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The Effects of Fluctuations

on the Native State Structure, Stability,
and Flexibility of Proteins

Karen En-Hwa Silverstein Tang
December 1996

Abstract

Fluctuations of proteins are important for many biological processes such as

enzyme catalysis and ligand binding. However, protein fluctuations are not completely

understood. In particular, little is known about large fluctuations—in which proteins

make large excursions from their native conformations. If proteins have rugged po

tential energy landscapes, they could occasionally sample very non-native structures,

called “conformational distance relatives” (CDRs) [Miller, D. W. and Dill, K. A.,
Prot. Sci. 9:1860 (1995)]. I ask what effects CDRs might have on structural measures
of proteins, on structure-determination experiments, and on the flexibility and sta

bility of proteins. Here, using a simple two-dimensional lattice model and employing
exact methods, I study the consequences of having a wide range of fluctuations.

First, I find that most measures of structure, like crystallographic diffrac

tion patterns and many nuclear magnetic resonance (NMR) spectra, are insensitive
to CDR fluctuations because of the averaging over the many fluctuation conforma
tions. As a consequence, the presence of CDRs does not greatly affect the outcome

of standard structure-determination experiments; they are robust for determining
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the dominant native conformation. At the same time, determining a well-defined

structure implies neither few nor small fluctuations. If the total CDR population

is considerable, as may occur for proteins near denaturation or for peptides, struc
tural constraints are mutually inconsistent and determined structures may be biased.

Second, CDRs may be the underlying cause of the experimentally observed biphasic

temperature dependence of crystallographic Debye-Waller factors [Rasmussen, B. F.,
et al., Nature 357:423 (1992). The observed “transition” may not be glassy. Lastly,
I find an inverse correlation between protein stability and flexibility. The more sta

ble the protein, the fewer are its CDR fluctuations and hence the lower the average
flexibility.
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It is commonly believed that proteins designed by nature have a well-defined,

unique, structure which is called the “native” conformation. One of the strongest

pieces of evidence to support this view is the fact that there are hundreds of high
resolution crystal structures of proteins. Some proteins have been crystallized with

different space groups yet still show essentially the same conformation (2,6]. In ad
dition, the native conformations predicted by nuclear magnetic resonance (NMR)
experiments generally have well-defined structures with only small fluctuations in

surface loops. Comparisons of native structures determined by both NMR and crys

tallography have indicated a close similarity, particularly in the core regions (7,40].
From this evidence, one can safely say that biologically-relevant proteins have one
dominant conformation.

But proteins are not frozen in one conformation. They must fluctuate to

allow ligands to bind and catalysis to occur. What do we know about protein fluc

tuations? That is, what other conformations does the molecule occasionally sample?

There is ample evidence of small fluctuations, motions that don't change the chain

conformation very much. Crystallographic Debye-Waller (B) factors which measure
mean-square deviations in atomic positions indicate the existence of vibrational mo

tions [38]. Models of protein motions based on hydrogen-deuterium exchange (HX)
experiments suggest that proteins undergo “breathing” motions (27,37,48] or “local
unfolding” [15, 21]. Molecular dynamics computer simulations indicate the presence
of many small motions: side-chain movements, ring flips, motions of surface loops,

etc. [28]. What about large-scale fluctuations? Do proteins make excursions to con
formations that are structurally quite different from the native? At the present time,

there seems to be little experimental evidence for such motions. However, if we review

current experiments designed to measure fluctuations, we see that they are actually

not very good at detecting large movements:

• Binding of ligands provides some of the best evidence for large-scale motions.
Crystal structures of proteins with and without ligands bound indicate great
changes in structure [17]. However, one cannot know for sure whether the
protein would make such large excursions in the absence of ligand.

J

sº



• HX experiments provide another piece of evidence for the existence of large fluc

tuations. They can signal large conformational changes [4]. However, they can
not actually predict the corresponding fluctuation conformations, so we don't

really know what the protein is “doing”. The HX rate of a proton measures the

ability of solvent to reach that proton. But, knowing which protons do/don’t
have access to solvent still doesn’t give information on the actual protein confor

mations that allowed solvent access. For example, if both proton A and proton

B have fast exchange rates, one doesn’t know if one fluctuation allowed solvent

access to both A and B, or if two different fluctuations occurred, one exposing A

and the other exposing B to solvent. And when the number of fluctuation con

formations is large, predicting fluctuation conformations becomes intractable.

Currently, researchers use models to explain HX data [4, 15, 21, 27, 29, 37,48].
Unfortunately, many models assume that fluctuations are small. To not malign

HX experiments completely, they are useful for showing which regions of pro

tein are flexible and solvent-exposed and they can suggest the existence of large
fluctuations (4,47], even if they can’t (uniquely) predict actual conformations.

• Crystallographic B factors measure atomic motions as an expansion around
Aa' = a – wo, the deviation of each atom's position relative to its equilibrium
position. B factors are mean-square deviations, the first-order terms of the

expansion. Anisotropic B factors are higher order terms. These measurements

are average deviations in small Aa and are not designed for measuring large
scale motions.

• Fluorescence spectra detect changes in the local environment of fluorescing
species. They signal when a conformational change has occurred, but, again,
they are not useful for predicting actual fluctuation conformations and may not
even be able to tell whether the fluctuations are large or small. Fluorescence
quenching experiments are similar to HX in that they detect where solvent

molecules can gain access.

• NMR experiments are able to detect highly-populated non-native conformations.



In fact, there are several nice experiments showing that under certain conditions,

a few proteins have more than one dominant conformation [39,50]. However,
conformations whose populations are less than about 5% do not give a strong

enough signal to be measured [35]. Weakly-populated fluctuation conformations
would not be directly detected by NMR.

NMR dynamics experiments indicate the regions of protein which are moving

and the time scales and the amplitudes of the motions [44], but they do not
detect actual fluctuation conformations.

• Limited proteolysis is yet another experiment which yields information on the

regions of a protein which have access to solvent. Again, the fluctuation con

formations cannot be predicted. These experiments have a further difficulty for

studying fluctuations. Proteases cleave peptide bonds which are solvent acces

sible [46]. In principle, to detect non-native fluctuations, one might look for
cleavages in places that are not exposed to solvent in the native conformation.

Unfortunately, most cleavages would occur in native loops, and after a cleavage
has occurred, the subsequent loss of stability might allow a cleaved protein to

fluctuate (or even denature) in ways that it would not have had it been intact.

What do theoretical simulations tell us about fluctuations? Because of

computational limitations, molecular dynamics simulations are limited to short time

scales. They are useful for examining small motions, but not for investigating large
motions.

To summarize, current experimental and theoretical studies on protein mo

tions yield information on small fluctuations but they are not good at determining the
nature of large fluctuations. Hence, the fact that the current experimental evidence

for large fluctuations is limited does not necessarily mean that such fluctuations do

not exist. The best evidence against the presence of large fluctuations seems to be
the existence of the hundreds of well-defined crystal and NMR structures of proteins.

Interestingly enough, the HP lattice model [10, 13, 24, 25], which has been
used for many protein studies by the Dill lab (13,29], and other statistical models
(8,9,11,20) have the property that the conformations which are low in energy can be



quite different from the native in structure. (For the HP model, this is true in both

two- and three-dimensions.) These models have large fluctuations. Another way to
put it is these models have bumpy potential energy landscapes; there are many local
minima which are conformationally distant from the global (native) minimum.

The combination of (1) the limited amount of direct experimental informa
tion on large fluctuations, (2) the many high quality protein structures which suggest
that there are no such fluctuations, and (3) the seemingly contradictory fact that the
HP lattice model (and other statistical models) have many such fluctuations is what
prompted the work in the second chapter of this thesis. One obvious “solution” to
the conundrum is that the HP lattice model has an energy surface which is not like

that of real proteins". But this is too easy an escape. So, my thesis advisor, Ken
Dill, posed the questions, “If proteins had large fluctuations, what hallmark would
these fluctuations have in standard crystallographic or NMR structure-determination

experiments? What evidence would one look for to detect their existence?” I went

off and simulated structure-determination experiments and found that there is no

such hallmark. As a matter of fact, quantities which are ensemble averages (which
includes most experimentally measured quantities) are insensitive to the presence of
large fluctuations. Since standard structure-determination experiments use such ex

perimentally measured quantities as constraints for determining the “best-fit” struc

ture, the output structures strongly resemble the native conformation, regardless of

whether there are large fluctuations present. Consequently, the ability to determine

a good structure implies neither the presence nor absence of large fluctuations. This

work is presented in chapter 2.

In addition, I also looked into the effects of large fluctuations on the tem
perature dependence of crystallographic B factors. Studies of ribonuclease A at nine

different temperatures showed that molecule-averaged B factors have a biphasic tem

perature dependence. At temperatures below/above about 220K, the B factor has a
mild/strong dependence on temperature [41]. Other measures of atomic mean-square

*Actually, I'm inclined to believe that this is to some extent true. The HP lattice model does
have a terribly bumpy energy landscape, probably more so than real protein potential surfaces. But
the model is useful for examining what happens for those proteins which have even somewhat bumpy
landscapes. The model presents a “worst case” scenario.



displacements from Mössbauer scattering [5, 23, 33, 34], and from inelastic neutron
scattering [14] show this behavior; so do excited-state quenching rates [31] and vis
coelastic properties (30). The underlying physical explanation for this biphasic be
havior is not understood [3,5, 14, 16, 18, 19, 23, 26, 30,33,34, 36,41,42]. I calculated a
quantity similar to a molecule-averaged B factor in an attempt to explain the physics

underlying this phenomenon. This work is presented in the beginning of chapter 3.
The second half of chapter 3 is a fairly natural extension of the work per

formed for the second chapter. In the fall of 1995, Greg Petsko gave a seminar to

the Dill group, part of which included some research on proteins of thermophilic or
ganisms. In particular, he observed that these proteins are more stable and also less

flexible at room temperature than their mesophilic counterparts (1,12,22,32,43,45,49].
The reasons for this inverse correlations are not understood. At the time I was ex

amining quite closely the effects of fluctuations on measures of structure, so it was

immediately obvious to me one possible explanation: flexibility and stability might
be linked by the entropy of the fluctuations. Chapter 3 discusses the evidence and

underlying reasons for such a connection. Chapter 4 presents the theory behind the
relationship.
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2.1 Abstract

The fluctuations of native proteins are often regarded as “small wiggles”.

But if proteins have rugged energy landscapes, thermal motions could occasionally

sample quite non-native structures, called “conformational distant relatives” (CDRs).
If real proteins have CDR fluctuations, could standard experiments detect them?

Here, using the HP lattice model, which produces rugged landscapes, we study native
state fluctuations, small to large, by exact methods. We simulate structural exper

iments, like nuclear magnetic resonance (NMR) nuclear Overhauser enhancement
spectroscopy (NOESY). We find that current experiments are unlikely to detect oc
casional large excursions from the native structure because of heavy averaging over

the many fluctuation conformations. In short, proteins may occasionally undergo

large conformational deviations from the native structure, but new methods will be

needed to find them. We also consider “structure inversion”, the process of determin

ing one native structure from ensemble-averaged NMR or X-ray constraints. These

algorithms are robust for determining the dominant native structure, regardless of
the presence of CDRs. However, predictions about conformational fluctuations, as

implied by the Debye-Waller factors in crystallography or by the multiple structures

of NMR, may not well represent the true fluctuations and may incorrectly suggest
the absence of CDRs. Under conditions with many fluctuations, structure inversion

can lead to inconsistent constraints, those which cannot be satisfied by any single
physically-viable structure.

2.2 The thermal motions of proteins

Proteins in their native states move, wiggle, and fluctuate. Fluctuations

are important for biological processes such as enzyme catalysis and ligand binding,
induced-fit mechanisms [36,37] or binding to buried active sites such as when oxygen
binds hemoglobin [51]. Fluctuations can be detected by experimental measurements
(28] like hydrogen-deuterium exchange (HX) (21,30,62], Debye-Waller factors in X-ray
crystallography (25,54] or NMR dynamics experiments [50,61]. Fluctuations are the
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“conformational noise” that can complicate structure determination in NMR or X-ray

crystallographic experiments, by affecting the numbers and precisions of experimental
constraints.

Much common wisdom holds that the fluctuations of native proteins are

“small wiggles”. For example, two models of HX interpret motions as small local

unfolding (20,30] or solvent penetration events [44, 53,63]. Normal-mode computer
simulations are based on assuming that protein motions can be treated by spring

like forces around a protein's native conformation (26). Debye-Waller factors in X
ray crystallography assume that atomic motions are Gaussian distributed (25). The
restraining potentials used in structural refinement methods are designed so that
the highest population is centered on the native structure, and populations decrease
monotonically with increasing deviation of a conformation from the native structure.

That is, very native-like conformations are the most populated, and very non-native

conformations are rarely populated.

Although this common wisdom that fluctuations are small wiggles might be
true, there is little direct evidence to prove it. Most experiments only measure aver

ages over the fluctuations, not the individual fluctuation conformations themselves.

HX provides some evidence to suggest the presence of large fluctuations [1], but a
model is required to interpret the conformational change. Because of the lack of com

putational power, molecular dynamics simulations are limited to short time scales

and hence to small motions. Even if there were large motions, current simulations
would not see them.

Occasional large motions are expected if proteins have “rugged energy land

scapes”, as explored in some recent statistical mechanical models (8,9,11,15, 17,29,45,
55]. By definition, fluctuations (under native conditions) must involve small changes
in energy, according to the Boltzmann distribution law. But, being near-native in

energy does not imply that a conformation must be near-native in structure (8,45].
Fluctuations having energies only slightly higher than the native could, in princi
ple, have very different structures. An extreme example would be if a protein whose

native conformation is o-helical undergoes occasional brief excursions to a 6-sheet

conformation to form a hydrophobic core that is nearly as good.
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There is some experimental evidence for rugged energy landscapes, but it is
mostly indirect. Some proteins, including prions (14,48] and amyloidogenic proteins

[33] have two dramatically different native conformations. Others, including o-lytic
protease [3] and serine protease plasminogen activator inhibitor-1 [46], can get stuck in
deep kinetic traps. The SH3 domains of Drosophila drk and GRB2 exist in equilibrium
between folded and unfolded states [27,66). Cytochrome c, in low concentrations of
denaturant, undergoes HX via partially unfolded forms in which entire helices or
omega loops are unstable [1]. Influenza haemagglutinin makes a large change of its
native conformation with only a small change in solution conditions [10]. Also, the
denatured states of some proteins have persistent non-native structure [56].

Is there more direct evidence that proteins have rugged energy landscapes?

To determine what types of experiments might probe fluctuation conformations, we

need a model that can treat fluctuations, large and small. Since no model having

atomic detail can do this yet, simplifications are necessary. Here we use a lattice

model to determine the effects of a wide range of fluctuation conformations on exper
imental observables. We focus on three questions of how fluctuations affect measures

of structure and structure-determination experiments. First, we ask whether mea

sures of structure like nuclear Overhauser effect (NOE) spectra or Patterson maps
could detect large fluctuations.

Second, we consider the structure-determination or “structure inversion”

problem. This process involves two steps: one might be called the forward process

and the other the inverse process. The forward process is the experiment itself: the

native structure and its ensemble of fluctuations give rise to a set of Boltzmann

averaged measurements of structure. The inverse process is the subsequent process
ing of that data: using the measurements as constraints, along with a model, to
determine the native structure which produces these constraints. If there were no

fluctuations or averaging, this inversion process would be simple and unambiguous:
one native structure gives constraints which, upon inversion, return the one native

structure. But reality involves fluctuations, which have the potential to distort the

inversion process: many conformations give averaged constraints which, upon inver

sion, return one “average” native structure (32,52]. We use the simplified model to
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study the distortions that are introduced by fluctuations in the inversion process.
Third, structure-determination experiments often produce some measure of the fluc
tuations, e.g., the Debye-Waller factors in crystallography and the family of related
structures in NMR. We ask whether the predicted fluctuations accurately represent

the underlying ensemble of conformations.

2.3 The model

2.3.1 The HP lattice model of proteins

We model the fluctuations of proteins using the HP lattice model [13, 17,42,

43]. Proteins are represented as specific sequences of H (hydrophobic) and P (other)
residues on a two-dimensional (2D) square lattice or a three-dimensional (3D) cubic
lattice. Each amino acid can only occupy one lattice site, and no two amino acids

may reside on the same site. The energetic interactions, designed to capture the

essence of the hydrophobic interaction, consist of a single term: there is a favorable
interaction, e < 0, whenever two non-bonded H residues are on adjacent lattice sites,

i.e., “in contact”. Hence, the free energy of any conformation is he, where h is the
number of HH contacts. The lowest energy conformation, with haat HH contacts, is

the native conformation. In this work, we study only sequences with a single native
conformation.

The energies of a protein are like the rungs on a ladder. The lowest rung

represents the one native conformation. The next higher rung on the energy ladder

corresponds to all of the “first-excited” conformations, those having hmat – 1 HH
contacts. The first-excited conformations are the dominant fluctuations under native

conditions. On the next rung up the ladder are the second-excited conformations, etc.

These fluctuations and those at higher rungs of the energy ladder become increasingly
important as the system approaches denaturing conditions.

The limitations of the model are obvious: the chains are short, two-dimen

sional, and have low resolution, with limited bond angles and bond distances; there

are only two amino acid types; the interactions are simplified. Nevertheless, we
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Figure 1: The native conformation of sequence R. Dark beads are hydrophobic (H):
light beads are other (P). HH interactions are favorable.

believe the model captures the basic components of protein folding—the hydrophobic

interactions, conformational freedom of the chain, and the steric restrictions imposed

by excluded volume. This model has been shown to have many protein-like properties

[17,45], for example, collapse to compact states having unique folds and secondary
structure. Here we use the lattice model to study structure-determination procedures.

For this purpose, we do not need the molecular details of an all-atom model or an

accurate energy function. Rather, our aim here is simply a study of principle, of what

kinds of distortions or false predictions (if any) might result from the neglect of the
full ensemble of fluctuations. For this purpose, it is more important to have a way

of treating both large and small fluctuations. The advantage of this model is that,
since the chains are short and in 2D, all conformations can be enumerated exactly, so

we can avoid making any further assumptions about the nature of the fluctuations.

Within the model, all fluctuations are included exactly with their proper Boltzmann
weights and without restriction to small-amplitude motions or short time scales.

We study residue sequences of lengths 16 and 18 in 2D, and one 27-mer
sequence in 3D. Figure 1 shows sequence R, HHPPHHPHHHPPHPHH, in its single
native conformation. The behavior of this sequence is typical of the others we studied,
so it will serve as our main example here.
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2.3.2. Defining the fluctuation conformations

The fluctuation conformations consist of all conformations with non-zero

population, minus the native conformation. The equilibrium population of each con
formation, c, is given by its Boltzmann probability:

e-E./kT

Q

where E. is the energy of conformation c (equal to he in the HP model), T is the

probability of c = p(c) = (1)

absolute temperature, k is Boltzmann's constant. Q is the partition function:

N

Q = XDe-º/* (2)
=1

where the sum is over all N possible conformations. At low temperatures, only

the low energy conformations are populated. Therefore under native conditions, the
fluctuation conformations consist of the lowest energy non-native conformations.

Figure 2 shows how the populations of different excited states change with

temperature. At T = 0 (subfigure A), every chain is in its native conformation
(ground state); there are no fluctuations. At low T (subfigures B and C), the native
conformation is still dominant but other low-energy conformations are also populated

to small degrees. Ultimately, at high T, higher levels up the energy ladder (more open

conformations) become populated and the protein denatures. However, we focus here
only on “native” conditions, i.e., temperatures below the denaturation midpoint.

Under native conditions, the main fluctuation conformations are the first-excited
conformations.

2.4 What conformations are visited by thermal

motions?

Figure 3 shows a sample of the 37 first-excited conformations of sequence
R. These fluctuation conformations are compact and have hydrophobic cores and

secondary structure. (For the lattice model, we use the definitions of secondary
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Figure 2: Populations of different energy states, at different temperatures, for se

quence R. Energy = he, where h is the number of HH contacts and e < 0. All

conformations with the same energy are grouped together. A: At zero temperature,

the ensemble consists entirely of the native conformation (h = 8). At higher temper
atures (B: |kT/s = .20; C: |kT/s = .24), the first-excited conformations (h = 7) are
also populated and comprise the majority of fluctuation conformations.
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structure in [12].) They are all low in energy; every one of the 37 conformations has
only one less HH contact than the native conformation. Some of the first-excited
conformations, like those near the top of figure 3, are somewhat similar to the native
conformation. The upper left conformation is essentially native, except with residues

10, 11, and 12 shifted clockwise. Others, like those near the bottom of the figure,
have completely different folds. Being near-native in energy does not imply being
near-native in conformation.

The fluctuations range from being similar to the native structure to being

very dissimilar. To be more quantitative, we use the structural dissimilarity measure

of Yee and Dill (64] to compare the fluctuations to the native conformation (figure 4).
The Yee measure computes a score between any pair of conformations by comparing

their distance maps'. A score of zero means that two conformations are identical. To

give a reference for comparison, the distribution of dissimilarities between all pairs
of native conformations of the set of n = 16 sequences is shown in figure 5. For two
arbitrarily chosen native structures, it is most probable they will differ by a score of

about 0.7. As noted before [45], comparing figure 4 to 5 shows that: (i) fluctuations
have a broad range of structures, but (ii) fluctuation conformations are more similar
to their corresponding native conformation than to other compact structures from

different sequences of residues.

Fluctuations that are near-native in energy but distant from native in con

formation have been called “conformational distant relatives” (CDRs) [45] to distin
guish them from fluctuations involving only small conformational changes like vibra
tions, side-chain movements, loop wiggles, small shifts in orientation of secondary

structure, etc. The latter are intrinsically below the resolution of the lattice model.

However, the conformations that are represented within the lattice model can then

be classified as being either relatively small deviations from the native structure, or

relatively large, i.e., CDRs. CDRs are a common feature of the HP lattice model and

of other models with rugged energy landscapes (8,9,11, 15, 17,29,45, 55]. We cannot
draw a precise definition of what “large” fluctuations might be for real proteins, but

*A distance map is the set of inter-residue distances, {dij}, between all residue pairs (i,j).
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Figure 3: A sample of the 37 first-excited conformations of sequence R. The confor

mations are ordered from the highest structural similarity to the native conformation

at the upper left to the lowest structural similarity at the lower right.



22

ou

- -

c -

|
I T I I

0.6 0.8 1.0do 0.2 0.
dissimilarity to native conformation

Figure 4: The conformational dissimilarity, using the measure of [64], between every
first-excited conformation and the native conformation of sequence R. A distance of
0 indicates that two conformations are identical.

-

-

o || T

\,
0.0 0.2 0.4 0.6 0.8 1.0

pairwise dissimilarity scores

Figure 5: The conformational dissimilarities between all pairs of native conformations

of sequences of length n = 16. This figure is replotted from figure 8B of [45].
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they would undoubtedly have non-native structural elements. Whether real proteins

have rugged energy landscapes with CDR fluctuations remains to be determined ex
perimentally. The conclusions that arise from the HP model are not unique to this
model; they should apply whenever protein energy landscapes are not smooth.

2.5 DO structural experiments detect CDR fluctu

ations?

If an o-helical protein occasionally fluctuates into a 3-sheet conformation,

would the change be detected by structural experiments? To answer this question, we

calculate various measures of structure and observe how they change as the population
of CDR fluctuations increases.

Most experiments measure ensemble averages. To describe the effects of

ensemble averaging, let f represent the total fraction of the population that are in
fluctuation conformations,

f = 1 – p(native) . (3)

According to equation 1, f increases with temperature (see also figure 2). We use
temperature here simply as the most convenient way to control the range of conditions

from native to denaturing, i.e., from few to many fluctuations. Of course, in prac

tice, conditions are more commonly controlled by denaturant concentrations. Angle
brackets, ( : '), indicate Boltzmann-averaged (i.e., ensemble-averaged) quantities:

(X) = 2. X. p(c) (4)

where Xe is the value of some property, X, for conformation c. Curly brackets {...}
denote “the set of all”, as in the set of all inter-residue distances {d}}. All distances
are in terms of “lattice units”, the distance between adjacent lattice sites.

Although we perform all calculations under equilibrium conditions, this re

striction is not necessary. For proteins whose folding is under “kinetic control” [2],
experiments still make measurements averaged over the populated conformations.

Equations 3 and 4 are unchanged except that the p(c) are set to the fractional pop
ulation of each conformation, c.
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2.5.1 Average distance maps are insensitive to CDRs.

The first property, X, we consider is the distance map, the set of distances

{d}} between all pairs of residues (i, j). If experiments give us ensemble-averaged
distance maps, could we tell if non-native conformations are occasionally populated?
The distance map of the native state at T = 0 is sufficient to reconstruct the na

tive conformation. But at higher temperatures, the measured distance map will be

a Boltzmann-averaged composite of the distance maps of all of the conformations of
the ensemble. A Patterson map (see, e.g., [5,49), obtained from X-ray scattering on
protein crystals, measures all average pairwise distances, {(dij)}, which we denote
as (distance map). Figure 6 shows the changes in (distance map)s as the tempera
ture, T, is increased and the population, f, of fluctuations becomes significant. The

(distance map)s are similar at all temperatures where the proteins are folded. There
fore, a (distance map) (or a Patterson map), gives little evidence for fluctuations of
a native protein into very different conformations.

To get an idea why there is little influence from the CDR fluctuations, fig

ure 7 shows a distance map, averaged only over the first-excited conformations; the

native conformation is not included in the average. This distance map has a resem

blance to the native distance map (figure 6A), despite the fact that the first-excited
conformations can be quite different from the native conformation. Apparently, the

non-native-like structures cancel upon averaging, leaving behind a weakly native-like

signal.

2.5.2 NOE spectra are also insensitive to CDRs.

As a second measure of structure, we simulate NOE spectra. The intensity

of the NOE signal between any two protons decays as r" where r is the inter
proton distance. When multiple conformations interconvert slowly, NOE intensities

are proportional to the average (r") [34, 59]. To simulate an NOE spectrum, we
calculate (d.”) for all residue pairs (i,j). In figure 8 we show the simulated spectra of
sequence R at different fluctuation populations. A peak between any pair of residues

indicates a strong NOE signal, signifying a short average distance between them.
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Figure 6: Contour plots of (distance map)s for sequence R. A: The native distance
map (f = T = 0). B and C: (Distance map)s at increasing temperature and f:
|kT/E = .20, f = 20% and kT/E = .24, f = 40%, respectively. The vertical and
horizontal axes are the residue numbers.
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Figure 7: Contour plot of the distance map, averaged only over the first-excited con
formations, of sequence R. The vertical and horizontal axes are the residue numbers.

Because of noise in real NOE spectra, only signals from proton pairs closer than about
6A apart are measurable. To simulate the noise, we assume that any calculated NOE
less than (V2)-" is undetectable. We choose V2 as the cutoff distance because it is
the shortest non-contact distance on a square lattice. The noise is represented in the

figure by the background plateau.

Figure 8 shows that the calculated NOE spectra differ little from the native

spectrum, even when there are significant populations of CDR fluctuations. For se

quence R, non-native peaks first appear when f = 26%, i.e., when the ensemble of

molecules is only three-quarters native. Therefore, just as with (distance map) infor
mation, our simulated NOE spectra are found to be insensitive to CDR fluctuations.

A caveat is that since we cannot simulate chemical shifts, we assume that

the chemical shift of each residue is independent of conformation. In a more realistic

spectrum, there might be additional non-native peaks.

We conclude that ensemble-averaged measures of structure are insensitive
to CDR conformations. The reason for this is that each sequence has a substantial

number of CDR fluctuations, each of which has some parts that are native-like and

some that are different from native. When an average is taken over all the CDRs,
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A. f* 0, IkT/el = 0 B. f* 20%, IkTel = 20

C. f* 40%, IkT/el = 24

Figure 8: Simulated NOE spectra of sequence R. The axes in the horizontal plane
represent the residue numbers. The vertical axis shows the simulated NOE inten

sities, (d.”), between all nonbonded residue pairs (i,j). A peak indicates that two
residues are close together in space, on average. Any NOE intensity which is below

the background noise level of (V2)" is graphed at the noise level; hence the flat
plateau at the bottom. A: The native NOE spectrum (f = T = 0). B and C: “NOE”
spectra at increasing temperature and f: [kT/E = .20, f = 20% and kT/E = .24,
f = 40%, respectively.
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the differences mostly cancel, leaving an average signal that is weakly native-like. Of
course, under native conditions, the signal from the native conformation overwhelm

ingly dominates and the overall average signal is native-like. The argument that
signals from non-native fluctuations will mostly cancel upon averaging, leaving be
hind the dominant native signal, is very general, is not unexpected, and should apply

to any ensemble-averaged structural measure, including X-ray diffraction patterns.

2.5.3 How do fluctuations influence “structure inversion”?

“Structure inversion” is the process of taking constraints that are Boltz

mann-averaged and using them to predict a “single” best structure. (Some recent
efforts improve upon structure inversion by fitting constraints to a group of conform

ers, rather than to one (6, 7, 35, 39,47, 57, 58].) In reality, these constraints do not
come from a single best structure; other conformations also contribute. What distor

tions are caused by trying to predict a single best structure from averaged constraints?

When CDRs are present, the origins of the constraints can be quite complex. Figure 3

shows instances in which very non-native conformations can give native-like distances

(bottom right conformation, residues (1,13)), or in which native-like conformations
can have non-native distances (top left conformation, residues (10,13)). As a con
sequence, fitting these ensemble-averaged constraints to one conformation may very

well result in a distorted and physically nonviable structure (32,52,57,58]. This struc
ture is some “average” and is not necessarily the true native conformation (nor even
a member of the underlying ensemble which determined the constraints) [32,52]. We
explore here the extent to which “single” structures derived from ensemble-averaged
constraints resemble the true native conformation.

To test structure-inversion procedures, we begin with a given HP sequence
and its proper Boltzmann-weighted ensemble of conformations. We then calculate the

average inter-residue distances, {(dij)} (i.e., an (distance map)). This reflects what
an experiment might measure. One way to turn this information into a structure is to

use the {(dij)} as distance-constraint inputs to a distance geometry (DG) embedding
algorithm [16] and then to project into 2D (since the model's conformations are all
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two dimensional). The output, which we call a “distance-averaged” structure, is a
single structure that satisfies the constraints. Our process is idealized: (i) There are
no artifacts due to insufficient constraints or due to noise. The constraints on all

pairwise distances are calculated and are precise; there is no need for the creation

of a “bounds matrix”. Consequently, we determine only one structure. (ii) Unlike
experimental NMR structure determination, we are able to include long distance

information. (iii) We do not include an optimization/refinement step because there is
no direct correspondence of typical methods for the 2D lattice model. Our aim here

is not to test a particular refinement method but rather to explore the consequences

of fitting a single structure to constraints derived from an ensemble average.

Figure 9 shows the distance-averaged structures. At low temperatures,
where the single native conformation dominates strongly and the population of fluc

tuations is not too large, the structure-inversion procedure always returns the correct

native structure. Inversion is robust, even in the presence of CDRs.

But when the population of fluctuations is great, as would occur under con

ditions approaching denaturation, the structure-inversion process becomes increas
ingly poor, giving bond angles and lengths and steric clashes that violate the “lattice

chemistry” that was obeyed by all the conformations in the underlying ensemble.
The structures do not accurately reflect any conformation in the ensemble that gen

erated the constraints. When the deviations from ideal chemistry are small enough,
the distortions might be corrected in a subsequent optimization step, but for larger
deviations, refinement might not be able to find the native structure and will likely

lead to poor agreement between the final structure and the input constraints (see
also [40]).

The poor quality of these structures is due to internally inconsistent con

straints, as indicated by the fact that the DG embedding algorithm outputs more
than two non-zero eigenvalues (two for two dimensions). The inconsistency funda
mentally arises because there is no single structure that corresponds to the entire
ensemble [7, 32, 34, 40, 52, 57, 58]. Inconsistent constraints may be more of a prob
lem under conditions with many fluctuations, e.g., for “conformationally-ambivalent”
proteins like prions or amyloidogenic proteins, for proteins having disordered or struc
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Figure 9: Distance-averaged structures of sequence R. These structures were calcu

lated using average inter-residue distances, {(dij)}, as constraints to a standard DG
embedding algorithm [16]. A: The native conformation (f = T = 0). B and C: Struc
tures at increasing temperature and f: [kT/E = .20, f = 20% and kT/E = .24,
f = 40%, respectively.



31

turally unresolved regions, or for peptides.

2.5.4 Are fluctuations Gaussian/harmonic variations?

In addition to determining the dominant native conformation, structure

determination procedures also produce some representation of the fluctuations of the
ensemble—Debye-Waller factors in crystallography or some family of related struc
tures in NMR. These fluctuation conformations are assumed to resemble the native

conformation. The Debye-Waller factor, B, is based on the assumption that the

position of each atom obeys a Gaussian distribution around its equilibrium (see,
e.g., [25), i.e., that the atom shouldn't stray very far. In addition, during the opti
mization/refinement steps of both NMR and crystallography, output structures are
restrained to obey all experimentally measured constraints. This is done by imposing

a restraining potential or penalty function such that the lowest energy is centered at

the experimental value and increases monotonically with increasing deviation from

that value. The function is often a simple harmonic potential (60]. Hence, each of the
structures generated during structure-determination obeys all of the constraints. This
is true of all of the “related structures” produced by NMR structure-determination.

But what if proteins have rugged energy landscapes and CDR fluctuations? In this

section, we ask whether this assumption will result in correct predictions of the fluc
tuation conformations.

To test the assumption, we see if each of the distances, dj, of the first
excited conformations is close to the constraining value, (di;). If the assumption is
good, Adj = did – (dii), should be small, i.e., within 1 or 2 standard deviations,
oij = \/(Adi). orj is a measure of the variability in the i-to-j distance over the whole
ensemble. Figure 10 shows the distributions of Adi, for two different first-excited
conformations and for all the first-excited conformations combined. The deviation of

each i-to-j distance (in units of oij) from its ensemble-averaged mean, Adj/oj, is
shown for all nonbonded (i, j) pairs. A Gaussian distribution is drawn for comparison
(dotted line).

Figure 10A shows a conformation having inter-residues distances that are
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well fit by a Gaussian approximation. Most of its distances are close to the constrain

ing values. Figure 10B shows a case in which the Gaussian approximation is poorer.
If one were to use a restraining potential to force every distance to lie within 1 or 20

of the native structure, this CDR conformation would be discarded as having an en

ergy that is too high. The distributions of Adi, for all 37 first-excited conformations
were averaged together (figure 10C). Considerably more inter-residue distances are 2
or 3o away from their mean values than would be expected if the distribution were

Gaussian, even though all the CDR fluctuation conformations contributed to the oij.

Our results show that there can be fluctuations having distances that are

not close to the native distances. Distances averaged over the entire ensemble are

close to native distances, but some of the distances of individual fluctuations are not.

Using a restraining potential that forces each fluctuation to lie close to the measured

average can lead to the false prediction that there are no CDR fluctuations. Similarly,
Debye-Waller factors do not imply that residues are limited to distances & VB from
their equilibrium positions.

What fluctuations are predicted by assuming that every conformation's

properties must be close to the corresponding experimental values? We create 20

structures, each of whose distances lie within 1 or 20, of the mean, (dº). These
structures are shown in figure 11 aligned to the distance-averaged structure (the same
as figure 9C) which is the dark line. Figure 11A shows that when the inter-residue
distances are within 10 of their mean values, the predicted fluctuations form an enve

lope around the distance-averaged structure. The fluctuations all have a native-like

fold. These predicted fluctuations are not an accurate representation of the real fluc
tuations. For example, residue 1 would seem to be completely buried but is actually

exposed in 70% of the first-excited conformations. Residue 9, which is completely
exposed to the solvent according to the predicted fluctuations, is actually fully buried
in the core in 54% of the conformations that represent the true underlying fluctu
ations. When the constraints on the distances are loosened to be within 20 of the

mean (measured) values, some of the conformations actually have a non-native fold
(figure 11B).
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Figure 10: A: The distribution of Adj/o, for the first-excited conformation shown
in the upper right. The average values (dij) and oij are calculated at |kT/E = .24
(f=40%). For comparison, a Gaussian distribution with standard deviation of 1 is
drawn (dotted line). B: The same as figure A, except for a different fluctuation con
formation. Some i-j distances are several standard deviations from their mean values.

The use of a harmonic restraining potential in such cases (which results in a Gaus

sian distribution of distances) might lead to this conformation's being incorrectly

discarded as having a too high apparent energy. C: The Adj/oj distribution, aver
aged over all 37 first-excited conformations (over 37 × 105 = 3885 residue pairs). The
first-excited conformations, on average, have a non-Gaussian distribution of distances

with i-j pairs several standard deviations away from their mean values.
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Figure 11: Structural variations predicted by assuming that all fluctuation confor
mations must closely obey measured constraints. Calculations are done with data

averaged at |k'T/E = .24, f = 40%. To calculate structures whose i-j distances
lie approximately within (di;) + oij and +20 j, we imitate NMR structure determi
nation using the following distance bounds: the lower and upper bounds are set to

max((di;)—wo; , 1) and min((di;)+wo j, |j—il), respectively, and then smoothed [19].
1 and j — i■ are the minimum and maximum distances between i and j on a lattice,
analogous to the sum of van der Waal's distances and to a stretched out chain for

real proteins. w is 1 or 2 for tighter or looser bounds. A random metrization proce

dure [38] is used to consistently choose inter-residue distances from within the bounds
for input to the DG embedding algorithm and to create a diverse sampling of struc
tures. Again, no optimization step is performed. This procedure is repeated 20 times

to create 20 structures. The multiple structures are aligned to the distance-averaged

structure (that of figure 9C) shown in black. Subfigures A and B show structures
determined with distances chosen from within the 10 and 20 bounds, respectively.
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2.5.5 The results are similar in 3D.

To test whether our conclusions are limited to 2D, we also study a 27-mer

sequence in 3D: PHPHHHPHHHPPHHPPPHPHHPHPPPH. It is designed to have
few (20) native conformations (65) which are structurally similar, differing only by
surface loop flips. Since it is not computationally feasible to enumerate all confor

mations for a 27-mer in 3D, we use the hydrophobic zipper (HZ) algorithm [18,24]
to generate a representative sample of the fluctuation conformations”. As in 2D, we
find CDR fluctuations in this 3D simulation.

We calculate the same average physical properties as we did for the 2D

sequences. Figures 12 and 13 show the (distance map)s and the simulated NOE
spectra at different f. Figure 14 shows the distance-averaged structures. Again,

the distribution of Adj/oij is non-Gaussian. Some of the residue pair distances are
several oi; from their means. (Data not shown.)

There are no qualitative differences between the results in 3D and those in

2D. There are CDRs, but they are masked by average measures of structure and
by standard structure-determination procedures. Structure-inversion determines the

correct native structure under native conditions, but may produce distorted structures

as conditions approach the denaturation point.

*HZ is designed to generate low energy conformations rapidly for any sequence. HZ conformations
are often clearly non-native and thus make a useful model of CDR fluctuations. We make two
approximations: (i) We assume that the HZ conformations are a representative sample of all low
energy conformations. (ii) HZ generates a set of HH contact maps, not a set of conformations. (An
HH contact map is the set of all pairs of H residues which are in contact.) Instead of generating all
the n,m conformations consistent with each contact map, m, we generate one sample conformation,
sm. Then when calculating any average quantity, (X), sm is weighted by nºn:

(X) - XX.n X(sm) Tºrn e-Em/kT
2m 7lm e-Em /kT (5)

where the sum is over all HZ contact maps, m, and X(sm) is the value of X for sm, and Em is
the energy of m. The justification for the second approximation is that conformations which have
the same contact map are more similar to each other than to conformations with different contact
maps [41].
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Figure 12: Contour plots of the (distance map)s for the 27-mer sequence in 3D. A: The
distance map of the native conformation (T = f = 0). B and C: (Distance map)s at
increasing T and f: [kT/E = 15, f = 20% and kT/E = .18, f = 40%, respectively.
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A. f = 0, IkT/el = 0 B. f* 20%, IkTel = 15

ºº|

C. f = 40%, IkT/el = 18

Figure 13: “NOE” spectra of the 27-mer sequence in 3D. The figure is interpreted

as for figure 8. A: The native “NOE” spectrum (T = f = 0). B and C: “NOE”
spectra at increasing T and f: [kT/E = .15, f = 20% and kT/E = .18, f = 40%,
respectively.
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A. f* 0, IkT/el =0

Figure 14: Distance-averaged structures of the 27-mer sequence in 3D. A: The native

conformation (T = f = 0). B and C: Structures at increasing T and f: [kT/E = .15,
f = 20% and kT/s] = .18, f = 40%, respectively.
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2.5.6 How might experimentalists find CDR fluctuations?

To detect CDRs requires a method that either does not measure ensemble

averages or that is not overwhelmed by a signal from the native conformation under
native conditions. A possibility is a method developed by Ermäcora et al. [22, 23.
for mapping the structures of non-native equilibrium conformations. EDTA-Fe is
covalently attached to a cysteine residue. Whenever the EDTA-Fe complex hits the

peptide backbone, the backbone undergoes a single self-cleavage reaction. Mapping

these cleavage sites might show non-native points of contact with the EDTA-Fe com

plex. Perhaps this technique could be used with mass spectrometry to identify the

infrequently occurring cleavage sites, corresponding to weakly populated conforma

tions. CDR conformations are indicated when cleavage occurs at a site which is

distant from or inaccessible to the EDTA-Fe complex in the native conformation.

Fluorescence energy transfer experiments might also be able to detect non-native

inter-residue distances [4,31].

The molecules that are more likely to have CDRs are peptides, “conforma

tionally-ambivalent” proteins like prions and amyloidogenic proteins, and perhaps

proteins with slow or multi-state folding kinetics.

2.6 Summary

The fluctuations of proteins in their native states are often regarded as
small wiggles. But there is an important distinction between a small difference in

energy relative to the native conformation versus a small difference in conformation.

According to the Boltzmann distribution law, under native conditions, fluctuations

must involve small differences in energy, but they need not necessarily involve small

changes in conformation. Recent statistical mechanical models (8,9,11, 15, 17,29,55)
predict the possibility of some ruggedness in protein folding energy landscapes. It fol
lows directly (see also [45]), independently of the details of the particular model used,
that protein fluctuations may occasionally involve “conformational distant relatives”

(CDRs), conformations that are near native in energy but quite different than native
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in structure.

We have used a simple model to study how a wide range of fluctuations, in

cluding CDRs, affect experimental measures of structure and structure-determination
experiments. This study is not meant to be a model of real proteins nor a detailed
study of structure-determination. Our intention is to test a principle, to understand

how fluctuations influence structure (as determined by experiments).
We find that standard measures of structure, like NMR NOE spectra, are

unlikely to be able to detect CDRs and the ruggedness of an energy landscape. These

experiments average over the entire ensemble of conformations and the signal from
the non-native character of the CDRs cancels out. As a consequence, structure

determination procedures, which use these experimentally measured constraints as

inputs, produce structures which are very close to the native conformation. Of course,

this result has a positive aspect, namely that structures determined under native con

ditions are robust and insensitive to CDR fluctuations. On the other hand, being able

to determine a good structure implies neither few nor small fluctuations. In addi
tion, the fluctuations predicted by structure-determination—the implied fluctuations

of Debye-Waller factors and the multiple structures produced by NMR-may not

accurately reflect the true ensemble of fluctuations, if CDRs are present.

As a protein approaches its denaturation point, the population of fluctua

tions will be great. Then, the problem of structure-inversion, determining a single

structure from ensemble-averaged constraints, can be challenging because the con

straints may not be internally consistent. The lack of self-consistency may simply

indicate that the basic strategy of fitting the constraints to a “single” structure is

flawed [7, 32,34, 40, 52, 57, 58]. Constraints come from an ensemble of multiple con
formations. This may be particularly problematic for proteins with rugged energy
landscapes and CDR fluctuations.
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3.1 Abstract

We study the fluctuations of native proteins by exact enumeration using

the HP lattice model. First, we investigate how fluctuations grow with temperature.

We observe a low-temperature point below which large fluctuations of the protein

are frozen out. The behavior resembles that observed by Petsko and colleagues [56]
who showed that the thermal motions of ribonuclease A increase sharply above about

220K. This “rigor mortis point” may not be a glass transition. Second, we find an

inverse correlation between the stability of a protein and its “flexibility” as determined

by Debye-Waller-like factors and solvent accessibilities of core residues to hydrogen

exchange. Proteins having high stability have fewer large fluctuations and hence

lower flexibility. The model allows us to conjecture why proteins from thermophilic

organisms, which are exceptionally stable, may be catalytically inactive at normal

temperatures and why there is yet no dominant theme underlying thermostability.

3.2 The temperature dependence of thermal mo–

tions in globular proteins

Proteins in their native state are not in a single conformation. They consist

of a Boltzmann ensemble dominated by the native conformation, with smaller popu
lations of fluctuation conformations. The fluctuations are the conformations that are

occasionally visited as the protein responds to Brownian motion. Fluctuations are

important for the catalytic functions of globular proteins, for induced fit mechanisms

of ligand binding [29,30], and for allosteric regulation. The thermal fluctuations play
a role in the Debye-Waller factors in x-ray crystallography and in hydrogen-deuterium
exchange (HX) rates, properties which are sometimes thought to be measures of “flex
ibility”.

Flexibility can be defined either as a static equilibrium property or as a dy
namic property. Static flexibility refers to the size of the conformational ensemble of

fluctuations; it refers to the number and structural diversity of fluctuation conforma
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tions at equilibrium. These conformations are populated according to the Boltzmann

distribution law, irrespective of the barriers that must be overcome to interconvert

between them. Dynamic flexibility is determined by how quickly the protein can

hop from one such conformation to another, and is a measure of the energy barriers
between the native and fluctuation conformations. Because the time scales of HX

and of x-ray experiments are long relative to the fast motions, and sometimes even

long relative to the folding times, Debye-Waller factors and HX properties probably
reflect mainly the static flexibilities. For example, the intrinsic time scale of HX for

random-coil poly-alanine varies from .1 msec to 10 min (from pH 1 to 9) [16]. We
focus here on the static flexibilities.

A most remarkable observation was made a few years ago by Greg Petsko and

his colleagues. Through a crystallographic tour de force, Tilton et al. [56 performed
x-ray diffraction experiments on ribonuclease A at nine different temperatures. They

observed a sort of “transition” around 220R. Crystallographic Debye-Waller factors

are small and have little dependence on temperature below about 220K, but grow

more rapidly with temperature above 220K (56]. Similar results appear in earlier
studies of different properties. Atomic mean-square displacements, as measured by

Mössbauer scattering [5, 28, 43,44] and inelastic neutron scattering [15] have this
behavior; so do quenching rates [39] and viscoelastic properties [37]. In addition,
carbon monoxide rebinding to myoglobin shows non-exponential relaxation and non

Arrhenius rates below about 200K [4, 18, 25). At low temperatures, certain motions
are frozen out, although the nature of these motions is unclear [2, 5, 15, 18, 21, 23,
28, 33, 37, 43,44,47, 56, 58]. It has been suggested that the protein/solvent system
may be in a glass-like state [14, 20, 25,37]. However, we find that equilibrium (not
glassy) fluctuations can cause similar behavior. Hence we refer to the “transition”

as the “rigor mortis point”. Our interest here is in understanding what types of

conformational fluctuations might give rise to it.

In this paper, we also address another issue. Studies suggest that various

protein properties correlate with protein flexibility: (i) The greater the stability of a
protein, the less flexible it is, as measured by HX {1,12,27,40,61,62) and by fluores
cence quenching [59]. There is some evidence along the same lines from proteolysis
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experiments (11,34,54] but the data are not conclusive (e.g., (6,38). (ii) Proteins with
few “flexible residues” tend to be more thermostable [35,60]. (iii) It has been pointed
out that active sites are not optimized for stability [52] and are more flexible than
other parts of the chain [57]. We use the HP lattice model to explore the possible
physical bases for relationships between the flexibilities and the stabilities of proteins.

3.3 The model

3.3.1 The HP lattice model of proteins

We model the fluctuations of proteins using the two-dimensional (2D) HP
lattice model [10, 13, 31, 32]. Proteins are represented as specific sequences of H
(hydrophobic) and P (other) residues on a 2D square lattice. Each amino acid can
only occupy one lattice site, and no two amino acids may reside on the same site. The

energetic interactions, designed to capture the essence of the hydrophobic interaction,

consist of a single term: there is a favorable interaction, 6 × 0, whenever two non
bonded H residues are on adjacent lattice sites, i.e., “in contact”. Hence, the free

energy of any conformation is he, where h is the number of HH contacts. The lowest

energy conformation, with haat HH contacts, is the “native” conformation. We call
those conformations with haat — 1 contacts the “first-excited” conformations since

they have the next-to-lowest energy. Conformations with haal – 2 contacts belong to
the “second-excited” states, etc. In this work, we study only sequences with a single
native conformation.

The limitations of the model are obvious: the chains are short, two-dimen

sional, and low resolution, with limited bond angles and bond distances; there are only

two amino acid types; and the interactions are simplified. But we believe the model

captures the major components of protein folding—the hydrophobic interactions, the

conformational freedom of the chain, and the steric restrictions imposed by excluded

volume. This model has many protein-like properties [13,36). In particular, the native
conformations are compact with a hydrophobic core and secondary structure (9,31].
The advantage of this model is that, since the chains are short and in 2D, one can
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enumerate all conformations exactly. Therefore we are able to consider fluctuations

of all sizes, without restriction to small-amplitude motions or to short time scales.

3.3.2 The Fluctuation Conformations

We define the “fluctuation conformations” to be all conformations that have

non-zero populations, excluding the native conformation. What determines the fluc
tuation conformations? Under equilibrium conditions, every conformation, c, is pop

ulated according to its Boltzmann probability:

e–E./kT

probability of c = p(c) = Q (1)

where E. is the energy of conformation c (equal to he in our model), T is the absolute
temperature, and k is Boltzmann's constant. Q is the partition function:

N

Q -
X. e-E./kT * (2)

the sum being over all N possible conformations. At low temperatures, only the low

energy conformations are populated; high energy conformations are not. Therefore

the fluctuation conformations are low-lying on the energy landscape, but they are
non-native.

By exhaustively enumerating all conformations and using equations 1 and 2,

we calculate exactly the population of each conformation, for any temperature.

Within the framework of the model, no further approximations or assumptions are

made about which fluctuations are important or their relative magnitudes.

Figure 1 shows how the populations of low-energy conformations change
with temperature, for sequence R', HHPPHHPHHHPPHPHH, shown in its native

conformation in figure 2. At T = 0, every chain is in the native conformation (ground
state); there are no fluctuations. At low T, the native conformation is still dominant

but other low-energy conformations are also populated. Ultimately, at high T, the
proteins denature, but we focus here always on “native” conditions, i.e., temperatures
below the denaturation midpoint.

*R is the same sequence as studied in [55].
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Figure 1: Populations of different energy states, at different temperatures, for se
quence R. Energy = he, where h is the number of HH contacts and e < 0. All

conformations with the same energy are grouped together. A: At low temperatures,

the ensemble consists almost entirely of the native conformation (h = 8). At higher
temperatures (B: |kT/s = .20; C: |kT/s] = 24), the first-excited conformations
(h = 7) are also populated and comprise the majority of fluctuation conformations.
f is the fraction of the total population which are in fluctuation conformations (i.e.,
non-native).
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Figure 2: The native conformation of sequence R. Dark beads are hydrophobic (H);
light beads are other (P). HH interactions are favorable.

Previous work with this model has shown that the fluctuation conformations

under native conditions are mainly the first-excited conformations (36,55]. A sample
of R's first-excited conformations is shown in figure 3. These conformations are

compact and have hydrophobic cores and secondary structure. Their folds range

from being somewhat similar to the native (with a few residues shifted relative to the

native conformation) to strongly non-native-like [36, 55]. We regard all of the first
(and higher-)excited conformations to be “non-native-like” or “large” fluctuations.
For real proteins, a “large” fluctuation would be any conformation which would not
be confused for the native conformation. These fluctuations exclude vibrations and

small loop/side-chain wiggles.

We have recently explored how experiments might detect non-native-like

fluctuations [55]. The HP model tends to have rugged energy landscapes and therefore
best models those proteins with similar landscapes, perhaps those that have slow or

multistate folding kinetics, or are metastable.

3.3.3 Static equilibrium flexibility measures

Experiments that involve intrinsically long time scales (such as x-ray crys
tallographic or HX experiments) measure equilibrium properties, that is, averages
over the Boltzmann ensemble. For any property, X, the ensemble average is

N

(X) -
XX. p(c) (3)
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Figure 3: A sample of the 37 first-excited conformations of sequence R. The confor

mations are ordered from the highest structural similarity to the native conformation

at the upper left to the lowest structural similarity at the lower right.
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where p(c) is the Boltzmann probability for conformation c, defined in equation 1
and X, is the value of X for conformation c. The angle brackets, ( : '), indicate the
ensemble average.

We simulate two measures of flexibility, crystallographic Debye-Waller-like

factors and the HX rate. We compute a quantity, bi, similar to a Debye-Waller factor
for the lattice model:

1 *

Tlnb j=1

where Adj = dº — (dº), is the deviation of the i-j distance away from its mean value

and (Adj.) is the mean-square deviation. The sum is over all nab residues which are
not bonded to i, i.e., j # i, i + 1; n is the length of the chain. b) is related to the

Debye-Waller factor of residue i, B, = 87°(Ar?): if residue i is in many different
conformations or if the conformations that i is in are very different, b, is large. b.

has the same dimensions as an atomic mean-square displacement. We introduce a

doubly-averaged quantity, b, the bar indicates an average over all the residues of the
chain, in addition to the ensemble average. 5 gives a measure of the overall mean
square displacement of the chain. It is similar to a molecule-averaged Debye-Waller
factor. b is a measure of the conformational diversity of the ensemble. If the ensemble
is dominated by one conformation, b is small; if there are many conformations, b is
large.

The HP lattice model has been used before to study HX protection [36].
The exchange competence of a residue is given by its accessibility to solvent: the

accessibility, Aci, of residue i is defined to be 0 if i is completely surrounded by four
other residues in conformation c; Aci = 1 if i is adjacent to a lattice site that is

occupied by a solvent molecule (i.e., not occupied by a residue). The HX rate of any
residue i is proportional to its average accessibility, (A) [36].
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3.4 How fluctuations depend on temperature: the

“rigor mortis” point.

To explore the temperature dependence of the fluctuations, we calculated b
as a function of temperature for many different HP sequences of lengths n = 16 to

20. All the sequences we studied show similar behavior. We present data mainly on

sequence R.

Figure 4 shows the behavior of b as a function of temperature for three
different n = 16 sequences. The model predicts two temperature regimes separated

by a temperature Tºm. The behavior resembles that of the molecule-averaged Debye–

Waller factors in the experiments of Tilton et al. [56]. The basis for this behavior is
simple to explore in the model. Figure 1 shows that at low temperatures, kT 3|E|,
only the native conformation is populated; b = 0. Vibrational modes are not included
in our model and thus the slope for the model is zero at low temperatures. The

experimental data, on the other hand, show a small non-zero slope that is due to

vibrational motions [15, 19, 44, 49]. As the temperature is increased, the population
of first-excited conformations becomes non-negligible and then grows with increasing
T; b also grows with T. A breakpoint appears at the temperature, Tºm, where the
first-excited conformations just begin to be populated:

population of first – excited conformations = g(1) e-lel/kTrm - 1% (5)
population of native conformation

Ot

kT.m. 1

TET TIn(01/7(1) (6)
where g(1) is the number of first-excited conformations. In our model, the rigor
mortis point occurs at the temperature at which the first-excited (i.e., low energy,
non-native-like) fluctuations begin to be populated.

Is the rigor mortis point a “glass transition”? By definition, a glass below its

transition temperature is a metastable system and is not in equilibrium. But in our

model the rigor mortis point is due to equilibrium fluctuations and hence is not a glass
transition. Nocek et al. [39] have also explained their data by an equilibrium model.
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Figure 4: 5 as a function of temperature for three different n = 16 sequences. b is
similar to a molecule-averaged Debye- Waller factor. Data are plotted up to each

sequence's denaturation midpoint. (+) Sequence Q, kT/E = .19; (3) sequence R,
|kT/s = .26; (x) sequence S, kT/E = .37. Sequence R was also the primary
example in [55); sequence S was studied in [36].

Angell and coworkers [21] have noted that “[t]his phenomenon itself cannot be what is
normally understood by relaxation phenomenologists as the glass transition (though
it may well be the triggering mechanism...) because it can be observed in extremely
short (picosecond) time scale studies, e.g., [molecular dynamics simulations].” The
time scales associated with glass transitions in liquid or plastic crystals are in the range

of 100 sec [21]. Mössbauer experiments and inelastic neutron scattering experiments
explore much shorter time scales, those faster than 107" seconds [42] and between
107° to 107"sec [15], respectively. Parak and Knapp [45] point out that thermal
equilibrium is reached during the time needed for x-ray investigations; hence the

Debye-Waller factor is an equilibrium property. On the other hand, experiments

on CO binding to myoglobin show non-exponential relaxation and non-Arrhenius

reaction rates below ~200K (25). The actual temperature of this “transition” depends
crucially on the glass temperature of the solvent; hence the transition is thought to

be “slaved” to the solvent (3,25). The non-equilibrium behavior has been attributed
to the freezing of the solvent or to the solvent's high viscosity or glassy behavior
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Figure 5: In b as a function of 1/T for three different n = 16 sequences. The data are
the same as for figure 4: (+) sequence Q; (3) sequence R; (x) sequence S.

|2, 14, 23, 58]. However, it is possible that these experiments and the x-ray data are
measuring different motions.

Our results show that the fluctuations that are populated above the rigor

mortis point may be simply a new class of fluctuations. This has been suggested

before. These motions have been attributed to conformational substates [4, 18,45],
anharmonic vibrational modes [33,47), large-scale collective motions [5], the coupling
of fast local motions to slower collective motions [15], cooperative loosening and rapid
dynamics of a ligand binding interface [39], or a change in the structure and motion
of the solvent around the protein [14, 37, 58]. kT.m. is the intrinsic energy of the
fluctuations (or of the barriers between them).

The experimental data have also been explained by activated process mod
els [4,5,15,28,45]. We note that the lattice model results are consistent with two
state activated processes in the equilibrium limit. Figure 5 shows that ln b is ap
proximately linear with 1/T. Activated processes can explain both equilibrium and
non-equilibrium conditions.

We have made an additional comparison of the model with experiments.
Tilton et al. [56 observed that increasing the temperature results not only in an
increase in the overall Debye-Waller factor but also in a broadening of the distribution
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of Debye-Waller factors throughout the molecule. We observe the same behavior

(figure 6). This indicates that the model gives at least a plausible basis for the chain
motions underlying the rigor mortis point.

3.5 Protein flexibility decreases with stability

We also used the lattice model to explore the relationship between flexibility

and stability for different HP sequences. To monitor protein stability, we use the

denaturation temperature, Tm, the temperature at which the free energy of folding is
zero, AG = 0, i.e., where 50% of the molecules are in the native conformation. More

stable sequences have higher Tm values.

We use three measures of flexibility: the average solvent accessibilities (which
correlate with HX rates [36]) of core residues, a Debye-Waller-like measure of distance
variations, and the rigor mortis point temperature. We studied -30 different HP

sequences of chain lengths 16 to 20.
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Figure 7: The average accessibility (which is proportional to the HX rate [36]) of
core residues versus the denaturation temperature, Tºn for ~ 30 different sequences

of lengths 16 to 20. A core residue is defined to be one which is completely buried
(surrounded by other residues) in the native conformation. Each point represents
one core residue of one sequence. As average accessibilities decrease (less flexibility),
Tºn’s increase (greater stability). The average accessibilities are calculated at a fixed
temperature of kT/E = .20.

3.5.1 Hydrogen exchange rates

For each sequence, the average solvent accessibility, (A:), is calculated for
every residue i that is buried in the native conformation. Figure 7 shows these average
accessibilities for all of the sequences versus Tin. Each point represents one residue of

one sequence. We find that buried core residues tend to have less solvent accessibility,

corresponding to a slower HX rate [36], if they are in more stable proteins.

3.5.2 Debye-Waller factors

We also studied how b, our analog of the molecule-averaged Debye-Waller
factor, correlates with stability. Figure 8 shows that, on average, more stable proteins

tend to have smaller and/or fewer thermal motions, by this measure.
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3.5.3 The “rigor mortis” point temperature

The rigor mortis point temperature, Tºm, is another measure of the flexibility
of the molecule. The lower Tºm, the more flexible is the protein. The Tºm is computed

as the point of intersection of two straight lines on the plots of b versus |kT/s (like
figure 4): one drawn to the limit of low temperatures, and the other at the limit of
high temperatures (the highest temperature we used is at the denaturation midpoint).
Figure 9 shows the rigor mortis temperature versus the denaturation temperature.
This measure of flexibility also correlates inversely with stability. More stable proteins

are found to have higher rigor mortis temperatures.

3.5.4 Why are stable proteins less flexible?

By our three measures of flexibility, the results above indicate that HP pro

teins with greater stability have less flexibility. Why? The non-native-like fluctuations

are the link between both properties. If a sequence has many first-excited conforma



63

oooo

-
coo

8 o
º, & O

s co O
*- Os

- O

to .8
3 i oo 8°

oš
I I I

0.20 0.30 0.40

IkTm / el

Figure 9: The rigor mortis temperature, Tºm, versus the denaturation midpoint tem
perature, Tn. Lower rigor mortis temperatures correspond to more flexible sequences.
As the rigor mortis temperature increases (less flexiblility), Tºm's increase (greater sta
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tions, or the energy of that level is low, the protein will be both unstable and have
many populated fluctuations. But if the energy gap to the first-excited state is large,

or the number of first-excited conformations is small, the protein will be stable and

there will be few populated non-native-like fluctuations. Hence, stability and static

equilibrium flexibility inversely correlate.

3.5.5 Speculations on why thermophilic proteins have low

enzyme activities at room temperature and why there

is no dominant theme underlying thermostability.

It follows that whatever stabilizing factors lower the native-state free energy

relative to the non-native-like conformations will also diminish the population of these

conformations (hence decreasing the flexibility of the protein). It has been argued
that proteins need big stability gaps in order to have stable native folds and rapid
folding kinetics [50]. But proteins may also need flexibility for enzyme function,
induced fits of ligands, and for allostery. Evolution may have had to balance these
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needs, resulting in biological proteins with marginal stabilities.
Greg Petsko has suggested an interesting possibility [46], for which we find

support in the model. There is evidence that proteins from thermophilic organisms
(“thermophilic proteins”), which are unusually stable at high temperatures (see, e.g.,
[27]), are catalytically active mainly at high temperatures and less active at lower
temperatures at which their mesophilic counterparts function well (8,26,51,59]. Since
greater stability correlates with less flexibility, cooling to room temperature may
freeze out the non-native-like fluctuations that are necessary for catalytic action. For

example, from figure 4, when |k'T/s is between .15 and .20, sequence Q (+ symbols)
might be active whereas sequence S (x symbols) might not be. It is interesting that
ribonuclease A binds substrate and inhibitor 10°C above its rigor mortis temperature

but not 10°C below [47], indicating that some binding-friendly modes of the protein
are not populated below the rigor mortis temperature.

What forces might stabilize thermophilic proteins? Several studies of na

tive thermophiles compared to their counterpart mesophiles have not yet revealed a

dominant type of interaction. The differences in stability are attributed to the cu

mulative effects of many subtle interactions [17, 22,27,48]. But another possibility is
that the message may not be in the native structures, but rather may also involve the
denatured conformations that are the dominant fluctuations. The secret to extreme

stability in thermophilic proteins could reside in the first- (or higher-)excited states.
Pertinent to this point is the observation of a “reverse hydrophobic effect” [7,24,41,53],
whereby increasing the hydrophobicity of some surface residues in proteins destabi
lizes them, presumably because they affect the denatured states more strongly than
the native states.

3.6 Conclusions

We have studied the fluctuations of native states of model proteins. For all
HP sequences we have examined, the model has a “rigor mortis point”, as has been

observed experimentally for ribonuclease A (56). At temperatures below this point
large fluctuations are frozen out. Heating above the rigor mortis point temperature
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recruits new classes of conformational fluctuations that contribute to the thermal mo

tions. We have also studied the correlation of protein stability with three measures

of static equilibrium flexibility—average solvent accessibilities of core residues (re
lated to their HX rates), a Debye-Waller-like measure of distance variations, and the
rigor mortis point temperature. We find that, on average, protein stability correlates
inversely with flexibility. The greater the stability of a sequence, the fewer are the

accessible large fluctuations, resulting in a lower equilibrium flexibility.
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In chapter 3, I showed that the static equilibrium flexibility and the stability

of proteins are inversely correlated. I present here a simple theory which predicts how

measures of fluctuations should behave as a function of the denaturation temperature,

Tm.

Let F be some flexibility measure which has a value of 0 for the native

conformation, e.g., the solvent accessibility, Ai, of a native-buried residue. What

we want is (F), the ensemble-averaged value of F (which is what's measured in an
experiment), as a function of Tºn:

y F. e-Bº■ kT
Q

where the sum is over all conformations, and F. and E. are the value of F and the

(F(T)) = (1)

energy of conformation c, respectively. Q is the partition function.

But, F = 0 for the native conformation so the sum is only over non-native
or fluctuation conformations.

22-fluct F. e-E./kT
Q (2)

Now I make my first approximation. I assume that the dominant fluctuation confor

(F(T)) =

mations are the first-excited conformations. For every N = 16 sequence I studied,

the second-excited conformations contribute only when the temperature is near the
denaturation point, or when the number of first-excited conformations is small. The

third-excited states were always insignificant under native conditions. With this ap
proximation, then,

f"v 2– st earc F. e–E./kT
(F(T)) = *—

-
(3)

Since all the first-excited conformations have the same energy, E1,

e-Bi■ kTy
Q

where (F), is the average of F over all the first-excited conformations, g(1) is the

Cº.(F(T)) * = (F), () p(T). (4)

number of first-excited conformations, and p(T) = e^*/*/Q is the probability of
populating any single first-excited conformation at temperature T.
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The sequence dependence of (F(T)) comes from (F), g(1). I now make my
second assumption, that (F), is, to first order, sequence independent. Then, the
sequence dependence of (F(T)) lies only in g(1). Right away, we see that the average
fluctuations are then proportional to g(1) which inversely correlates with stability (the
larger g(1), the more low-energy non-native conformations, and the smaller |AG|).
At first, this approximation might seem a bit unintuitive, but for the moment, let me

give a simple reason for its validity. The first-excited conformations tend to be quite

different from each other and from the native conformation (see chapter 2). When

one averages over all of them, details of individual conformations get washed out and
one is left with an overall variability of the fluctuations which doesn’t change much

from sequence to sequence in the lattice model. I will further discuss the validity of

both approximations later.

But, let me continue with the derivation, assuming that both approximations

are good, to show how (F(T)) should depend on Tin. With this second assumption,

(F(T)) = g(1) x (sequence independent factors) . (5)

What is Tºm's sequence dependence? Tºn is defined to be the temperature at

which AG = 0,

[non – native conformations]AG(T,) = 0 = kT, ln (6)

Again, assuming the dominant non-native conformations are the first-excited confor
[native conformation]

mations,

0 C+ 1 |first – ercited conformations 7)
E IIl [native conformation] (
as ln(g(1) e-k/**) (8)

OT

|s|
l = — .no■ ) = f; (9)

Combining with equation 4,
&

ln (F(T)) = # + ln (F)1 + ln p1(T) (10)

-
lel + (sequence independent factors) . (11)kTin
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Figure 1: The average accessibility of core residues as a function of 1/Tºn for ~30
different sequences of lengths 16 to 20. Each point represents one native-buried

residue of one sequence; its Tºn is that of the corresponding sequence. The data are

the same as for figure 7 of the previous chapter.

The logarithm of the average fluctuation measure should be proportional to 1/Tºn.

We see in figure 1 that this is indeed approximately true when the fluc
tuation measure, F, is the average accessibility of residues which are buried in the

native conformation. When the fluctuation measure is b (figure 2), we see that the
relationship is linear at large |E|/kTºn, corresponding to large g(1) (where the first

approximation is good).

Let me now quantitate the validity of the two approximations. First, do

the first-excited conformations dominate the fluctuations? If so, then we expect from

equation 9 that the plot of |s|/kTin versus ln g(1) should be linear, with a slope of
1. Figure 3 shows that the el/kTim does asymptotically approach the theoretically
predicted behavior (solid line). In particular, the approximation is fairly good when
g(l) & 50, corresponding to le/kT., & 4. To check the second approximation,
figure 4 shows (F), as a function of g(1), where F is the molecule-averaged “B”
factor, b. Each point represents a different N = 16 sequence. 5 hovers around 4 for
sequences with g(1) & 20. To first order, assuming that (F), is sequence independent
is a good approximation within the lattice model. In general, the quality of this
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Figure 2: b as a function of 1/T. Each point represents one sequence. The data are
the same as figure 8 of the previous chapter.

second approximation depends on (1) the sequences one is comparing and (2) the
fluctuation measure, F. For the lattice model, most first-excited conformations tend

to be quite different from each other and from the native conformation, especially

when g(1) is large (the regime where the first approximation is valid) [1]. (F), is
essentially an average over many compact but different conformations. As long as F

is a fairly broad measure of conformational dissimilarity (see below), the details of
these fluctuation conformations get averaged out and (F), is then a measure of the
overall variability of the fluctuations. The sequence dependence is not very strong,

at least for the lattice model. Thus, this is a good first-order approximation and

we consequently saw clean inverse correlations between flexibility and stability (see
chapter 3 and figures 1 and 2 above), even when comparing very different sequences of
varying lengths. For real proteins, the approximation is probably less good and most

likely breaks down when comparing molecules with different native conformations.

For example, if molecule A were designed to have a rock solid core with a flexible

active site, whereas molecule B has moderate flexibility overall, A and B might have

the same average overall flexibility (as measured by, say, a molecule-averaged Debye

Waller factor), but different stabilities. There might also be chain length effects. In

general, it would be best to compare sequences with the same native structure (as
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Figure 3: 1/Tºn plotted as a function of ln g(1). Each point represents a different
sequence. The data are for ~30 sequences of lengths 16 to 20.

is currently done in studies of thermophiles and their counterpart mesophiles). In
addition, the choice of flexibility measure F shouldn't be too detailed. For example,

the molecule-averaged Debye-Waller factor is probably more sequence-independent

than is the Debye-Waller factor of serine residues. The latter may sample onliy a

specific environment of the protein.

I can improve the first approximation by including second-excited confor

mations. Equation 8 then becomes:

0 eln(g(1)e-kº" -- g(2)e-*/*") (12)

where g(2) is the number of second-excited conformation. Simplifying,

|s|/kT = ln(g(1) + g(2)e^*/*"). (13)

In the plot of |s|/kTºn versus ln g(1) (figure 3), we see now that the deviation of the
points from the theoretical line is the contribution from the second-excited confor

mations. Not surprisingly, as g(1) increases, the second-excited conformations play a
smaller role. In summary, my two approximations are good when g(1) is large, * 50
or |s|/kT., & 4.

What does the theory predict for the behavior of the “rigor mortis” tem

perature, Tºm, with Tºn? In our model, the rigor mortis point occurs when the total



78

co
O

CO
c T O

o o O
| S St J AO Q O Oc 1 QD Q Q

O

cu§ {
o
co

O 50 100 150

Figure 4: b as a function of g(1). Each point represents a different sequence.

population of the first-excited state is approximately constant at P.m. (P.m. is some
where between 0 to 20% for most sequences. Data not shown.) Then,

g(1)e-lel/kTrn
Q

Again, assuming that the first-excited conformations are the dominant contributors,

Prm = (14)

g(1) e-lel/kTºm
1 + g(1) e-lel/kTrm

C:Prm (15)

Using equation 9 to replace g(1),

* / elel/kTim e-lel/kTrm
Pºm *TTTTTTTTTTT (16)

which simplifies to |s| |s|& & Prm
F —l

- *FT. - IT. T." TE. (17)
Hence, we expect that |s|/kT.m. to be linear with respect to |s|/kTim with a slope of 1.
Figure 5 shows that this is indeed true under conditions where the first approximation
is valid, i.e., when |s|/kT., & 4. The dotted lines are the theoretical predictions with
P., set to different values. Fitting the el/kT., & 4 data to a straight line, we obtain
—ln{P.m/(1 – P.m)] = 3 or P.m. º 5%, which is a reasonable value.

Can we use this theory to make predictions on the density of states, g(E), for
real proteins? As noted, the first-excited conformations are the dominant fluctuations
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Figure 5: 1/T.m. as a function of 1/T·m. The dotted lines are the theoretical curves
(slope of 1) with different values of P.m.

when g(1) is large. When this condition is not met, there are deviations from the
predicted theory. It would be interesting to find out whether one could use the non

ideality to back predict the number of second-excited conformations, g(2), and/or
their total population relative to the first-excited conformations, g(2)e"/*/g(1). If
this were possible, one might then extend the theory to a model with a continous
density of states and perhaps make predictions for real proteins. The long term goal

of this study would be to use experimental information on average fluctuations and

stability, perhaps with data from several temperatures, to predict (the low energy
end of) g(E) for real proteins. But I leave that for future work.
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