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ABSTRACT OF THE DISSERTATION

Data-Driven Modeling and Algorithmic Trading in Electricity Market

by

Yinglun Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2024

Dr. Nanpeng Yu, Chairperson

The wholesale electricity markets in the United States operate under the two-settlement system,

comprising the day-ahead (DA) market and the real-time (RT) market. The DA market clears bid-in

supply against bid-in demand and determines DA physical schedules for generators, virtual awards,

and DA locational marginal prices (LMPs), which are defined as the marginal costs of serving the

next increment of demand at pricing nodes consistent with existing transmission constraints and

performance characteristics of generation resources. The RT market procures ”balancing” energy

to meet the forecast RT grid energy demand and determines RT dispatch signals for resources and

RT LMPs. The introduction of virtual bids to electricity markets is to mitigate the discrepancy

between the DA market and the RT market in LMP spreads. In this dissertation, we focus on devel-

oping a machine learning-driven portfolio optimization framework for virtual bidding in electricity

markets considering both risk constraint and price sensitivity. The algorithmic trading strategy is

developed from the perspective of a proprietary trading firm to maximize profit. A recurrent neural

network-based LMP spread forecast model is developed by leveraging the inter-hour dependencies

of the market clearing algorithm. The LMP spread sensitivity with respect to net virtual bids is
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modeled as a monotonic function with the proposed constrained gradient boosting tree. We perform

a comprehensive empirical analysis on PJM, ISO-NE, and CAISO with the proposed framework.

We further introduce a similar framework to arbitrage congestion with virtual bids. A deep neural

network is designed to estimate the difference between congestion spreads in DA and RT markets.

A clustering algorithm is adopted to separate pricing nodes into a few groups, between which the

congestion spreads can be exploited. We validate the proposed algorithmic trading strategy using

publicly available data from CAISO.

The electric power system is a major contributor to greenhouse gas (GHG) emissions. To

reduce GHG emissions, accurate emission predictions are essential. The marginal emission factor

(MEF) is a useful signal for distributed energy resource aggregators and end-use customers to mit-

igate GHG emissions by scheduling the flexible loads accordingly. We propose a hybrid machine

learning framework to predict GHG emissions and locational MEF, which integrates feed-forward

neural networks (FNNs) with spatio-temporal graph convolutional networks (STGCNs). A compre-

hensive case study in CAISO shows that the proposed approach outperforms the existing techniques

in prediction accuracy. The proposed model provides short-term locational MEF predictions with

high time granularity using only publicly available data.
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Chapter 1

Introduction

1.1 Background

1.1.1 Wholesale Electricity Market

The electricity markets in the U.S. comprise wholesale and retail components, where the

wholesale markets involve the sales of electricity among utilities and traders before it is distributed

to consumers, and the retail markets involve the sales of electricity to consumers.

In wholesale electricity markets, there are traditional electricity markets and electricity

markets managed by market operators. Traditional wholesale electricity markets exist primarily in

the Southeast, Southwest, and Northwest (shown in Figure 1.1). The utilities in these markets are

vertically integrated, in the sense that they are solely responsible for generating, transmitting, and

distributing electric power to consumers. Wholesale physical power trade typically occurs via bilat-

eral transactions, historically via power-pool agreements. In addition to traditional electricity mar-

kets, there are independent system operators (ISOs) and regional transmission organizations (RTOs),
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Figure 1.1: Electricity Markets in the U.S. (Source: Federal Energy Regulatory Commission)

which operate the transmission system independently of market participants and foster competition

for electricity generation among market participants. They are regional federally organized organi-

zations that coordinate, control, and monitor the power system. Each of the ISOs and RTOs have

energy markets and ancillary service markets, which enable market participants to submit demand

bids or supply offers for electricity. Such bid-based markets are used to determine the economic

dispatch. Although major sections of the country operate under more traditional market structures,

two-thirds of the nation’s electricity load is served in regions managed by market operators. As

shown in Figure 1.1, there are 7 market operators in the U.S., namely the California ISO (CAISO),

the Midcontinent ISO (MISO), the ISO of New England (ISO-NE), the New York ISO (NYISO),

the Southwest Power Pool (SPP), the Pennsylvania-New Jersey-Maryland Interconnection (PJM),

and the Electric Reliability Council of Texas (ERCOT).
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CAISO was founded in 1998 and became a fully functioning ISO in 2008. CAISO cen-

trally dispatches generation and coordinates the movement of wholesale electricity in California and

a portion of Nevada. CAISOs markets include energy (day-ahead and real-time), ancillary services,

and congestion revenue rights. CAISO also operates an energy imbalance market (EIM), which

currently includes CAISO and other balancing authority areas in the western United States.

MISO was organized as an ISO in December 2001. It began market operations in April

2005. In 2009, MISO started operating an ancillary services market and combined its 24 separate

balancing areas into a single balancing area. In 2013, the ISO began operating in the MISO South

region, including the utility footprints of Entergy, Cleco, and the South Mississippi Electric Power

Association. Now, MISO centrally dispatches the market in portions of 15 states in the Midwest

and the South, extending from Michigan and Indiana to Montana and from the Canadian border to

the southern extremes of Louisiana and Mississippi.

ISO-NE was created in 1997 and began operating as an ISO in 2005. ISO-NE operates

the transmission network and performs long-term planning and maintenance for the New England

system, now serving 6 New England states: Connecticut, Maine, Massachusetts, New Hampshire,

Rhode Island, and Vermont.

NYISO was authorized as an ISO in December 1999. The chronic transmission in NY-

ISO are in the southeastern part of the New York state, covering New York City and Long Island.

NYISO is responsible for operating wholesale electricity markets that trade electricity, capacity,

transmission congestion contracts, and related products.

PJM was founded in 1927 as a power pool of three utilities serving customers in Penn-

sylvania and New Jersey. In 1956, with the addition of two Maryland utilities, it became the
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Pennsylvania-New Jersey-Maryland Interconnection, after which its name “PJM” came. PJM be-

came a fully functioning ISO in 1996 and introduced markets with bid-based pricing and locational

marginal pricing (LMP) in 1997. PJM was designated an RTO in 2001. Now, PJM centrally dis-

patches generation and coordinates the movement of wholesale electricity in all or part of 13 states

(Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio,

Pennsylvania, Tennessee, Virginia, and West Virginia) and the District of Columbia.

SPP was founded as an 11-member tight power pool in 1941 and became an RTO in

2004. In 2014, SPP implemented its integrated marketplace, including a day-ahead energy market,

a real-time energy market, and an operating reserve market. In 2015, SPP expanded its footprint

incorporating the Western Area Power Administration – Upper Great Plains (WAPA-UGP) region,

the Basin Electric Power Cooperative, and the Heartlands Consumer Power District. Now, SPP

manages transmission in portions of 14 states: Arkansas, Iowa, Kansas, Louisiana, Minnesota,

Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas and

Wyoming.

ERCOT was formed in 1970 and was deregulated for its wholesale energy market in 1995

and everything else in 1999 to fully encourage competitions. ERCOT manages the power flow to

24 million customers in the state of Texas, representing approximately 90% of the electrical load in

Texas. ERCOT operates as an energy-only market with real-time, day-ahead, and ancillary services,

performs financial settlement for the competitive wholesale energy market, and administers retail

for 7 million premises in competitive-choice areas.

In the United States, the wholesale electricity market consists of two types, the day-ahead

(DA) market and the real-time (RT) market, which is officially termed as “two-settlement”. The
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DA market is a forward market that determines unit commitment plans, generation unit dispatch

schedules, electric load, virtual bid awards, and the DA locational marginal prices (LMPs). The RT

market is a spot market that balances between real-time demand and supply and determines the RT

resource dispatch schedules and the RT LMPs. The LMPs are the marginal costs to supply the next

incremental demand at different locations, accounting for transmission constraints, performance

characteristics of generation resources, and load patterns.

1.1.2 Virtual Bidding

Virtual bids are financial positions in wholesale electricity markets, which neither require

physical assets nor provide/consume physical energy. Virtual bids consist of two types: increment

(INC) offers and decrement (DEC) bids, also referred to as virtual supply offers and virtual demand

bids. INCs are financial instruments that enable virtual traders to sell energy in the DA market and

purchase the same amount of energy back in the RT market, while DECs enable virtual traders to

purchase energy in the DA market and sell the same amount of energy back in the RT market.

The goal of introducing virtual bids to the electricity market is to drive price convergence

between DA and RT LMPs, hedge financial risks, and increase market liquidity. However, the real

impact of virtual bidding is controversial [1]. Theoretically, the introduction of virtual bidding in-

creases market efficiency and reduces price spreads between DA LMP and RT LMP [2, 3, 4, 5]. On

the other hand, market manipulation [6, 7], inappropriate market designs such as modeling discrep-

ancies [2], and virtual bidding on interconnections [8] can lead to inefficient market solutions.

According to the most recent CAISO market report [9], the net profits paid to virtual

bidders in 2022 is increased to $106M, from $38M in 2021 and $45M in 2020. Specifically, during

the summer heat wave of 2022, market participants received more than $36M in net revenues from
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virtual demand, accounting for 93% of the net revenues from virtual demand in all 2022. Virtual

bidding is designed to align DA and RT LMPs by financial arbitrage. The higher the net profit, the

larger the price spread exists between the DA and RT LMPs. Such statistics indicates an increasingly

huge opportunity in algorithmic trading with virtual bids in the wholesale electricity market.

1.1.3 Greenhouse Gas Emission

Greenhouse gas (GHG) traps the heat and makes the world warmer. Human activities

are responsible for almost all the increase in GHGs in the atmosphere in the long run. According

to the U.S. Environmental Protection Agency [10], electricity accounts for 25% of the total GHG

emissions, which is the second largest share of GHG emissions. The reason is that approximately

60% of electricity comes from burning fossil fuels, mainly coal and natural gas.

The emission of electricity is mainly from the generation process. GHGs are released

during the combustion of fossil fuels, including coal, oil, and natural gas, to produce electricity.

Coal combustion is more carbon-intensive than natural gas or petroleum. In details [10], coal use

accounted for 59% of CO2 emissions in the United States in 2021, while it accounted for only

23% of electricity generation. Natural gas use accounted for 37% of electricity generation in 2021,

and petroleum use accounted for less than 1%. The remaining generation in 2021 came from non-

fossil fuel sources, including nuclear (20%) and renewable energy sources (20%), which invlove

hydroelectric, biomass, wind, and solar. Most of non-fossil sources, such as nuclear, hydroelectric,

wind, and solar, cannot emit GHGs.

There are various ways to diminish GHG emissions associated with electricity. First,

increase the efficiency of the existing fossil-based generations by replacing them with less carbon-

intensive fuels. Second, encourage and promote the use of renewable energy, such as wind, solar,
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hydro, and geothermal. Third, increase the efficiency of consuming electricity from end-users by

providing more energy-efficient equipment to homes, businesses, and industries. Last, increase the

use of nuclear energy in the substitution of fossil fuels in generations.

However, in order to reduce GHG emissions, an accurate prediction on GHG emissions

is required. Normally, two major GHG emissions factors are considered: the average emissions

factor (AEF) and the marginal emissions factor (MEF). The AEF is calculated as the ratio of total

GHG emissions to total power consumption. The MEF is the ratio of the change in GHG emissions

to the change in power consumption. MEF is more helpful compared to AEF, since distributed

energy resource aggregators and end-use customers can determine how much electricity should be

consumed at different time slots of a day using MEF. MEF signals can be sent along with electricity

price signals to flexible loads and other smart technologies of the residential, commercial and in-

dustrial customers [11]. Based on the MEF signals, flexible loads, such as electric vehicles (EVs),

smart thermostats, and batteries can consume or charge less power during high MEF hours and more

power during low MEF hours. MEF can also be considered in the new design of electricity pricing

to help further reduce GHG emissions.

1.2 Technical Challenges and Research Opportunities

1.2.1 Machine Learning-Driven Virtual Bidding Strategy and Market Efficiency Anal-

ysis in Wholesale Electricity Market

The goal of this research is to develop a machine learning based trading strategy to max-

imize the net profit for a virtual bid trader while analyzing the market efficiency of different U.S.

wholesale electricity markets.
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There are four major gaps in existing works. First, none of the existing work explicitly

models the impacts of virtual bidders’ trading activities on electricity market prices [3, 4, 12, 13].

We hereby develop a machine learning-based estimation algorithm for the LMP spread sensitivity

with respect to virtual bid trading quantities. Second, recognizing that the inter-hour operational

constraints such as resource ramping constraints have a great influence on LMPs, we accommodate

the inter-hour dependencies by adopting a recurrent neural network framework to further improve

the existing feedforward neural network based LMP spread forecasting model [13]. Third, most

prior works perform market efficiency analysis for one electricity market at a time [3, 4, 13]. Our

research performs a large-scale empirical market efficiency analysis across multiple wholesale elec-

tricity markets (PJM, ISO-NE, and CAISO). Last, the congestion difference in pairs of bidding

nodes is rarely explored. We aim to predict and arbitrage the difference between DA and RT LMP

spreads in pairs of nodes instead of separate nodes as in the prior works, so that the system energy

components can be canceled.

1.2.2 Prediction of Marginal Greenhouse Gas Emission Factors of Electricity with

Graph Neural Networks

The goal of this research is to develop a hybrid machine learning model, which integrates

feedforward neural networks (FNNs) with spatio-temporal graph convolutional networks (STGCNs)

[14], to accurately predict GHG emissions and the MEF.

There exist three research gaps in predicting GHG emissions. First, previous works have

difficulty capturing the complex interactions between multiple load zones, hard to provide a highly-

accurate locational MEF prediction. Second, The short-term hourly MEF predictions are rarely

explored. Third, an applicable framework based only on publicly available data is missing.
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1.3 Contributions

This dissertation studies the two targeted topics mentioned in Section 1.2. The main

contributions are as follows.

• Constrained gradient boosting tree based price sensitivity modeling: we are the first to de-

velop the constrained gradient boosting tree based algorithm to model the monotonic function

representing the LMP spread sensitivity with respect to net virtual bids.

• Neural network based price forecast and trading volume forecast: we develop a neural net-

work based virtual bid trading quantity forecasting model to predict the hourly difference

between market-wide cleared quantities of INC and DEC bids.

• Virtual bid portfolio optimization framework considering risk constraints and price sensitiv-

ities: we establish a virtual bid portfolio optimization framework considering both risk con-

straints and price sensitivities, which is shown to be much more profitable than the version

without price sensitivity modeling.

• Virtual bid portfolio optimization framework with congestion arbitrage: we develop a virtual

bid portfolio optimization framework to arbitrage congestion in electricity markets, which

completely eliminates the significant uplift costs, taking into account the geographical rela-

tions among trading nodes.

• Graph neural networks based marginal greenhouse gas emission factors forecast: we develop

a hybrid machine learning model incorporating FNNs and STGCNs to accurately predict

locational MEFs with hourly granularity using only publicly available information.
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1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 elucidates the en-

tire research work on machine learning-driven virtual bidding with market efficiency analysis in

electricity market. Chapter 3 introduces the work on learning to arbitrage congestion with virtual

bids in electricity market. Chapter 4 explains the work on predicting locational MEF of GHG with

STGCNs. Chapter 5 concludes the dissertation.
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Chapter 2

Machine Learning-Driven Virtual

Bidding with Market Efficiency Analysis

in Electricity Market

2.1 Introduction

The wholesale electricity markets in the United States operate under the two-settlement

system, comprising the day-ahead (DA) market and the real-time (RT) market. The DA market

clears bid-in supply against bid-in demand and determines DA physical schedules, virtual awards,

and DA locational marginal prices (LMPs), which are defined as the marginal costs of serving the

next increment of demand at pricing nodes consistent with the existing transmission constraints and

performance characteristics of generation resources. The RT market procures “balancing” energy

to meet the forecast RT grid energy demand and determines RT dispatch signals and RT LMPs.
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Electricity price forecasting is one of the most fundamental inputs to decision making

problems for electric utilities and energy trading companies. A general review of the complexity of

different electricity price forecasting models with an emphasis on strengths and weaknesses is pro-

vided in [15]. Widely-used DA and RT LMP forecasting models include auto-regressive integrated

moving average (ARIMA) model and its variants [16, 17], Markov regime-switching (MRS) model

and its variants [18, 19], and the deep neural network-based models [20].

Electricity markets in the U.S. have two types of bids: physical bids and virtual bids.

Physical bids must be backed by physical generation assets, loads, or imports/exports. Virtual bids

are financial positions that are not backed by physical assets and do not deliver or consume physical

energy. There are two types of virtual bids: increment (INC) offers and decrement (DEC) bids, also

known as virtual supply offers and virtual demand bids respectively. INC (DEC) bids sell (buy)

energy in the DA market and buy (sell) the same amount of energy back in the RT market.

Virtual bids are introduced in the U.S. electricity markets to drive the price convergence

between DA and RT LMPs [4, 21, 22, 23], hedge financial risks [1], and increase the market liquid-

ity. The impact of virtual bidding on electricity market has been a controversial topic [1]. In theory,

the introduction of virtual bidding increases market efficiency and reduces price spreads between

DA LMP and RT LMP [2, 3, 4, 5]. However, market manipulation [6, 7] and inappropriate mar-

ket designs such as modeling discrepancies [2] and virtual bidding on the interties [8] can lead to

inefficient market solutions.

Researchers tested the hypothesis that the electricity market is efficient by showing if

one can find a virtual bid trading strategy that consistently achieves returns in excess of average

market returns on a risk-adjusted basis. By identifying profitable virtual bid trading strategy based
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solely on historical prices, it has been shown that California Independent System Operator (CAISO)

[3, 4], Pennsylvania-New Jersey-Maryland Interconnection (PJM), and New York Independent Sys-

tem Operator (NYISO) [12] markets fail the weak form of the market efficiency hypothesis test.

Most of the prior work [3, 4, 12] underestimate the potential profitability of virtual bid trading

strategies and overestimate the market efficiencies by limiting the available information for virtual

traders to historical LMPs. Furthermore, they either neglected virtual bid transaction fees [12] or

left out the uplift costs of virtual bids [3] which resulted in overestimation of profitability of vir-

tual bid trading strategies. Our recent work addressed these two issues by developing a machine

learning-based algorithmic trading strategy for virtual bidding [13], which uses publicly available

information such as load forecasts, meteorological variables, renewable generation forecasts, fuel

prices, and historical LMPs to forecast the price spreads between DA and RT LMPs. After account-

ing for virtual bid transaction fees, uplift costs, and publicly available information, it showed that

the algorithmic trading strategy consistently achieved significant profits in the Independent System

Operator New England (ISO-NE) market. In other words, the ISO-NE market fails the semi-strong

form of market efficiency hypothesis test.

This chapter extends the prior works in three ways. First, none of the existing work

explicitly models the impacts of virtual bidders’ trading activities on electricity market prices [3,

4, 12, 13]. We hereby develop a machine learning-based estimation algorithm for the LMP spread

sensitivity with respect to virtual bid trading quantities. This enables us to develop an algorithmic

virtual bidding portfolio optimization framework considering the price sensitivity. By explicitly

modeling the impacts of virtual bidding activities on LMPs, the profitability of virtual bid portfolios

and market efficiencies can finally be evaluated with different virtual bid market shares. Second,
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recognizing that the inter-hour operational constraints such as resource ramping constraints have

a great influence on LMPs, we accommodate the inter-hour dependencies by adopting a recurrent

neural network framework to further improve the existing feedforward neural network-based LMP

spread forecasting model [13]. Third, most of the prior works perform market efficiency analysis

for one electricity market at a time [3, 4, 13]. This chapter performs a large-scale empirical market

efficiency analysis across multiple wholesale electricity markets (PJM, ISO-NE, and CAISO).

The unique contributions of this chapter are as follows:

• We develop a constrained gradient boosting tree-based algorithm to model the mono-

tonic function representing the LMP spread sensitivity with respect to net virtual bids.

• A virtual bid portfolio optimization framework considering both risk constraints and

price sensitivities is established, which is shown to be much more profitable than the version without

price sensitivity modeling.

• We develop a neural network-based virtual bid trading quantity forecasting model to

predict the hourly difference between market-wide cleared quantities of INC and DEC bids.

•A large-scale empirical market efficiency analysis is conducted for multiple U.S. whole-

sale electricity markets with respect to different market shares of virtual bids.

The remainder of this chapter is organized as follows. Section 2.2 formulates the vir-

tual bid portfolio optimization problem with price sensitivities. Section 2.3 presents the machine

learning-based forecasts for LMP spreads, virtual trading quantities, and the price sensitivity. The

empirical study on three U.S. wholesale electricity markets is conducted in Section 2.4. Section 2.5

concludes the chapter.
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2.2 Virtual Bid Portfolio Optimization Problem with Price Sensitivity

In this section, we formulate the virtual bid portfolio optimization problem with price

sensitivity and risk constraint. Note that the virtual trader under consideration is not treated as a price

taker. The net profits of virtual bids are modeled in 2.2.1. The virtual bid portfolio optimization with

budget and risk constraints are presented in 2.2.2. The sensitivity of LMP spread with respect to

virtual bid trading quantities is modeled in 2.2.3. The portfolio optimization problem is reformulated

and summarized in Subsections II.D and II.E.

A proprietary trading company engages in virtual bidding activities in wholesale electric-

ity markets through the following process. On a daily basis, the proprietary trading company needs

to ensure that it has posted a sufficient amount of collateral in a bank account monitored by the

market operator to cover its virtual bid positions. One day before the operating day, the proprietary

trading company submits INC offers and DEC bids through the DA market. Then the market opera-

tor clears the DA market and returns the virtual bid awards and LMP results back to the proprietary

trading company. On the operating day, the virtual bids’ positions are automatically liquidated by

the market operator in the real-time market, which does not involve any further decision making

from the proprietary trading company.

Three modeling assumptions are made here. First, it is assumed that the INC offers and

DEC bids are guaranteed to be cleared in the DA market, which can be achieved by setting the offer

(bid) price to be the price floor (price cap) for INCs and (DECs). Second, we assume that the impact

of the virtual bids on congestion patterns in the market is negligible. We ensure that this assumption

holds by setting the maximum bid quantity of virtual bids at each node to be 1 MWh. Third, we

assume that the spatial-temporal distribution of the LMP spreads does not change much over time.
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2.2.1 Modeling the Net Profits of Virtual Bids

Let λDA
i,h and λRT

i,h denote the DA and RT LMP for node i at hour h. The price spread λdif
i,h

for node i at hour h is defined as the difference between DA and RT LMP, λdif
i,h = λDA

i,h − λRT
i,h .

λbid,I
i,h and λbid,D

i,h are bid prices of INC and DEC for node i at hour h. Note that INCs are cleared

when λbid,I
i,h ≤ λDA

i,h and DECs are cleared when λbid,I
i,h ≥ λDA

i,h . The bidding costs associated with

INCs and DECs are denoted as γI and γD. The bidding costs include uplift cost and transaction

fee. The expected net profit of the INC offer (rIi,h) and the DEC bid (rDi,h) for node i at hour h, can

be calculated as:

E[rIi,h] = E[(λdif
i,h − γI)1(λbid,I

i,h ≤ λDA
i,h )] (2.1)

E[rDi,h] = E[(−λdif
i,h − γD)1(λbid,D

i,h ≥ λDA
i,h )] (2.2)

In this chapter, it is assumed that INCs and DECs are submitted into the DA market with

bidding prices that will guarantee their clearance. This can be achieved by setting the bid price to

be the price floor (price cap) for INCs (DECs).

2.2.2 Virtual Bid Portfolio Optimization with Budget and Risk Constraints Consid-

ering Price Sensitivity

The objective of an energy trading company is to develop a portfolio of virtual bids, which

maximizes its profit with limited risks. The LMPs will be impacted by the submitted virtual bids.

Thus, the price sensitivity with respect to the virtual bid trading quantities should be considered in

the portfolio optimization process. In some related work like [24], the trader is assumed to be a

price-taker in order to comply with the assumption that its bids are guaranteed to be cleared. In fact,

to ensure the virtual bids are cleared, the trader can either make its bids self-schedules or setting
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bid price to the price floor or the price cap for supply offers or demand bids respectively. The price

sensitivity assumption is more realistic and does not necessarily affect the bid clearance.

The trading quantities of INC (zIi,h) and DEC (zDi,h) for node i at hour h across the operat-

ing day are the decision variables. To alleviate the impact of virtual bids on the congestion patterns

in the electricity market, we assume that zIi,h or zDi,h are binary variables, where 0 represents no

virtual bids and 1 represents a 1 MWh of virtual bid.

The portfolio optimization problem of virtual bidding is formulated as follows:

maxz

24∑

h=1

N∑

i=1

(zIi,hE[rIi,h(zh)] + zDi,hE[rDi,h(zh)]) (2.3)

s.t.

N∑

i=1

24∑

h=1

(zIi,hprox
I
i,h + zDi,hprox

D
i,h) ≤ B (2.4)

24∑

h=1

CV aRβ(fh(zh,λ
dif
h )) ≤ C (2.5)

fh(zh,λ
dif
h ) = −

N∑

i=1

(zIi,hr
I
i,h + zDi,hr

D
i,h) (2.6)

where proxIi,h and proxDi,h are the collaterals required by market operators for placing INC and

DEC bids. B is the portfolio budget limit. C is the portfolio risk limit. The conditional value-at-

risk (CVaR) is used to quantify the financial risk of the virtual bid portfolio as in (2.5), where β,

zh, λdif
h , and fh(zh,λ

dif
h ) are the confidence level associated with CVaR, the vector of decision

variables, the vector of LMP spreads , and the portfolio loss at hour h respectively.

By explicitly specifying the impacts of virtual bids submitted by the energy trading com-

pany on LMP spreads, we can rewrite E[rIi,h(zh)] and E[rDi,h(zh)] as

E[rIi,h(zh)] = E[(λdif
i,h (zh, uh)− γI)1(λbid,I

i,h ≤ λDA
i,h )] (2.7)

E[rDi,h(zh)] = E[(−λdif
i,h (zh, uh)− γD)1(λbid,D

i,h ≥ λDA
i,h )] (2.8)
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where uh denotes the vector of aggregated virtual bids from the rest of the electricity market at

hour h. In other words, the LMP spread is influenced by the virtual bidding activities of the energy

trading company under consideration and the rest of the market participants.

2.2.3 Sensitivity of LMP Spreads with Respect to Virtual Bid Trading Quantities

The impacts of the virtual bidding activities from the energy trading company and the rest

of the market participants on LMP spreads can be approximated as:

λdif
i,h (zh, uh) = λdif

i,h (xh + yh) (2.9)

The difference between the energy trading company’s INC and DEC trading quantities at

hour h (xh) and that of the other market participants’ (yh) are defined as:

xh =
N∑

i=1

zIi,h −
N∑

i=1

zDi,h (2.10)

yh =

N∑

i=1

uIi,h −
N∑

i=1

uDi,h (2.11)

where uIi,h and uDi,h are the aggregated INC and DEC bids of the rest of the market for node i at hour

h respectively.

It is extremely difficult to estimate the impact of virtual bidding on individual node’s price

spread due to the lack of nodal virtual bid trading quantity. Thus, the impacts of virtual bidding on

an individual node is approximated by the impacts on the system reference node:

λdif
i,h (xh + yh) ≈ λdif

i,h (yh) + [λdif
ref,h(xh + yh)− λdif

ref,h(yh)] (2.12)

Note that yh in equation (2.12) is determined outside the energy trading companies’ port-

folio optimization problem and can be estimated with a machine learning model.
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Figure 2.1: Illustration of the piece-wise linear LMP sensitivity function.

To make the portfolio optimization problem tractable, we model the impact of the energy

trading company’s virtual bids on the market reference LMP as a piece-wise linear function of xh

shown in Figure 1.

λdif
ref,h(xh + yh)− λdif

ref,h(yh) =

Mh∑

j=1

(aj,hxh + bj,h)dj,h (2.13)

cj,h − S(1− dj,h) ≤ xh ≤ cj+1,h + S(1− dj,h) (2.14)

Mh∑

j=1

dj,h = 1 (2.15)

xh ≤ xh ≤ xh (2.16)

Here xh and xh are the lower and upper bound of xh, which are selected based on historical

minimum and maximum hourly market-wide trading quantity of INCs minus DECs. Starting from

the lower bound, we number the intervals in ascending order from j = 1 to Mh which hits the
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upper bound. cj,h is the impact of virtual bids on market reference LMP at the starting point of j-th

interval. S is a sufficiently large real number. Let aj,h and bj,h denote the slope and intercept of

the linear function defined on j-th interval. The binary variable dj,h indicates whether xh belongs

to j-th interval at hour h. Equation (2.14) enforces that xh can only fall in a single interval. The

parameters of the piece-wise linear function are derived from a gradient boosting tree (GBT) model,

which will be discussed in detail in 2.3.3.

Note that aj,h should be less than 0 for all intervals. This is because as the INC (DEC)

trading quantity of the energy trading company increases, the hourly LMP spread at the reference

node decreases (increases). We will describe how to enforce the piece-wise linear function to be

monotonically decreasing by using a GBT model in 2.3.3. Finally, it should be noted that param-

eters of the piecewise linear function depend on yh, the difference between INC and DEC trading

quantities of the other market participants at hour h and other factors that affect market clearing

outcomes.

2.2.4 Reformulation of Portfolio Optimization Problem

By substituting equations (2.7), (2.8), (2.9), (2.12), and (2.13) into (2.3), the objective

function of the portfolio optimization problem can be rewritten as:

24∑

h=1

{ N∑

i=1

zIi,hE[(λdif
i,h − γI)] +

N∑

i=1

zDi,hE[(−λdif
i,h − γD)]

+ E[

Mh∑

j=1

(aj,hx
2
h + bj,hxh)dj,h]

}
(2.17)

(See Appendix A.1 for proof)
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To make the objective function concave, we introduce slack variables vj,h and rewrite the

equation (17) as:

24∑

h=1

{ N∑

i=1

zIi,hE[(λdif
i,h − γI)]

+
N∑

i=1

zDi,hE[(−λdif
i,h − γD)] + E[

Mh∑

j=1

vj,hdj,h]
}

(2.18)

s.t. vj,h ≤ aj,hx
2
h + bj,hxh ∀j, h (2.19)

Note that the term E[
∑Mh

j=1 vj,hdj,h] still makes the objective function non-concave. The

objective function is further relaxed by introducing additional slack variables wj,h as:

24∑

h=1

{ N∑

i=1

zIi,hE[(λdif
i,h − γI)]

+
N∑

i=1

zDi,hE[(−λdif
i,h − γD)] + E[

Mh∑

j=1

wj,h]
}

(2.20)

s.t. − Sdj,h ≤ wj,h ≤ Sdj,h ∀j, h (2.21)

−S(1− dj,h) ≤ wj,h − vj,h ≤ S(1− dj,h) ∀j, h (2.22)

2.2.5 Summary of the Portfolio Optimization Formulation

In summary, the virtual bid portfolio optimization problem can be formulated as follows:

maxz (2.20)

s.t. (2.4)− (2.6), (2.10), (2.11), (2.14)− (2.16), (2.19), (2.21), (2.22)

This is a mixed-integer quadratically-constrained programming problem and can be solved by opti-

mization engines such as CPLEX[25].
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2.2.6 Formulation of Risk Constrained Portfolio Optimization

In this work, we adopt CVaR as the risk measure for the virtual bid portfolio. It is chosen

as the preferred risk measure because it is not only a coherent measurement of risk, but also accu-

rately captures the tail distribution of portfolio loss function. In order to introduce CVaR, we need

to first define value-at-risk (VaR)[26]. Let us first define the probability of the loss fh(zh,λ
dif
h ) at

hour h not exceeding αh as:

Ψ(zh, αh) =

∫

fh(zh,λ
dif
h )≤αh

p(λdif
h )dλdif

h (2.23)

Here p(λdif
h ) is the density function of LMP spread vector. Ψ(zh, αh) is the cumulative

distribution function of the portfolio loss associated with decision vector zh. The V aRβ of the

portfolio is the minimum portfolio loss such that the probability of having a smaller loss is β:

V aRβ(zh) = min{αh : Ψ(zh, αh) ≥ β} (2.24)

The CVaR of the portfolio CV aRβ is defined as the expected loss given that the loss is

no less than V aRβ:

CV aRβ(fh(zh,λ
dif
h ))

=
1

1− β

∫

fh(zh,λ
dif
h )≥V aRβ(zh)

fh(zh,λ
dif
h )p(λdif

h )dλdif
h (2.25)

It has been proved that CV aRβ is upper bounded by the function Fβ(zh, αh) [27]:

Fβ(zh, αh) = αh

+
1

1− β

∫

λdif
h

[fh(zh,λ
dif
h )− αh]

+p(λdif
h )dλdif

h (2.26)

In other words, CVaR can be represented as:

CV aRβ

(
fh(zh,λ

dif
h )

)
= minαh

Fβ(zh, αh) (2.27)
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Under the assumption that the spatial-temporal distribution of the LMP spread does not

change much over time, Fβ(zh, αh) can be approximated by Monte Carlo sampling with historical

LMP spread samples as:

Fβ(zh, αh) = αh +
1

(1− β)Ns

Ns∑

k=1

[fh(zh,λ
dif
h,k)− αh]

+ (2.28)

where Ns is the number of historical LMP spread samples.

To remove the max(0, x) function on the last term, (3.12) can be further relaxed as:

Fβ(qh, αh) = αh +
1

(1− β)Ns

Ns∑

k=1

qkh (2.29)

s.t. qkh ≥ fh(zh,λ
dif
h,k)− αh (2.30)

qkh ≥ 0 (2.31)

Then, the portfolio optimization problem in 2.2 can be reformulated as:

maxz,q,α (2.20)

s.t.

24∑

h=1

Fβ(qh, αh) ≤ C (2.32)

(3.5), (3.7), (2.10), (2.11), (2.14)− (2.16), (3.14), (3.15), (2.22), (3.13)− (2.31)

2.3 Data-Driven Forecasting for Virtual Bidding

2.3.1 Neural Network-based LMP Spread Forecast

The LMP spread between DA and RT market λdif
i,h is a highly nonlinear function of ex-

planatory variables such as meteorological variables at key weather stations, fuel price forecasts,

zonal load forecasts, and renewable generation forecasts. It has been shown that feedforward neural

23



networks such as multilayer perceptrons (MLP) and mixture density networks are quite effective in

learning the nonlinear function [13]. In feedforward neural networks, the training samples at differ-

ent hours are considered to be independent. However, the 24 hours of LMPs of the DA market are

determined jointly via the security constrained unit commitment (SCUC) and security constrained

economic dispatch (SCED) processes in practice. In particular, many inter-hour operational con-

straints such as resource ramping constraints are enforced in SCUC and SCED. For example, it is

more likely to observe spikes in LMPs when the net-load of the hour and the increase in net-load

from the previous hour are both very high.

To accommodate the inter-hour dependencies, we decide to adopt the long short-term

memory [28] network, which is capable of learning long-term dependencies in the data. We use

the cell state of LSTM to carry electricity market operation status information. LSTM employs

three types of gates to control the information flow. The forget gate and input gate control which

information should be discarded and added to the cell state. The output gate influences how the

information in the cell state is used to predict the LMP spread.

In addition to the typical input feature normalization, we also need to perform special pre-

processing for the target variables, i.e., the LMP spreads. Note that the LMP spreads are extremely

volatile and have many spikes. If the output LMP spread is not scaled to flatten its distribution, then

the LMP spikes will dominate the loss function of the neural network. This essentially makes all

other training samples ineffective. To mitigate this problem, we leverage the parameterized sigmoid

function f(x) = 1
1+e−x/θ to scale the LMP spread to (0, 1), with a hyper-parameter θ. The acti-

vation functions are chosen to be hyperbolic tangent function “tanh” for the hidden layers and the

sigmoid function for the output layer.
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2.3.2 Neural Network-based Virtual Bid Trading Quantity Forecast

To estimate the impact of the energy trading company’s virtual bids on LMP spreads,

we need to first forecast the aggregated virtual trading quantities yh from the rest of the market

participants. An MLP is adopted to address this problem. Similar to the LMP spread forecast model,

the inputs to the MLP also consist of hourly market-wide features such as zonal load forecast, wind

and solar generation forecast, meteorological variables, and one-hot encoding for trading hour. The

output of the neural network is the hourly difference between market-wide cleared quantities of

INC and DEC bids. These features can be found in the data archives maintained by the market

operators. For this regression task, the typical input feature normalization and target scaling are

required as well. As discussed in 2.3.1, we leverage a parameterized sigmoid function to scale the

LMP spreads. Similarly, here we apply the sigmoid scaling function f(x) = 1
1+e−x/θv

to scale the

target, which is the market-wide cleared virtual trading quantity of INCs minus DECs. The hyper-

parameter θv is much greater than θ, which is used in the scaling function of the LMP spread. This

is because the range of the virtual bid trading quantity is much wider than that of the LMP spread.

2.3.3 Constrained Gradient Boosting Tree-based Price Sensitivity Modeling

We expand the XGBoost [29] method to model the monotonic piece-wise linear function

representing the LMP spread sensitivity with respect to the net virtual bids. XGBoost is a variation

of the gradient boosting tree method [30]. It is selected as the base model due to its scalability and

capability to handle sparse datasets. The modification we make to the algorithm ensures that the

learned LMP spread sensitivity function is monotonic.
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As a supervised learning model, XGBoost searches in the space of regression trees to

minimize a regularized objective. XGBoost addresses the optimization problem over the function

space by additive training. This incremental approach, also called “tree boosting”, helps to learn

the tree structure with the optimal score. Specifically, at the t-th iteration, a new tree ft is added to

optimize the objective:

L(t) =
N∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

where N is the number of training samples, xi is the i-th input, yi is the actual output, ŷi is the

predicted output, and Ω(ft) is the regularization term. On top of the inputs for the neural network-

based LMP spread forecast model, we add the market-wide net INC offer quantity as an additional

input for the XGBoost-based model. The outputs are the LMP spreads at the reference node.

By taking Taylor expansion at (yi, ŷi
(t−1)), the second-order approximation of the objec-

tive can be derived. For a fixed tree structure q(x), the optimal leaf weight w∗
j and objective can be

derived as:

L∗(t) = −1

2

T∑

j=1

Gj
2

Hj + λ
+ γT

w∗
j = − Gj

Hj + λ

where Gj and Hj denote the sum of first-order derivatives gi and the sum of second-order derivatives

hi of leaf j respectively. T is the total number of leaves in the tree. This score can be regarded as

a quality measure of the tree structure at t-th iteration. When a new split is made, we can calculate

the change of the score, also called the gain, as follows:

Lsplit =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ
]− γ
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Note that after a new split is made, the left leaf weight is not guaranteed to be higher

than that of the right leaf. To ensure the learned LMP spread function is monotonically decreasing

as a function of the net INC quantity, we modify the algorithm for finding split points in the XG-

Boost framework. The proposed greedy algorithm for finding splits that ensures monotonicity of

the learned function is summarized in Algorithm 1.

The inputs to the algorithm include the dimension of the input feature space (D), the

index of the input feature involved with the monotonicity constraint (p), and the combination set

(I) of indices of input samples assigned to each leaf. The indices assigned to leaf j is defined as

Ij = {i | q(xi) = j}, where q(xi) represents the mapping function that assigns the i-th sample to

the j-th leaf.

Starting from line 3, the algorithm searches through all D features for split candidates. For

each feature k, the algorithm searches through all possible split points in an ascending order. If the

feature is the one that is involved in the monotonicity constraint, then the weight of the left leaf must

be higher than that of the right leaf, before the split’s gain in objective is saved and recommended as

a candidate split. Finally, the candidate split that satisfies the monotonicity constraint with highest

gain is selected.

With a finite number of splits, the output of the modified XGBoost model is a step func-

tion. To convert this function into the piece-wise linear function in equation (13), we can simply

connect the adjacent splitting points. The number of intervals Mh of the piece-wise linear function

in equation (13) is determined by the final output of the modified XGBoost algorithm.
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Algorithm 1 Greedy Algorithm for Finding Splits for Learning Monotonically Decreasing Func-

tions.
Input: I , D, p

Output: Split with best gain and monotonicity constraint

1: gain← 0

2: G←∑
i∈I gi, H ←

∑
i∈I hi

3: for k = 1 to D do

4: GL ← 0, HL ← 0

5: for j in Ascending sort(I, by xjk) do

6: GL ← GL + gj , HL ← HL + hj

7: GR ← G−GL, HR ← H −HL

8: if (k == p) then

9: if (− GL
HL+λ ≥ −

GR
HR+λ ) then

10: gain←

11: max(gain,
G2

L
HL+λ +

G2
R

HR+λ −
(GL+GR)2

HL+HR+λ)

12: end if

13: else

14: gain← max(gain,
G2

L
HL+λ +

G2
R

HR+λ −
(GL+GR)2

HL+HR+λ)

15: end if

16: end for

17: end for

18: return Split with the highest feasible gain
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2.4 Numerical Study

2.4.1 Setup for Numerical Study

We validate the proposed algorithmic trading strategy and perform market efficiency anal-

ysis on three wholesale electricity markets in the US: Pennsylvania-New Jersey-Maryland Intercon-

nection (PJM), California Independent System Operator (CAISO) and ISO New England (ISO-NE).

Three years of historical data are collected for each market. The first year of data is used for ini-

tial model training and the last two years of data is used for rolling forecast. PJM and ISO-NE’s

historical data ranges from January 2015 to December 2017. CAISO’s historical data ranges from

July 2018 to June 2020. We perform rolling forecasts and update the forecast model on a monthly

basis. The amount of training data is always kept at one year. The common inputs to deep neural

networks and gradient boosting trees for all three electricity markets include load forecast, meteo-

rological variables (temperature, humidity, wind speed, and precipitation), fuel price, and one-hot

encoding for operating hour. The ISO-NE’s models include an additional input: wind generation

forecast. The CAISO’s models include three extra inputs: estimated import, wind, and solar gener-

ation forecast. Furthermore, we conduct the forecasting task using only the common inputs for all

three markets to show the impacts on forecasting performance from the additional input features for

ISO-NE and CAISO.

The architectural hyperparameters of the MLP and LSTM models are summarized in

Table 2.1. For the LSTM model, the first two numbers shown in the table represent the dimensions of

two stacked LSTM layers. The other numbers in the list represent the dimensions of the remaining

fully-connected layers. The first LSTM layer returns the sequence of all hidden states while the

second LSTM layer simply returns a single output at the last time step. Both neural networks employ
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Table 2.1: Architecture Hyperparameters of Neural Networks

Model Type Market Hidden Units

MLP

PJM [128, 64, 32]

ISO-NE [64, 32]

CAISO [128, 64, 32]

LSTM

PJM [64, 128, 128, 64, 32]

ISO-NE [32, 64, 64, 32]

CAISO [64, 128, 128, 64, 32]

the hyperbolic tangent function (tanh) as the activation function for the hidden layers. Dropout is

introduced to regularize both neural networks. The dropout rate is selected to be 20%. The learning

rate is set at 0.001. The Adam optimizer is used for both neural network models. The training batch

sizes are 2048 for both LSTM and MLP models. Finally, the LMP spread scaling parameter θ in

the sigmoid function is set to be 20 for CAISO and 10 - 40 for PJM and ISO-NE depending on the

price spread volatility of the node.

In this work, all the scripts are written in Python 3.7. The neural network models are based

on Tensorflow 1.15 software platform and Nvidia RTX 2080 Ti hardware platform. The portfolio

optimization is based on CVXPY 1.1 and the optimizer used is Gurobi 9.1.
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2.4.2 Performance Comparison of LMP Spread Forecasting Algorithms

The LMP spreads between DA and RT markets quantify the potential net revenue of

virtual bids without considering trading costs. Therefore, we forecast the LMP spreads directly

instead of forecasting DA and RT LMPs separately. To better compare the performance of different

LMP spread forecasting models, we introduce two evaluation metrics, which are tailored for the

virtual bidding setup.

The first evaluation metric quantifies if the LMP spreads forecast led the virtual trader to

place a virtual bid in the right direction. If the LMP spread forecast correctly forecasted that the RT

LMP is higher than DA LMP, then the virtual trader will place a DEC bid that is profitable. The LMP

spread forecast accuracy metric is formally defined as the proportion of the time that the LMP spread

predictions have the correct sign. To better quantify the capability of the LMP spread forecasting

algorithms to capture spikes that lead to massive profit, the forecasting accuracy is evaluated on

spikes that are in the top 1th percentile of absolute LMP spreads. The second evaluation metric

is the root mean square error (RMSE) of the LMP spread forecasts for the top 1th percentile of

absolute LMP spreads.

We compared the LMP spread forecasting performance of the proposed MLP and LSTM

models with a benchmark support vector regression machine (SVRM) [31]. The performance met-

rics are calculated by averaging the results on three electricity markets and across 2 years. The LMP

spread spike forecast accuracies for SVRM, MLP and LSTM are 40.21%, 51.78%, and 56.18%.

The RMSE for the LMP spread spike forecasts for SVRM, MLP and LSTM are $217.35/MWh,

$216.15/MWh, and $214.98/MWh. The LSTM-based LMP spread forecasting algorithm outper-

forms the MLP and SVRM-based approaches.
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As mentioned in 2.4.1, we also conduct the forecasting task again using the common

input features instead of different ones for all three markets using the LSTM models. The removal

of additional input features for ISO-NE and CAISO lowers the LMP spread spike forecast accuracy

by 3.96% and increases the RMSE for LMP spread forecast by 0.20%. This result shows that these

additional input features are helpful in improving the LMP spread forecast performance.

2.4.3 Profitability of Algorithmic Trading Strategies Without Considering Price Sen-

sitivity

We first evaluate the profitability of algorithmic trading strategy without considering the

impacts of the trading company’s virtual bids on LMP spreads. The evaluation is conducted over a

2-year period. The daily virtual bid portfolio budget limits in the 1st-year are set to $600K, $25K,

and $85K for PJM, ISO-NE and CAISO, respectively. In the 2nd-year, the daily budget limit for

PJM is altered to $330K, while the other two remain the same. The selected budget limits represent

approximately 5% of the market share for virtual bids in the corresponding markets for that year.

The virtual bid market share is defined as the portion of the market-wide cleared virtual trading

quantity controlled by the proprietary trading company. The daily portfolio risk limit is set to be the

same as the budget limit. As explained in 2.2.3, the upper and lower bound of xh are selected based

on historical minimum and maximum hourly market-wide bidding quantity of INCs minus DECs

in the corresponding wholesale electricity markets. Specifically, for PJM, ISO-NE, and CAISO, the

upper and lower bounds (xh, xh) in MWh are (-7812, 6821), (-331, 378), and (-3525, 3450) for the

first testing year and (-8815, 5622), (-255, 435), and (-5647, 2798) for the second testing year.

The cumulative net profits of algorithmic trading strategy using MLP and LSTM models

for the three electricity markets are depicted in Figure 2.2. As shown in the figure, the proposed al-

32



2016.1 2016.4 2016.7 2016.10 2017.1 2017.4 2017.7 2017.10 2018.1
Trading Date for PJM and ISO-NE

0
1
2
3
4
5
6
7
8
9

10
11
12

Cu
m

ul
at

iv
e 

Ne
t P

ro
fit

 (M
 $

)

2018.7 2018.10 2019.1 2019.4 2019.7 2019.10 2020.1 2020.4 2020.7
Trading Date for CAISO

PJM (LSTM)
PJM (MLP)
ISO-NE (LSTM)
ISO-NE (MLP)
CAISO (LSTM)
CAISO (MLP)

Figure 2.2: Cumulative net profits of algorithmic trading strategy without considering price sensi-
tivity.

gorithmic trading strategy is very profitable in all three electricity markets when the price sensitivity

is not considered. When the LSTM model is used to predict LMP spreads, the algorithmic trading

strategy yields approximately $11M, $9M, and $3M of cumulative net profits for PJM, CAISO, and

ISO-NE in a 2-year period.

Figure 2.2 also shows that algorithmic trading strategy based on the LSTM model is much

more profitable than that of the MLP model in CAISO market. In ISO-NE market, the LSTM

algorithm slightly outperforms MLP. In PJM market, the cumulative net profit achieved by the

LSTM-based and the MLP-based algorithmic trading strategies are roughly the same. In terms of

net profit, the virtual bid portfolio derived from the LSTM-based LMP spread forecast outperforms

MLP-based portfolio by 1.4%, 14.1% and 23.9% for PJM, ISO-NE, and CAISO respectively. The

share of non-hydro renewable generation in CAISO, 27%, is much higher than that of PJM, 3%.

During early spring and summer days, CAISO is much more likely to experience significantly faster
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ramping in net-load than PJM. By considering the explanatory variables in the past few hours, the

LSTM model is more capable of capturing the potential shortage in supply and LMP spikes than the

MLP model in CAISO market.

Note that rare market events could lead to dramatic virtual bid portfolio gains and losses.

In the PJM market, a significant gain of $0.95M and a notable loss occurred on Sep. 20, 2017

and Aug. 12, 2016 respectively due to high temperature and peak load conditions. In ISO-NE, an

unusual gain of $0.65M took place on Aug. 11, 2016 due to severe generation capacity deficiency

caused by thunder storms. In CAISO, notable portfolio gain and loss happened on Apr. 18 and Jun.

10, 2019 respectively. These two events are caused by the unforeseen and sharp drop in renewable

generation.

2.4.4 Impact of Portfolio Risk Limit on the Profitability of the Algorithmic Trading

Strategy

This subsection evaluates the impact of portfolio risk limit on the profitability of the al-

gorithmic virtual bid trading strategy. We conduct the virtual bid portfolio optimization under three

risk limit scenarios ranging from risk-averse to risk-neutral. In scenario 1, the portfolio risk level

equals to one half of the portfolio budget limit. In scenario 2, the portfolio risk level equals to the

portfolio budget limit. In scenario 3, we completely remove the risk limit, which makes the pro-

prietary trading company risk neutral. The cumulative net profits of the virtual bid trading strategy

under three risk limit scenarios are calculated based on LSTM model and depicted in Fig. 2.3.

As shown in Fig. 2.3, by focusing solely on potential gains regardless of the risk, the risk-

neutral portfolio achieves notably higher cumulative net profits than both risk-averse portfolios for
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Figure 2.3: Cumulative net profits of virtual bid trading strategy under different risk limits without
considering price sensitivity.

ISO-NE and CAISO. For PJM, when we increase the risk limit from one half of the portfolio budget

to the portfolio budget, the cumulative net profit increases significantly. When we further relax the

risk constraint by removing it, the improvement in net profit becomes negligible. This is because

the budget constraint rather than the risk limit constraint is binding most of time for the portfolio

optimization under scenario 2 in PJM. When we reduce the risk limit from the budget limit to one

half of the budget limit, the cumulative net profits decrease by 18%, 60%, and 22% respectively for

PJM, ISO-NE, and CAISO.

2.4.5 Profitability of Algorithmic Trading Strategies Considering Price Sensitivity

In this subsection, we quantify the profitability of algorithmic trading strategy considering

price sensitivity. Here we analyze two scenarios. In both scenarios, when reporting net profit,

the impact of the trading company’s virtual bids on the LMP is taken into consideration. The
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Figure 2.4: Cumulative net profits of algorithmic trading strategy considering the impact of virtual
bids on LMP when reporting profit and loss. “Full PS” refers to the full price sensitivity scenario
and “partial PS” refers to the partial price sensitivity scenario.

first scenario is called the full price sensitivity scenario, where the trading company considers the

impacts of its virtual bids on LMP spread while solving the portfolio optimization problem. The

second scenario is called the partial price sensitivity scenario, where the trading company does not

consider price sensitivity while performing virtual bid portfolio optimization.

Figure 2.4 depicts the cumulative net profits of algorithmic trading strategy with LSTM

model under the full and partial price sensitivity scenarios. By comparing the scenario without price

sensitivity in Fig. 2 and the full price sensitivity scenario in Fig. 3, it can be seen that the trading

company’s virtual bidding activity reduce a sizable portion of its algorithmic trading strategies’

cumulative net profits. The reductions in cumulative net profits in PJM, CAISO and ISO-NE are

approximately $2 Million, $0.7 Million, and $2.5 Million. By comparing the full and partial price

sensitivity scenarios in Fig. 3, we conclude that the proposed virtual bids portfolio optimization

36



PJM (yr 1) ISO-NE (yr 1) CAISO (yr 1) PJM (yr 2) ISO-NE (yr 2) CAISO (yr 2)
Market (Year)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ho
ur

ly
 A

bs
ol

ut
e 

Pr
ice

 S
hi

ft 
($

)

Median
Mean

Figure 2.5: Statistics of hourly price shift in absolute value. This shows the hourly change of price
spreads averaged on each year considering the price sensitivity. The percentiles here are set to 5%
and 95%.

strategy that considers price sensitivity explicitly performs much better than the one that ignores

price sensitivity. The differences in cumulative net profit between the full and the partial price

sensitivity scenarios is the largest for ISO-NE ($4 Million), followed by PJM ($2.5 Million), and

CAISO ($0.9 Million). This is because the impacts of virtual bids on LMP spread is the largest in

ISO-NE due to its small market size and large price sensitivity. Figure 2.5 shows the box plot of the

changes in LMP spread due to the trading company’s virtual bids that correspond to 5% of virtual

bid market share verifies the statement above. As shown in Fig. 2.5, the median LMP spread change

in ISO-NE is much higher than that of PJM and CAISO.

Table 2.2 shows the convergence of LMP considering price sensitivity with 5% virtual

bid market share. As shown in the table, the presence of virtual bid does lead to reduction in LMP

spread between DA and RT markets.
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Table 2.2: LMP Convergence considering Price Sensitivity

Market Year
Average Absolute LMP Spread ($/MWh)

without virtual bidding with virtual bidding

PJM
yr 1 6.37 6.25

yr 2 6.07 5.84

ISO-NE
yr 1 9.39 8.45

yr 2 10.38 9.18

CAISO
yr 1 13.25 12.97

yr 2 7.11 6.96

2.4.6 Efficiency Analysis of Two-settlement Power Markets

In this subsection, we evaluate the efficiency of three wholesale power markets’ two-

settlement system by measuring the performance of virtual bid portfolio with different market

shares. The first performance metric quantifies the cumulative net profit of virtual bids portfolio

per dollar of collateral and risk limit. The second metric is the Sharpe ratio which is often used in

finance to measure the performance of an investment portfolio. Specifically, Sharpe ratio measures

the performance of an investment portfolio compared to a risk-free asset after adjusting for its risk.

The Sharpe ratio Sp of an investment portfolio can be calculated as:

Sp =
E[Rp −Rf ]√
var[Rp −Rf ]
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Figure 2.6: Profitability of virtual bids with different market shares.

where Ra is the portfolio’s rate of return, Rf is the rate of return of the risk-free asset. If the

algorithmic virtual bidding strategy yields a portfolio with higher performance, the two-settlement

system of the corresponding wholesale market is expected to have lower efficiency.

To vary the market share of the virtual bidding portfolio, we choose different daily port-

folio budgets. Note that the risk limit is set equal to the daily portfolio budget limit. From the

perspective of the trading company, we assume that the virtual bid portfolio can take market shares

from 1% to 10% with approximately 1% stepsize.

Figure 2.6 shows the annual cumulative portfolio net profit per dollar of budget and collat-

eral from the three markets in two separate years with ten different market shares. It can be observed

that the net profit per dollar decreases as the market share increases. This result can be explained in

two aspects. First, after taken the most profitable bidding positions, only less profitable virtual bids

can be identified with increased portfolio budget. Secondly, margins between DA and RT LMPs

decrease as trading quantities increase, further slowing the increase in portfolio net profit.
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Figure 2.7: Sharpe ratios of algorithmic virtual bids trading portfolios.

CAISO’s two settlement system is shown to be the least efficient among the three whole-

sale markets, as the algorithmic trading strategy achieves the highest profitability in CAISO market

during the second year of study. The LSTM model manages to forecast the LMP spreads in CAISO

with 70% accuracy, compared with 58% and 60% for PJM and ISO-NE (accuracy here refers to

the ratio of correctly-predicted directions of LMP spreads, either positive or negative). With 1%

market share, the algorithmic trading strategy secured a profitability of up to $41 and $23 per dollar

of collateral in ISO-NE and PJM. The reason profitability is the lowest in PJM is that it is the most

competitive market with the largest number of virtual traders and trading volume.

To better understand the market efficiency and portfolio performance, we calculate the

annual virtual bid portfolio’s Sharpe ratio with different market shares. In contrast with the first

portfolio performance metric, the Sharpe ratio measures the performance of the virtual bids portfolio

compared to a risk-free asset after adjusting for its risk.
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Figure 2.7 illustrates the Sharpe ratios of virtual bid portfolio in three power markets and

S&P 500 index for the corresponding years. With a wealth of historical data, we report the 20-year

average Sharpe ratio for the S&P 500 index, which is a stock market index measuring the stock

performance of 500 large companies listed on stock exchanges in the United States. The Sharpe

ratio of virtual bid portfolios for CAISO and PJM are much higher than that of the S&P 500 index

for all market shares. When the ISO-NE’s virtual bid portfolio’s market share is 5% of below, its

Sharpe ratio is also higher than that of S&P 500 index. This indicates that the electricity markets’

two settlement systems are in general much less efficient than the stock market. According to the

Sharpe ratios, CAISO has the least efficient two settlement system among the three wholesale power

markets. Note that the Sharpe ratio of PJM virtual bid portfolio is higher than that of ISO-NE. This

result is different from the portfolio profitability curves shown in Figure 2.6. This because our

proposed algorithmic trading strategy captures the extremely high price spread between DA and RT

LMPs on August 11, 2016, which results in a 1100% daily return. It significantly increases the total

net profit, but reduces the Sharpe ratio which penalizes volatility in portfolio returns.

2.5 Conclusion

This chapter develops an algorithmic virtual bid trading strategy that considers the impacts

of virtual bids on LMPs. A constrained gradient boosting tree is developed to model the monotonic

function representing the sensitivity of LMP spread. The risk-constrained virtual bid portfolio opti-

mization problem is reformulated as a mixed-integer quadratically-constrained problem via convex

relaxation. The results of comprehensive empirical studies on the three U.S. electricity markets

show that the proposed virtual bid portfolio optimization framework considering price sensitivity
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outperforms the one that ignores it. Among the three U.S. electricity markets, the proposed algorith-

mic virtual bid trading strategy achieves the highest profit in CAISO. The Sharpe ratios of virtual

bid portfolios for PJM, ISO-NE, and CAISO are all significantly higher than that of S&P 500 index

when the virtual bidder’s market share is lower than 5%. Given the high uplift cost of net virtual

supply in U.S. wholesale electricity markets such as CAISO, it would be interesting to develop al-

gorithmic trading strategies to exploit the differences in congestion patterns between day-ahead and

real-time markets.

2.6 List of Symbols in Chapter 2

λDA
i,h , λRT

i,h DA LMP and RT LMP for node i at hour h ($/MWh)

λdif
i,h Price spread for node i at hour h ($/MWh)

λdif
h Vector of price spreads at hour h ($/MWh)

λbid,I
i,h , λbid,D

i,h Bid prices of INC and DEC for node i at hour h ($/MWh)

rIi,h, r
D
i,h Net profits of INC and DEC for node i at hour h ($)

zIi,h, z
D
i,h Decision variables of INC and DEC for node i at hour h (MWh)

zh Vector of decision variables at hour h (MWh)

uIi,h, u
D
i,h Aggregated virtual bids of INC and DEC from the rest of the market for node

i at hour h (MWh)

uh Vector of aggregated virtual bids from the rest of the market at hour h

(MWh)

xh Difference between the energy trading company’s INC and DEC bidding quan-

tities at hour h (MWh)
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yh Difference between the other market participants’ INC and DEC bidding quan-

tities at hour h (MWh)

λdif
ref,h Price spread on the system reference node at hour h ($/MWh)

dj,h Binary variables indicating whether xh belongs to the j-th interval at hour h

vj,h, wj,h, αh, q
k
h Slack variables introduced in convex relaxation ($)

γI , γD Bidding costs of INC and DEC ($/MWh)

proxIi,h, prox
D
i,h Collaterals required by market operators for placing INC and DEC bids for

node i at hour h ($/MWh)

B Portfolio budget limit ($)

C Portfolio risk limit ($)

aj,h Slope of the linear function defined on the j-th interval at hour h ($/MWh2)

bj,h Intercept of the linear function defined on the j-th interval at hour h

($/MWh)

cj,h Starting point of the j-th interval at hour h (MWh)
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Chapter 3

Learning to Arbitrage Congestion with

Virtual Bids in Electricity Market

3.1 Introduction

Virtual bids are financial positions in wholesale electricity markets, which neither require

physical assets nor deliver/consume physical energy. Virtual bids consist of two types: increment

(INC) offers and decrement (DEC) bids, also referred to as virtual supply offers and virtual demand

bids. INCs are financial instruments that enable virtual traders to sell energy in the DA market and

purchase the same amount of energy back in the RT market, while DECs enable virtual traders to

purchase energy in the DA market and sell the same amount of energy back in the RT market.

The objective of this study is to develop an algorithmic trading strategy for a virtual bid

trading company. The goal of a virtual bid trading company is to maximize its profit while satisfying

the portfolio risk constraints. Several studies aim to develop virtual bid trading strategies, including
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an online learning algorithm using dynamic programming [12] and a neural network-based algo-

rithmic trading framework using the mixture density network (MDN) [32]. The virtual bid trading

costs (transaction and uplift costs) and key factors that influence LMPs such as load forecast, out-

age, and meteorological data are ignored in [12]. The estimated uplift costs are considered as a

constant outside the virtual bid portfolio optimization in [32]. Our recent work addressed this issue

by explicitly considering the estimated average uplift and transaction costs in the virtual bid port-

folio optimization formulation [33]. However, the uplift costs associated with virtual supply and

virtual demand are different and change with time. The actual uplift costs depend on the net virtual

supply of the proprietary trading company and the entire market as well as the operating status of

the power plants. Thus, it is extremely difficult to accurately forecast the uplift costs associated with

virtual bids.

In some wholesale electricity markets, e.g., the California Independent System Operator

market, the uplift costs of virtual bids become negligible if pairs of virtual supply and virtual demand

bids are placed to arbitrage congestion spreads between DA and RT markets. To circumvent the

difficulties of accounting for high and uncertain uplift costs, this work proposes an algorithmic

trading strategy by exploiting the difference between congestion patterns in DA and RT markets.

Electricity price forecasting and congestion forecasting are both essential tasks for market

participants. Congestion occurs when the least-cost energy cannot be entirely transmitted to load

centers, due to the transmission constraints. Power system congestion is often accompanied by high

shadow price for transmission constraints and large marginal congestion components in LMPs of

nodes severely affected by the congestion.
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Although the topic of electricity price forecasting has been well studied, very few re-

searchers explored congestion forecasting. The widely used algorithms for LMP forecasting in-

clude the Markov regime-switching (MRS) model and its variants [18, 19], the auto-regressive in-

tegrated moving average (ARIMA) model and its variants [16, 17], and the neural network-based

model [20]. The convex hull algorithm [34] and the Monte Carlo Simulation (MCS)-based approach

with probabilistic models [35] are proposed to forecast the short-term congestion. Multi-parametric

programming-based approach [36] is developed to forecast the network congestion together with

RT LMPs. A factor model with least-square estimation [37] is designed for DA shadow price fore-

casting, which is useful for congestion management.

In this work, instead of forecasting congestion patterns or DA shadow prices, we directly

estimate the difference between congestion patterns of DA and RT markets. In other words, we aim

to predict the difference between DA and RT LMP spreads in pairs of nodes instead of separate

nodes as in previous works. Due to the cancellation in system energy components of both DA and

RT LMPs, our proposed forecasting model could focus on modeling the congestion components of

LMPs. The main contributions of this chapter are as follows:

• We develop a virtual bid portfolio optimization framework to arbitrage congestion in

electricity markets, which completely eliminates the significant uplift costs.

•We develop a machine learning framework to exploit the geographical relations among

bidding nodes and estimate the congestion patterns of node pairs.

The remainder of the chapter is arranged as follows. Section 3.2 formulates the virtual bid

portfolio optimization problem as a linear programming (LP) problem. Section 3.3 reveals the key

technical methods, involving the clustering of bidding nodes, the forecasting of LMP congestion
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spreads, and the allocation of virtual bid quantities. Section 3.4 shows the empirical results of

clustering and the profit of virtual bid portfolio in CAISO. Section 3.5 summarizes the chapter.

3.2 Portfolio Optimization with Pairs of Virtual Supply Offers and

Virtual Demand Bids

3.2.1 Modeling the Profits of Virtual Bid Pairs

Let G denote the network topology of the power. Formally, G = (V, E), where V is

the vertex set containing all network nodes, and E is the edge set containing all transmission lines.

A subset Ṽ ⊆ V is defined as a vertex set including all nodes eligible for virtual bidding, where

|Ṽ| = N . Let T represent the set of 2-permutations of N from Ṽ , therefore |T | = P (N, 2). The

2-tuple τi ∈ T is represented by τi = (i1, i2), where i = 1, · · · , |T | is the index of the tuple.

Namely, τi is an ordered pair of two virtual bidding nodes, called “bidding pair” in this chapter.

The DA LMPs for nodes i1 and i2 in bidding pair τi at hour h are denoted by λDA
i1,h

and

λDA
i2,h

, respectively. Similarly, the RT LMPs for nodes i1 and i2 in bidding pair τi at hour h are

denoted by λRT
i1,h

and λRT
i2,h

, respectively. We ensure that INCs and DECs are cleared in the DA

market by setting the bid price at the price floor/cap for INCs/DECs.

Assuming an INC offer is placed at node i1 and a DEC bid is placed at node i2, the

expected return ri,h of the bidding pair τi with 1 MWh bidding quantity on both nodes can be

written as:
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E[ri,h] = E[rIi1,h] + E[rDi2,h]− 2γ

= E[(λDA
i1,h − λDA

i2,h)− (λRT
i1,h − λRT

i2,h)]− 2γ

= E[λdif,c
i,h ]− 2γ, (3.1)

where rIi1,h and rDi2,h denote return of a 1 MWh INC offer and DEC bid at node i1 and i2 respectively.

γ denotes the fixed transaction cost associated with an 1 MWh INC offer and DEC bid, which

includes the bid segment fee and the market service fee. The difference between congestion spreads

in DA and RT market, λdif,c
i,h = (λDA

i1,h
− λDA

i2,h
)− (λRT

i1,h
− λRT

i2,h
), is also called the LMP congestion

spread. Since the energy component of the LMPs in DA and RT markets cancel out and the marginal

loss component of LMPs are often small, λdif,c
i,h is mostly affected by the congestion patterns in DA

and RT markets.

3.2.2 Virtual Bid Portfolio Optimization with Budget and Risk Constraints for Con-

gestion Arbitrage

The objective of a virtual bid trading company is to design a virtual bid portfolio that

maximizes its profit with budget and risk constraint. The trading quantity zi,h for the two nodes in

pair τi at hour h is treated as a non-negative continuous decision variable. To mitigate the impact

of congestion arbitrage on congestion pattern, we enforce two quantity constraints Ch and Di. Ch

limits the total hourly virtual bid quantity at hour h, andDi limits the daily pairwise trading quantity

of pair τi.
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The portfolio optimization problem for congestion arbitrage is formulated as follows:

max
z

24∑

h=1

|T |∑

i=1

zi,hE[ri,h] (3.2)

s.t.

|T |∑

i=1

2zi,h ≤ Ch, h = 1, · · · , 24 (3.3)

24∑

h=1

2zi,h ≤ Di, i = 1, · · · , |T | (3.4)

|T |∑

i=1

24∑

h=1

zi,hβi,h ≤ B (3.5)

24∑

h=1

CV aRα

(
fh(zh,λ

dif,c
h )

)
≤M (3.6)

fh(zh,λ
dif,c
h ) = −

|T |∑

i=1

zi,hri,h, ∀h (3.7)

zi,h ≥ 0, ∀i, h, (3.8)

where βi,h denotes the collateral required by the market operator for placing 1 MWh of virtual

bids on the two nodes in bidding pair τi. B is the portfolio budget limit. M is the portfolio

risk limit. Both portfolio budget and risk are modeled as constraints in the portfolio optimiza-

tion formulation[38]. The conditional value-at-risk (CVaR) is leveraged to measure the financial

risk of virtual bid portfolio in (3.6), where α is the confidence level of CVaR, zh and λdif,c
h are the

vectors of decision variables and LMP congestion spreads, and fh(zh,λ
dif,c
h ) is the portfolio loss

at hour h.

3.2.3 Reformulation of Risk Constrained Portfolio Optimization

In this work, CVaR is selected as the risk measurement for the portfolio. CVaR, also called

mean shortfall, improves upon the Value-at-risk (VaR)[39] risk measure. CVaR controls not only
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VaR but also the potential risk beyond VaR. CVaR has been shown to be a coherent measurement of

risk, capturing the tail distribution of the portfolio loss [40].

CVaR of the portfolio with confidence level α, CV aRα, is defined as the expected port-

folio loss provided that the loss is no less than its V aRα:

CV aRα(fh(zh,λ
dif,c
h )) =

1

1− α
∫

fh(zh,λ
dif,c
h )≥V aRα(zh)

fh(zh,λ
dif,c
h )p(λdif,c

h )dλdif,c
h , (3.9)

where α is selected to be 95%.

It was shown that CV aRα is upper-bounded by a convex and continuously-differentiable

function Fα(zh, ηh) [41]:

Fα(zh, ηh) = ηh +
1

1− α
∫

λdif,c
h

[fh(zh,λ
dif,c
h )− ηh]

+p(λdif,c
h )dλdif,c

h (3.10)

In fact, CVaR can be rewritten as follows [42]:

CV aRα

(
fh(zh,λ

dif,c
h )

)
= min

ηh∈R
Fα(zh, ηh) (3.11)

Assuming that the spatial-temporal distribution of the LMP congestion spread stays the

same over time, Fα(zh, ηh) can be sufficiently estimated by Monte Carlo sampling using historical

LMP congestion spreads, which can be written as:

Fα(zh, ηh) = ηh+

1

(1− α)Ns

Ns∑

j=1

[fh(zh,λ
dif,c
h,j )− ηh]

+, (3.12)

where Ns is the number of historical samples of LMP congestion spreads.
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To solve the optimization problem, the function max(0, x) in (3.12) can be further re-

laxed with the slack variable uh:

Fα(uh, ηh) = ηh +
1

(1− α)Ns

Ns∑

j=1

ujh (3.13)

s.t. ujh ≥ fh(zh,λ
dif,c
h,j )− ηh (3.14)

ujh ≥ 0 (3.15)

The virtual bid portfolio optimization problem in 3.2.2 can be reformulated as:

max
z,u,η

(3.2)

s.t.

24∑

h=1

Fα(uh, ηh) ≤M (3.16)

(3.3)− (3.5), (3.7), (3.8), (3.13)− (3.15)

3.3 Data-Driven Methodology for Congestion Arbitrage

We propose a three-stage data-driven framework to arbitrage congestion using virtual

bids. In stage one, we group nodes eligible for virtual bids with similar LMP patterns into clusters.

In stage two, we develop deep neural network (DNN)-based LMP congestion spread forecast for

typical nodes in different clusters. In stage three, we allocate the virtual bid quantity within each

cluster.

3.3.1 Cluster Analysis for Nodes Eligible for Virtual Bids

As discussed in 3.2.1, the cardinality of T is P (N, 2). CAISO has around 400 aggregated

nodes eligible for virtual bids. Thus, the number of bidding pairs is approximately 160,000. It
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would take a tremendous amount of computing resource to consider all possible pairs in the vir-

tual bid portfolio optimization framework. A power system can be naturally divided into different

zones connected by major transmission interfaces. The inter-zonal congestion is often more pro-

nounced than the intra-zonal congestion. Thus, we propose selecting a representative node for each

zone/cluster and using virtual bids to arbitrage DA and RT inter-zonal congestion patterns.

We first collect one year of historical DA and RT LMPs for each node into a 2 × 8760

matrix. Then we perform dimension reduction using principal component analysis (PCA) to rep-

resent each node with a vector of length 8760. Afterwards, we apply k-means clustering to group

nodes eligible for virtual bids into different zones. The dissimilarity between nodes is measured

by the Euclidean distance between their dimension reduced LMP vectors. The number of clusters

is selected using the “elbow method”[43]. Within each cluster, only one representative node with

the shortest Euclidean distance to the cluster centroid is considered in the virtual bid portfolio opti-

mization framework. The set of ordered pairs T introduced in 3.2.1 is constructed based on these

representative nodes with a dramatically-reduced cardinality.

3.3.2 DNN-based LMP Congestion Spread Forecast

Instead of separately predicting the DA and RT LMPs, we directly forecast the LMP con-

gestion spread λdif,c
i,h . The cancellation of system energy components of the LMPs in λdif,c

i,h helps

the forecast model to focus on capturing the congestion patterns. The LMP congestion spread is a

nonlinear function of interpretable variables, consisting of regional load forecasts, fuel price fore-

casts, renewable generation forecasts, outage forecasts, and meteorological variables. Feedforward

neural networks have been shown to be capable of learning such nonlinear mappings [32]. In this

work, we develop a deep neural network to forecast the LMP congestion spreads.
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On top of normalization for the input variables, we also need to perform data prepro-

cessing for the target variables. This is because the LMP congestion spreads exhibit extremely

high volatility. To mitigate the problem of oversized squared error on LMP spikes, appropriate

scaling is applied on the LMP congestion spreads. Specifically, the parametric sigmoid function

f(x) = 1
1+e−x/θ is utilized to scale the LMP congestion spread to the range of (0, 1), where the

hyper-parameter θ needs to be carefully tuned. The activation functions of the DNNs are selected to

be the hyperbolic tangent function “tanh” for the hidden layers and the standard sigmoid function

for the output layer. Note that a DNN will be fit for each pair of representative nodes in T .

3.3.3 Allocation of Virtual Bid Quantity within Each Group

As mentioned in 3.3.1, the virtual bid portfolio optimization are conducted using repre-

sentative nodes from different clusters. Within each cluster, the virtual bid quantity derived from

the portfolio optimization is imposed on the representative node. This raises a practical issue that

large trading quantity allocated on a single node can cause inner-zonal congestion, which may re-

duce the profitability of the virtual bid strategy. To alleviate this problem, we need to reallocate

the virtual bid quantity on the representative node to nodes in the same cluster/zone. The minimum

virtual bid quantity for a node is 1 MWh. To ensure the reproducibility of our experiments, we first

sort the nodes eligible for virtual bids alphabetically within each group. The node eligibility for

virtual bids is determined by the market operator. Then we allocate 1 MWh of virtual bid quantity

to each node in the cluster recursively according to the ordering until the total trading quantity for

the representative node in the cluster is completely distributed.
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3.4 Numerical Study

3.4.1 Setup of Numerical Study

We validate the proposed algorithmic virtual bid trading strategy on California Indepen-

dent System Operator (CAISO) managed electricity market. 3 years of historical data are collected

for CAISO from July 2017 to June 2020, where the 1st year of data is used for model training and

the last 2 years of data is used for rolling forecast and testing. The rolling forecasts and forecast

model updates are performed on a monthly basis. The inputs to the DNN model are composed of

load forecast, fuel price forecast, renewable generation forecast (wind and solar), outage forecast

by generation type (natural gas, hydro, geothermal, nuclear, and others), meteorological variables

(temperature, humidity, wind speed, and precipitation), and one-hot encoding for the operating hour.

The DNN consists of four fully-connected layers with 200, 100, 50, and 25 hidden units

respectively. The activation functions of the hidden layers are “tanh”. The output layer has 1 hidden

unit with sigmoid function as the activation. The dropout rate is selected as 20% for each hidden

layer. The learning rate is set to 0.001. The optimizer used to train the DNN is Adam. The training

batch size is 2048. The training epoch is limited to 1000 with early-stopping and the patience is set

to 20. The scaling parameter θ in the parametric sigmoid function of LMP congestion spreads is set

to 10.

K-means cluster analysis is performed to group the nodes eligible for virtual bids into

different clusters. By using the elbow method, the number of clusters M is selected to be 30.

Increasing the number of cluster beyond M = 30 does not significantly reduce the within-cluster

sum-of-squares.
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3.4.2 Results of K-Means Clustering for Bidding Nodes

In this subsection, we depict the geographical information for some of the clustered nodes

eligible for virtual bids from CAISO. The longitude and latitude data of non-aggregated nodes are

collected from CAISO’s LMP price contour maps. Since the nodes eligible for virtual bids consid-

ered in this chapter are aggregated bidding nodes, we manually mapped a subset of the aggregated

bidding nodes to the non-aggregated ones. To avoid overcrowding, we only show a subset of nodes

from 13 clusters of the k-means clustering results.

The geographical information for 13 groups of bidding nodes is depicted in Figure 3.1.

The proposed k-means clustering algorithm manages to discover groups of nodes in geographically

separated zones based on the DA and RT LMP features. The nodes eligible for virtual bids within

the same group are usually close to each other geographically.

3.4.3 Profitability of Algorithmic Virtual Bid Trading Strategy for Congestion Arbi-

trage

To evaluate the profitability of algorithmic virtual bid trading strategy for congestion arbi-

trage, we conduct the virtual bid portfolio optimization using data from July 2018 to June 2020 with

LMP congestion spread forecasts from the DNN model. The daily portfolio budget limits are set to

$100K, $50K, and $25K for the first year and $120K, $60K, and $30K for the second year, corre-

sponding to 5.48%, 2.83%, and 1.44% virtual bid market share respectively. The daily portfolio risk

limits are set to be half of the budget limits for all cases. The market service fee is $0.0836/MWh

and the bid segment fee is $0.005/bid segment.
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Figure 3.1: Geographical information of bidding nodes in 13 groups.

As discussed in 3.3.3, the portfolio optimization is first performed on the representative

nodes from the clusters. The virtual bid quantities are then assigned to all nodes eligible for virtual

bids in the clusters. Figure 3.2 shows the cumulative profits of the proposed virtual bid trading

strategy with different budget and risk limits. After accounting for all trading costs including the

market service fee and the bid segment fee, the cumulative profits of the proposed strategy are

$4.59M, $2.83M, and $1.58M for 5.48%, 2.83%, and 1.44% virtual bid market share respectively.

The cumulative profit per dollar of trading budget is higher as the portfolio budget is lower.
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Figure 3.2: Cumulative profits of the proposed virtual bid trading strategy in a 2-year period for
CAISO. The daily budget limits correspond to 5.48%, 2.83%, and 1.44% of virtual bid market
shares. The daily risk limit is set to be half of the portfolio budget.

Table 3.1 shows the top 3 most profitable virtual bid pairs by season. Winter is from

December to February, Spring is from March to May, Summer is from June to August, and Fall

is from September to November. In each pair, the first number denotes the group ID of INC offer

and the second number denotes the group ID of DEC bid. It is interesting to observe that the most

profitable virtual bid pairs in summer and fall arbitrage the difference in congestion pattern between

Bay area and California/Oregon border.

3.5 Conclusion

This chapter develops an algorithmic trading strategy to arbitrage congestion with virtual

bids in the wholesale electricity market. The k-means clustering algorithm is implemented to group

the bidding nodes based on their LMP patterns. The algorithmic trading strategy aims to exploit the
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Table 3.1: Top 3 Most Profitable Virtual Bid Pairs by Season

Season 1st Pair 2nd Pair 3rd Pair

Winter (1, 13) (6, 5) (6, 3)

Spring (11, 2) (11, 10) (11, 13)

Summer (10, 7) (1, 7) (11, 2)

Fall (2, 7) (13, 7) (6, 7)

inter-zonal congestion patterns. The risk-constrained portfolio optimization problem with virtual

bids is formulated as a linear programming problem via convex relaxation. The empirical results

with CAISO managed electricity market demonstrate that the proposed framework is capable of

capturing the congestion differences in node pairs and making notable profits by arbitraging the

congestion. In the future, we plan to further refine the proposed model by studying the impact

of different distance measures in k-means cluster analysis and neural network architectures and

hyperparameters on the portfolio profitability. We also plan to develop a model to jointly capture

the LMP congestion spreads among all possible pairs of nodes eligible for virtual bids.

3.6 List of Symbols in Chapter 3

τi Ordered pair of two virtual bidding nodes

λdif,c
i,h Difference between congestion spreads for pair τi at hour h ($/MWh)

λdif,c
h Vector of difference between congestion spreads at hour h ($/MWh)
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ri,h Net profit for pair τi at hour h ($)

zi,h Decision variables for pair τi at hour h (MWh)

zh Vector of decision variables at hour h (MWh)

βi,h Collateral of virtual bids for pair τi at hour h ($/MWh)

γ Transaction cost ($/MWh)

Ch Total hourly virtual bid quantity at hour h (MWh)

Di Daily pairwise trading quantity of pair τi (MWh)

B Portfolio budget limit ($)

M Portfolio risk limit ($)
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Chapter 4

Predict Locational Marginal

Greenhouse Gas Emission Factors of

Electricity with Spatial-Temporal Graph

Convolutional Networks

4.1 Introduction

Excessive emission of greenhouse gas (GHG) can cause global climate change and no-

table environment impact, such as global warming and rising sea-levels. Reducing GHG emission

is the key to slowing such detrimental processes. The U.S. government has announced a target of

50-52% GHG emission reduction below 2005 levels by 2030 [10]. The electric power system is one

of the main contributors of GHG emissions, producing about 25% of the total GHG emissions [44].
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In power system operations, a mixture of generation resources are coordinated not only to meet

the varying electricity demand with least cost while satisfying a number of operational constraints.

Different generation resources have different levels of GHG emissions. Fossil-fueled power plants

are major GHG emission sources while solar and wind resources do not emit GHG at all in daily

operations. The GHG emission from power systems is influenced by many factors [45] such as

generation mix, time of the day, season, electric load level, and the topology of the power system.

To reduce GHG emissions, accurate GHG emission predictions are in critical need. There

are two major GHG emission factors: average emissions factor (AEF) and marginal emissions factor

(MEF). The AEF is calculated as the ratio of total GHG emissions to the total power consumption.

The MEF is the ratio of the change of GHG emissions to the change of power consumption. Com-

pared with AEF, MEF is a more useful tool for distributed energy resources aggregators and end-use

customers to make intelligent decisions about how much electricity should be consumed at different

time slots of a day. MEF signals can be sent along with electricity prices signals to flexible loads

and other smart technologies of the residential, commercial and industrial customers [11]. Based

on the MEF signals, flexible loads, such as electric vehicles (EVs), smart thermostats, and batteries

can consume or charge less power during high MEF hours and more power during low MEF hours.

MEF can also be considered in new electricity pricing design to help reduce GHG emissions.

GHG emission and marginal GHG emission prediction methods are in their early stage

of research and development. The existing methods can be classified into three groups. In the first

group, GHG emission or MEF is estimated through production cost simulations of power systems

and electricity markets. Reference [45] used load duration curve and economic dispatch to emulate

power plants dispatch. In [46], the order of dispatching was empirically derived to calculate AEF
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and MEF. In [47], simulations in detailed transmission system models were used to estimate GHG

emissions. These approaches have two drawbacks. First, to accurately predict AEF or MEF, high-

fidelity production cost simulations of electricity markets are needed. This can be computationally

expensive if MEF needs to be calculated at high granularity in space and time. Second, only the

market operators have access to accurate models of transmission networks and propriety bids and

offers submitted by power producers and load serving entities, making it difficult for others to apply

these methods.

The second group of methods are based on clustering and linear regression. In [48, 49],

linear regression was used to predict GHG emissions from load. In [50], cluster analysis was first

conducted on daily load curves and linear regression models were developed for each cluster to

predict MEF. The drawback of these approaches is that linear regression models can not accurately

capture the complex interactions between different influential factors in determining GHG emis-

sions.

In the third group, machine learning models such as feed-forward neural networks (FNNs)

[51, 52], support vector machines (SVMs) [53], and long short-term memory (LSTM) networks [52]

were proposed to predict GHG emissions. In [54], an ensemble model combining multiple basic

models such as FNN, LSTM, and random forest (RF) was trained to predict GHG emissions. Al-

though machine learning models have shown good prediction accuracy, most of them were designed

to do long-term predictions with very low time granularity, such as yearly GHG emissions, which

are not sufficient for short-term control of flexible loads and smart buildings. Furthermore, these

models were designed separately to forecast GHG emissions in each region, ignoring the interac-

tions between different load serving zones, which greatly limited the prediction accuracy.
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The marginal GHG emission factor varies by load zones, or electric buses, due to the

limited power transfer capability between zones and nodes in the power system. To accurately pre-

dict the locational MEF, the information from the entire transmission network should be effectively

leveraged. Graph neural network (GNN) [55, 56] is an ideal candidate for processing and learn-

ing from information collected from a complex network such as the power grid. In fact, GNN has

received increasing attention in recent years from researchers to tackle a number of prediction, esti-

mation and optimization problems in power systems such as optimal power flow [57], solar energy

prediction [58], parameter estimation [59], state estimation [60], and system health index prediction

[61].

In this chapter, we propose a hybrid machine learning model, which integrates FNNs

with spatio-temporal graph convolutional networks (STGCNs) [14] to predict GHG emissions and

the MEF. We adopted the STGCN due to its capability to efficiently capture temporal and spatial

structure of the network data. Compared with existing GHG emission prediction methods, our

proposed model has three advantages. First, it captures the complex interactions between multiple

load zones and thus provides highly accurate locational MEF prediction. Second, it provides short-

term MEF predictions with hourly granularity to aggregators and end-users to control flexible loads.

Third, the model uses only publicly available electricity market and power system information,

making it widely applicable. A comprehensive case study in California electricity market shows

that the proposed method has more accurate predictions of GHG emissions and MEF than baseline

methods.

The rest of the chapter is organized as follows. Section 4.2 describes the problem setup

and the dataset. Section 4.3 presents the technical details of the proposed hybrid machine learning
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model. Section 4.4 evaluates the GHG emission prediction performance and the analyzes the MEF

in different scenarios. Section 4.5 states the conclusion.

4.2 Problem Setup and Dataset Description

4.2.1 Problem Setup

The objective of this work is to obtain an accurate prediction of GHG emissions as well

as locational MEF of electricity. Let Et(x1t, x2t, ..., xRt) be the GHG emission of a system at time

t with influential factors x1t, x2t, ..., xRt. xrt is the load of a subsystem r at time t. Then the

locational MEF due to a local load change ∆x at subsystem r at time t is defined in (4.1). If the

GHG emission is measured in metric ton of carbon dioxide equivalent per hour (mTCO2/h) and

the load is measured in megawatt (MW ), then the MEF is measured in mTCO2/MWh.

∆E

∆G
=
Et(x1t, ..., xrt+∆x, ..., xRt)−Et(x1t, ..., xrt, ..., xRt)

∆x
(4.1)

The prediction of GHG emissions and locational MEF are conducted in two steps. First,

machine learning models are trained to predict GHG emissions based on electric power load and

other input features. Second, machine learning models are used to make new GHG emission pre-

dictions with perturbed load levels. The locational MEF is then calculated following the definition

in (4.1).

4.2.2 Description of the Dataset

In this chapter, we used real-world GHG emissions of California in the test case. We

utilized data from six sources, which are summarized in Table 4.1. All of the data, except time,
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were collected from the Open Access Same-time Information System (OASIS) of the California

Independent System Operator (CAISO), which is publicly-available [62]. In the dataset, CAISO

measured GHG emissions by tracking the power generations of power plants, the heat rate provided

by generation asset owners, and the GHG emission factors by resource types [63]. The data were

collected between July 2018 and September 2022. After data cleansing and preprocessing, about

37,000 hours of data remained.

The electric load data were collected from not only California, but also other parts of

western United States. These regions and the corresponding balancing authorities are summarized

in Table 4.2 and their locations are illustrated in Fig. 4.1. All the load data used were one day-ahead

predictions made by system operators with mean absolute percentage error (MAPE) below 3%.

The solar and wind power generation data in California were from three regions (coded

as NP15, ZP26, and SP15) specified by CAISO, which represent the north, middle, and south of

California. They were two day-ahead predictions made by CAISO with MAPE below 7%. Natural

gas is the main fuel source for thermal power plants in California, and thus its price in different

regions of California was collected. The power supply by resource type reported by CAISO are

used as input features. The output of the prediction model is the total GHG emissions of all the

electric power resources in California.
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Table 4.1: Summary of Input and Output Data

Data Type

Input

Day-ahead hourly electric load predic-

tions of different balancing authorities

(MWh).

Two day-ahead predictions of solar and

wind power generation of different re-

gions (MWh).

Hourly natural gas price of different re-

gions (dollars per thousand cubic feet).

Hourly power supply from different

generation resources: renewables, nat-

ural gas, large hydro, imports, batter-

ies, nuclear, and coal (MWh).

Time: month, hour, weekday/weekend.

Output

Total hourly California power grid

emission from all resources: imports,

natural gas, biogas, biomass, geother-

mal, and coal (mTCO2)
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Table 4.2: Summary of the Regions and Balancing Authorities of the Load Data

Code Name Full Name State

MWD-TAC

Metropolitan Water

District Transmission

System

California

PGE-TAC
Pacific Gas And Elec-

tric
California

SCE-TAC
Southern California

Edison
California

SDGE-TAC
San Diego Gas And

Electric
California

VEA-TAC
Valley Electric Associ-

ation
California

IPCO Idaho Power Company Idaho

PACE PacifiCorp East Utah

PACW PacifiCorp West Utah

PGE
Portland General Elec-

tric
Oregon

PSEI Puget Sound Energy Washington

NEVP Nevada Energy Nevada
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PCAW PCAE

NEVP

PGE-TAC

VEA-TAC

SCE-TAC

SDGE-TAC
MWD-TAC

Central area of  service region

Major transmission path
between adjacent regions

Figure 4.1: Electric power interconnection map

4.3 Technical Methodology

4.3.1 Overall Framework of the GHG Emission Prediction Model

The overall framework of the proposed GHG emission prediction model is illustrated in

Fig. 4.2. As shown in the figure, we design a hybrid model that combines both STGCNs and
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Load Graph Block 

(STGCN)

Renewable 

Generation Graph 

Block (STGCN)

Load Data Renewable Generation Data Other Data

GHG Emission Prediction

Output Block 

(FNN)

Parallel Block 

(FNN)

Figure 4.2: Framework of the Prediction Model

FNNs. The load graph block and the renewable generation graph block are two STGCN models,

while the parallel block is an FNN model. The load data and the renewable generation data are

fed into the load graph block and renewable generation graph block respectively; these two types

of data and other input data are also fed into the parallel block. The outputs of these three blocks

are concatenated into one tensor for each time instance, and fed into the output block, which is an

FNN network and its output is the predicted GHG emission. The details of the proposed method

is described in the following subsections, including the data preprocessing, brief introduction of

STGCN, the design of each block, and the data split and hyperparameter tuning.

4.3.2 Data Preprocessing

4.3.2.1 Preprocessing of Time Data

We used a binary variable to represent weekday (value 0) and weekend (value 1). To

represent month and hour, we use cyclical encoding. In cyclical encoding, The k-th hour (k =

1, 2, ..., 24) is encoded by [cos2πk24 , sin2πk
24 ]. Similarly, the k-th month (k = 1, 2, ..., 12) is encoded
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by [cos2πk12 , sin2πk
12 ].

4.3.2.2 Transformation of Data

To improve the convergence in training and prediction accuracy, we applied two types

of transformation to the data: z-score normalization and quantile transformation. In the z-score

normalization, the data are centered and normalized by their standard deviation. In the quantile

transformation, the data are transformed to follow a normal distribution. The z-score normaliza-

tion is a linear transformation, which preserves the correlations and distances within the data; on

the other hand, the nonlinear quantile transformation smooths out unusual distributions and is less

influences by outliers than z-score.

4.3.3 Brief Introduction of STGCN

Here we briefly introduce the design of STGCN and more details can be found in [14].

STGCN is designed to process and learn data set collected from a graph. Let G = (V, E ,W ) be a

graph, in which V is the set of vertices (nodes), E is the set of edges, and W ∈ Rn×n is the weighted

adjacency matrix (n = |V|). The structure of the STGCN model is illustrated in Fig. 4.3. An

STGCN contains three parts: two spatial-temporal convolutional (ST-Conv) blocks and an output

layer. Each ST-Conv block contains a “sandwich” structure of two temporal gated convolution

(Gated-Conv) layers and one spatial graph convolution (Graph-Conv) layer. The output layer is a

fully connected layer.

The Graph-Conv layer uses Chebyshev polynomials to approximate a graph convolution
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Temporal Gated-Conv

Temporal Gated-Conv

Spatial Graph-Conv

Input

Output

𝑊

𝑊

(b) ST-Conv

Figure 4.3: The structure of an STGCN model. (a) is the overall structure of STGCN. (b) is the
internal structure of an ST-Conv block.

operation “∗G” with a kernel Θ as defined in (4.2):

Θ∗Gx = Θ(L) ≈
K−1∑

k=0

θkTk(L̃)x (4.2)

Here, Tk(L̃) ∈ Rn×n is the Chebyshev polynomial of order k, L̃ = 2L/λmax − In is the scaled

Laplacian, and x is a n-dimensional vector representing the inputs at the graph nodes. L = In −

D− 1
2WD− 1

2 . In is an identity matrix. D ∈ Rn×n is the diagonal degree matrix derived from W ,

and λmax is the largest eigenvalue of L. K is the kernel size, which determines the maximum radius

of the convolution. When each node has a Ci-channel input and Co-dimensional output, the graph

is generalized to (4.3):

yj =

Ci∑

i=1

Θi,j(L)xi ∈ Rn, 1 ≤ j ≤ Co (4.3)

Here yj ∈ Rn is the nodal output of channel j. xi ∈ Rn is the nodal input of channel i. When
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multiple time steps are considered, the input and output will have an additional dimension for time

steps.

The temporal Gated-Conv layer is applied to each node in the graph. Let M be the input

time steps; let Ci and Co be numbers of the input and output channels. The Gated-Conv layer first

uses a convolution kernel Γ ∈ RKt×Ci×2Co to perform 1-D causal convolutions of width Kt and

obtains two elements P and Q, such that [P,Q] ∈ R(M−Kt+1)×(2Co). Then this layer uses element-

wise Hadamard product (⊙) to obtain its out as P ⊙ σ(Q) ∈ R(M−Kt+1)×Co , where σ() is the

sigmoid gate.

4.3.4 Load Graph Block

To process the load data with a STGCN model, we need to determine the graph, model

structure, the inputs and outputs of the model. We use the graph shown in Fig. 4.1, in which each

node represents a balancing authority and each edge represents a major transmission path between

adjacent regions. We construct the adjacency matrix W for the model by using the same weight for

each edge in the graph. We use a single-step in both the inputs and outputs of the STGCN. Thus, in

the temporal Gated-Conv layers, we set Kt = 1. We assume that each region have direct interactions

with only its nearest neighbors, thus we use a maximum radius of 1 in the Spatial Graph-Conv layer,

i.e. K = 2. To predict the GHG emission at hour h, the inputs of each node in this graph are the load

at hour h and h− 24 of the corresponding region with both the z-score and quantile transformation.

Note that load used here are all one day-ahead predictions.
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4.3.5 Renewable Generation Graph Block

Similar to the load data, the renewable generation data of solar power and wind power

also have a graph structure. The renewable generation data was recorded separately in the three

regions: NP15, ZP26, and SP15, representing the north, central, and the south parts of California.

Thus, the graph of this block was designed as three nodes connected to each other with three edges.

We use a single time step in both the input and output, thus we set Kt = 1. Since it is a small graph,

any non-zero convolution radius will average the nodal features. Hence, we set K = 1 to avoid this.

To predict the GHG emission at hour h, the inputs of this block are the renewable generation power

at hour h and h− 24 with both the z-score and quantile transformation for each of the three nodes.

Note that the renewable generation data used here are all two day-ahead predictions.

4.3.6 Parallel Block

Since not all input data are collected from a graph, we also design a parallel block to

extract information that is not captured by the STGCN blocks. The inputs to the parallel block

include the load data, renewable generation data an other input data. The other input data are the

time feature data (described in Section 4.3.2) of hour h and h − 24, the natural gas price at hour

h and h − 24, the supply resource mix at hour h − 24, and the historical GHG emission at hour

h−24. Every input feature except time and historical GHG emission uses both z-score and quantile

transformation. The historical GHG emission uses only the quantile transformation.
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4.3.7 Output Block

The output block is designed as an FNN with batch normalization before each layer. Its

output is the quantile transformation of the GHG emission. The proposed hybrid model is trained

to minimize the mean squared error of the quantile-transformed GHG emission. To obtain the final

prediction, inverse of quantile transform is performed.

4.3.8 Data Split and Hyperparameter Tuning

To train the proposed model and tune its hyperparameters, the dataset is split into three

parts. The first 80% of samples are used as the training and validation dataset while the last 20%

of the samples were used as the testing dataset to evaluate the model’s GHG emission prediction

performance. In the first 80% of samples, for every five day’s data (120 samples), we put the first

four days into the training dataset and the last day’s data into the validation dataset. Thus, 64% of

the whole data set is used as the training dataset and 16% is used as the validation dataset. The

proposed machine learning model contains many hyperparameters: the number of layers in each

block, the dimension of each layer, the size of spatial kernel and temporal kernel, learning rate,

etc. To systematically tune hyperparameters, for each hyperparameter setup, we trained the model

10 times using the training dataset, and calculate the average prediction error using the validation

dataset. The hyperparameter setup with the lowest average error in the validation dataset is chosen

as the best hyperparameter setup.
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4.4 GHG Emission Prediction Performance and Analysis of Marginal

GHG Emission

In this section, we evaluate the prediction performance for California’s GHG emissions

of the proposed hybrid machine learning model and compared it with two baseline algorithms. We

also calculate and analyze the locational MEF under different scenarios.

4.4.1 GHG Emission Prediction Performance

We compare the GHG emission prediction performance of our proposed model (hybrid

STGCN) and two other baseline models: FNN and gradient boosted trees (GBT). Note that the FNN

and GBT models use the same input features as our proposed model.

The hyperparameters all three machine learning models were tuned following the ap-

proach in Subsection 4.3.8. We trained the hybrid STGCN model and FNN model using the Adam

algorithm, with batch size = 10 and early stopping patience = 10 epochs. We trained the GBT with

early stopping patience = 10 rounds. By tuning hyperparameters, the numbers of channels of the

three “sandwich” layers in ST-Conv and the output layer of STGCN are 4−2−4−2 respectively

in the load graph block, and 8−4−8−2 in the renewable generation graph block; the FNN in the

parallel block and the output block are two three-layer FNNs of dimension 20−20−1. The number

of neurons of the FNN model is 20−20−20−1. All FNN models use batch normalization before

each layer.

To evaluate the prediction accuracy of the machine learning models, we train each model

10 times using the training dataset, and then test the models with the testing dataset. Three error

metrics are used to evaluate the prediction accuracy: mean squared error (MSE), mean absolute
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error (MAE), and mean absolute percentage error (MAPE). The prediction performance of the three

machine learning models are compared in Table 4.3. For each type of measurements, two values

were recorded: the average performance over 10 tests, and the optimal value, i.e. the performance

of the model with the lowest validation loss. We can see that our proposed hybrid STGCN model

has the lowest prediction error in MSE, MAE, and MAPE in both average value and the optimal

value. In addition, by choosing the optimal value from multiple trained models, our proposed

prediction model can further improve the prediction accuracy. These results show that by capturing

the complex spatio-temporal relationship of the data, our proposed model can significantly improve

the accuracy of GHG emission prediction.

Table 4.3: Prediction Performance of GHG Emissions. (Average Value / Optimal Value)

Model
MSE

(mTCO2/h)
2

MAE

(mTCO2/h)

MAPE

(%)

Hybrid STGCN 2.90/2.77E+05 4.02/3.88E+02 9.46/9.15

FNN 3.01/3.11E+05 4.09/4.18E+02 10.80/10.36

GBT 3.25/3.23E+05 4.27/4.25E+02 11.43/11.43

4.4.2 Analysis of Locational Marginal GHG Emission

We use the trained hybrid model to calculate the locational MEF and ∆E, following the

definition in (4.1). The locational MEF and ∆E are calculated for each hour and the load shift for

each region in the data, with ∆G = 100MW . We analyze the locational marginal MEFs in two

aspects: the hourly pattern of locational MEF with high renewable energy and the weekday effect.
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4.4.2.1 Locational MEF on a Day with High Renewable Energy Output

California has very high renewable energy penetration rate. On March 27, 2022, Cal-

ifornia hit a record that 94.5% of the electricity on the grid came form renewable energy [64].

We calculate the 24-hour locational MEF on this day in the balancing authority of PGE-TAC and

SCE-TAC respectively. The result is illustrated in Fig. 4.4. From this figure, we can see that the

marginal GHG emission is significantly lower during the day. This is because solar photovoltaic

(PV) generation is very high during these hours and does not emit any GHG. This result shows that

the proposed hybrid STGCN model successfully recognizes the contribution of renewable energy

in reducing GHG emission. Furthermore, the MEF for SCE-TAC and slightly lower than that of

PGE-TAC between 12:00 pm and 18:00 pm. This is because Southern California has much higher

solar PV generation and not all all renewable energy can be moved from Southern California to

Northern California due to limited power transfer capability.
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Figure 4.4: Hourly MEF on March 27, 2022 for PGE-TAC and SCE-TAC.
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4.4.2.2 Weekday/Weekend Effect on Marginal GHG Emission

We calculate the average locational MEF for 24 hours on weekdays and weekends in the

PGE-TAC area. The result is illustrated in Fig. 4.5. From this figure, we can see that the MEF is

lower during the day, which has been explained in Subsection 4.4.2.1. We can also observe that

the weekends have lower MEF than the weekdays. This is due to the lower power demand on

weekends. When there are lower power demand, system operators can turn off the less fuel-efficient

power stations and keep running the power plants with higher fuel-efficiency. These results show

that the proposed hybrid STGCN model can reflect the GHG emission differences between weekday

and weekends and between different operation conditions.
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Figure 4.5: Average hourly MEF on weekdays/weekends in PGE-TAC.

4.5 Conclusion

In this chapter, we developed a hybrid machine learning model by integrating FNN with

STGCNs to predict GHG emissions and locational MEF. The STGCN components of the model
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allows us to capture the complex spatio-temporal correlations in the network data and improves

the prediction accuracy. The proposed model can provide short-term locational MEF predictions

at hourly granularity to aggregators and end-users to manage flexible loads and it does not require

accurate power system model. The numerical study on California’s electricity market shows that the

proposed method has more accurate GHG emission predictions than the baseline machine learning

models. Detailed analysis also showed how the locational MEF is influenced by load level, hour,

and renewable generation levels.

4.6 List of Symbols in Chapter 4

G Graph

V Set of Vertices

E Set of edges

xi xi ∈ Rn Nodal input of channel i

yj yj ∈ Rn Nodal output of channel j

W Weighted adjacency matrix

D Diagonal degree matrix derived from W

L̃ Scaled Laplacian

M Input time steps

K Spatial kernel size

Kt Temporal kernel size

Ci, Co Numbers of input and output channels
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Chapter 5

Conclusions

In this dissertation, we demonstrate all the research works that have been done regarding

the topic: data-driven modeling and algorithmic trading in electricity market.

In Chapter 2, we discussed the algorithmic virtual bid trading framework considering the

price sensitivity. A constrained gradient boosting tree is developed to model the monotonic function

of price sensitivity. The risk-constrained virtual bid portfolio optimization problem is reformulated

as a mixed-integer quadratically-constrained problem via convex relaxation. The results of compre-

hensive empirical studies on the three U.S. electricity markets show that the proposed virtual bid

portfolio optimization framework considering price sensitivity outperforms the one without it.

In Chapter 3, we explored the algorithmic virtual bid trading strategy to arbitrage the

congestion in wholesale electricity market. The k-means clustering algorithm is implemented to

group the bidding nodes based on their price patterns. The risk-constrained portfolio optimization

problem with virtual bids is formulated as a linear programming problem via convex relaxation.

The empirical results on CAISO demonstrate that the proposed framework is capable of capturing
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the congestion differences in node pairs and making notable profits by arbitraging the congestion,

while eliminating the significant uplift costs.

In Chapter 4, we interrogated the hybrid machine learning framework of FNNs and STGCNs

to predict GHG emissions and locational MEF. The STGCN components enable us to capture the

complex spatio-temporal correlations in the network data and improves the prediction accuracy.

The proposed data driven model can provide short-term locational MEF predictions at hourly gran-

ularity without power system modeling. The numerical study on CAISO shows that the proposed

method has more accurate GHG emission and locational MEF predictions than the baseline machine

learning models.
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Appendix A

Appendix for Chapter 2

A.1 Proof of (2.17)

The sum among hours (
24∑
h=1

) is omitted as it does not affect the proof mathematically.

N∑

i=1

(zIi,hE[rIi,h(zh)] + zDi,hE[rDi,h(zh)])

=
N∑

i=1

zIi,hE[(λdif
i,h − γI)] +

N∑

i=1

zIi,hE[

Mh∑

j=1

(aj,hxh + bj,h)dj,h] +
N∑

i=1

zDi,hE[(−λdif
i,h − γD)]

−
N∑

i=1

zDi,hE[

Mh∑

j=1

(aj,hxh + bj,h)dj,h]

=
N∑

i=1

zIi,hE[(λdif
i,h − γI)] +

N∑

i=1

zDi,hE[(−λdif
i,h − γD)]

+ (
N∑

i=1

zIi,h −
N∑

i=1

zDi,h)E[

Mh∑

j=1

(aj,hxh + bj,h)dj,h]

=

N∑

i=1

zIi,hE[(λdif
i,h − γI)] +

N∑

i=1

zDi,hE[(−λdif
i,h − γD)] + xhE[

Mh∑

j=1

(aj,hxh + bj,h)dj,h]

=
N∑

i=1

zIi,hE[(λdif
i,h − γI)] +

N∑
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i,h − γD)] + E[
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2
h + bj,hxh)dj,h]
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