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PROCESS AND CONNECTIONIST MODELS OF PATTERN RECOGNITION

DOMINIC W. MASSARO & MICHAEL M. COHEN

Program in Experimental Psychology, University of Califomia,
Santa Cruz, California 95064 U.S.A.

Abstract

The present paper explores the relationship between a process/mathematical model and a
connectionist model of pattem recognition. In both models, pattern recognition is viewed as
having available multiple sources of information supporting the identification and interpretation
of the input. The results from a wide variety of experiments have been described within the
framework of a fuzzy logical model of perception. The assumptions central to this process model
are 1) each source of information is evaluated to give the degree to which that source specifies
various altemnatives, 2) the sources of information are evaluated independently of one another, 3)
the sources are integrated to provide an overall degree of support for each alternative, and 4)
perceptual identification and interpretation follows the relative degree of support among the
alternatives. Connectionist models have been successful at describing the same phenomena.
These models assume interactions among input, hidden, and output units that activate and inhibit
one another. Similarities between the frameworks are described, and the relationship between
them explored. A specific connectionist model with input and output layers is shown to be
mathematically equivalent to the fuzzy logical model. It remains to be seen which framework
serves as the better heuristic for psychological inquiry.

Introduction

A growing consensus in pattern recognition is that there are multiple sources of information
that the perceiver evaluates and integrates to achieve perceptual recognition. Consider
recognition of the word performance in the spoken sentence

The actress was praised for her outstanding performance.

Recognition of the word is achieved via a variety of bottom-up and top-down sources of
information. Top-down sources include semantic, syntactic, and phonological constraints and
bottom-up sources include audible and visible features of the spoken word (Massaro, in press a,
b).

A Fuzzy Logical Framework for Pattern Recognition

According to the this framework, well-leamed patierns are recognized in accordance with a
general algorithm, regardless of the modality or particular nature of the patterns (Massaro, 1979;
1984a, 1984b, in press b; Oden, 1978, 1981). The model has received support in a wide variety
of domains and consists of three operations in perceptual (primary) recognition: feature
evaluation, feature integration, and pattern classification. Continuously-valued features are
evaluated, integrated, and matched against prototype descriptions in memory, and an
identification decision is made on the basis of the relative goodness of match of the stimulus
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information with the relevant prototype descriptions. The model is called a fuzzy logical model
of perception (abbreviated FLMP).

Central to the FLMP are summary descriptions of the perceptual units (Oden & Massaro,
1978). These summary descriptions are called prototypes and they contain a conjunction of
various properties called features. A prototype is a category and the features of the prototype
correspond to the ideal values that an exemplar should have if it is a member of that category.
The exact form of the representation of these properties is not known and may never be known.
However, the memory representation must be compatible with the sensory representation
resulting from the transduction of the input. Compatibility is necessary because the two
representations must be related to one another. To recognize an object, the perceiver must be able
to relate the information provided by the object itself to some memory of the object category.

Prototypes are generated for the task at hand. The sensory systems transduce the physical
event and make available various sources of information called features. During the first
operation in the model, the features are evaluated in terms of the prototypes in memory. For each
feature and for each prototype, feature evaluation provides information about the degree to which
the feature in the speech signal matches the corresponding feature value of the prototype.

Given the necessarily large variety of features, it is necessary to have a common metric
representing the degree of match of each feature. Two features must share a common metric if
they eventually are going to be related to one another. To serve this purpose, fuzzy truth values
(Zadeh, 1965) are used because they provide a natural representation of the degree of match.
Fuzzy truth values lie between zero and one, corresponding to a proposition being completely
false and completely true. The value .5 corresponds to a completely ambiguous situation whereas
.7 would be more true than false and so on. Fuzzy truth values, therefore, not only can represent
continuous rather than just categorical information, they also can represent different kinds of
information. Another advantage of fuzzy truth values is that they couch information in
mathematical terms (or at least in a quantitative form). This allows the natural development of a
quantitative description of the phenomenon of interest.

Feature evaluation provides the degree to which each feature in the stimulus matches the
corresponding feature in each prototype in memory. The goal, of course, is to determine the
overall goodness of match of each prototype with the stimulus. All of the features are capable of
contributing to this process and the second operation of the model is called feature integration.
That is, the features (actually the degrees of matches) comesponding to each prototype are
combined (or conjoined in logical terms). The outcome of feature integration consists of the
degree to which each prototype matches the stimulus. In the model, all features contribute to the
final value, but with the property that the least ambiguous features have the most impact on the
outcome.

The third operation during recognition processing is pattern classification. During this
stage, the merit of each relevant prototype is evaluated relative to the sum of the merits of the
other relevant prototypes. This relative goodness of match gives the proportion of times the
stimulus is identified as an instance of the prototype. The relative goodness of match could also
be determined from a rating judgment indicating the degree to which the stimulus matches the
category. The pattern classification operation is modeled after Luce’s (1959) choice rule. In
pandemonium-like terms (Selfridge, 1959), we might say that it is not how loud some demon is
shouting but rather the relative loudness of that demon in the crowd of relevant demons. Two
important predictions of the model are 1) two features can be more informative than just one and
2) a given feature has a greater effect to the extent a second feature is ambiguous.
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Relationship to Connectionist Models

The framework provided by the FLMP anticipated many of the distinguishing properties of
new connectionism ( Massaro, 1986a, 1986b; Oden & Rueckl, 1986). A connectionist model of
perception (CMP) also is an information-processing system having and manipulating information
(McClelland & Rumelhart, 1986). The information is represented in terms of the activations and
inhibitions of neural-like units. The units are assumed to exist at different levels; for example,
the TRACE model of speech perception (McClelland & Elman, 1986) consists of units at the
feature, phoneme, and word levels. The units interact with one another via connections among
the units. The connectivity is implemented by positive and negative weights that are either
specified in advance or leamed through feedback.

A prototypical connectionist framework shares several fundamental properties with the
current theoretical framework as instantiated in the FLMP. First, both frameworks assume
continuous rather than discrete representations; the fuzzy truth values of the FLMP are analogous
to the continuous levels of activation and inhibition of connectionist models. Second, both
frameworks acknowledge the existence of multiple simultaneous constraints on human
performance. Both frameworks provide an account of the evaluation and integration of multiple
sources of information in pattern recognition. Third, there is the parallel assessment of multiple
candidates or hypotheses at multiple levels in both models. Fourth, both frameworks provide a
common metric for relating qualitatively different sources of information. In the FLMP, each
source of information is represented by fuzzy truth values representing the degree to which
alternative hypotheses are supported. Activation level plays the analogous role in connectionist
models. Fifth, the automatic categorization of a novel instance can be accomplished in both
frameworks. Finally, both frameworks conceptualize pattern recognition as finding the best fit
between the relevant constraints and the pattern that is perceived.

The close fit between the present framework and connectionism dictates an exploration of
their similarities and differences. Although the two frameworks appear to agree on important
theoretical criteria, the specific models to date differ in terms of the amount of connectivity in the
system. The FLMP assumes no top-down influences of a higher-level unit on activation of a
lower-level unit and no inhibition among units at a given level. Connectionist models, such as
the interactive activation models of written word recognition and speech perception, usually
make both of these assumptions. As presently formulated, many of the connectionist models
with two-way connections among different levels of units and connectivity among units at a
given level are too powerful. They are capable of predicting not only observed results but also
results that do not occur (Massaro, 1986a). That is, some connectionist models can simulate
results that have not been observed in psychological investigations and results generated by
incorrect process models of performance (Massaro, in preparation).

Mathematical Equivalence of Two Models

It can be shown that the FLMP makes mathematically equivalent predictions to those made
by a two-layer CMP, with input and output units. As in all instantiations of a theory, particular
assumptions must be made about the description of the results of interest. Different assumptions
would probably change the relationship between the two models. The models are compared in an
expanded factorial designs in which two or more dimensions of information are varied
independently of one another in a pattern recognition task. Each of the dimensions is also
presented alone. Labeling the dimensions as X and Y, X; would correspond to the ith level of
the X dimension. Similarly, ¥; would correspond to the jth level of the Y dimension. A given
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stimulus composed of a single dimension would be labeled X; or Y;, and a given combination
would be represented by X; Y;.

Evaluation Integration Classification
— X —s
i | » Aij a - Rij
Y_ - - y_ ———t

)

Fligure 1. Schematic representation of the three operations involved in perceptual recognition,
according to the fuzzy logical model of perception.

Figure 1 illustrates the three stages involved in pattern recognition. The sources of
information are represented by uppercase letters. The evaluation process transforms these into
psychological values (indicated by lowercase letters) that are then integrated to give an overall
value. The classification operation maps this value into some response, such as a discrete
decision or a rating.

The FLMP assumes three operations between presentation of a pattern and its
categorization, as illustrated in Figure 1. Feature evaluation gives the degree to which a given
dimension supports each test alternative. The physical input is transformed to a psychological
value, and is represented in lowercase. For a given response alternative A;;, X; would be
transformed to x;, and analogously for dimension ¥;. Each dimension provides a feature value at
feature evaluation. Feature integration consists of a multiplicative combination of feature values
supporting a given alternative A;;. If x; and y; are the values supporting alternative A;;, then the
total support for the altenative A;; would be given by the product x; y;.

A;j - X Yj.

The third operation is pattern classification, which gives the relative degree of support for
each of the test alternatives. In this case, the probability of an A;; response given XiYj is

P(A; 1X;Y))= 22 (1)

where ¥ is equal to the sum of the merit of all relevant alternatives, derived in the same manner
as illustrated for alternative A;;.

The CMP is assumed to have an input layer and an output layer, with all input units
connected to all output units. It is assumed that each level of each dimension is represented by a
unique unit at the input layer. Each response alternative is represented by a unique unit at the
output layer. Figure 2 gives a schematic representation of two input units connected to a single
output unit.

An input unit has zero input, unless its corresponding level of the stimulus dimension is
presented. Presentation of an input unit’s target stimulus gives an input of one. The activation of
an output unit by an input unit is given by the multiplicative combination of the input activation
and a weight w. With two active inputs X; and Y}, the activation entering output unit A would be

A I xi+y;

where x;=w; X; and y,=w; Y;. The total activation leaving an output unit is given by the sum of
the input activations, passed through a sigmoid squashing function (McClelland & Rumelhart,
1986).
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Figure 2. Nlustration of connectionist model with two input units and one output unit.

- 1
A 1+ = ¥

A connectionist model does not specify completely the input-output relationship. The output
activations have to be mapped into a response, and Luce’s choice rule is usually assumed to
describe this mapping (McClelland & Rumelhart, 1985). Taking this tack, the activation A;;
transformed into a response probability by Luce’s choice rule gives

1

P(A;; 1X; ;)= 1re 2"

2
where ¥ is equal to the sum of the activations of all relevant outputs, derived in the manner
illustrated for alternative A;;.

The FLMP does not specify the psychophysical relationship between the physical stimulus
and its sensory transformation. Neither does a connectionist model; both models require free
parameters to specify this relationship. The free parameters are weights in the connectionist
model and truth values in the FLMP. A unique weight is assumed for each level of each
dimension in the CMP, and a unique truth value is required for each level of each dimension in
the FLMP. Thus, the same number of free parameters is required by the two models. The
number of free parameters is equal to the number of levels of the X dimension plus the number of
levels of the Y dimension. Although a threshold unit is sometimes assumed in connectionist
models, no such unit is assumed here. We also have Luce’s choice rule operating for both the
CMP and the FLMP. In this case, a formal equivalence between the two models exists if adding
the weighted activations at input and transformed by the sigmoid squashing function is
mathematically equivalent to multiplying fuzzy truth values. Given that the CMP’s activated X;
and ¥; input units are equal to one, the activations entering an output unit are equal to w; and w;.

It follows that the activation of an output unit in the CMP is predicted to be W The

degree of support for a given test altemative for the FLMP is equal to x; y;.

The truth values in the FLMP are constrained between zero and one, following the
assumption of fuzzy logic (Zadeh, 1965). Accordingly, x; y; must lie between zero and one. The
sigmoid squashing function also takes on values only between zero and one, even though the
weights are unbounded. It follows that the models can make mathematically identical predictions

because 1) for every x;, there is a w;, and 2) for every y;, there is a w; such that ﬁ——rlm
e L]

equals x; y;. It can be shown that there exists a correspondence between these predictions such
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that equivalent predictions can be made by the two models.
X yj= m,l.w 3

The proof of the above equivalence is most obvious for the single-dimension conditions of
the expanded factorial design. There exists a unique relationship between the weights in the
CMP and the truth values in the FLMP if an expanded factorial design is used. In this case, it can

be proved that WL&TI’ equals x; and -l_-;l:r;ir equals y;. Equivalently, weight w; equals

—=In (-}—_ - 1). Data from an expanded factorial design always give only one set of parameters for

the FLMP, and also force the CMP to come up with a unique set of mathematically equivalent
weights. Given this equivalence, we can translate directly between the two kinds of parameters.
We might argue also that the truth values are more informative in the FLMP analysis because it is
easy to conceptualize values between 0 and 1, and the truth value gives the contribution of a
source of information uncontaminated by other sources. This latter feature is another value of
independence models relative to models with high interconnectivity, in which the contribution of
one source can not be pulled apart from the contribution of other sources.

Similar predictions exist for three or more stimulus dimensions and three or more response
alternatives. Increasing the number of response alternatives does not change the relationship
between the two models because this increase only affects the number of outputs, and these are
handled equivalently by Luce’s choice rule in both models. Increasing the number of dimensions
adds the same number of terms to both models, preserving the equivalence shown in Equation 3.
In the FLMP, the three dimensions of support for alternative A;; would be

Aij  XiYjin

In the CMP, the activation of three input units would give

L 1
AU . 1+e:!x,- +y,-+:.|

where x; =w; X;, yj =w; Y;, and zx =wy Z;. The total activation of an output unit is given by
the sum of the three input activations passed through the sigmoid squashing function, and so on
for a larger number of inputs.

The FLMP specifies mathematically evaluation and integration processes. The CMP
implements evaluation and integration by activations and inhibitions between input units and
output units. Evaluation corresponds to the activation along a single connection between an input
unit and an output unit. Integration in the CMP corresponds to the sum of all the activations
entering a given output unit, and transformed by the sigmoid squashing function. The
correspondence between the FLMP and CMP reveals that the two models, couched in different
theoretical frameworks, can make identical predictions in practice. A remaining issue is how
process and connectionist models differ from one another, and whether there is an advantage of
one over the other.
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