
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
TCP-RTA: Real-Time Topology Adaptiveness for Congestion Control in TCP

Permalink
https://escholarship.org/uc/item/4qm1b516

Authors
Srinivasan, Ramesh
Garcia-Luna-Aceves, J.J.

Publication Date
2022-10-01

Data Availability
The data associated with this publication are within the manuscript.
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qm1b516
https://escholarship.org
http://www.cdlib.org/


TCP-RTA: Real-time Topology Adaptive
Congestion Control Strategy in TCP

Ramesh Srinivasan1[0000−0002−2680−7254]

J. J. Garcia-Luna-Aceves1[0000−0001−9914−6031]

University of California, Santa Cruz, CA 95064, USA

Abstract. The congestion-control mechanisms currently implemented
in different variants of the Transmission Control Protocol (TCP) do not
account for the possibility that an inherent topology change is the cause
of changes in the perceived end-to-end round-trip time (RTT) in a TCP
session, rather than network congestion. This results in low throughput
and inefficient use of the available bandwidth, when a topology change is
the real cause of the change in RTT. We introduce TCP-RTA (TCP Real-
time Topology Adaptiveness), a TCP variant that dynamically detects
a topology change and in real-time adapts to an appropriate congestion-
control strategy in order to maximize the effective use of the total avail-
able bandwidth. Simulation results indicate a throughput increase of
more than 35% in scenarios involving dynamic topology changes in the
midst of a TCP session.

Keywords: TCP · Real-time · Congestion-Control.

1 Introduction

The congestion-control mechanisms that are used in the Transmission Control
Protocol (TCP) today are not able to detect changes in the underlying topol-
ogy that lead to drastic changes in the round-trip time (RTT) experienced in
a TCP session. Instead, TCP senders interpret such changes as the presence
of congestion. Furthermore, current TCP implementations reply on a specific
congestion-control strategy that is fixed for the duration of a TCP session. This
is rapidly becoming a major limitation of TCP in today’s Internet, because of
two key factors. First, the proliferation of very different types of transmission
media that have disparate bandwidth-delay products and reliability renders the
use of a single congestion-control strategy that is unaware of the impact of the
underlying topology on the delays of TCP sessions highly ineffective. Second, end
user applications and deployment scenarios including Anglova [15] require con-
tinuous availability of services, service providers need to attain the most efficient
use of the available bandwidth over wired or wireless links, and more and more
end users are mobile. Hence, the original approach used in TCP of interpreting
increases in delay as the ensuing of congestion must be revisited to account for
the fact that a given TCP session may use different types of transmission media
as end users move and different transmission media are used as a result.



2 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

The key contribution of this paper is the introduction of a new approach
to congestion-control in TCP that uses different congestion-control algorithms
depending on the perceived use of different underlying transmission media re-
sulting from changes in the measured RTT within ongoing TCP sessions. The
approach uses a congestion-control algorithm that is best suited for a given range
of RTT values and switches among different algorithms as needed. This is par-
ticularly relevant for the support of TCP sessions involving end-devices that are
mobile during the midst of an ongoing TCP session. In addition, the proposed
approach to congestion control in TCP is particularly attractive for future de-
ployments of 5G networks and beyond, because it easily accommodates the use
of heterogeneous transmission media.

Section 2 discusses related work. As our survey of prior variants of TCP
reveals, TCP variants in the past have rely on a single congestion-control algo-
rithm. The closest approach to our work is D-TCP (Dynamic TCP) [22], wherein
the bandwidth-delay product is dynamically computed and a congestion metric
derived off this computation. This is then used to determine the response of the
congestion control algorithm to increase/decrease the congestion window dur-
ing the RTT update and loss detection. However, this is done within a single
algorithm and it is not very robust.

Section 3 presents the approach and architecture of TCP-RTA (TCP with
Real-Time Topology Adaptiveness). TCP-RTA is a new TCP variant with a
comprehensive set of enhancements, specific for dynamically detecting topology
changes and according adapting to an appropriate congestion control strategy.

Based on various studies of observed RTT for various underlying network
topologies [29], we categorize the initial starting topology of a new TCP session
being initiated based on the observed RTT values during the initial three-way
handshake. Thereafter the RTT values are monitored and anytime three consecu-
tive RTTs change and in the range of a different underlying topology, TCP-RTA
dynamically enables a change to the corresponding specific congestion-control
strategy for the perceived topology being perceived. This ensures that the ongo-
ing TCP session has the best congestion-control strategy in place for the topol-
ogy being used by the connection. TCP-RTA invokes separate congestion-control
algorithms for each of the specific topology being perceived through RTT mea-
surements.

Section 4 describes the results of simulations conducted with TCP-RTA and
with other deployed TCP versions including TCP Cubic and Section 5 outlines
and compares the results observed. Section 6 concludes the paper.

2 Related Work

We provide a survey of the various versions of TCP that are deployed currently,
and the way they handle the introduction of wireless links. A comparative study
of the actual approaches used in the different TCP implementations can be found
in [11].



TCP-RTA 3

There are several TCP implementations [26], including Tahoe [20], Reno [19],
New-Reno [13], TCP-SACK [24], TCP-Vegas [6], TCP-Jersey [31], TCP-DCR
[5], and TCP Santa Cruz [25] that address different short-comings of TCP.

A number of TCP variants have been proposed for high-speed network re-
quirements, including FAST [16], HSTCP [12], STCP [23], CUBIC [17], SQRT
TCP [18], TCP-Westwood [10], BIC TCP [32] Binary Increase Congestion con-
trol, TCP-Illinois [21], TCP-Hybla [8], YeAH-TCP [1], Compound TCP (CTCP)
[30], and BBR [9].

Mobile end-devices may undergo underlying topology changes during the
course of a TCP session that may be simply due to physical movement. The
resulting changes observed in end-end packet round-trip-time (RTT) would be
interpreted incorrectly as congestion in the network by existing TCP implemen-
tations.

For completeness, we note that RFC1185 and RFC1123 were among the first
initiatives to enable TCP extensions for high-speed networks.

The approaches proposed to improve TCP performance over networks with
wireless links can be divided into two major categories, namely those that work
at the transport level, and those that work at the link level. Transport-level
proposals include Explicit Bad State Notification (EBSN) [3], Freeze-TCP [14],
Indirect-TCP (I-TCP) [2], Snoop [4], fast-retransmission [7]

Snoop [4] is a well-known link level proposal. In this scheme, the base station
sniffs the link interface for any TCP segments destined for the mobile host, and
buffers them if buffer space is available. Segments are forwarded to the mobile
host only if the base station deems it necessary.

In WTCP [28] the base station is involved in the TCP connection. WTCP
[28] requires no modification to the TCP code that runs in the mobile host or the
fixed host. The base station locally retransmits lost segments based on duplicate
acknowledgment or timeouts. In the case of a timeout, a potentially wasteful
wireless transmission is avoided and interference with other channels is reduced
by quickly reducing the transmission window. WTCP [28] also hides the wireless
link errors from the source by subtracting the residence time of the segment at
the WTCP [28] buffer from the RTT value computed at the source, thus the
RTT computation excludes wireless link layer retransmission delays.

Prior work more closely related to the work presented in this paper includes
Dynamic TCP (D-TCP) [22], which implements a congestion-control algorithm
in which the bandwidth-delay product is dynamically computed and a conges-
tion metric is derived off this computation. This is then used to determine the
response of the congestion-control algorithm to increase or decrease the CWND
during the RTT update and loss detection. A single parameter is dynamically
modified and the underlying congestion-control algorithm is the same for all
scenarios and through the life-cycle of a TCP session.



4 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

3 TCP-RTA APPROACH AND ARCHITECTURE

3.1 TCP-RTA Approach

There are several congestion-control strategies customized for specific environ-
ments. Examples of these strategies include TCP Hybla [8] for satellite links,
HSTCP [12] for networks with a large bandwidth-delay product along with low-
latency, as well as some generic TCP variants like TCP NewReno [13], among
others.

We propose a new mechanism that leverages apriori categorization of values
of some TCP parameters (e.g., RTT) as corresponding to some particular un-
derlying topology characteristics. This information is used to help identify the
actual environment encountered by a TCP session at a given point during the
course of the given session. An example would be a significant consistent increase
in RTT, which wouldbe a strong indicator of a change of the environment from a
path being used in a terrestrial network to a path involving a satellite link. The
proposed mechanism would respond as follows: On detecting the significant and
consistent RTT increase, a switch of the congestion-control algorithm is enacted
from the one used in TCP NewReno [13] to the one used in TCP-Hybla’s [8].

Table 1. Definitions

Variable Definition
RTT Round Trip Time (implies end-end)

RTT-Current RTT for the most recent segment
RTT-Prev RTT for the segment prior to the last segment (prior segment)

RTT-Prev-Prev RTT for the segment prior to the prior segment

3.2 TCP-RTA Architecture

A TCP session starts with a default configuration, including a congestion-control
strategy that we have chosen to be that of TCP NewReno. However, this default
TCP configuration can be any variant of TCP that is apt for the environment of
the TCP session when it is first established. One of the proposed enhancements
for future work is the inclusion of negotiation and convergence on the initial de-
fault configuration as part of the initial three-way handshake used in connection
establishment in TCP. Comparing the observed RTT during the initial three-way
handshake with the corresponding default RTT thresholds for each environment,
the nature of the underlying topology is estimated and ais used to configure the
default initial configuration of the TCP session. For our default TCP NewReno
configuration, the RTT-threshold is accordingly initialized to 300 ms. TCP-RTA
keeps track of the last three observed RTT at any point in time: RTT-Current,
RTT-Prev and RTT-Prev-Prev. The salient steps in our proposed approach are
the following:



TCP-RTA 5

1. The three variables in Table 1 are initialized at the start of a session to the
default-RTT-threshold (300ms in our environment).

2. After receipt of an acknowledgement and the corresponding immediate com-
putation of the observed RTT (RTT-new), the following variables are up-
dated:
i RTT-Prev-Prev with RTT-Prev
ii RTT-Prev with RTT-Current
iii RTT-Current with RTT-new

3. If the three consecutive observed values of RTT are all above 800 ms, an
inference is made that there must have been an underlying topology change.
Based on some of the observed RTT times for TCP sessions going over a
satellite link [8], it is assumed that the path now involves a satellite link.
Hence, a change is made in the congestion-control strategy that is more apt
for the newly observed environment that includes a path witha significantly
larger delay (typically attributed to a satellite link), namely TCP Hybla [8].

4. If only one or two of the observed RTT values are above the 800 ms threshold
and subsequently the RTT comes back to prior regular values, then these
transients are ignored and the congestion-control strategy is left unchanged.

5. The above steps are repeated until the end of the TCP session, with an ad-
ditional check happening after every update to the observed RTT. If the last
three observed RTT values are all below RTT-threshold for a non-satellite
link, which we have set as 300 ms based on reported observations in [8], the
algorithm reverts back the congestion-control strategy of TCP NewReno.

Algorithm 1 depicts the control flow of the newly proposed dynamic TCP-
RTA and its congestion-control strategy. The underlying premise is that, if there
is a distinct change suddenly observed in the RTT and that change is consistently
maintained for at least three consecutive segments back to back without any
packet loss, then the cause of such a change is assumed to be an underlying
topology change rather than sporadic congestion in the network.

Since TCP does not know whether a delayed ACK is caused by a congestion
experienced by a segment or possibly a topology change, it waits for a small
number of additional ACKs to be received. It is assumed that, if there is just a
temporary increase in RTT, there will be typically one or two delayed ACKs at
most before either the RTT returns to prior normal values or it increases more
and possibly ends in a timeout and a packet drop. The underlying premise is
that any network congestion scenario is not a stable condition that would quickly
either return to normalcy or become worse. So, if there are three or more ACKs
consistently delayed by similar value and received in a row, then it can be taken
as a strong indication that the segments are most probably using a new path
(topology) with a different (increased or decreased) RTT.

We ensure the hand-off happens seamlessly from the current congestion-
control strategy to the appropriate target congestion-control strategy for the
newly identified topology to which the network has transition to. This is partic-
ularly relevant for mobile end-nodes that are ubiquitous with the proliferation
of 5G technology.



6 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

Algorithm 1 TCP-RTA-Overview

1: Def RTT TCP NEWRENO = 500
2: Def RTT TCP HYBLA = 800
3: m adaptiveAlgProg = TCP NEWRENO
4: RTT-Current = Def RTT TCP NEWRENO
5: RTT-Prev = Def RTT TCP NEWRENO
6: RTT-Prev-Prev = Def RTT TCP NEWRENO

do
7: if (m adaptiveAlg == TCP NEWRENO) then
8: if ((RTT-Current > Def RTT TCP HYBLA) &&

(RTT-Prev > Def RTT TCP HYBLA) &&
(RTT-Prev-Prev > Def RTT TCP HYBLA)) then

9: m adaptiveAlg = TCP HYBLA;
10: end if
11: else if (m adaptiveAlg == TCP HYBLA) then
12: if ((RTT-Current < Def RTT TCP NEWRENO) &&

(RTT-Prev > Def RTT TCP NEWRENO) &&
(RTT-Prev-Prev > Def RTT TCP NEWRENO)) then

13: m adaptiveAlg = TCP NEWRENO;
14: end if
15: end if
16: wait till next ACK recd;
17: RTT-new = ComputeNewRTT();
18: RTT-Prev-Prev = RTT-Prev;
19: RTT-Prev = RTT-Current;
20: RTT-Current = RTT-new;

while (TCP Session is still active)

The TCP-RTA approach also ensures that the adaptive congestion-control
strategy does not respond to any sporadic one-off drastic behaviour in the TCP
parameters in any significant manner. Another significant aspect of the proposed
approach is that one-off sporadic changes are not even passed onto the TCP
congestion-control mechanism, effectively acting like a low-pass filter preventing
these exceptions from impacting the parameters impacting the throughput and
performance of the TCP session.

TCP-RTA incorporates the following additional list of enhancements:

1. Slow Start Enhancement in TCP NewReno, cwnd is increased by one
segment per acknowledgment. In TCP-RTA, cwnd is changed to SegAcked
* Segment size. (similar to Cubic [17])

2. Congestion Avoidance Enhancement In TCP NewReno, cwnd is in-
creased by (1/cwnd) In TCP-RTA, the following changes are introduced: In
congestion avoidance phase, the number of bytes that have been ACKed at
the TCP sender side are stored in a ‘bytes acked’ variable in the TCP con-
trol block. When ‘bytes acked’ becomes greater than or equal to the value



TCP-RTA 7

Algorithm 2 TCP-RTA::SlowStart

1: input Ptr SocketState, segmentsAcked
2: if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP NEWRENO) then
3: sndCwnd = tcb→ m cWnd;
4: tcb→m cWnd = min((sndCwnd+(segmentsAcked*tcb

→m segmentSize)),tcb →m ssThresh);
5: return segmentsAcked-((tcb →m cWnd-sndCwnd) / tcb

→m segmentSize);
6: else if (segmentsAcked ≥ 1 && m adaptiveAlg == TCP HYBLA) then
7: /* slow start
8: INC = 2ρ - 1 */
9: increment = pow(2, m ρ) - 1.0;

10: incr = increment*tcb→m segmentSize;
11: tcb→m cWnd = min (tcb→m cWnd + incr, tcb→m ssThresh);
12: return segmentsAcked - 1;
13: end if
14: return 0;

of the cwnd, ‘bytes acked’ is reduced by the value of cwnd. Next, cwnd is
incremented by a full-sized segment (SMSS). (Similar to Linux Reno [19]
implementation)

3. On Fast restransmit, we update ssthresh to half of current cwnd: ssthresh =
bytesinflight/2; In order to recover faster, it is enhanced as follows: sstresh
= (bytesInFlight * 2) /3.

4. Default boost of a factor of 10 (constant) of the Bandwidth*Delay product
while switching from LAN to Satellite and vice versa.

TCP-RTA does not change any of the fairness with respect to other TCP co-
existing as the underlying congestion control strategy adopted by us is that of
TCP-Hybla, when the topology change is detected through a consistent increase
in RTT. The fairness of TCP-Hybla and earlier that of TCP NewReno has
been already established and proven and thus its applicable here as well. Even
in the transition from congestion control strategies from TCP-Hybla to TCP
NewReno, the only change is our non-responsiveness to transients and that too
for only three segments. Thus fairness is guaranteed.

4 Testing and Simulation

We evaluated the performance of TCP-RTA using the ns-3 discrete-event sim-
ulator. The ns-3 simulator provides substantial support for simulation of TCP,
routing, and multicast protocols over wired and wireless (local and satellite)
networks. The TCP implementation was modified to support the new proposed
protocol including several of the enhancements listed earlier.

Numerous scenarios and options were tried out to validate the gains and
benefits of the proposed approach. After our analysis of the various findings,



8 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

Algorithm 3 TCP-RTA::CongestionAvoidance

1: input‘ Ptr SocketState, segmentsAcked
2: if (segmentsAcked > 0 && m adaptiveAlg == TCP HYBLA) then
3: INC = ρ2 / W
4: segCwnd = tcb → GetCwndInSegments ();
5: increment = std::pow (m ρ, 2) / static cast<double> (segCwnd);
6: m cWndCnt += increment;
7: segmentsAcked -= 1;
8: end if
9: if (segmentsAcked > 0 && m adaptiveAlg == TCP NEWRENO) then

10: if (m adaptiveAlgProg ̸= ALOG INPROGRESS) then
11: w = tcb → m cWnd / tcb → m segmentSize;
12: if (w == 0) then
13: w = 1;
14: end if
15: if (m cWndCnt ≥ w) then
16: m cWndCnt = 0;
17: tcb → m cWnd += tcb → m segmentSize;
18: end if
19: m cWndCnt += segmentsAcked;
20: if (m cWndCnt ≥ w) then
21: delta = m cWndCnt / w;
22: m cWndCnt -= delta * w;
23: tcb → m cWnd += delta * tcb → m segmentSize;
24: end if
25: end if
26: else
27: m adaptiveAlgProgCnt–;
28: tcb → m cWnd = m bd / tcb → m segmentSize;
29: end if
30: if (m cWndCnt ≥ 1.0 && m adaptiveAlg == TCP HYBLA) then
31: inc = m cWndCnt;
32: m cWndCnt -= inc;
33: if (m adaptiveAlgProg ̸= ALOG INPROGRESS) then
34: tcb → m cWnd += inc * tcb → m segmentSize;
35: end if
36: else
37: tcb → m cWnd = m bd / tcb → m segmentSize;
38: end if



TCP-RTA 9

wedecided to use TCP NewReno and TCP-Hybla to simulate and study the be-
haviour for the significantly impactful change of a TCP session going through
a LAN in a home office or a corporate network to a data path involving a
satellite for wireless, which induces a highly significant additional delay in the
observed RTT. We observed the behaviour during the initial slow-start phase of
the TCP-session as well as in the congestion avoidance phase. The throughput
was observed across the above phases and during the transition of the ”underly-
ing topology”. Consistently we have seen that TCP-RTA outperforms the others
significantly in every one of the phases and across all topology transitions.

As the results below indicate, there is a clear increase in the CWND size
on transition for the satellite environment. We injected a significant delay from
the period of time starting at 5 seconds and ending at 5 seconds to simulate a
transition to a satellite back-haul and a subsequent transition back from it.

Fig. 1. CWND - TCP-RTA vs TCP Hybla vs TCP NewReno

5 Results

For our simulation studies, we earmarked RTT values, consistently observed in
the range upwards of 800ms to denote an environment/topology with a satel-
lite backhaul. Similarly, we earmarked RTT values, consistently observed in the
range downwards of 800ms for one set of experiments and for others used a lower
value 500ms, to denote a environment/topology without a satellite backhaul.

Various other RTT ranges could be added as needed to correspond to specific
topology/environments, for which we have an specific TCP variants with their



10 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

Fig. 2. TX - TCP-RTA vs TCP Hybla vs TCP NewReno

Fig. 3. CWND before transition to satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno



TCP-RTA 11

Fig. 4. CWND after transition to Satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno

Fig. 5. CWND after transition from Satellite - TCP-RTA vs TCP Hybla vs TCP
NewReno



12 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

Fig. 6. TX after transition from Satellite - TCP-RTA vs TCP Hybla vs TCP NewReno

own congestion-control algorithm to provide the best optimal bandwidth usage
and performance for that environment. It can be observed from the results that
there is a significant boost in the congestion-window size when the transition to
a satellite link happens, with its corresponding increase in the bandwidth-delay
product, as can be seen in the Figure 4. Similarly, it can be observed in the
usage of the network bandwidth close to 33% increase on the average across
many simulation scenarios. However, for the very specific transitory phase to a
satellite link in Figure 6, the throughput increase is almost twice that of TCP
Hybla as well as TCP NewReno.

6 Conclusion and Future Work

TCP-RTA provides a framework to leverage the appropriate congestion-control
strategy for a given dynamic scenario, thus ensuring we are at all times using
the network in the most optimal efficient manner. The underlying design and
approach used in TCP-RTA lends itself to seamlessly incorporating other specific
scenarios and the dynamic transition to the corresponding congestion control
strategy. Currently the mechanism used to detect a topology change is based on
RTT variations. However, our approach does not preclude using other metrics
or a combination of metrics to identify and determine any significant network
change. Future work could involve using TCP-RTA in tandem with ECN[27] to
clearly differentiate between longer RTTs due to real congestion versus due to
topology change.



TCP-RTA 13

References

1. Baiocchi, A., Castellani, A.P., Vacirca, F.: Yeah-tcp: yet another highspeed tcp.
In: Proc. PFLDnet. vol. 7, pp. 37–42 (2007)

2. Bakre, A.V., Badrinath, B.: Handoff and systems support for indirect tcp/ip. In:
Symposium on Mobile and Location-Independent Computing. pp. 11–24 (1995)

3. Bakshi, B.S., Krishna, P., Vaidya, N.H., Pradhan, D.K.: Improving performance
of tcp over wireless networks. In: Proceedings of 17th International Conference on
Distributed Computing Systems. pp. 365–373. IEEE (1997)

4. Balakrishnan, H., Seshan, S., Katz, R.H.: Improving reliable transport and handoff
performance in cellular wireless networks. Wireless Networks 1(4), 469–481 (1995)

5. Bhandarkar, S., Sadry, N.E., Reddy, A.N., Vaidya, N.H.: Tcp-dcr: A novel protocol
for tolerating wireless channel errors. IEEE Transactions on Mobile Computing
4(5), 517–529 (2005)

6. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: Tcp vegas: New techniques for con-
gestion detection and avoidance. In: Proceedings of the conference on Communi-
cations architectures, protocols and applications. pp. 24–35 (1994)

7. Caceres, R., Iftode, L.: Improving the performance of reliable transport protocols in
mobile computing environments. IEEE journal on selected areas in communications
13(5), 850–857 (1995)

8. Caini, C., Firrincieli, R.: Tcp hybla: a tcp enhancement for heterogeneous networks.
International journal of satellite communications and networking 22(5), 547–566
(2004)

9. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: Bbr: congestion-
based congestion control. Communications of the ACM 60(2), 58–66 (2017)

10. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: Tcp westwood:
end-to-end congestion control for wired/wireless networks. Wireless Networks 8(5),
467–479 (2002)

11. Fall, K., Floyd, S.: Simulation-based comparisons of tahoe, reno and sack tcp. ACM
SIGCOMM Computer Communication Review 26(3), 5–21 (1996)

12. Floyd, S.: Rfc3649: Highspeed tcp for large congestion windows (2003)

13. Floyd, S., Henderson, T., Gurtov, A.: Rfc3782: The newreno modification to tcp’s
fast recovery algorithm (2004)

14. Goff, T., Moronski, J., Phatak, D.S., Gupta, V.: Freeze-tcp: A true end-to-end
tcp enhancement mechanism for mobile environments. In: Proceedings IEEE IN-
FOCOM 2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies (Cat. No.
00CH37064). vol. 3, pp. 1537–1545. IEEE (2000)

15. Group, N.I..R.T.: 5g network deployment scenarios. https://anglova.net/ (2022)

16. H., C.J.D.X.W.S.: Caltechfast tcp: From theory to experiments,. Low Engineering
& Applied Science, (2005)

17. Ha, S., Rhee, I., Xu, L.: Cubic: a new tcp-friendly high-speed tcp variant. ACM
SIGOPS operating systems review 42(5), 64–74 (2008)

18. Hatano, T., Fukuhara, M., Shigeno, H., Okada, K.I.: Tcp-friendly sqrt tcp for high
speed networks. Proceedings of APSITT (November 2003) pp. 455–460 (2003)

19. Jacobson, V.: “modified tcp congestion avoidance algorithm,”. Technical Report,
(1990)

20. Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM computer com-
munication review 18(4), 314–329 (1988)



14 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

21. Jacobson, V., Braden, R., Borman, D.: Tcp extensions for high performance. Tech.
rep., RFc 1323, May (1992)

22. Kanagarathinam, M.R., Singh, S., Sandeep, I., Roy, A., Saxena, N.: D-tcp: Dy-
namic tcp congestion control algorithm for next generation mobile networks.
In: 2018 15th IEEE Annual Consumer Communications Networking Conference
(CCNC). pp. 1–6 (2018). https://doi.org/10.1109/CCNC.2018.8319185

23. Kelly, T.: Scalable tcp: Improving performance in highspeed wide area networks.
ACM SIGCOMM computer communication Review 33(2), 83–91 (2003)

24. M. Mathis, J. Mahdavi, S., Romanow., A.: “tcp selective acknowledgment options.
RFc 2018, October (1996)

25. Parsa, C., Garcia-Luna-Aceves, J.J.: Improving tcp congestion control over in-
ternets with heterogeneous transmission media. In: Proceedings. Seventh Interna-
tional Conference on Network Protocols. pp. 213–221. IEEE (1999)

26. Polese, M., Chiariotti, F., Bonetto, E., Rigotto, F., Zanella, A.,
Zorzi, M.: A survey on recent advances in transport layer protocols.
IEEE Communications Surveys and Tutorials 21(4), 3584–3608 (2019).
https://doi.org/10.1109/COMST.2019.2932905

27. Ramakrishnan, K.K., Floyd, S., Black, D.L.: The addition of explicit congestion
notification (ecn) to ip. RFC 3168, 1–63 (2001)

28. Ratnam, K., Matta, I.: Wtcp: An efficient mechanism for improving tcp perfor-
mance over wireless links. In: Proceedings Third IEEE Symposium on Computers
and Communications. ISCC’98.(Cat. No. 98EX166). pp. 74–78. IEEE (1998)

29. Sessini, P., Mahanti, A.: Observations on round-trip times of tcp connections (01
2006)

30. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound tcp approach for high-
speed and long distance networks. In: Proceedings-IEEE INFOCOM (2006)

31. Xu, K., Tian, Y., Ansari, N.: Tcp-jersey for wireless ip communications. IEEE
Journal on selected areas in communications 22(4), 747–756 (2004)

32. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (bic) for fast
long-distance networks. In: IEEE INFOCOM 2004. vol. 4, pp. 2514–2524. IEEE
(2004)




