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Generalized Bouc—Wen Model for Highly
Asymmetric Hysteresis

Junho Song' and Armen Der Kiureghian®

Abstract: Bouc—Wen class models have been widely used to efficiently describe smooth hysteretic behavior in time history and random
vibration analyses. This paper proposes a generalized Bouc—Wen model with sufficient flexibility in shape control to describe highly
asymmetric hysteresis loops. Also introduced is a mathematical relation between the shape-control parameters and the slopes of the
hysteresis loops, so that the model parameters can be identified systematically in conjunction with available parameter identification
methods. For use in nonlinear random vibration analysis by the equivalent linearization method, closed-form expressions are derived for
the coefficients of the equivalent linear system in terms of the second moments of the response quantities. As an example application, the
proposed model is successfully fitted to the highly asymmetric hysteresis loops obtained in laboratory experiments for flexible connectors
used in electrical substations. The model is then employed to investigate the effect of dynamic interaction between interconnected

electrical substation equipment by nonlinear time-history and random vibration analyses.

DOI: 10.1061/(ASCE)0733-9399(2006)132:6(610)

CE Database subject headings: Dynamic response; Earthquake engineering; Electrical equipment; Hysteresis; Nonlinear analysis;
Nonlinear differential equations; Nonlinear response; Stochastic processes.

Introduction

A memory-dependent, multivalued relation between force and de-
formation, i.e., hysteresis, is often observed in structural materials
and elements, such as reinforced concrete, steel, base isolators,
dampers, and soil profiles. Many mathematical models have been
developed to efficiently describe such behavior for use in time
history and random vibration analyses. One of the most popular is
the Bouc—Wen class of hysteresis models, which was originally
proposed by Bouc (1967) and later generalized by Wen (1976).
The model has the advantage of computational simplicity, be-
cause only one auxiliary nonlinear differential equation is needed
to describe the hysteretic behavior. Moreover, closed-form ex-
pressions are available for the coefficients of the equivalent linear
system, which facilitate the use of the model in nonlinear random
vibration analysis by the equivalent linearization method (ELM)
(Wen 1980). The model is also versatile in describing various
characteristics of hysteretic behavior, e.g., degrading of stiffness
and strength and the pinching effect (Baber and Wen 1981; Baber
and Noori 1984; Noori et al. 1986; Foliente et al. 1996), biaxial
hysteresis (Park et al. 1986), and asymmetry of the peak restoring
force (Wang and Wen 1998).
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It has been pointed out that the Bouc—Wen class models are
not in agreement with the requirements of classical plasticity
theory, such as Drucker’s postulate (BaZzant 1978), and may pro-
duce negative energy dissipation when the unloading-reloading
process occurs without load reversal (Casciati 1987; Thyagarajan
and Iwan 1990). Nevertheless, the Bouc—Wen class models have
been widely used in the field of structural engineering, since they
greatly facilitate deterministic and stochastic dynamic analyses of
real structures with reasonable accuracy. Moreover, the local vio-
lation of plasticity theory is not considered a particularly impor-
tant factor in random vibration analysis, if the expected value of
the restoring force is zero (Wen 1989; Hurtado and Barbat 1996).

In practice, hysteresis loops of structural elements may exhibit
highly asymmetric shape due to asymmetry in geometry, bound-
ary conditions, or material properties. For example, Fig. 1 shows
the hysteresis loops of a flexible connector used in electrical sub-
stations, obtained by Filiatrault et al. (1999) in experiments with
large-deformation cyclic loading. The curves of the positive dis-
placement [Fig. 1(a)] and positive resisting force [Fig. 1(b)] are
flipped onto their corresponding negative regions (dashed lines)
to demonstrate the significant asymmetry in the hysteresis shape
and force range. Existing Bouc—Wen class models cannot de-
scribe such highly asymmetric hysteresis unless the paramters are
made functions of the response quantities. To account for the
strong asymmetry of the flexible connector, Der Kiureghian et al.
(2000) developed a modified Bouc—Wen model with parameters,
which were complicated functions of time-varying responses.
Though successful in closely fitting the experimental results, such
a model is not convenient, since the dependence of the parameters
on the response prohibits derivation of workable expressions for
the coefficients of the equivalent linear system. Such a model is
inconvenient during time-history analysis as well because it re-
quires identifying the phase of the response and computing com-
plicated functions at each time step.

After a careful examination of the shape-control mechanism of
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Fig. 1. Highly asymmetric hysteresis loops of flexible strap
connector (PG&E 30-2021), observed by quasistatic test and
comparison with curves flipped over: (a) zero-displacement; and (b)
zero-force axes

existing Bouc—Wen class models, this paper introduces a general-
ized Bouc—Wen model that has enhanced flexibility in shape con-
trol, so that it can describe highly asymmetric hysteresis with
fixed parameters. The relationship between the slopes of the hys-
teresis loop and the model parameters is provided for a systematic
identification of the parameters based on observed data. For use in
ELM, closed-form expressions are derived for the coefficients of
the equivalent linear system in terms of the second moments of
the response. As an example application, the proposed model is
fitted to the highly asymmetric hysteretic curves of two flexible
connectors used in electrical substations. The fitted model is used
in nonlinear time-history and random vibration analyses of con-
nected electrical substation equipment to investigate the effect of
dynamic interaction between the equipment items under earth-
quake loading.

Shape-Control Mechanism of Bouc-Wen Class
Models

For a structural element described by a Bouc—Wen class model,
the resisting force is written as

v+B v+ﬁ+2¢
/ y-B
y-B /

Fig. 2. Values of shape-control function for: (a) original Bouc—Wen
model; and (b) model by Wang and Wen

.fs(xaxsz) = O(k()x+ (] - (X)koZ (1)

where x denotes the displacement; x=dx/dt denotes the velocity;
a=post- to preyield stiffness ratio; ky=initial stiffness; and
z=auxiliary variable that represents inelastic behavior. The evo-
lution of z is determined by an auxiliary ordinary differential
equation, which can be written in the form

2=xA - [z|"(x,%,2)] ()

where Z=derivative of z with respect to time; A and
n=parameters that control the scale and sharpness of the hyster-
esis loops, respectively; and {s(x,x,z) =nonlinear function of x, x,
and z that controls other shape features of the hysteresis loop.
[Parameters for the degradation effect (Baber and Wen 1981) and
an auxiliary function for the pinching effect (Baber and Noori
1984) are omitted here for simplicity. The proposed generalized
Bouc—Wen model can be extended to describe such behaviors by
incorporating the corresponding parameters or function.] The s
functions of the original Bouc—Wen model (Wen 1976) and the
model by Wang and Wen (1998), respectively, are

lI}Bouc Wen =Yt B sgn(xz) (3)

Uwang wen =¥ + B 5gn(iz) + d[sgn(x) + sgn(z)] 4)

where vy and [=parameters controlling the shape; and
¢d=parameter that accounts for the asymmetric peak restoring
force in the Wang—Wen model. Note that the displacement x does
not appear in the { functions for these models.

Multiplying the sides of Eq. (2) by dt/dx, one obtains

% =4a- |z\”q}(x,)&,z) (5)
dx

The above equation suggests that the slope of the hysteresis loop
in the x-z plane, i.e., dz/dx, is controlled by the “shape-control”
function {s(-) within each phase determined by the signs of x, x,
and z.

The shape-control functions of the models in Egs. (3) and (4)
can have four different phases defined by the signs of x and z. The
four phases are: (1) (z=0,x=0); (2) (z=0,x<0); (3)
(z<0,x<0); and (4) (z<0,x=0). Fig. 2 shows the values of the
shape-control functions for the above models within the four
phases in the x—z plane during a full-cycle test. The original
Bouc—Wen model has only two independent values for the shape-
control function: y+@ for phases (1) and (3), and y— for phases
(2) and (4). The model by Wang and Wen has three independent
values for the same four phases: y+B+2¢ for phase (1),
y+B—2¢ for phase (3), and y—f for phases (2) and (4). There-
fore, one can say that the degrees of freedom of the shape-control
functions are 2 for the original Bouc—Wen model, and 3 for the

JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2006 / 611



z Y,
4 /_
Y
W,
» X
(/%
Yy
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model by Wang and Wen. The latter model can shift the hysteresis
loop downward or upward by the extra degree of freedom to
describe asymmetric peak forces. We make use of these findings
to develop the generalized Bouc—Wen model described in the fol-
lowing section.

Generalized Bouc-Wen Model

As can be seen in Fig. 1, hysteresis loops are often affected not
only by the signs of x and z, but also by the sign of the displace-
ment x, because the hysteretic behavior of a structural element in
tension can be different from that in compression. The existing
Bouc—Wen class models do not include x in the shape-control
function, and that is why they are unable to fit highly asymmetric
hysteresis, unless the parameters are made functions of the re-
sponse quantities, as done by Der Kiureghian et al. (2000). There-
fore, it is desirable to develop a shape-control function that can
assume different values for all the phases of a full cycle, as de-
termined by the signs of x, X, and z.

With this motivation, the following shape-control function is
proposed:

U =By sgn(iz) + B, sgn(xx) + B3 sgn(xz) + By sgn(x) + Bs sgn(z)
+ B sgn(x) (6)

where 3, ...,B¢=fixed parameters. The proposed model has six
degrees of freedom, as it can control the values of the shape-
control function at six phases. Fig. 3 shows the six different
phases of the model determined by the combinations of the signs
of x, x, and z during a full-cycle test. In this figure, s,
i=1,...,6, denotes the value of the shape-control function
Ui(x,x,z) at the ith phase. Table 1 lists the sign combinations of x,
X, and z for the six different phases in Fig. 3 and the correspond-

Table 1. Values of the Shape-Control Function for Generalized
Bouc—Wen Model

Phase X X z Y(x,x,2)

1 + + + =B +B2+B3+Bs+Bs+Bs
2 + - + Yo=—B1=B2+B3—B4+Ps+Bs
3 + - - Y3=P1—PBr—B3—-Bs—Bs+Bs
4 - - - Uy=B1+B2+PB3—By—Bs—Bs
5 - + - Us==P1—PB2+B3+B4—Bs—Bs
6 - + + Ys=B1—Ba—PB3+B4+Bs—Bs
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ing values of the shape-control function in terms of the param-

eters f3;, i=1,

...,0.

The linear relation between the {5;s and 3;s in Table 1 can be

described in the matrix form

Since the transformation matrix in Eq. (7) is nons
solve for 3;s in terms of {5;s by matrix inversion

i

W 111 1 1 1 ||
Wl [-1 -1 1 -1 1 1 |Bp
s 1 -1 -1 -1 -1 1 ||,
7% I R R D S e | %) @
s | [-1 -1 1 1 -1 —1]|8s
i 1 -1 -1 1 1 —1]Bs

ngular, one can

B, 1 0 1 1 0 1 ||
B, 0 -1 -1 0 -1 -11|
Bl 1|t 1 0 1 1 0 [l @
Bil 4[1 =1 0 -1 1 0 ||y,
Bs 01 -1 0 -1 1 ||us
Bs 1 0 1 =1 0 —1]|us

By use of the above matrix equation, the model in Eq. (6) can be
fitted to experimental data in a systematic manner in conjunction
with a parameter identification technique, such as the method of
least squares. First, one selects a set of trial values of the {s;s and
computes the corresponding ;s by use of Eq. (8). The theoretical
hysteresis loops are then plotted and compared with the experi-
mental loops. Adjustments in the {s;s are then made to reduce the
difference between the theoretical and experimental loops by a
suitable measure. For example, one can use an optimization algo-
rithm to determine the values of {s;s that minimize the sum of
squared errors over each phase or over the entire hysteresis loop.
Next, the parameters [3; are computed for the adjusted {s; values
by use of Eq. (8). This process is continued until a set of the
model parameters that minimize the difference between the theo-
retical and experimental hysteresis loops is achieved. Of course
the search process can be conducted directly in terms of the {3;
parameters without involving the intermediate parameters ;.
However, appropriate adjustments in the latter parameters are
easier to make, particularly when fitting separately in each phase.

Equivalent Linear System

For nonlinear random vibration analysis by use of ELM, the aux-
iliary equation Eq. (2) with ¥s(x,x,z) defined as in Eq. (6) for the
generalized Bouc—Wen model is linearized in the form

74+ Cx+Cux+Cyz=0

)

where the coefficients C;, C,, and C; are determined by minimiz-
ing the expectation of the mean-square error between Egs. (2) and
(9). In case the response can be assumed to be zero-mean Gauss-
ian, the coefficients are obtained as (Atalik and Utku 1976)

d
CI_E<—§’>
ox
d
Cz_E(—g>
ox



_pl %
el

where g=z-x[A—|z]"l(x,%,2)].

Closed-form, algebraic expressions for the coefficients in Eq.
(10) are obtained by use of the following well-known relation for
a zero-mean, Gaussian vector y and a general nonlinear function
h(-) (Atalik and Utku 1976):

E[yh(y)]=Elyy"JE[Vh(y)] (11)

The derivation utilizes well known analytical expressions for con-
ditional means and standard deviations of jointly normal random
variables (Stone 1996). In addition, the following properties of
zero-mean, Gaussian random variables X, and X, are utilized:

E[sgn(X;)sgn(X,)] =4f J lexz(xl’xz)dM dx, -1 (12)
o Jo

o o0 ] ] .
fo fo Jxx, (1 x2)dx dox, = a2t Py sin”! Px,x, (13)

where fy x (x;,x,) and py x, respectively, denote the joint prob-
ability density function and the correlation coefficient of X; and
X,. The latter expression is due to Sheppard (1899). For the case
n=1, the results can be summarized in the form

Ci=—A+BE| + BB+ B3Es (14)

Cy=BoEy + B3Es (15)

C3=BEg+ BrE7 + B3Eg (16)

where the expressions for E;, i=1,...,8, in terms of the second

moments of the responses are listed in Table 2. It is seen that with
the Gaussian assumption, only the first three parameters 3,, 35,
and 33, which involve the signs of the products xz, xx, and xz, are
engaged. A different assumption regarding the distribution of the
response would possibly engage all six parameters of the model.
Such an analysis is currently underway.

Application to Connected Electrical Substation
Equipment

As an example application, the proposed model is used to de-
scribe the hysteretic behavior of flexible strap connectors (FSCs),
which are inserted for thermal expansion between electrical sub-
station equipment items connected by a rigid bus (RB). Fig. 4
illustrates typical assemblies of an RB and two FSCs: PG&E
30-2021 and PG&E 30-2022 of Pacific Gas & Electric Company.
These connectors are made of three parallel straps, each strap
consisting of a pair of copper bars. See Der Kiureghian et al.
(2000) for details on the dimensions and material properties of the
FSCs. The generalized fitted model is used to investigate the ef-
fect of dynamic interaction between connected equipment items
subjected to earthquake ground motions.

Fitting with Experimental Hysteresis Loops

Filiatrault et al. (1999) conducted quasistatic cyclic tests of the
selected RB-FSCs to determine their hysteretic behavior under
large-deformation cyclic loading. The resulting hysteretic curves
for the two RB-FSCs considered here are shown as dashed lines

Table 2. Expressions for E;, i=1,...,8, in Egs. (14)-(16) for Computing
Coefficients of Linearized Equation for Generalized Bouc—Wen Model
with n=1

E; Expression®
2
E, \/jUZPi(Z
w
P 7)\32 i , .
2 (;) o (pxzsin”! Py, tPxz sin”! py, + sin”' Pyy)

E, 2
—O0zPxz
ay
312G
E 2 Ox0y 2 “—2 D) E L *
4 (‘) V1= V1= (N 1=py, +py, sin” py)

T Oy
Es 20x9z .
- (Pxz = PxxPxz)
m™ Oy
T
E 0\32 .
7 <;) ox(pxysin™ Pyt sin™" pyz+ pyzsin! Pyy)

Ey 2
—OxPxx
T

%o denotes the standard deviation, p stands for the correlation coefficient,
and

* 2
Py = (Pxz=pxipx2) | (1=py ) (1-p3,)
* 2 2
pxz=(pPxz—PxxPx2)/ \ (1 =py)(1-p5,) .
* 2
Py =(pxi—pxzpiz)\(1-px)(1-py,) .

in Fig. 5. The hysteretic behavior incorporates geometric nonlin-
earity due to the large deformation, material nonlinearity due to
inelastic action, and contact and friction between the copper bars
of the FSCs. The existing Bouc—Wen class models cannot repre-
sent the strong asymmetry observed in these hysteresis loops. To
account for such behavior, Der Kiureghian et al. (2000) devel-
oped a modified Bouc—Wen model with parameters that are func-
tions of time-varying responses. Fig. 5 shows the remarkably
close agreement that they achieved in fitting the experimental
loops. However, the fact that the parameters of this model are
dependent on time renders the model inconvenient for time-
history analysis and practically impossible for use in nonlinear
random vibration analysis by ELM.

Rigid Bus (4" dia. SPS, Aluminum)

Fig. 4. Rigid bus conductors fitted with flexible strap connectors: (a)
PG&E 30-2021; and (b) PG&E 30-2022
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Fig. 5. Hysteretic behavior of RB-FSC as observed by Filiatrault
et al. (1999) and as predicted by fitted modified Bouc—Wen model
with time varying parameters: (a) PG&E 30-2021; and (b) PG&E
30-2022

The proposed generalized Bouc—Wen model is fitted to the
experimentally obtained hysteresis loops of the two FSCs, as
shown in Fig. 6. The model parameters for PG&E 30-2021 are
kog=49.2 kN/m, o=0.1, A=1.0, n=1, $,=0.470, B,=-0.118,
B3=0.0294, B,=0.115, B5=-0.121, and Bs=-0.112, and those
for PG&E 30-2022 are ky=35.6 kN/m, a=0.1, A=1.0, n=1,
B;=0.419, B,=-0.193, B5=0.174, B4,=0.0901, B5=—-0.156, and
Be=-0.0564. It is evident in Fig. 6 that the model is able to
represent the asymmetric hysteretic behavior of the RB-FSCs
with almost as much accuracy as the model with time-varying
parameters shown in Fig. 5. It is noteworthy that the good agree-
ment of the proposed model is achieved with parameters, which
remain constant throughout the loading history. This feature
greatly simplifies the dynamic analysis and facilitates the use of
ELM for nonlinear random vibration analysis.

Time History Analysis of Interconnected Equipment
Items

When subjected to seismic excitation, interconnected equipment
items may experience significant dynamic interaction, which may
give rise to amplification or deamplification of the equipment

614 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2006
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Fig. 6. Hysteretic behavior of RB-FSC as observed by Filiatrault et
al. (1999) and as predicted by fitted generalized Bouc—Wen model:
(a) PG&E 30-2021; and (b) PG&E 30-2022

responses relative to their respective stand-alone responses. Due
to their flexibility and energy dissipation capacity, FSCs are
known to reduce the effect of interaction. The proposed model
allows us to estimate the effect of dynamic interaction in
equipment items connected by FSCs having highly asymmetric
hysteresis.

Consider two electrical substation equipment items connected
by an RB-FSC, as illustrated in Fig. 7(a). Through the use of a
displacement shape function, each equipment item is idealized as
a linear single-degree-of-freedom (SDOF) oscillator, which is
characterized by its effective mass m;, effective stiffness k;, effec-
tive damping c¢;, and an effective external inertia mass /;, for
i=1, and 2. This idealization is depicted in Fig. 7(b), where the
RB-FSC is modeled as a hysteretic element with an additional
viscous damping element having the coefficient ¢,. For details of
the idealization and its accuracy in interaction studies, see Der
Kiureghian et al. (2001) and Song (2004).

Using the SDOF model for each equipment item, the equation
of motion of the connected system in Fig. 7(b) is described in a
matrix form as

Mii + Cua + R(u,0,z) = - L%, (17)

where



Fig. 7. Mechanical models of equipment items connected by
RB-FSC: (a) RB-FSC-connected system; and (b) idealized system
with SDOF equipment models

u= {ul(f) }
uy(t)

M=
0 my
cpt+c —C
Cz{l ) ] s
—Cy Cyr+Cy

R(wi.c) = kyuy (1) = f[Au(2), Au(r),z(1)]
" () + £TAu(0), Ai(e),2(1)]

L={ll} (19)
L

where ¥,=base acceleration; u,(¢)=displacement of the ith equip-
ment item at its attachment point relative to the base;
Au(r)=u,(r)—u,(t)=relative displacement between the two equip-
ment items; and the function f,(Au,Atui,z) denotes the resisting
force of the RB-FSC as described by Eq. (1) with Au and Au
replacing x and X, respectively. The auxiliary variable z is defined
by the generalized Bouc—Wen model as described by Egs. (2) and
(6).

Among several methods available for solving the above sys-
tem of nonlinear differential equations, one convenient method is
to reduce the second-order differential equation to the first order
and then solve it by use of a numerical algorithm. The equations
of motion of the connected system in Egs. (17)—(19) are reduced
to a first-order, state-space equation of the form

y=g(y) +f (20)

where

y={u; ity uy iy Z}T (21)

(b)
5 10 15 20
Time, sec

Fig. 8. Displacement time histories of lower-frequency equipment
item in RB-FSC (PG&E 30-2022) connected system for Tabas LN
record: (a) modified Bouc—Wen model with time-varying parameters;
and (b) generalized Bouc—Wen model

( . A
i

ki + akg ¢ +c¢o ak co (1 =)k,
—( Uy — U+ —uy+ —ur+ z
m m m m m

2(y) = ly )
aky Co . <k2 + ak[)) <C2 + Co) . (I =a)ky
Uy — Uy — z

—upt+—u—
my my my my my
\ Z2(Au,Au,z) )
(22)
! L '
f={0 — =5, 0 - =, 0} (23)
my - my

The fourth-order, adaptive Runge—Kutta—Fehlberg algorithm
(Fehlberg 1969) is used with a relative tolerance of 107° to solve
the above system of equations for a deterministically specified
base acceleration.

As an example, we consider a system having the parameter
values m;=1,090 kg, m,=545 kg, k;=172 kN/m, k=538 kN/m,
I,/m=l,/my=1.0, and {;=c;/(2ym;k;)=0.02, i=1,2. Note that
equipment 1 has the stand-alone natural frequency
\172,000/1,090/27w=2 Hz, while the stand-alone natural
frequency of equipment 2 is y538,000/545/2mw=5 Hz. For the
RB-FSC, PG&E 30-2022 is selected with the hysteretic model
parameter values given in the previous subsection. No viscous
damping is assumed for the RB-FSC so that ¢;=0. The connected
system is assumed to be subjected to the longitudinal record of
the Tabas 1978 earthquake (Tabas LN). Hereafter, we refer to
equipment 1 as the lower-frequency equipment item, and equip-
ment 2 as the higher-frequency equipment item.

Figs. 8 and 9 show the displacement time histories of the
lower- and higher-frequency equipment items, respectively, as
computed using the generalized Bouc—Wen model and the model
developed by Der Kiureghian et al. (2000) with time-varying pa-
rameters. Recall that the latter model practically coincides with
the experimental hysteresis loops. Hence, the responses computed
by this model can be considered as the “exact” behavior. By com-
paring the pair of results in each figure, it is seen that the re-
sponses computed using the proposed generalized Bouc—Wen
model are practically identical to the “exact” results. In particular,
the maximum relative displacement between the two equipment

JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2006 / 615
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Fig. 9. Displacement time histories of higher-frequency equipment
item in RB-FSC (PG&E 30-2022)-connected system for Tabas LN
record: (a) modified Bouc—Wen model with time-varying parameters;
and (b) generalized Bouc—Wen model

items predicted by both models is 0.098 m, which shows that the
RB-FSC experiences significant nonlinear deformation. This is
confirmed by the hysteresis loops depicted in Fig. 10 for both
models. It is noted that the time-history analysis with the gener-
alized Bouc—Wen model is much more efficient, since its param-
eters are not functions of time.

Nonlinear Random Vibration Analysis
of Interconnected Equipment Iltems

Due to the highly uncertain nature of earthquake ground motions,
for design purposes it is important to have an estimate of the
response based on a stochastic model of the ground motion rather
than any selected accelerogram. Moreover, as we have seen, the
behavior of an RB-FSC in general is nonlinear and hysteretic in
nature. These two factors give rise to the need for a nonlinear
random vibration analysis method.

3
Modifed Bouc-Wen
Generalized Bouc-Wen
2 4
=z 1 1
X
[
e
S
“ oo
L
[=
O
N
£ 4
2
-3

0.1 -0.075 -0.050 -0.025 0 0.025 0.050 0.075 0.1
Relative Displacement, meter

Fig. 10. Force-elongation hysteresis loops of RB-FSC (PG&E
30-2022) in interconnected system subjected to Tabas LN record
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In the field of earthquake engineering, the Bouc—Wen class
hysteresis models have been widely used for nonlinear random
vibration analysis by use of the ELM (Wen 1980; Baber and Wen
1981; Wen and Yeh 1989; Schuéller et al. 1994; Kimura et al.
1994; Hurtado and Barbat 1996). Closed-form expressions avail-
able for the coefficients of the corresponding equivalent linear
systems greatly facilitate the iterative processes of ELM for these
models. Herein, the proposed generalized Bouc—Wen model is
applied to ELM analysis of the interconnected equipment system
to investigate the effect of dynamic interaction.

Assuming the response is nearly Gaussian, the nonlinear dif-
ferential equation in the last row of Eq. (22) is replaced by the
equivalent linear equation Eq. (9). As a result, the nonlinear state-
space equation Eq. (20) is linearized into y=Gy+f, where G
denotes the equivalent linear coefficient matrix. When the base
acceleration X, is a stationary, delta-correlated process (including
white noise), the differential equation governing the covariance
matrix S=E[yy"] of the state vector y must satisfy (Lin 1967)

GST+SGT+B=0 (24)

where B;;=0 except By=27(l;/m,)*®, and By=2w(ly/m,)*®,,
where ®y=power spectral density of X,. This equation is solved
by an iterative scheme (Wen 1980), since matrix G involves the
coefficients of the equivalent linear system, which are functions
of the second moments in the covariance matrix S. An equation of
the form Eq. (24) can also be derived for the case of a filtered
white-noise input process X,(¢) by augmenting the equations of
motion with the equation of the filter (Wen 1980; Song 2004).
Here, we consider the filter suggested by Clough and Penzien
(1993), which characterizes the ground acceleration process with
a Kanai—Tajimi power spectral density having a dominant fre-
quency of w, (the filter frequency), bandwidth parameter ¢, (the
filter damping ratio), and an intensity parameter @,

In order to quantify the effect of dynamic interaction in ran-
dom vibration analysis, Der Kiureghian et al. (1999) introduced
the ratio of root-mean-square (rms) responses

R= b)) (25)
rms[u;0(1)]

where rms[-] denotes a rms value, and u;(¢) and u;)() respectively,
denote the displacements of equipment i in the connected and
stand-alone configurations at time . For a stationary response,
these ratios are of course invariant of time. It should be clear that
a response ratio with a value greater (respectively, smaller) than
unity indicates that the interaction effect amplifies (respectively,
deamplifies) the response of the equipment item in the connected
system relative to the response in its stand-alone configuration.
Thus, R;s are good measures of the dynamic interaction effect
between the connected equipment items.

As an example, consider two equipment items connected by
three RB-FSCs. The system parameters have the values
m;=401kg, m;=200kg, k=158 kN/m, k=198 kN/m,
li/my=1,/my,=1.0, ¢y=0, and {;=c;/(2\ymk;)=0.02, i=1,2. The
selected FSC is PG&E 30-2022, which is idealized by the gener-
alized Bouc—Wen model with the parameter values describe ear-
lier. Since three RB-FSCs are used, the initial stiffness is
kg=3X35.6=106.8 kN/m. For the ground acceleration, a zero-
mean, stationary Gaussian, filtered white-noise process having the
Kanai-Tajimi power spectral density with w,=5m rad/s and
{,=0.6 is used. The intensity parameter, ®,, is varied to examine
the variation in the nonlinearity of the system with increasing
intensity of the ground motion, as measured in terms of the rms
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Fig. 11. Response ratios for equipment items connected by three
parallel RB-FSC (PG&E 30-2022): (a) lower-frequency equipment
item; and (b) higher-frequency equipment item

acceleration in units of gravity acceleration. Roughly speaking,
the rms acceleration is a factor 1/2 to 1/3 of the peak ground
acceleration.

The rms response ratios in Eq. (25) are evaluated by three
different approaches: (1) nonlinear random vibration analysis by
use of the ELM for the system with the proposed generalized
Bouc—Wen model of the FSC; (2) linear random vibration analy-
sis by use of the initial stiffness of the RB-FSC obtained by set-
ting a=1.0 in the nonlinear random vibration analysis; and (3)
nonlinear time-history analyses by use of 100 simulated ground
motions based on the specified power spectral density. In the lat-
ter case, assuming ergodicity of the response process, the rms
values are computed by time averaging the response samples over
a sufficiently long interval of time.

Fig. 11(a) shows a plot of the response ratio of the lower-
frequency equipment item, R, versus the rms value of the ground
acceleration. Fig. 11(b) shows a similar plot for the response ratio
R, of the higher-frequency equipment item. It is seen that the
estimate based on the linear random vibration analysis is a con-
stant response ratio, independent of the intensity of the ground
motion. This is because the responses of the linear systems rep-
resenting the stand-alone and connected configurations are ampli-
fied by the same ratio when the seismic intensity is increased. As
observed earlier by Der Kiureghian et al. (1999), the interaction

between the two connected equipment items results in deamplifi-
cation of the response of the lower-frequency equipment and am-
plification of the response of the higher-frequency equipment
relative to their respective stand-alone responses. For the linear
system, the de-amplification in the lower-frequency item is a fac-
tor of 0.5, whereas the amplification in the higher-frequency
equipment item is a factor of 3.7. The estimates by ELM show a
significant reduction in the response ratios of both equipment
items, depending on the intensity of the ground motion. Two fac-
tors contribute to this reduction: (1) energy dissipation by the
RB-FSC, which tends to reduce all responses of the connected
system relative to those of the linear system; and (2) softening of
the RB-FSC, which tends to reduce the interaction effect between
the two connected equipment items. The reduction in the interac-
tion effect tends to increase the response ratio for the lower-
frequency equipment item and reduce the response ratio of the
higher-frequency equipment item. The overall result is a reduc-
tion in the response ratios of both equipment items with increas-
ing intensity of the ground motion.

To examine the accuracy of the response predictions by the
ELM, time-history analyses are carried out for 100 sample func-
tions of the ground motion, which are simulated in accordance
with the specified power spectral density. As mentioned earlier,
the rms value for each response sample is computed by time
averaging over a 10 s period of stationary response. The sample
of 100 rms estimates are then used to compute the mean and
standard deviation of the response ratio according to Eq. (25). The
mean and mean =1 SD of the estimated response ratios are shown
in Fig. 11. The results show reductions in the response ratios with
increasing intensity of the ground motion, in close agreement
with the ELM predictions.

It is also worthwhile to note in Fig. 11 that the time-history
results show significant dispersion, even though the 100 sample
ground motions are consistent with a single power spectral den-
sity. This indicates the high sensitivity of the interaction effect
and the response ratios on the details of the ground motion. Under
these conditions, clearly a stochastic analysis method is essential.
In spite of its approximate nature, the ELM, incorporating the
proposed generalized Bouc—Wen model, offers a viable and accu-
rate alternative for this purpose.

Summary and Conclusions

A generalized Bouc—Wen model is developed to describe highly
asymmetric hysteresis with applicability to nonlinear time-history
analysis and nonlinear random vibration analysis by use of the
ELM. Based on an anatomic examination of the shape-control
mechanism of existing Bouc—Wen class models, a new Bouc—
Wen-type model is proposed that offers enhanced flexibility in
shape control so that it can describe highly asymmetric hysteresis
loops with time-invariant parameters. This is made possible by
introducing an equation that describes the relation between the
shape-control parameters and the slopes of the hysteresis loop in
different phases. The equation helps to efficiently identify the
shape-control parameters in conjunction with available parameter
identification methods.

For nonlinear random vibration analysis by use of the ELM,
closed-form expressions for the coefficients of the equivalent lin-
ear system are derived in terms of the second moments of the
responses for the case of zero-mean, stationary Gaussian pro-
cesses. As an example application, the proposed model is used to
describe the hysteretic behavior of FSCs, which are commonly
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employed in the industry to connect electrical substation equip-
ment items. The proposed model successfully describes the asym-
metric hysteresis loops of the existing FSCs as observed in labo-
ratory experiments.

The proposed model is used to investigate the effect of dy-
namic interaction between connected equipment items. Nonlinear
time-history and ELM random vibration analyses consistently
show that the interaction effect tends to deamplify the response of
the lower-frequency equipment relative to its stand-alone re-
sponse, and to amplify the response of the higher-frequency item
relative to its stand-alone response. With increasing intensity of
the ground motion, the interaction effect decreases due to increas-
ing flexibility of the connecting FSC as it yields.

Acknowledgments

This paper is based on research supported by the Lifelines Pro-
gram of the Pacific Earthquake Engineering Research Center
funded by the Pacific Gas & Electric Co. and the California En-
ergy Commission. Partial support was also provided by the Earth-
quake Engineering Research Centers Program of the National
Science Foundation (Award No. EEC-9701568) and by the
Taisei Chair in Civil Engineering. This support is gratefully
acknowledged.

References

Atalik, T. S., and Utku, S. (1976). “Stochastic linearization of multi-
degree-of-freedom nonlinear systems.” Earthquake Eng. Struct. Dyn.,
4, 411-420.

Baber, T. T., and Noori, M. N. (1984). “Random vibration of pinching
hysteretic systems.” J. Eng. Mech., 110(7), 1036-1049.

Baber, T. T., and Wen, Y. K. (1981). “Random vibration hysteretic, de-
grading systems.” J. Eng. Mech. Div., Am. Soc. Civ. Eng., 107(6),
1069-1087.

Bazant, Z. (1978). “Endochronic inelasticity and incremental plasticity.”
Int. J. Solids Struct., 14, 691-714.

Bougc, R. (1967). “Forced vibration of mechanical system with hysteresis
(Abstract).” Proc., 4th Conf. on Nonlinear Oscillation, Prague,
Czechoslovakia.

Casciati, F. (1987). “Nonlinear stochastic dynamics of large structural
systems by equivalent linearization.” Proc., 5th Int. Conf. on Applica-
tion of Statistics and Probability in Soil and Structural Engineering,
ICASPS5, Vancouver, B.C., Canada.

Clough, R., and Penzien, J. (1993). Dynamics of structures, McGraw-
Hill, New York.

Der Kiureghian, A., Hong, K.-J., and Sackman, J. L. (2000). “Further
studies on seismic interaction in interconnected electrical substation
equipment.” PEER Rep. No. 2000/01, Univ. of California, Berkeley,
Calif.

Der Kiureghian, A., Sackman, J. L., and Hong, K.-J. (1999). “Interaction

618 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2006

in interconnected electrical substation equipment subjected to earth-
quake ground motions.” PEER Rep. No. 1999/01, Univ. of California,
Berkeley, Calif.

Der Kiureghian, A., Sackman, J. L., and Hong, K.-J. (2001). “Seismic
interaction in linearly connected electrical substation equipment.”
Earthquake Eng. Struct. Dyn., 30, 327-347.

Fehlberg, E. (1969). “Klassiche Runge-Kutta formeln fiinfter und sie-
benter ordnung mit schrittweitenkontrolle.” Computing, 4, 93—106.

Filiatrault, A., Kremmidas, S., Elgamal, A., and Seible, F. (1999). “Sub-
station equipment interaction—Rigid and flexible conductor studies.”
Rep. No. SSRP-99/09, Univ. of California, San Diego, Calif.

Foliente, G. C., Singh, M. P., and Noori, M. N. (1996). “Equivalent
linearization of generally pinching hysteretic, degrading systems.”
Earthquake Eng. Struct. Dyn., 25, 611-629.

Hurtado, J. E., and Barbat, A. H. (1996). “Improved stochastic lineariza-
tion method using mixed distributions.” Struct. Safery, 18(1), 49-62.

Kimura, K., Yasumuro, H., and Sakata, M. (1994). “Non-Gaussian
equivalent linearization for stationary random vibration of hysteretic
system.” Probab. Eng. Mech., 9, 15-22.

Lin, Y. K. (1967). Probabilistic theory of structural dynamics, McGraw—
Hill, New York.

Noori, M. N., Choi, J., and Davoodi, H. (1986). “Zero and nonzero mean
random vibration analysis of a new general hysteresis model.”
Probab. Eng. Mech., 1(4), 192-201.

Park, Y. J., Wen, Y. K., and Ang, A. H. S. (1986). “Random vibration of
hysteretic systems under bi-directional ground motion.” Earthquake
Eng. Struct. Dyn., 14, 543-547.

Schuéller, G. 1., Pandey, M. D., and Pradlwarter, H. J. (1994). “Equiva-
lent linearization (EQL) in engineering practice for aseismic design.”
Probab. Eng. Mech., 9, 95-102.

Sheppard, W. F. (1899). “On the application of the theory of the error to
cases of normal distribution and normal correlation.” Philos. Trans. R.
Soc. London, Ser. A, 192, 101-167.

Song, J. (2004). “Seismic response and reliability of electrical substation
equipment and system.” Ph.D. thesis, Univ. of California, Berkeley,
Calif.

Stone, C. J. (1996). A course in probability and statistics, Duxbury, Bel-
mont, Calif.

Thyagarajan, R. S., and Iwan, W. D. (1990). “Performance characteristics
of a widely used hysteretic model in structural dynamics.” Proc., 4th
U.S. National Conf. Earthquake Engineering, Palm Springs, Calif.

Wang, C.-H., and Wen, Y. K. (1998). “Reliability and redundancy of
pre-northridge low-rise steel building under seismic excitation.” Rep.
No. UILU-ENG-99-2002, Univ. Illinois at Urbana-Champaign, Cham-
paign, I11.

Wen, Y. K. (1976). “Method for random vibration of hysteretic systems.”
J. Eng. Mech. Div., Am. Soc. Civ. Eng., 102(2), 249-263.

Wen, Y. K. (1980). “Equivalent linearization for hysteretic systems under
random excitation.” Trans. ASME, 47, 150-154.

Wen, Y. K. (1989). “Methods of random vibration for inelastic struc-
tures.” Appl. Mech. Rev., 42(2), 39-52.

Wen, Y. K., and Yeh, C. H. (1989). “Biaxial and torsional response of
inelastic structures under random excitation.” Struct. Safety, 6, 137—
152.





