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Cooperative Localization Using Learning-based
Constrained Optimization

Changwei Chen and Solmaz S. Kia, Senior Member, IEEE

Abstract—Loosely coupled multi-agent estimation algorithms
such as covariance intersection (CI) for track-to-track fusion, and
discorrelated minimum variance (DMV) and practical estimated
cross-covariance minimum variance (PECMV) for cooperative
localization (CL), which account for inter-agent correlations
in an implicit manner, are favored from the less frequent
communication aspect. However, they can be computationally
too expensive to be online implementable due to the costly
optimization process involved. To reduce the computational cost
while maintaining the estimation accuracy, in this paper, we
report the application of Machine learning (ML) techniques to
substitute the optimization processes by learning their optimal
solutions to reduce the computational complexity. We focus on the
CL problems and propose two data-driven approaches, namely
LDMV and LPECMV to generate the solutions of two different
constrained optimization procedures contained in implicit CL
algorithms. For LDMV, the artificial neural network (NN) tech-
nique is used to predict the scalar solution of the problem with a
single inequality constraint while in LPECMV the NN works as
a matrix predictor to learn the solution of a matrix optimization
containing linear matrix inequality (LMI) constraints. We discuss
the design of the NNs in detail to respect the constraints.
The effectiveness and the generosity of the two methods are
demonstrated via CL experiments. And the experimental results
show that both our approaches reduce the computational cost
significantly without sacrificing the localization accuracy and the
estimation consistency.

Index Terms—Keywords: Multi-agent estimation, cooperative
localization, machine learning, constrained optimization

I. INTRODUCTION

D Istributed multi-agent estimation systems, where each
agent is endowed with embedded computing, sensing,

and wireless communication abilities, are being deployed
in abundance to provide real-time monitoring and control
capabilities in many applications. Examples include vehicular
ad-hoc networks, environmental monitoring, object tracking,
and body area networks. In these multi-agent sensing systems,
to reduce communication cost and distribute computation,
agents compute and maintain their own local estimates whose
accuracies are then improved by fusing the estimates of
neighboring agents (in the case of data fusion) or using
relative measurement feedback between neighboring agents
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Figure 1 – CI produces the fused estimate (x̂+,P+(ω?)) from two
individual estimates (x̂−

l ,P
−
l ), l ∈ {1, 2} whose cross covariance

P−
12 is unknown.

(in the case of, e.g., cooperative localization (CL)). Such
acts, however, create strong correlations among the state
estimates of the agents. Neglecting the correlations often leads
to excessively optimistic estimates and even the inconsis-
tency of the estimator [1]. In sensor networks, accounting
for correlations among the state estimates of the estimation
nodes continues to be a challenging task. The approaches to
solving this problem can be classified into explicit and implicit
methods. Explicitly accounting for the correlations requires
a higher computational complexity and demands frequent
communication among correlated agents or a server [2]–[5]. In
contrast, implicit treatments, either via the use of conservative
uncorrelated estimate upper bounds to guarantee estimation
consistency or by estimating the unknown correlations, elim-
inate persistent inter-agent communications but come with
higher communication costs.

The prime example of the implicit fusion algorithms that use
conservative uncorrelated estimates is the Covariance Intersec-
tion (CI) method [6], see Fig. 1. CI has been used in various
sensor network fusion [7]–[9] and also CL problems [10]–
[13]. Alternatively, for CL, [14] proposes the discorrelated
minimum variance (DMV) relative measurement processing
method, which does not directly use the CI but is reminiscent
of the CI’s approach in using uncorrelated upper bounds on
the joint uncertainty matrix of any two estimation nodes.
To reduce the conservatism of the CI method, alternative
approaches such as Ellipsoidal Intersection (EI) [15] and
Inverse Covariance Intersection (ICI) [16] have been proposed
in the literature. CI, as well as its alternative approaches, EI
and ICI, and also DMV method, have a scalar parameter which
is chosen using an optimization process that minimizes the
total uncertainty of the fused states so that the best among the
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conservative estimates is chosen, see Fig. 1 for the graphical
presentation of the CI fusion method. The second class of
implicit methods to deal with state estimation in the absence
of correlation information trades in extra computation for a
better fusion performance by constructing the unknown cross-
covariance matrix instead of conservatively over-bounding the
joint covariance matrix of the estimates. The results in this
class include the Maximum Allocated Covariance (MAC)
of [17] and game-theoretic method of [18] for track-to-
track fusion and practical estimated cross-covariance minimum
variance (PECMV) of [14] for CL. All these three methods
estimate the unknown cross-covariance matrix of any two
nodes using a matrix optimization framework. They deliver
a less conservative estimate than CI and its variants but com-
putationally are expensive, to the point that they may not be
solved online, especially on an embedded computing system.

To reduce the computational cost of the consistent implicit
track-to-track fusion and CL methods, we propose using
machine learning (ML) based solvers to solve the optimiza-
tion problems used in these methods. We demonstrate our
approaches for solving the optimization problems in the DMV
and the PECMV methods for CL proposed in [14]. We evaluate
the effectiveness of our proposed approaches using a set
of experiments for pedestrian localization using an inertial
navigation system (INS) aided by CL. In these experiments, we
observe that the run time of the proposed approaches compared
with DMV and the PECMV is reduced 53.85% and 99.98%
with no sacrifices on the localization accuracy and estimation
consistency of CL filters. Notice that our proposed ML base
optimizer is an approach that can be easily extended to the
loosely-coupled estimation algorithms reviewed above as well
as covariance union (CU) and arithmetic average (AA) density
fusion [19].

ML-based solutions for optimization problems have been
successfully used in the applications such as combinatorial
optimization [20], wireless network optimization [21], and
supply chain management [22]. ML-based approaches have
also been used in CL problems but for different purposes. For
example, [23] uses a deep neural network (DNN) to assist a
CL for vehicular networks, where DNN is designed to solve
the chronic nonlinear approximation problem. Or, [24] uses
an ML-based surrogate model as a measurement scheduling
merit function.

II. PROBLEM DEFINITION

Consider a group of N mobile agents with communication
and computation capabilities. The equation of motion of each
agent i ∈ V = {1, · · · , N} at time step t ∈ Z+ is described by

xi(t) = f(xi(t− 1),ui
m), xi ∈ Rni (1)

where xi(t) ∈ Rni is the state of agent i (e.g., position,
velocity, attitude) and ui

m = ui(t) + νi
u is the self-motion

measurement command obtained, e.g., from odometry or in-
ertial measurement unit (IMU). Here, νi

u is the self-motion
measurement noise. Each agent uses a local filter to obtain an

estimate of its own state x̂i–(t) ∈ Rni and its corresponding
error covariance matrix Pi–(t) ∈ S++

ni at each timestep t ∈ Z+

using its motion model and occasional access to absolute
measurements through e.g. GPS or measurement from known
landmarks. Here, S++

n is the set of positive definite matrices
of size n. We call beli–(t) = (x̂i–(t),Pi–(t)) the prior belief
of agent i at time t.

Due to the contaminating noise in the self-motion measure-
ments, the localization accuracy of the agents degrades during
the mission horizon. If access to absolute measurements to
correct dead-reckoning based localization is limited, to bound
the error and improve accuracy, CL via joint processing of
occasional relative measurements among two agents is used.
Let the relative measurement (e.g., relative range, relative bear-
ing, relative pose, or a combination of them) zij(t) obtained
by agent i from agent j at time t be

zij(t) = h(xi(t),xj(t)) + νi(t), zij ∈ Rniz (2)

where νi(t) ∈ N (0,Ri(t)) is the zero mean Gaussian
measurement noise with covaraince matrix Ri(t) ∈ S++

niz
.

When no inter-agent measurement is available to update the
local belief, the updated belief is set to be the propagated
belief, i.e., beli+(t) = beli–(t) = (x̂i–(t),Pi–(t)). Otherwise,
the local belief is corrected using the fusion approaches as
briefly outlined below. For more information, see [14]. To
simplify the notation, hereafter we only include the time index
t when the clarification is needed.

A. Relative measurement processing via DMV method in
the absence of explicit knowledge of the inter-agent cross-
covariances

Let the joint belief of the agents i and j be bel–J(t) =
(x̂–

J(t),P–
J(t)), where

x̂–
J(t) =

[
x̂i–(t)

x̂j–(t)

]
, P–

J(t) =

[
Pi–(t) P–

ij(t)

P–
ij(t)

> Pi–(t)

]
. (3)

When agent i takes a relative measurement from agent j,
agent i can correct its local belief using the measurement
feedback zij(t) − ẑij(t), where ẑij(t) is the estimated relative
measurement based on agent i and j’s prior beliefs. When the
cross-covariance term P–

ij(t) is known, the feedback gain can
be computed from an Extended Kalman like update procedure.
DMV algorithm aims to process the relative measurement
zij(t) to correct the local beliefs in the absence of explicit
knowledge of the cross-covariance P–

ij(t), see [14]. In the
DMV method, similar to the joint estimate interpretation of
the data fusion problem in [25], a discorrelated upper bound
is used to account for any unknown cross-covariance term
P–

ij(t) as[
Pi–(t) P–

ij(t)

P–
ij(t)

> Pj–(t)

]
≤
[

1
ωPi–(t) 0

0 1
1−ωPj–(t)

]
, ω∈ [0, 1]. (4)

Then, the DMV algorithm updates the propagated belief of
agent i at time t, beli–(t), according to

x̂i+(t) = x̂i–(t) + K̄
i
(ωi

?) (zij(t)− ẑij(t)), (5a)
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Pi+(t) = P̄
i
(ωi

?), (5b)

where K̄
i
(ω)= Pi–

ω Hi
i
>(Hi

i
Pi–
ω Hi

i

>
+Hi

j
Pj–
1−ω Hi

j
>+Ri

)−1
, and

P̄
i
(ω) =

(
ω(Pi–)−1 + (1 − ω)Hi

i
>(Hi

jP
j–Hi

j
> + (1 −

ω)Ri)−1Hi
i

)−1
, with Hi

i = ∂h(x̂i–, x̂j–)/∂xi and Hi
j =

∂h(x̂i–, x̂j–)/∂xj . The optimal ω, denoted by ωi
?, is obtained

from the optimization problem (6)

ωi
? = argmin

0≤ω≤1
log det P̄

i
(ω). (6)

According to [14, Theorem 3.1], despite the unknown
P–

ij(t), the DMV update is guaranteed to be no worse than
the local belief of the agents.

B. Relative measurement processing via PECMV in the ab-
sence of explicit knowledge about the inter-agent cross-
covariance

Since the upper bound of DMV on the joint covariance ma-
trix accounts for all the possible values for the unknown cross-
covariance P–

ij(t), DMV produces conservative updates. To
reduce the conservatism of DMV, the PECMV [14] proposes
an alternative way in which the unknown cross-covariance X
in the joint covariance matrix

P–
J(X) =

[
Pi– X

X> Pj–

]
(7)

is estimated from the following optimization problem

X? = arg max
X

det
[
Ini
0

]>
(P–

J(X)−1+ Hi>Ri−1Hi)−1
[
Ini
0

]
,

(8a)

subject to
[
Pi– X

X> Pj–

]
> 0. (8b)

where Ini is the identity matrix. PECMV estimates P–
ij by

obtaining X? that provides the most conservative updated co-
variance. It is shown in [14] that this optimization problem can
be cast in an equivalent convex matrix optimization with linear
inequality (LMI) constraints and solved by CVXOPT [26], a
Python software for convex optimization.

Once X? is obtained from (8), the PECMV updated belief
beli+PECMV(t) = (x̂i+

PECMV(t),Pi+
PECMV(t)) for agent i is

x̂i+
PECMV = x̂i– + Ki

PECMV (zij − ẑij), (9a)

Pi+
PECMV =

[
Ini
0

]>
(P–

J(X?)−1+ Hi>Ri−1Hi)−1
[
Ini
0

]
(9b)

where Ki
PECMV =

[
Ini 0

]
P–

J(X?)Hi
i

>
(Hi

iP
–
J(X?)Hi

i

>
+

Ri)−1. The PECMV update satisfies Pi+
PECMV(t) ≤ Pi–(t) and

Pi+
PECMV(t) ≤ Pi+

DMV(t).

C. Objective statement

The optimization problems (6) and (8) used respectively
in DMV and PECMV algorithms can be viewed as the the
following functions

ωi
? = fDMV(Pi–,Pj–,Hi

i,H
i
j), (10a)

X? = fPECMV(Pi–,Pj–,Hi
i,H

i
j). (10b)

Evaluating these functions to obtain the desired outputs is
computationally expensive and time-consuming. Our objective
is to use an ML approach to learn these functions and cir-
cumvent solving constrained optimization problems required
to evaluate the function values.

III. LDMV AND LPECMV

The universal approximation theorem claims that a neural
network (NN) with enough depth can approximate any con-
tinuous function given certain weights [27]. If one perceives
fDMV and fPECDMV as a continuous function, then they can
be approximated by NNs similar to the one in Fig.3. But
learning these functions cannot be carried out in a trivial
manner. ωi

? and X?, the output of fDMV and fPECDMV, are
each constrained values, i.e., ωi

? ∈ [0, 1], and X? should be
computed such that the joint covariance matrix (7) is positive
definite. As we explain below, we ensure ωi

? ∈ [0, 1] by
appropriate choice of a proper activation functions for the
output layer of NN representation of fDMV. To ensure positive
definiteness of joint covaraince matrix, however, we need to
take further actions when designing an NN model of fPECDMV.
The main tool aiding us is the following result. Here, recall
that a matrix M ∈ Rp×q is a strict contraction matrix if and
only if ‖M‖2 < 1, where ‖.‖2 is the 2-norm [28].

Lemma 3.1 (c.f. [28, page 207 and page 350]): Let A∈Rp×p

and B∈Rq×q , and X∈Rp×q be given. Then, the joint matrix[
A X
X> B

]
is positive definite if and only if A and B are positive

definite and there is a strict contraction matrix M such that
X =

√
A
>

M
√

B.

Invoking Lemma 3.1, to ensure positive definiteness of the
joint covariance matrix (7), we can write

X =
√

Pi
>

C
√

Pj (11)

and require that ‖C‖2 < 1. Thus, to obtain X? using an NN
we will learn

C? =

(√
Pi
>)−1

X?
(√

Pj
)−1

,C? ∈ Rni×nj (12)

i.e., the function we want to learn is

C? = fPECMV(Pi–,Pj–,Hi
i,H

i
j).

For the learning process, all the matrices are flatten into vec-
tors, meaning that the matrices are learned in an element-wise
manner. We carry out a supervised learning in which we collect
the labeled data by solving the optimization problem (6) to
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obtain ωi
? and optimization problem (8) followed by (12) for

C?. The input and the corresponding label values are

input = vectorization(Pi–,Pj–,Hi
i,H

i
j), (13a)

labelDMV = ωi
?, (13b)

labelPECMV = vectorization(C?). (13c)

The feed-forward result of the C? prediction network is
reconstructed to have the same shape as the C? matrix and
used to compute the predicted X?.

For the ω prediction network, we set the activation function
of the output layer to the standard logistic function (Sigmoid)
S(χ) = 1

1+e−χ which maps R→ [0, 1]. This choice naturally
constraints the learned ωi

?, denoted as ω̂i
?, to [0, 1]. Enforcing

the learned C?, denoted as Ĉ
?
, to be strict contraction matrix,

i.e., ‖Ĉ
?
‖2 < 1 is not straightforward and requires a careful

selection of the activation functions for the output layer. To
enforce ‖Ĉ

?
‖2 < 1, we implement three methods. In the first

method, we add a barrier function [29] into the loss function
for training the NN as shown below,

L(Y, Ŷ)=
1

M

M∑
m=1

(
‖Ym − Ŷm‖2+λ log(1−‖Ŷm‖2)

)
,

(14)

where M is the number of the total data points, Ym ∈
Rninj×1 is the m-th vector of label values, Ŷm ∈ R(ni×nj)×1

is the m-th feed-forward prediction of the network and B =
λ log(1 − ‖Ŷm‖2) is the barrier function with the barrier
parameter λ selected properly [29]. It is observed from (14),
when Ŷm approaches 1, the value of the barrier function
approaches infinity, which prevents the solution from violating
the inequality constraint ‖Ŷm‖2 < 1 for all m = 1, 2, · · · ,M .
For the output layer activation function, we use hyperbolic
tangent function (Tanh), T (χ) = eχ−e−χ

eχ+e−χ to constraint every
output to [−1, 1]. Given the norm relations [28]

‖Ĉ
?
‖2 ≤ ‖Ĉ

?
‖F = ‖Ŷm‖2 < 1, (15)

where ‖.‖F denotes the Frobenius norm, the barrier B =
λ log(1 − ‖Ŷm‖2) constraints the output of the NN to re-
spect the constraint ‖Ĉ

?
‖2 < 1 for the training data but

there is no guarantee for non-training data. The potential
distributional mismatch between the training and non-training
data can lead to inconsistent performance or even unsafe
execution [30]. In the second method, given (15) and ‖Ĉ

?
‖F =√∑ni

i=1

∑nj
j=1 |ĉ?ij |2, we choose the activation function of the

output layer to be Tanh normalized by D =
√
ni × nj ,

i.e., T (χ) = 1
D

eχ−e−χ
eχ+e−χ . Since the constraint ‖Ĉ

?
‖2 < 1 is

embedded in the NN, we drop the barrier function from the
loss function (14). Our second method enforces the constraint
‖Ĉ

?
‖2 < 1 in a hard way, but comes with some degree

of conservatism, as it limits the ranges of the elements of
matrix Ĉ

?
. For cases that ni = nj = n, we propose an

alternative method that enforces the constraint ‖Ĉ
?
‖2 < 1

and it also comes with lower computational complexity. For
this third method, we approximate C? with a diagonal matrix,

Methods Output layer Loss function
activation function

1 T (χ) = eχ−e−χ

eχ+e−χ
L(Y, Ŷ)= 1

M

∑M
m=1

(
‖Ym − Ŷm‖2+λ log(1−‖Ŷm‖2)

)
2 T (χ) = 1

D
eχ−e−χ

eχ+e−χ
L(Y, Ŷ)= 1

M

∑M
m=1

(
‖Ym − Ŷm‖2

)
3 T (χ) = eχ−e−χ

eχ+e−χ
L(Y, Ȳ) = 1

M

∑M
m=1 ‖Ym − Ȳm‖2

Table I – Summary of the three NNs using three methods, where
D =

√
ni × nj .
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Figure 2 – The objective function value associated with the optimal
C? and Ĉ

?
obtained from different learning methods (left) and

the difference between each learning method and the optimal one,
respectively (right).

i.e., C? ≈ C?
Diag = Diag(ρ?), where ρ? = [ρ?1, ρ

?
2, · · · , ρ?n]

and to enforce ‖Ĉ
?
‖2 < 1 we set the output layer activation

functions to Tanh function. We set our objective to find a
C?

Diag that results in minimum value for ‖C? − Ĉ
?
‖F . Given

the definition of the Frobenius norm, the off-diagonal elements
of C? does not play a role in choosing C?

Diag. Therefore, our
loss function is L(Y, Ȳ) = 1

M

∑M
m=1 ‖Ym − Ȳm‖2 where

Ȳm is the vectorized form of diagonal elements of training
C?s.

We train three NNs summarized in Table I, each for one
of the methods we discussed to enforce ‖Ĉ

?
‖2 < 1 and

test each well-trained NN on a test data set. We evaluate
the performance of each proposed method by comparing the
value of the objective function (8a) with (11) computed using
the prediction of each NN, i.e., Ĉ

?
to the optimal objective

function value attained by C?, and we subtract the optimal
value from the value of each learning method to show the
difference. The result is shown in Fig. 2.

As depicted in Fig.2, all proposed learning methods perform
less optimally comparing to the original optimization (8) as
expected, but the differences are insignificant. Also, the infor-
mation loss when approximating matrix C? with a diagonal
matrix in the third method is negligible while normalizing
the output value in the second method degrades the optimality
further since the hard constraint imposed by the normalized ac-
tivation function restricts conservatively the feasible set for the
optimization of NN weights, which may exclude the optimal
NN weights in the corresponding unconstrained optimization,
resulting in a prediction that performs less optimally than
others. Given the possibility of Ĉ

?
≥ 1 in the first method,

we therefore adopt the third method, i.e., learning a diagonal
approximation C?

Diag of matrix C? to build the NN to learn
the matrix constrained optimization. The label value of the
C?

Diag prediction network is ρ?, the diagonal of C?
Diag, instead
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Figure 3 – The NN structure for learning C? of PECMV. The
structure for learning ω? ∈ [0, 1] of DMV looks similar except that
at the output layer we have a single neuron.

of (13c). The prediction Ĉ
?

Diag is used to calculate the predicted
X?. Figure 3 shows the NN structure that we used to learn
the outputs of fDMV and fPECMV. The NN regression we use
for learning-based DMV (LDMV) and learning-based PECMV
(LPECMV) is fast and suitable for real-time application since
the training process is conducted off-line despite the large
amount of the training data collected with a high sampling
rate. The training and the hyperparameter fine-tuning process
for the NNs for the experimental demonstration is presented
in Section IV.

IV. EXPERIMENTAL RESULT

We generated the training data for LDMV and LPECMV via
a set of CL-aided pedestrian inertial navigation experiments
implementing DMV and PECMV, which were conducted in
the Calit2 building at the University of California, Irvine
(UCI) and the Firstnet building of the National Institute of
Standards and Technology (NIST) in Colorado. Two agents
with shoe-mounted IMUs and UWB sensors, shown in Fig. 4,
walked along different trajectories, e.g., rectangles, circles,
lemniscates, and even more complex trajectories. Two exam-
ple trajectories are shown in Fig. 5. Two additional UWB
sensors are placed at known locations acting as beacons.
Only agent 1 has access to the beacons, and agent 2 can
merely communicate with agent 1. Based on the UWB range
measurements, CL can be implemented to correct the zero
velocity update (ZUPT) [31] aided pedestrian inertial navi-
gation solution of the agent 2. To generate independent and
identically distributed samples for training, validating, and
testing, we performed single-step propagation and update from
initial belief with randomly generated errors for each pair
of self-motion measurement and relative measurement. We
solved the optimization problems in both DMV and PECMV
using the data from each experiment and obtained an abundant
and diverse solution set. The training data is generated by
randomly sampling from the entire solution set.

The execution time of DMV is much shorter than PECMV
in the sample experiments, as expected. From all experiments,
we sampled 50000 samples which are split into a training set
(40000 samples), validating set (5000 samples), and test set
(5000 samples). The number of the states of each agent i is
ni = 9, and the size of the measurement vector is niz = 1.
Each sample training data after vectorization is flattened to

IMU

UWB

Agent 1
Agent 2

Figure 4 – Training data generation experiments in Firstnet building.

Figure 5 – Examples of the designed trajectories.

Hyperparameters ω? network C?
Diag network

Number of hidden layers L 4 3
Number of units NL per layer 9 20
Loss MSE MSE
Activation function Sigmoid Tanh
Optimizer SGD Adam
Batch size 256 512
Learning rate α 0.05 0.025
Epochs 200 200

Table II – The hyperparameter design of the NNs.

a vector with 2 ×
(
9 × (9 + 1)/2

)
+ 2 × 9 = 108 features

due to the symmetry of covariance matrices. The features are
normalized to achieve easier optimization and faster learning.
Based on the NN structures in Fig. 3, we put 108 nodes in
the input layer and only 1 node in the output layer of ω?

prediction network while the output layer node number of
C?

Diag prediction network is 9, i.e., ni = nj = n = 9. The
number of hidden layers and the number of nodes in each
hidden layer are fine-tuned using a grid search method during
the training process. The activation function of the ω? network
is Sigmoid for each layer while the one of C?

Diag network is
Tanh. We use Mean-squared-error (MSE) as the loss function
due to its convexity and also facilitate the learning using the
stochastic gradient descent (SGD) and Adam [32]. The fine-
tuned design of the two NNs is shown in Table II, and the
training results are shown in Fig. 6.

A. Numerical Evaluation

We evaluated the efficiency of our proposed LDMV and
LPECMV algorithms by implementing them in another set of
CL-aided pedestrian inertial navigation experiments conducted
in the KCS lab in the Engineering Gateway building at UCI.
In these experiments, two agents equipped with shoe-mounted
IMUs and UWB sensors walked along two rectangular trajec-
tories maintaining the communication as depicted in Fig. 7.
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Label 𝝎⋆ of All Data
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 𝝎
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(a) ω? NN Fitting

Error = Learned element of 𝐂𝐃𝐢𝐚𝐠
⋆ - Label element of 𝐂𝐃𝐢𝐚𝐠

⋆

(b) C?
Diag NN Error

Figure 6 – The training results of the ω? prediction NN (a) and the
C?

Diag prediction NN (b), respectively. (a) is the fitting performance
of ω? prediction NN for all data sets with R to be the square root
of the coefficient of determination which indicates the fitness of the
predicted output and the target value. The closer to 1, the better the
fitness. Also, the perfect fit line is shown as "Fit" in gray. (b) is the
training error histogram of the C?

Diag prediction NN which represents
the difference between the predicted outputs and the label values of
the NN for the training, validation and test set respectively.

Agent 1 Agent 2

IMU

UWB

Camera

Camera

Figure 7 – The test experiments for LDMV and LPECMV conducted
in the KCS lab with the aid of the OptiTrack motion capture system.

Agent 1 kept receiving information from both a UWB anchor
at a known location and agent 2. The sampling rates of the
IMU for agent 1 and agent 2 were, respectively, 200 Hz and
40 Hz, making agent 1 the more accurate agent and thus
creating a non-homogeneous scenario where agent 2 improved
its accuracy via CL with agent 1. Both agents implemented
a local ZUPT aided INS. We used an OptiTrack real-time
motion capture system, as shown in Fig. 7, to provide high
accuracy reference trajectories for evaluating the performance
of our CL algorithms. We attached the reflective markers of
the OptiTrack system to the IMUs so that their locations are
obtained as references. With the aid of the reference trajectory,
the Root Mean Square Error (RMSE) and the Normalized
Estimation Error Squared (NEES) are calculated and used
as the performance metric to evaluate different localization
algorithms. The experiments were repeated 10 times. The
experiment results for the position RMSE and the NEES
plots are shown in Table III and Fig. 8. The two-sided 95%
region for the NEES is [0.96, 3.42] for this set of experiments,
see [33]. Also, we compared the average execution time of
the CL algorithms. The results are reported in Table IV. The
estimated trajectories of the agents are shown in Fig. 9.

The NEES plots in Fig. 8 show that LDMV and LPECMV
CL algorithms maintain the consistency of the estimates the
same way as DMV and PECMV as reported in [14]. As

(a) Agent 1 (b) Agent 2

Figure 8 – The NEES plots for the two agents over 50 Monte Carlo
runs. The shaded area in the NEES plots show the consistency zone.

ZUPT-only DMV LDMV PECMV LPECMV
Agent 1 0.4732 0.1050 0.1158 0.1035 0.1125
Agent 2 0.4902 0.3221 0.3528 0.2950 0.3027

Table III – The average RMSE (m) of the estimated trajectories.

DMV LDMV PECMV LPECMV
Full simulation time (s) 86.9828 40.1316 189282.6081 43.9001

Single execution time (ms) 3.2197 0.2122 7261.5138 0.2002
Computing platform Dell Laptop: Intel CoreTM i5-1135G7@4.20GHz,

quad-core, 8 GB memory

Table IV – The average run time of each algorithm with the
computing platform.

it can be concluded from Fig. 9 and Table III, all the CL
algorithms significantly improve the ZUPT/INS-only solution.
As expected, PECMV and LPECMV outperform DMV and
LDMV respectively in terms of the RMSE due to their
less conservatism as reported in [14], and the PECMV and
DMV have better localization accuracy compared to the corre-
sponding learning-based algorithms while the differences are
insignificant. Because the solution of DMV and PECMV is
provably the global optimum [14], LDMV and LPECMV can
only perform no better than DMV and PECMV. Moreover,
Table IV shows that LDMV achieves a considerable reduction
in execution time in contrast to DMV. Besides, despite the
colossal amount of computation time of PECMV, LPECMV
takes only 43.9001 seconds. Overall, the percentage reduction
of the execution time is 53.85% and 99.98% after applying
LDMV and PECMV, respectively, which indicates a significant
improvement in the time complexity. In summary, the compu-
tational cost is reduced substantially by the proposed learning-
based optimization without compromising the localization ac-
curacy and consistency, which enables conducting CL updates
at higher rates, especially in embedded computing systems.

V. CONCLUSIONS

Multi-agent estimation solutions in which the correlation
among the local estimates of the agents in cooperative esti-
mation problems are accounted for implicitly, either via the
use of conservative uncorrelated estimate upper bounds or
by estimating the unknown correlation locally, are attractive
because of eliminating persistent inter-agent communications.
But, these methods often come with higher computation costs.
To reduce the computation cost, this paper proposed to use
NN surrogate functions to produce the solution of the time-
consuming optimization problems that appear in the implicit
approaches to account for correlations. To demonstrate our
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Agent 1 Agent 2 Ref 1 Ref 2 Beacon Start End

PECMV LPECMVDMV LDMVZUPT-only

Figure 9 – The estimated trajectories of the agents implementing ZUPT-only, DMV, LDMV, PECMV and LPECMV algorithms.

idea, we focused on the problem of cooperative localization
and two particular solutions for this problem from literature:
DMV and PECMV methods [14]. We proposed the learning-
based algorithms, LDMV and LPECMV, to substitute the time-
consuming constrained optimization problems that appear in
DMV and PECMV methods by learning their optimal solu-
tions via a NN that is designed elaborately to incorporate the
constraints. The training data is obtained by solving the opti-
mization problems directly using the experimental data. Then,
the well-trained NNs are used to predict the optimal solution.
The efficacy and the generosity of the LDMV and LPECMV
are demonstrated in a different set of CL experiments. The
agents used the direct predictions from the output of the
NNs rather than solve the complex optimization problems
in real-time, which makes the computational cost reduced
remarkably without compromising the localization accuracy
and enables the real-time implementation of the CL algorithms
in embedded systems.
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