
sible may go on to cause an epidemic or a  pandemic1–5. There is extensive literature on determining the prob-
ability of a major epidemic given a small population of initial infected  hosts6–9. This research has produced a 
natural mathematical definition of an epidemic, based on the bimodal distribution of outbreak sizes given by 
simple stochastic epidemiological models when R0 is larger than but not close to  one10. The term ‘pandemic’ has 
no corresponding theoretical definition, and there is no consensus mathematical approach to determining the 
probability of a pandemic. In this study, we examine how alternative definitions of ‘pandemic’ affect quantitative 
estimates of pandemic risk assessed early in an infectious disease outbreak.

The term ‘pandemic’ is used extensively, appearing in phrases such as ‘pandemic preparedness’11–13, ‘pan-
demic influenza’14–16, and ‘pandemic potential’17–19. A Google Scholar search returns 25,800 results using the 
term ‘pandemic’ for 2019 alone.

The International Epidemiology Association’s Dictionary of Epidemiology defines a pandemic as “an epidemic 
occurring worldwide, or over a very wide area, crossing international boundaries and usually affecting a large 
number of people”20. Notably this definition makes an explicit reference to national borders. Contrastingly, a 
World Health Organization (WHO) source makes reference to a pandemic as “the worldwide spread of a new 
disease”21 .The use of the word ‘new’ here is ambiguous in the context of infectious diseases. HIV/AIDS is often 
referred to as a global pandemic, but is certainly not new on the timescale of, say, the emergence of influenza 
 strains22,23. A study by Morens et al. in 2009 finds that there is little in common between all disease outbreaks 
that have been referred to as pandemics, except that they have a wide geographical  extension24.

These kinds of differences between pandemic definitions can often go unnoticed, but in certain circum-
stances they can cause confusion between different stakeholders (e.g. between scientists and governments, or 
governments and the public), who may not have a shared background understanding of the term. In 2009, the 
WHO declared a pandemic of H1N1 influenza, using criteria related to the incidence and spread of the virus 
in different WHO  regions25. The criteria did not include reference to morbidity or  mortality26. This fact led to 
some controversy over whether the declaration of a pandemic was appropriate, as the declaration prompted 
some governments to mount an intensive response to an outbreak that resulted in fewer yearly deaths than a 
typical strain of seasonal  flu27–30.
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International health organisations such as the WHO have not provided any formal definitions of the term 
‘pandemic’, and the WHO no longer uses it as an official status of any  outbreak25,31. It would, however, be hasty 
to dismiss the importance of the term on these grounds. Although the WHO no longer uses the term ‘pan-
demic’ officially, the WHO Director-General drew attention to their use of the term as recently as March 2020, 
to describe the status of the COVID-19  outbreak32. The Director-General cited “alarming levels of inaction” as 
one of the reasons to use the term, along with the caveat that “describing the situation as a pandemic does not 
change WHO’s assessment of the threat posed by this virus”. The WHO’s use of the term was of interest to the 
public, receiving extensive press  coverage33–35. The term ‘pandemic’ clearly continues to be important to indicate 
serious risk during disease outbreaks.

Regardless of the extent to which the pandemic definitions currently in use do or do not agree, they are all 
qualitative in nature, using descriptions such as “very wide area” and “large number of people”. Perhaps as a result 
of this, many quantitative studies on pandemics do not make use of a quantitative definition of a pandemic, but 
instead focus on causally related concepts, such as sustained  transmission19, or emergence of novel  viruses36. 
Others treat the spread of a pathogen at a pandemic level as a context in which to study transmission dynamics, 
without paying special attention to how those dynamics might lead to a pandemic as distinct from an epidemic 
or a more limited  outbreak37–39. In this paper, we examine the effects of alternative pandemic definitions on the 
analysis of key epidemiological questions. The results provide a foundation for deciding the appropriate quan-
titative definition of ‘pandemic’ in a given context.

We use a metapopulation model to investigate the effects of pandemic definition on the results of a quantita-
tive assessment of the probability of a pandemic. Metapopulation models are commonly applied to pathogens 
that spread between regions of the world, and so are appropriate for modelling  pandemics40–45. We represent 
states of our metapopulation model as states of a Markov chain, allowing us to calculate the probability of a pan-
demic directly, as opposed to simulating many stochastic outbreaks and recording the proportion which result in 
pandemics. We explore two different kinds of pandemic definition, following Morens et al.  200924, specifically:

• the family of transregional definitions, where a pandemic is defined as an outbreak in which the number of 
regions experiencing epidemics meets or exceeds some threshold number n. We refer to specific transregional 
definitions as n-region transregional definitions, e.g. a 3-region transregional definition.

• the interregional definition, where a pandemic is defined as an outbreak in which two or more non-adjacent 
regions experience epidemics.

Note that these definitions require a specific sense of ‘region’. These regions could be countries, or they could be 
larger or smaller than individual countries—from counties to health zones to WHO regions. Our metapopulation 
model (detailed in the Methods section below) can be used to model regions of any size. We have chosen not 
to include definitions with criteria relating to the number of people infected or killed, instead of, or in addition 
to, geographical extension. Extension is the only universal factor in pandemic definitions, and so is the focus 
of the current  study24.

Three questions that help form public health policy at the beginning of an outbreak are:

• Would interventions restricting travel reduce the risk of a pandemic?
• Does a portion of the population have pre-existing immunity, and does this affect the risk of a pandemic?
• How is the risk of a pandemic affected by regional differences in transmission?

Using our metapopulation model, we explore how changing the pandemic definition does or does not affect our 
answers to these questions. We show that the precise definition of a pandemic used in modelling studies can (but 
does not always) affect the inferred risk. The predicted effects of travel restrictions, the influence of pre-existing 
immunity, and the impact of regional differences in transmission can all vary when alternative definitions of 
‘pandemic’ are used. This demonstrates clearly the need to consider carefully the pandemic definition used to 
assess the risk from an invading pathogen. This is necessary for clear communication of public health risk.

Results
Travel rates. One important question about pandemic risk is what effect inter-regional travel rates have on 
the probability of a pandemic  occurring16,17,46,47. Here we model epidemics occurring in regions connected on a 
network in which the connections and their weighting can be set at fixed values representing the rates of travel 
between regions. We consider simple networks that can illustrate the effects of our different pandemic defini-
tions—namely, the star network, in which one central region is connected to all others with equal weighting and 
the non-central regions lack any other connections, and the fully connected network, in which each region is 
connected to every other with equal weighting. Figure 1 illustrates that the connectivity of the full network is 
much higher than that of the star network. Using the star network allows us to make the distinction between 
adjacent and non-adjacent regions, thus allowing us to distinguish between transregional and interregional pan-
demic definitions.

Unless otherwise stated, all figures in the current study are generated with a transmission rate of β = 0.28 per 
day, a recovery rate of µ = 0.14 per day, and an inter-regional travel rate of 2× 10−4 per day. This corresponds 
to a within-region basic reproduction number ( R0 ) of 2. These values are within the plausible range for both 
seasonal and pandemic influenza, and as such they can be used to simulate a plausible pathogen of pandemic 
 potential38. We further assume an initial population of 1000 susceptible individuals in each region, and that the 
outbreak is seeded by a single infectious individual in one region. In the full network, all regions are equivalent, 
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so we seed the outbreak in a single arbitrary region. In the star network, we take the average probability of a 
pandemic over outbreaks seeded in each region.

Using a model with ten regions allows us to test a range of different transregional definitions of a pandemic. 
The pandemic probability under a range of n-region transregional definitions for a 10-region network with a vari-
ety of travel rates is shown in Fig. 2. An n-region transregional definition effectively provides a threshold number 
n—if more than n regions experience epidemics, the outbreak is counted as a pandemic, and otherwise it is not. 
Thus we indicate the different possible n-region definitions through their threshold numbers in Figs. 2, 5, and 6.

The 1-region transregional definition merges the definitions of ‘pandemic’ and ‘epidemic’ in an implausible 
way, but it is included in these figures for comparison. The comparison between the pandemic probability accord-
ing to the 2-region definition and according to the 10-region definition shows the difference between pandemic 
definitions that are satisfied by any transregional transmission and definitions that are satisfied only by truly 
global spread. For the star network, or for the fully connected network with low travel rates, there is a marked 
difference between the probability of either of these definitions being satisfied. However, for the fully connected 
network at medium or high rates of travel, if the pathogen invades the initial region successfully, then it will go 

(a) (b)

Figure 1.  Illustrations of (a) a star network and (b) a full network, each with ten regions. Circles represent 
regions, and straight lines represent travel routes between regions.

Figure 2.  Pandemic probability for a range of between-region travel rates and a range of transregional 
pandemic definitions. The “pandemic threshold number” refers to the minimum number of regions that 
must experience epidemics before a pandemic is declared. The pandemic probability is, in general, sensitive 
to the pandemic definition used, but the degree of sensitivity depends on network structure and travel rates. 
(a) Pandemic probability for a star network. The pandemic probability is, in general, highly sensitive to the 
pandemic definition used. (b) Pandemic probability for a fully connected network. The sensitivity of the 
pandemic probability to the pandemic definition used is significantly reduced at high travel rates.
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on to spread globally. As such, the probability of a pandemic is nears the maximum of 0.5 (i.e. 1− 1/R0 ) at all 
thresholds. For any definition, the probability of a pandemic increases with the connectivity of the network, and 
with travel rates across the network.

We can also explore the difference in pandemic probability between the transregional and interregional 
definitions, which make use of a distinction between adjacent and non-adjacent regions. This is shown for a 
10-region star network in Fig. 3a, in which we consider the 2-region transregional and 2-region interregional 
definitions. We choose a star network as it is one of the simplest network types in which there are adjacent and 
non-adjacent regions. There is a difference between the 2-region interregional and transregional definitions, but 
the difference is much smaller than that between the 2-region interregional and 10-region (global) definition, 
and reduces as travel rates increase. In the case of a fully connected network, all regions are essentially adjacent 
to each other, so we compare only the 2-region transregional and global definitions. We find that the definitions 
are clearly distinct for low travel rates, but as the travel rate increases the difference between the likelihood of a 
pathogen causing an epidemic in one region and the likelihood of it causing epidemics in all regions disappears. 
This is due to the fact that the pathogen can be introduced into any population from any other.

In this section we have shown that, when a pandemic is defined in terms of which regions experience epi-
demics of a disease, different definitions can produce very different estimates of the pandemic probability at 
low connectivity or travel rates, but have a much smaller effect at high connectivity and travel rates. In the sup-
plementary information, we illustrate that effects due to network structure are mostly due to the difference in 
motility between the full network and the star network, although topology still plays an important role.

Cross-immunity. Some pathogens with pandemic potential have a prior history of infecting humans, such 
as pandemic influenza. Newly emerged pathogens with no history of infecting humans are less likely than these 
established pathogens to encounter regions where susceptible individuals have partial immunity to infection. 
Established pathogens may encounter individuals with partial immunity acquired from infections with previ-
ously circulating strains—i.e. cross-immunity48,49. It can be important in responding to an outbreak to consider 
whether any individuals might have existing immunity. We can therefore investigate the interaction between 
immunity generated by prior exposure and pandemic definition by examining how cross-immunity affects our 
calculation of the pandemic probability on a network.

We modelled the spread of a pathogen over a ten-region network with no cross-immunity initially, where 
the initial infected individual could originate in any region. We only included cases where at least one region 
experienced an epidemic of this initial pathogen. To simulate the emergence of a strain with higher pandemic 
potential, we then introduced a second pathogen with a higher transmission rate of β = 0.42 (corresponding to 
a basic reproduction number of 3), to which infection with the initial pathogen conferred some degree of partial 
immunity to infection. The strength of this immunity is written as α . See the Methods section for details of how 
cross-immunity is incorporated into our modelling framework. We defined a pandemic as occurring when all 
ten regions experienced epidemics of the second pathogen, and repeated the model for two values of the level of 
cross-immunity at a variety of between-region travel rates. The results are presented in Fig. 4.

First, increasing cross-immunity decreases the probability of a pandemic. Second, the presence of cross-
immunity changes how pandemic probability scales with travel rates. In general, the pandemic probability 
increases faster with travel when the level of cross-immunity is low, except when it reaches a point of saturation 
as in Fig. 4b.

Figure 3.  Plots of pandemic probability against between-region travel rate for a range of pandemic definitions. 
The difference in probability for different pandemic definitions changes as travel rates increase. (a) Plot 
of pandemic probability for a star network. (b) Plot of pandemic probability for a full network. For a fully 
connected network all regions are adjacent, so no line is shown for the interregional definition, which requires 
non-adjacent regions to experience epidemics.
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Figure 5 shows the simultaneous effects of different n-region transregional pandemic definitions and the 
degree of cross-immunity in determining the pandemic probability. Here we fix the travel rate at 2.0× 10−4 
per day. In the full network there is a distinct transition from higher risk to lower risk, as cross-immunity 
approaches one. However, in the star network there is, on average, less circulation of the initial pathogen, so the 
effect of cross-immunity is less dramatic. Increased cross-immunity can also increase the difference in risk for 
different pandemic definitions—for the fully connected network, when cross-immunity exceeds α = 0.5 , dif-
ferences in probability between different thresholds become visible that are much smaller at lower values. This 
suggests that the probability that an outbreak will develop into a pandemic may be more sensitive to the exact 
pandemic definition for outbreaks of pathogens that encounter pre-existing immunity than for pathogens which 
encounter only fully susceptible populations. However, this effect is not seen for the star network, in which the 
low connectivity of the network results in larger differences in probability between different thresholds even at 
low levels of cross-immunity.

Heterogeneous transmission. A topic of great concern during a pandemic is heterogeneity in risk 
between different countries or  regions50,51. Cross-immunity can create one kind of heterogeneity, since it is com-
mon for previous exposure to a pathogen to differ between  regions52. Another kind of heterogeneity is that due 

Figure 4.  Plots of pandemic probability against travel rate for high and low levels of cross-immunity ( α ) on 
ten-region networks. A pandemic is defined here as all ten regions experiencing epidemics, i.e. the 10-region 
transregional definition. The plots show a large relative difference both in the probability of pandemics and in 
how that probability scales with travel rates for different levels of cross-immunity. The initial infected individual 
for each outbreak originates in a randomly chosen region. (a) Plot of pandemic probability for a star network. 
(b) Plot of pandemic probability for a full network.

Figure 5.  Pandemic probability for various levels of cross-immunity ( α ) and a range of transregional pandemic 
definitions, on a ten-region network. (a) Pandemic probability for a star network. (b) Pandemic probability for 
a fully connected network. Here the sensitivity of the pandemic probability to the pandemic definition used 
increases with cross-immunity, until the probability of any epidemic becomes very low.
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to different public health interventions. Here we ignore cross-immunity and instead examine a heterogeneous 
fully connected network of ten regions, five of which have a higher rate of transmission of the pathogen than the 
other five. This can be thought of as an approximation to the difference between poor regions with a relative lack 
of public health interventions, and wealthy regions with well-funded public health organisations and increased 
access to healthcare.

The level of heterogeneity was defined as the ratio of the transmission rate in the higher-transmission regions 
to the transmission rate in the lower-transmission regions. The average transmission rate across all regions was 
kept fixed at β̄ = 0.28 per day, corresponding to a basic reproduction number of 2. The simultaneous effects of 
heterogeneity and the pandemic definition in determining the pandemic probability are illustrated in Fig. 6.

The row for the 1-region definition shows how the risk of any outbreak varies with the changing basic 
reproduction number of the pathogen in the region in which it emerges. More complex effects can be seen for 
higher n-region definitions, especially the 10-region definition, where, at high levels of heterogeneity, even 
pathogens emerging in higher-transmission regions are prevented from spreading globally due to the low chance 
of epidemics in lower-transmission regions. Thus the probability of a pandemic under a 10-region definition 
increases and then decreases with increasing heterogeneity. In the supplementary information, we show that this 
increasing-decreasing effect exists in networks of different sizes and structures. It appears at different thresholds 
in different networks. No corresponding effect exists for a pathogen emerging in a lower-transmission region, 
where increasing heterogeneity always decreases the chance of a pandemic, however it is defined.

Discussion
In this study, we have developed a theoretical framework to estimate the probability of a pandemic, as detailed 
in the Methods section below. We use a Markov chain technique based on SIR dynamics to model the spread of 
a pathogen. The results of this modelling framework reveal in which situations the definition of ‘pandemic’ has 
a strong effect on the calculated pandemic risk and in which situations it does not. The models also illustrate the 
effects of differing epidemiological parameters on the pandemic risk under different definitions, and how these 
effects interact with each other.

Returning to the three epidemiological questions introduced in the introduction, we can see that our results 
show how the answers can depend on our definition of a pandemic, and on key population and pathogen param-
eters. The first question was “Would interventions restricting travel reduce the risk of a pandemic?” In Fig. 2, 
we see that reductions in travel rates always reduce risk in a network with low connectivity, where travel occurs 
mainly through a central hub. However, in a highly connected network with high travel rates, travel would have 
to be extremely highly suppressed to change the probability of a pandemic substantially, under most definitions. 
This accords with previous findings regarding the effectiveness of restricting  travel53. Additionally, in the highly 
connected network, changing the definition of a pandemic makes little difference to the pandemic probability, 
for high enough values of the travel rate.

Figure 3 further illustrates the effects of different definitions. Changing the pandemic definition can some-
times greatly alter the estimated probability of a pandemic, as seen in Fig. 3a between the yellow line, representing 
the 2-region transregional definition, and the purple line, representing the 10-region transregional definition. 
The effect on the pandemic risk of reducing travel rates also differs substantially between these two defini-
tions. However, there are situations where changing the definition does not significantly change the pandemic 

Figure 6.  Pandemic probability for various degrees of heterogeneity of transmission rates and a range of 
transregional pandemic definitions, on a fully connected ten-region network where five regions are classed as 
higher-transmission and the other five regions are classed as lower-transmission. Note that the colour scales 
differ between the two plots, in order to make the variation in plot (a) clearer. (a) Pandemic probability for a 
pathogen emerging in a higher-transmission region. For low thresholds heterogeneity increases the pandemic 
probability, but at the 10-region threshold the pandemic probability grows and then decreases with increasing 
heterogeneity. (b) Pandemic probability for a pathogen emerging in a lower-transmission region. At all 
thresholds increasing heterogeneity decreases the pandemic probability.
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probability, as seen in the same figure between the yellow line and the dashed green line, representing the 2-region 
interregional definition. Both the estimated risk and the effect of reducing travel are very similar in these two 
cases. So, while some changes in definition do not cause a large change in quantitative analyses of the risk of a 
pandemic, others may significantly alter both our point estimates and the predicted effects of key parameters. 
Figure 3b shows that this may depend on the values of those key parameters themselves. For low travel rates, the 
pandemic probability is very different for the two illustrated definitions, but at high travel rates the pandemic 
probabilities for the two definitions converge.

The second question was “Does a portion of the population have pre-existing immunity, and does this affect 
the risk of a pandemic?” The presence of immunity can significantly alter the results discussed in the paragraphs 
above. In Fig. 5b, the leftmost column is equivalent to the column from Fig. 2b in which � = 2.0× 10−4 per day, 
but with a higher transmission rate of β = 0.42 . However, as cross-immunity increases, a marked difference in the 
pandemic probability between different definitions becomes visible. This shows that the conclusion that precise 
pandemic definitions are of reduced importance in a highly connected network with high travel rates is context 
sensitive—if the population has high immunity, differences between definitions re-emerge.

The third question was “How is the risk of a pandemic affected by differences between regions?” In Fig. 6, 
we examined how heterogeneous transmission rates in different regions affect the pandemic probability. Many 
pathogens have higher transmission rates in lower income countries, and novel pathogens are more likely to 
emerge in low income  countries50,51,54. Putting these two facts together, we see that pathogens are most likely to 
emerge in countries in which they have higher transmission rates. Motivated by this, we compared the scenarios 
of emergence in a higher-transmission and lower-transmission region, finding that pandemic definition makes 
a larger difference for diseases emerging in a higher-transmission region. In particular, when the pandemic 
definition requires many countries to experience epidemics to qualify an outbreak as a pandemic, including 
countries with lower transmission rates, we see striking non-linearity in the relationship between heterogeneity 
and the pandemic probability. For these definitions, as the difference in transmission rates between higher- and 
lower-transmission regions increases, the pandemic probability increases initially, before decreasing. This initial 
rise is due to the enhanced spread between high-transmission regions increasing the importation rate to low-
transmission regions. This result implies that, when the mean value of the transmission rate is fixed, a small gap 
in the effectiveness of public health infrastructure between wealthy and poor regions puts all regions at greater 
risk, while a larger gap protects wealthier regions while the risk for poor regions continues to increase.

To illustrate this concept, consider the contrasting examples of Ebola and COVID-19. The 2014 outbreak of 
Ebola virus followed the pattern of high incidence in low income countries but low incidence in high income 
countries. The virus spread through several low-income African countries but was effectively contained when 
introduced to high-income  countries55–57. In this case, high-income countries had the capacity to prevent a 
pandemic from taking hold, being able to quickly isolate and treat symptomatic individuals. This generated high 
heterogeneity in transmission, corresponding to the right side of Fig. 6a, with low-income countries at high risk 
and high-income countries at low risk. In contrast, high-income countries have not been able to escape the pan-
demic of COVID-19, in part due to asymptomatic and presymptomatic transmission of SARS-CoV-2 allowing 
it to evade surveillance and public health  measures58,59. This has led to more similar transmission rates between 
different countries, corresponding to the left side of Fig. 6a, where risk is more uniform between regions and 
therefore between pandemic definitions.

In our analyses, we use a metapopulation modelling framework. Metapopulation models are widely used 
in pandemic  modelling40–45. Our novel Markov chain approach allows us to calculate pandemic probabilities 
directly, without requiring large numbers of simulations to generate an approximation. We expect our over-
all conclusion, that the effects of key parameters on pandemic risk depend on the pandemic definition, to 
hold irrespective of the underlying modelling framework. Future studies could replicate our analyses using 
different models and modelling approaches, such as metapopulation models with additional epidemiological 
 complexity43,45,60,61 or the widely used global epidemic and mobility (GLEaM)  model62–64. Exploring how our 
quantitative results vary for different modelling frameworks in the field of mathematical  epidemiology14,16,65–67 
is a target for further investigation.

Other future work using our modelling framework could address the role of pandemic definitions in quan-
tifying the effects of additional epidemiological parameters on pandemic risk, such as use of different types of 
travel (e.g. within-country transport or international flights)45,68,69, the rate of nosocomial  infections70, or age 
 structure71. Our metapopulation modelling framework is generally applicable, and this framework could be 
extended to represent outbreaks of many different specific pathogens emerging in various locations. An important 
factor for response planning is the timescale over which outbreaks develop into pandemics. The duration of the 
initial phase of outbreaks has been a subject of previous  study72, as has the overall duration of  outbreaks10,73–76. 
In theory, Markov chain models could be used to assess the time for a local epidemic to develop into a pandemic, 
and we leave this as an avenue for further work.

In summary, we have developed a novel modelling framework for estimating the pandemic risk. We have 
applied this framework to assess the pandemic risk in a range of different scenarios, and have interpreted the 
results under a variety of pandemic definitions. We have found that certain relationships, such as the effect of 
heterogeneity in transmission between regions on the risk of a pandemic, are highly dependent on the definition 
of ‘pandemic’ used, while others, such as the effect of high travel rates on pandemic risk in a highly connected 
network, are not. This work provides a foundation for improved communication about pandemic risk, by high-
lighting the contexts in which pandemic definitions need to be provided in quantitative detail. In general, we 
contend that, when assessing the risk that an outbreak will develop into a pandemic, the precise pandemic defini-
tion used for a given analysis should be considered and stated clearly. Future work could investigate the effects 
of alternative definitions in more detailed epidemiological models, and extend this framework to investigate 
different dynamical features of pandemics.
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Methods
We have combined standard epidemiological modelling techniques with a novel Markov chain treatment of 
metapopulation dynamics to produce a method for calculating the probabilities of epidemics and pandemics 
in a network of population regions. At each step of this chain, we resolve information about which regions may 
experience epidemics. The order in which the status of any given region is resolved does not necessarily match 
the order in which the given epidemics occur in calendar time. A benefit of our model is that we can calculate 
the probabilities of different final outcomes directly, without requiring large numbers of stochastic simulations 
to estimate these values. This comes at the cost that temporal information is not represented explicitly in our 
model: we focus on the pandemic probability, accounting for all possible ways that a pandemic could occur, 
rather than estimating the possible times at which epidemics could occur in different regions or the timescale 
over which an outbreak will develop into a pandemic (see Discussion).

We model the transmission of a pathogen through n regions labelled P1, P2, P3, . . . ,Pn . Each region Pj has 
associated with it some intra-region pathogen transmissibility βj , disease recovery rate µj , and population size 
Nj . From these quantities it is possible to calculate a region-specific basic reproduction number R0,j . This can 
be fixed across all regions for a particular pathogen, or allowed to vary from region to region to reflect local 
epidemiological differences.

First let us consider the spread of the pathogen in a single region, using well-established results of stochastic 
Susceptible-Infected-Recovered (SIR) models. If a region Pj contains an initial number of infected individuals 
Ij(0) , then in the stochastic SIR model, the probability that these individuals do not cause an epidemic in Pj is 
(1/R0,j)

Ij(0) when R0,j ≥ 1 , and 1  otherwise17. We also define the final size of an epidemic Rj(∞) (not to be con-
fused with R0,j ) as the number of recovered individuals in Pj at the end of the epidemic. This equals the total num-
ber of individuals in Pj who become infected at any time, and is given by the solution of the following  equation77.

Infected individuals are assumed to travel from region Pj to region Pm at a rate �jm . We seek the probability 
that infected individuals travelling from Pj will not cause an epidemic in Pm , in the case where initially infected 
individuals in Pm do not cause an epidemic in Pm (including the case where there are no initially infected indi-
viduals in Pm ). This is equal to the probability that i infected individuals migrate from Pj to Pm , multiplied by 
the probability that this number of individuals fails to cause a major epidemic, summed over possible values 
of i. The minimum value of i is the case where no infected individuals migrate, and the maximum value is the 
case where all individuals in Pj that become infected at any point migrate. This gives us an expression for qjm , 
the conditional probability that, if Pj experiences an epidemic and Pm does not experience an epidemic due to a 
source of infected individuals other than Pj , Pm does not experience an epidemic.

This approximation is valid when the number of infected individuals that travel between regions is much smaller 
than the size of the regions.

We assume that infected individuals travelling from a region Pj cannot cause an epidemic in a neighbouring 
region Pm if Pj does not itself experience an epidemic. Then computing the value of qjm for every pair of popu-
lations Pj and Pm gives us sufficient information to determine the probability of any particular set of regions 
connected on a network experiencing epidemics so long as there are no interactions between different groups of 
migrants arriving in a region, and the total numbers of migrants in any region remains very small relative to the 
region’s size. If these assumptions hold, we can imagine the regions on a network with weighted directed edges, 
where the weight of the edge directed from region Pj to region Pm is qjm.

To determine how the final probabilities of epidemics depend on the pairwise probabilities qjm , we use a 
Markov chain. The states of this Markov chain assign one of three states to each region—N (for neutral), where 
it is not yet determined whether the region will experience an epidemic, E (for epidemic), where it is determined 
that the region will experience an epidemic but it is not yet determined in which further regions it will cause 
epidemics, and T (for terminal), where it is determined that the region will experience an epidemic and in which 
further regions it will cause epidemics due to onward transmission. As our model does not explicitly represent 
dynamical processes occurring over time, these states should not be interpreted as actual states of infection and 
recovery within regions, but rather as bookkeeping devices for the role of various regions in determining the 
spread of the pathogen through the network.

Suppose we have a network connecting n regions. In the initial state, each region where the initially infected 
individuals have caused an epidemic is in state E, and all the other regions are in state N. The global state of the 
network is simply the product of the states of each system. We can then define a transition matrix T that acts on 
the global state. The elements of this matrix are denoted tx1x2...xn→y1y2...yn.

(1)Rj(∞) = Nj − Nj exp

(

−R0,jRj(∞)

Nj

)

.

(2)

qjm ≈

Rm(∞)
∑

i=0

(

1

R0,m

)i(
Rj(∞)

i

)(

�jm

�jm + µj

)i( µj

�jm + µj

)Rj(∞)

=

(

�jm

R0,m(�jm + µj)
+

µj

�jm + µj

)Rj(∞)

,
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where

xj is the state (N, E, or T) of region Pj before the transition, and yj is its state afterwards. The expression inside 
the first set of square brackets ensures that the only acceptable transitions for any given region are N → E and 
E → T , and requires that all epidemic regions in the initial state must be terminated in the transition (this pre-
vents double-counting of possible transmission paths). The expression inside the second set of square brackets 
gives the probability of each N → E transition, and the expression inside the final set of square brackets gives 
the probability of each N → N transition, given the regions that are in state E before the transition.

Note that these transitions do not represent a dynamical process—the order of transitions in this model does 
not necessarily correspond to the order in which regions experience epidemics. Instead, the transitions are simply 
stages along the exploration of different routes and outcomes from the disease spreading process.

The initial probability of each global state z1z2 . . . zn (where zi ∈ {N ,E,T} ) is given by:

where Qj = min((1/R0,j)
Ij(0), 1) is the probability that the initial population of infective individuals does not cause 

an epidemic in region Pj . Essentially, no region can begin in state T, and the probability of each initial global 
state is given by the product of the probabilities of each region being in the corresponding initial regional state.

In this system, all states in which no region is epidemic are absorbing, and in each transition at least one 
epidemic state must become terminal. This means that the system must reach an absorbing state in at most n 
transitions, since at least one region becomes terminal in each transition, and a fully terminal state is absorbing. 
So the final probability vector pfinal is given by

with T as the transition matrix and pinitial as the vector whose elements defined by Eq. (5). This final vector gives 
the probabilities of each configuration of the metapopulation, with populations in state N never experiencing 
an epidemic, and regions in state T experiencing an epidemic at some point.

Cross-Immunity. The model described above can incorporate certain epidemiological details, such as het-
erogeneity of population parameters, but is restricted to treating quite simple disease dynamics. In this section 
we expand the model to treat pathogens that give those who overcome infection cross-protection against future 
strains of that pathogen. This is necessary to be able to investigate how pre-existing immunity changes how pan-
demic definitions affect the results of our model.

We first describe the spread of a pathogen strain X using the methods above, introducing a superscript X to 
the relevant parameters to mark the strain, e.g. RX

0  , RX(∞) , and pXfinal . We assume that infection with pathogen 
X confers cross-immunity α to a second strain of the pathogen, which we call Y. In each population Pj we can 
define an effective basic reproductive number for Y in the case that Pj has experienced an epidemic of X, which 
we call RY

e,j.

This expression simply multiplies the basic reproductive number by the effective number of susceptible individu-
als given the prevalence of cross-immunity in the population. It is through this expression that cross-immunity 
enters the model—the parameter α does not otherwise appear in what follows.

We can write down an equation for the expected total number of individuals in Pj infected in an epidemic of 
Y in analogy to Eq. (1). In the case where there has been no previous epidemic of X in Pj , the expected epidemic 
size is the solution RY

j,noX(∞) of

(3)

tx1x2...xn→y1y2...yn

=

[ n
∏

m=1

{

δ((xm, ym), (N ,N))+ δ((xm, ym), (N ,E))+ δ((xm, ym), (E,T))+ δ((xm, ym), (T ,T))
}

]

·

[

∏

m

(

1−
∏

j

(

qjm
)δ(xj ,E))δ((xm ,ym),(N ,E))

]

·

[

∏

m

∏

j

(

qjm
)δ(xj ,E)δ((xm ,ym),(N ,N))

]

,

(4)δ((a, b, . . . , z), (A,B, . . . ,Z)) =

{

1 if (a, b, . . . , z) = (A,B, . . . ,Z)
0 otherwise,

(5)pz1z2...zn =

[

∏

j

δ(zj ,T)

]

·

[

∏

j

(

Qj)
δ(zj ,N)

]

·

[

∏

j

(

1− Qj

)δ(zj ,E)
]

,

(6)pfinal = T
npinitial,

(7)RY
e,j =

(

1− α
RX
j (∞)

Nj

)

RY
0,j .

(8)RY
j,noX(∞) = Nj − Nj exp

(

−RY
0,jR

Y
j,noX(∞)

Nj

)

.
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In the case where there has been a previous epidemic of X in Pj , the expected epidemic size is the solution 
RY
j,X(∞) of

We assume that individuals infected with Y travel at the same rate as individuals infected with X. We then define 
the pairwise probabilities of transmission of Y between populations in analogy to Eq. (2). That is,

where RY
c,m = RY

0,m when Pm has not experienced a previous epidemic of X, RY
c,m = RY

e,m when Pm has experienced 
a previous epidemic of X, RY

j,b(∞) = RY
j,noX(∞) when Pj has not experienced a previous epidemic of X, and 

RY
j,b(∞) = RY

j,X(∞) when Pj has experienced a previous epidemic of X.
These expressions for qYjm can be substituted for qjm in Eq. (3) to yield a transition matrix for modelling the 

spread of Y, which we will call TY (s1s2 . . . sn) , where sj is the final state (either N or T) of the X outbreak in Pj . We 
find the initial probabilities of each state with regards to Y, pYinitial , in analogy to Eq. (5), given an initial number 
of individuals infected with Y in each population IYj (0).

where QY
j = min[(1/RY

0,j)
IYj (0), 1] when Pj has not experienced a previous epidemic of X (i.e. sj = N  ), and 

QY
j = min[(1/RY

e,j)
IYj (0), 1] when Pj has experienced a previous epidemic of X (i.e sj = T ). We can then write the 

final probabilities of each combination of possible epidemics of Y, for a given set of previous epidemics of X, as

To find the overall probability of each combination of epidemics of Y in various populations given a prior prob-
ability of each combination of epidemics of X (given by pXfinal(s1s2 . . . sn) defined in Eq. (6)), we sum over the 
possible values of (s1s2 . . . sn) , weighted by their probability.
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