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Proteobacteria explain significant
functional variability in the human gut
microbiome
Patrick H. Bradley1 and Katherine S. Pollard1,2*

Abstract

Background: While human gut microbiomes vary significantly in taxonomic composition, biological pathway
abundance is surprisingly invariable across hosts. We hypothesized that healthy microbiomes appear functionally
redundant due to factors that obscure differences in gene abundance between individuals.

Results: To account for these biases, we developed a powerful test of gene variability called CCoDA, which is
applicable to shotgun metagenomes from any environment and can integrate data from multiple studies. Our
analysis of healthy human fecal metagenomes from three separate cohorts revealed thousands of genes whose
abundance differs significantly and consistently between people, including glycolytic enzymes, lipopolysaccharide
biosynthetic genes, and secretion systems. Even housekeeping pathways contain a mix of variable and invariable
genes, though most highly conserved genes are significantly invariable. Variable genes tend to be associated with
Proteobacteria, as opposed to taxa used to define enterotypes or the dominant phyla Bacteroidetes and Firmicutes.

Conclusions: These results establish limits on functional redundancy and predict specific genes and taxa that may
explain physiological differences between gut microbiomes.

Keywords: Human gut microbiome, Proteobacteria, Bacteroidetes, Firmicutes, Variance, Shotgun metagenomics,
Statistical methods, Functional redundancy, Enterotypes, Human gut microbiome

Background
The microbes that inhabit the mammalian gut encode a
wealth of proteins that contribute to a broad range of
biological functions, from modulating the immune sys-
tem [1–3] to participating in metabolism [4, 5]. Shotgun
metagenomics is revolutionizing our ability to identify
protein-coding genes from these microbes and associate
gene levels with disease [6], drug efficacy [7] or side-
effects [8], and other host traits. For instance, human gut
microbiota associated with a traditional high-fiber agrar-
ian diet encoded gene families involved in cellulose and
xylan hydrolysis, which were absent in age-matched con-
trols eating a typical Western diet [9]. The functional
capabilities of the human gut microbiome go beyond sta-
tistical associations. A number of microbial genes have
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now been causally linked to host physiology. Examples
include the colitis-inducing cytolethal distending toxins of
Helicobacter hepaticus [10] and the enzymes of commen-
sal bacteria that protect against these toxins by producing
anti-inflammatory polysaccharide A [11].
It is therefore surprising that healthy human gut micro-

biomes have been characterized as functionally stable,
with largely redundant gene repertoires in different hosts.
We refer to these metagenomic gene families with very
low variance in abundance across hosts as “invariable.”
Several lines of evidence support this conclusion. First,
biological pathway abundance tends to be less variable
across metagenomes than it is between isolate genomes
[12], suggesting strong selection for microbes that encode
functions necessary for adaptation to the gut environ-
ment. Second, the relative abundances of pathways are
strikingly invariable compared to the relative abundances
of bacterial phyla in the samemetagenomes [12, 13]. Thus,
it appears that humans harbor phylogenetically distinct
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gut communities that all do more or less the same things,
except in the context of disease or other extreme host
phenotypes.
Functional redundancy deserves a closer look, however,

because physiologically meaningful differences in gene
abundances between healthy human microbiomes could
easily have been missed. One primary factor may be that
prior work did not look at quantitative abundances of indi-
vidual genes but instead mainly summarized function at
the level of Clusters of Orthologous Groups (COG) cat-
egories (e.g., “carbohydrate metabolism and transport”)
and KEGG modules (e.g., “citrate cycle”) [12–14]. This
strategy lacks the power to detect one component of a
pathway or protein complex that varies in abundance
across hosts if other components are less variable. This
masking of variable genes (i.e., genes with high variance)
is likely because the presence and abundance of most
COG categories and KEGG modules will be dominated
by core components (i.e., housekeeping genes) that are
widely distributed across the tree of life and abundant
in metagenomes. The only previous analyses of individ-
ual genes asked whether they were universally detected
across all individuals sampled [12, 14]. However, uni-
versally detected genes may still vary substantially in
abundance, and conversely, lower-abundance invariable
genes may not be universally detected merely due to sam-
pling. This approach is also sensitive to read depth [12]
and sample size [14]. Based on these observations, we
were motivated to quantitatively investigate functional
redundancy at the level of individual sets of orthologs
(or “gene families”).
To enable high-resolution, quantitative analysis of func-

tional stability in the microbiome, we developed a sta-
tistical test that identifies individual gene families whose
abundances are either significantly variable or invari-
able across samples. We named this test CCoDA, for
Covariate-Corrected Dispersion Analysis. The inputs to
the method are gene abundance values (e.g., normalized
counts of metagenomic reads mapping to a particular
gene), and the outputs are lists of genes whose abundances
differ significantly more or less than expected across sam-
ples, which can be summarized by pathways and by the
taxonomic groups contributing reads.
The study of variability, in addition to the more com-

mon study of average abundances, is becoming more
popular in other areas of genomics, such as gene expres-
sion across tissues [15], epigenetic variation [16], and,
especially, individual cells [17–21]. However, there are
still few existing statistical approaches for determining
whether a given observed amount of biological variabil-
ity exceeds or falls beneath expectations, and the existing
methods require the use of spike-ins to decompose tech-
nical and biological variability [19, 20]. Our method does
not require these additional data, which are often not

available in existing studies of the microbiome. Addi-
tionally, it incorporates solutions to three major chal-
lenges to studying functional redundancy with shotgun
metagenomics data.
The first key innovation of our approach is using a test

statistic that captures residual variability after accounting
for the overall gene abundance. Like modern approaches
for RNAseq analysis [22, 23] and proteomics analysis
[24], we use the negative binomial distribution to directly
model the sequencing count data and account for the
mean-variance relationship. However, instead of using
this distribution to more accurately detect genes with
differences in abundance between groups, we use it to dis-
cover genes whose variances are unexpected given their
mean values. This modeling choice is important because
abundant genes will be variable just by chance due to the
correlation between mean and variance in any sequencing
experiment. Conversely, phylogenetically restricted genes
will have relatively low variance due to being less abun-
dant. Furthermore, gene abundances can be sparse (i.e.,
zero in many samples). For all of these reasons, simply
ranking genes based on their variances would yield many
false positives and false negatives.
A second benefit of our modeling approach is that we

can adjust for systematic differences in a gene’s mea-
sured level between studies to allow for quantitative
integration of data from multiple sources. Meta-analysis
is essential for gaining sufficient power to detect vari-
able genes across the range of mean abundance levels.
It also ensures robustness and generalizability of discov-
ered inter-individual differences, which occur by chance
in small sets of metagenomes. Our modeling approach is
also flexible enough to account for factors such as aver-
age genome size that can affect measurements of gene
abundances.
Finally, our method does not require predefined cases

and controls but instead enables discovery of genes that
explain functional differences betweenmicrobiomes with-
out prior knowledge of which groups of samples to com-
pare. This is critical for the current phase of microbiome
research, when many factors influencing microbial com-
munity composition are unknown. Gene families that
contribute to survival in one particular type of healthy
gut environment should emerge as variable between hosts
and their functions may point to factors influencing com-
munity composition, mechanisms of microbe-host inter-
actions, and biomarkers of presymptomic disease (e.g.,
pre-diabetes).
We applied CCoDA to healthy gut metagenomes (n =

123) spanning three different shotgun sequencing stud-
ies and found both significantly invariable (3768) and
variable (1219) gene families (false discovery rate (FDR)
<5%). Many pathways, including some commonly viewed
as housekeeping or previously identified as invariable
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across gut microbiota (e.g., central carbon metabolism
and secretion), included significantly variable gene fami-
lies. Phylogenetic distribution (PD) correlated overall with
variability in gene family abundance, and exceptions to
this trend highlight functions that may be involved in
adaptation, such as two-component signaling and special-
ized secretion systems. This approach to discovering func-
tions that distinguish microbial communities is applicable
to any body site or environment.
Finally, the human gut is normally dominated by the

bacterial phyla Bacteroidetes and Firmicutes [13]. Clades
within these phyla (especially Bacteroides, Prevotella,
and Ruminococcaceae) are the most commonly used to
cluster individuals together into “enterotypes” [25–28]
because they explain the most taxonomic variation. The
Bacteroidetes-to-Firmicutes ratio has also been measured
as a potential biomarker of interest in its own right
[29–31]. In contrast, we show that the less abundant phy-
lum Proteobacteria, and not Bacteroidetes or Firmicutes,
is a major source of genes with the greatest variabil-
ity in abundance across hosts. Thus, while Bacteroidetes
and Firmicutes may contribute most to taxonomic varia-
tion between hosts, the abundance of Proteobacteria may
capturemore of the functional variation. This has implica-
tions for the interpretation of taxonomic data from human
gut microbiota and, because of the link between Pro-
teobacteria and dysbiosis [32], also suggests a potential
relationship between inflammation and gene-level differ-
ences in gut microbial functions.

Results
To describe variation within healthy gut microbiota across
different human populations, we randomly selected 123
metagenomes of healthy individuals from the Human
Microbiome Project (HMP, n = 42) [13], controls in a
study of type II diabetes (T2D, n = 44) [33], and controls
in a study of glucose control (GC, n = 37) [34]. These
span American, Chinese, and European populations,
respectively (see the “Methods” section). We mapped
these metagenomes to KEGG Orthology (KO) families
with ShotMAP [35] and counted reads for 17,417 gene
families.
Accurately normalizing gene read counts so that they

are comparable across samples and studies is critical to
our meta-analytical approach and any quantitative eval-
uation of shotgun metagenomes. We therefore quanti-
fied gene family abundance using reads per kilobase of
genome equivalents (RPKG) [36]. This method of calcu-
lating abundances takes into account differences in the
average genome size within different metagenomes, as
well as factors such as gene length, that can also bias
counts (long genes will generally have a greater proportion
of reads).

Unadjusted calculation of gene variability yields
misleading results
One straight-forward approach to determining gene fam-
ily variability, which has previously been employed in the
literature [13], would simply be to calculate the variance
of gene family abundances across all datasets. The tails of
this distribution—for example, the top and bottom 10%—
could then be termed “variable” and “invariable” gene
families. However, by this metric, the most “variable” gene
families would actually be enriched for pathways such as
the ribosome (FDR-corrected p value q = 2.4 × 10−10),
DNA replication (q = 0.07), and aminoacyl-transfer RNA
(tRNA) biosynthesis (q = 1.2 × 10−6). These results con-
tradict biological intuition: it would be very surprising
for genes within the best-conserved “housekeeping” path-
ways to be among the most variable, since they appear
in most microbial genomes. (Here, we define “house-
keeping” gene families as those involved in fundamental,
highly conserved cellular processes such as translation,
DNA replication, and central metabolism). Indeed, out of
a recent list of 74 protein-coding genes that were uni-
versally present and single-copy in bacterial genomes, 14
were ribosomal genes and 10 were tRNA synthetases or
tRNA modification enzymes [37]; “housekeeping” path-
ways also dominated previous lists of bacterial universal
and single-copy genes [38].
Furthermore, according to this same straight-forward

metric, the least variable gene families would include
those involved in disease signatures such as “salmonella
infection” (q = 0.027), “pertussis” (q = 1.4 × 10−3), and
“legionellosis” (q = 4.9 × 10−3). The presence of genes in
these disease signatures does not necessarily indicate the
presence of that disease or an active infection. However,
it seems unlikely for genes involved in pathogenicity to be
among the most stable components of the healthy human
microbiome.
The explanation for this counterintuitive result can be

visualized by plotting the mean vs. variance for each mea-
sured gene family (Fig. 1): in shotgun metagenomic data,
mean and variance are tightly correlated over the entire
range of means. This phenomenon is robust to the num-
ber of samples assessed (Additional file 1: Figure S1).
Similar mean-variance relationships are actually observed
in other high-throughput sequencing applications, such
as RNAseq [39, 40] (which is why standard hypothesis
tests based on assuming normality are inappropriate for
RNAseq data, if the correct variance-stabilizing transfor-
mations are not applied [40]).
This mean-variance relationship means that gene fami-

lies encoding, for example, the bacterial ribosome, which
are among the most abundant in these metagenomes, will
therefore have the highest sample variance as well. Mean-
while, gene families with low average abundance, such
as those involved in the disease signatures listed above,
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Fig. 1 Shotgun metagenomic data show a very strong mean-variance relationship. The log10(mean) is plotted against log10(variance) for each gene
family (points) in each study (headings). Bacterial ribosomal proteins (green), aminoacyl-tRNA charging genes (orange), and genes annotated to the
T3SS-dependent Salmonella pathogenesis signature in KEGG (blue) are highlighted. Trend lines show a Poisson (dashed blue line) and a negative
binomial (dashed red line) fit to the count data. Negative binomial provides a better fit in all three data sets

will appear to be invariable when in reality they are sim-
ply very infrequently observed. For example, three out of
five of the invariable gene families annotated to pertussis
only have one read each in a single sample, which con-
stitutes extremely weak evidence for their presence in the
metagenome, let alone invariability. This approach also
leaves us unable to detect gene families that are variable
but relatively abundant, as well as the opposite (Fig. 2a–d).
Gene family abundances can also vary by study, because

of both biological differences between populations and
technical factors including library preparation, amplifica-
tion protocol, and sequencing technology. However, gene
families with large study effects may or not be variable
within each study, and vice versa (see, e.g., Fig. 2e–h).
Our method should therefore also take this potential con-
founder into account.
Finally, to assess statistical significance, we need to

assess the range of variances we would expect for a partic-
ular gene family given its mean abundance, requiring us
to model the overall mean-variance relationship. Figure 1
shows that this mean-variance relationship cannot be ade-
quately captured by a Poisson distribution (blue dashed
line), in which the mean and variance are equal; however,
a better fit can be obtained by using the negative binomial
distribution (red dashed line), a count-based distribution
that allows for overdispersion, i.e., variance that exceeds

the mean. Indeed, simply based on this negative binomial
best-fit, ribosomal proteins are likely less variable than
expected since they fall well below the trend line in all
three datasets (Fig. 1). The negative binomial is commonly
used in other sequencing applications, such as RNAseq
[21], which has similar overdispersion.

A new test, CCoDA, captures the variability of microbial
gene families
Wepresent amodel that enables gene family abundance to
be quantitatively compared across metagenomes for thou-
sands of microbial genes. To account for study effects, we
fit a linear model of log abundance Dg,s for gene g in sam-
ple s as a function of the overall mean abundance μg and
a term βg,y that quantifies the offset for each study y:

Dg,s = μg +
∑

y∈Y
Iy,sβg,y + εg,s (1)

where Iy,s is an indicator variable that is 1 if sample s
belongs to study y and 0 otherwise. In this simple model,
βg,y is simply the mean of gene g in study y after subtract-
ing the overall mean μg , and εg,s are the residuals left after
these study-specific means βg,y are subtracted out.
The residual εg,s quantifies how much the abundance

of gene g in sample s differs from the average abundance
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Fig. 2 The residual variance statistic captures variation in gene families after accounting for between-study variation. The left-hand panels (“original
abundances") show filled circles representing log-RPKG abundances for gene families from the KEGG Orthology (KO), with per-study means shown in
solid horizontal lines and the distance from these means shown as dashed vertical lines. The right-hand panels (“residuals") show the same gene
families after fitting a linear model that accounts for these per-study means, with an accompanying density plot showing the distribution of these
residuals. Vε

g values in bold underneath density plots are the calculated variances of these residuals. These gene families are sets of orthologs
corresponding to the genes a tatA, b devR, c waaW, d thrC, e gspA, f tssB, g dctS, and h ecnB. Panels a,b show two invariable gene families with
relatively high (a) and low (b) average abundance; similarly, panels c, d show two variable gene families with relatively low (c) and high (d) average
abundances. Panels e, f show two gene families involved in secretion with similar abundances, but low (e) vs. high (f) variability. Finally, panels
g, h show that both invariable (g) and variable (h) gene families can have substantial study-specific effects. (All gene families displayed were
significantly (in)variable using CCoDA, FDR ≤ 5%)

across samples in the same study as s. We denote the
variance of the residuals across samples by V ε

g . When
this statistic is small, the gene has similar abundance
across samples after accounting for study effects. A large
value of V ε

g indicates that samples have very different
abundances.
To assess the statistical significance of gene family vari-

ability, as suggested above, we compare the residual vari-
ance V ε

g to a data-driven null distribution based on the
negative binomial distribution (see the “Methods” section
and Additional file 2: Figure S2). This approach is nec-
essary because there is no straight-forward formula for
the p value of V ε

g . Our method looks for deviations from
the null hypothesis that gene families in the dataset have
the same mean-variance relationship. This relationship is

captured by the overdispersion parameters ky, such that
the variance for a gene g in a study y is given by:

σ 2
g,y = βg,y + β2

g,y

ky
(2)

where βg,y are study-specific means for gene g as above.
Because this null distribution is generated stochastically

per gene family from a count-based distribution match-
ing the observed mean, i.e., by parametric bootstrapping,
the null naturally accounts for the expected amount of
noise based on the number of times a given gene fam-
ily is observed. Gene families with low abundance or
a high proportion of zeros are therefore more likely to
be called non-significant than variable (Additional file 3:
Figure S6 C–D).
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We validated this approach further and assessed type
I and type II error rates with simulated data (see the
“Methods” section, Additional file 4: Figure S4), find-
ing that CCoDA has high power and good control over
the false positive rate when the overdispersion param-
eter k used in the null distribution is accurately esti-
mated. To make the test more robust to factors affecting
the estimation of k (Additional file 5: Figure S5), we
also used simulation to control the false discovery rate
empirically (Table 1).
CCoDA can be applied to shotgunmetagenomes to sen-

sitively and specifically identify variable genes in any envi-
ronment without prior knowledge of factors that stratify
relatively high versus low abundance samples.

Thousands of variable gene families in the gut microbiome
Using CCoDA, we found 2357 gene families with more
variability than expected and 5432 with less (leaving 9628
non-significant) at an empirical FDR of 5% (Additional
file 3: Figure S6A). Restricting the analysis to gene families
with at least one annotated representative from a bacterial
or archaeal genome in KEGG, we obtained 1219 sig-
nificantly variable and 3813 significantly invariable gene
families (and 2194 non-significant). The differences in the
residual variation of these gene families can be visual-
ized using a heatmap of the residual εg,s values (Additional
file 6: Figure S7 and Additional file 7: Figure S8). The large
number of genes that were less variable than expected
given their means supports the hypothesis of some func-
tional redundancy in the gut microbiome, potentially due
to selection for core functions that make microbes more
successful in the gut environment. Notably, the HMP
cohort tended to have overall lower variance in their
metagenomes than the GC and T2D cohorts; this may
be because the exclusion criteria for HMP, which explic-
itly studied only healthy individuals, were particularly
stringent [41]. Nevertheless, our discovery of thousands
of significantly variable genes across a range of abun-
dance levels demonstrates that the gut microbiome is less
invariable than prior work suggested.
This result highlights the importance of a quantitative,

gene-level evaluation of functional stability. Importantly,
the magnitude of the residual variance statistic V ε

g is not
the sole determinant of significance, as illustrated by the

Table 1 q value cutoffs to reach a given empirical FDR,
estimated from simulation

Empirical FDR (%) q value cutoff, variable q value cutoff, invariable

5 0.0238 0.108

10 0.0669 0.180

25 0.181 0.294

overlap in distributions ofV ε
g between the variable, invari-

able, and non-significant gene families. For example, both
low-abundance gene families with many zero values and
high-abundance but invariable gene families will tend to
have low residual variance, but the evidence for invari-
ability is much stronger for the second group. Our test
accurately discriminates between these scenarios, tending
to call the second group significantly invariable and not
the first (Additional file 3: Figure S6A, inset), whereas an
approach that simply thresholded V ε

g would be unable to
distinguish between them.

Biological pathways contain both invariable and variable
components
To test our hypothesis that the appearance of pathways
and functional categories with similar abundance across
samples can be explained by a subset of core compo-
nents, we examined individual gene variability within
KEGG modules. As expected, we observed an overall
signal of stability at this broad level of gene groupings.
Many of the pathways previously identified as invari-
able (e.g., aminoacyl-tRNA metabolism, central carbon
metabolism) indeed have more invariable than variable
genes. However, individual genes show a much more
complex picture. Even the most invariable pathways also
include significantly variable genes (Fig. 3). For exam-
ple, the highly conserved KEGG module set “aminoacyl-
tRNA biosynthesis, prokaryotes” included one variable
gene at an empirical FDR of 5%, sepRS. sepRS is an O-
phosphoseryl-tRNA synthetase, which is an alternative
route to biosynthesis of cysteinyl-tRNA in methanogenic
archaea [42]. Methanogen abundance has previously been
noted to be variable between individual human guts: while
DNA extraction for archaea may be less reliable than for
bacteria, even optimized methods showed large standard
deviations across individuals [43]. Another gene in this
category was variable at a weaker level of significance (10%
empirical FDR): poxA, a variant lysyl-tRNA synthetase.
Recent experimental work has shown that this protein has
a diverged, novel functionality, lysinylating the elongation
factor EF-P [44, 45].
By comparison, 77% of the tested prokaryotic gene

families in the KEGG module set “central carbohy-
drate metabolism” were significantly invariable, and 5.6%
(five genes) were significantly variable (Additional file 8:
Figure S9) at an empirical FDR of 5%. In this case, the vari-
able gene families highlight the complexities of microbial
carbon utilization (see Additional file 9 for details).
One of the more variable pathways was the “bacterial

secretion system.” We found that the majority of signif-
icantly variable gene families annotated to this pathway
(16 out of 18) were involved in specialized secretion sys-
tems, especially the type III and type VI systems (Fig. 4).
These secretion systems are predominantly found in
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Fig. 3Most pathways include a mixture of both variable and invariable gene families. a Stacked bar plots show the fraction of invariable (blue),
non-significant (gray), and variable (red) gene families annotated to KEGG Orthology pathway sets (rows), at different false discovery rate (FDR)
cutoffs (color intensity). Only gene families with at least one annotated bacterial or archaeal homolog were counted. b Fraction of strongly
invariable, non-significant, and strongly variable gene families within the ribosomes of different kingdoms. Row labels with only one kingdom
indicate gene families unique to that kingdom, and rows with multiple kingdoms (e.g., “Eukaryotes/archaea”) indicate gene families shared between
these two kingdoms. As expected, the bacterial ribosome was completely invariable

Gram-negative bacteria and are often involved in spe-
cialized cell-to-cell interactions, between microbes and
between pathogens or symbionts and the host. They allow
the injection of effector proteins, including virulence fac-
tors, directly into target cells [46, 47]. Type VI secretion
systems are also determinants of antagonistic interactions
between bacteria in the gut microbiome [48, 49].
In contrast, gene families in the Sec (general secre-

tion) and Tat (twin-arginine translocation) pathways were
nearly all significantly invariable at an empirical FDR of
5%, with only one gene in each being found to be sig-
nificantly variable. This contradicts previous suggestions
that the Sec and Tat pathways were some of the most
variable in the human microbiome [13]. This discrepancy
is probably due to our accounting for the mean-variance
relationship in shotgun data. The Sec and Tat sys-
tems are abundant and phylogenetically diverse [50] and
will therefore have greater variance than low-abundance
genes just by chance. Our test adjusts for this feature
of sequencing experiments and shows that these genes
are in fact less variable than expected given their mean
abundance.
Our results further demonstrate that analyzing func-

tional variability at the level of pathways can obscure
gene-family-resolution trends of potential biomedical
importance. The variability of individual gene families
involved in lipopolysaccharide (LPS) metabolism may
exemplify such a case. LPS (also known as “endotoxin”)
is a macromolecular component of the Gram-negative

bacterial outer membrane, consisting of a lipid anchor
called “lipid A,” a “core oligosaccharide” moiety, and a
polysaccharide known as the “O-antigen” (which may
be absent). Lipid A is sensed directly by the human
innate immune system via the Toll-like receptor TLR4.
Furthermore, lipid A variants with different covalent
modifications (e.g., differentially acylated [51], phos-
phorylated [52], and palmitoylated [53] variants) have
been shown to have different immunological properties
(see Additional file 9: Supplementary information).
We found that all but one gene family involved in

the biosynthesis of lipid A, as well as all gene families
involved in the biosynthesis of the core oligosaccharide
components ketodeoxyoctonate (Kdo) and glyceroman-
noheptose (GMH), were significantly invariable (16 out
of 17; Fig. 5). The lone exception catalyzes the the final
lipid A acylation step, adding a sixth acyl chain; this
gene family was significantly variable (FDR≤5%). Further-
more, we observe several variable gene families annotated
as performing covalent modifications of LPS, including
hydroxyl- (lpxO), palmitoyl- (pagP), and palmitoleoyla-
tion (lpxP), as well as deacylation and dephosphorylation.
These modifications can lead to differential TLR4 activa-
tion [53, 54]. We also observe that gene families involved
in O-antigen synthesis and ligation to lipid A tended
to be variable (5 out of 6). These results suggest that
healthy individuals may differ in the amount of hexa-
vs. pentaacylated LPS, and in the amounts of other LPS
chemical modifications, and thus in their baseline level
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Fig. 4 Variable and invariable gene families involved in bacterial secretion separate by gene function. a Schematic diagram showing the type III
(T3SS), type VI (T6SS), Sec, and Tat secretion system gene families measured in this dataset. Gene families are color-coded by whether they were
variable (red), invariable (blue), or neither (gray), with strength of color corresponding to the FDR cutoff (color intensity). Insets show a summary of
how many gene families in KEGG modules corresponding to a particular secretion system were variable or invariable and at what level of
significance. b Heatmaps showing scaled residual log-RPKG for gene families (rows) involved in bacterial secretion. Variable (red) and invariable
(blue) gene families were clustered separately, as were samples within a particular study (columns). log-RPKG values were scaled by the expected
variance from the negative binomial null distribution. Genes in specific secretion systems are annotated with colored squares (T6SS: red-orange; T3SS:
orange; Tat: yellow; Sec: grey)

of TLR4-dependent inflammation. Importantly, since the
majority of gene families annotated to LPS biosynthesis
were invariable, this result would have been missed by
considering the pathway as a unit.

Many invariable gene families are deeply conserved
Conservation of gene families across the tree of life is
one factor we might expect to affect gene variability. For
instance, ribosomal proteins should appear to be invari-
able merely because they are shared by all members
of a given kingdom of life. To explore the relationship
between gene family taxonomic distribution and variabil-
ity in abundance across hosts, we constructed trees of the
sequences in each KEGG family using ClustalOmega and
FastTree. We then calculated phylogenetic distribution
(PD), using tree density to correct for the overall rate of
evolution (DongyingWu, personal communication, 2015)
(Fig. 6a).
Overall, invariable gene families with below-median

PD tended to be involved in carbohydrate metabolism
and signaling. Specifically, these 2046 gene families were
enriched for the pathways “two-component signaling”
(q = 1.5 × 10−15), “starch and sucrose metabolism”
(q = 1.8 × 10−3), “amino sugar and nucleotide sugar
metabolism” (q = 0.063), “ABC transporters” (q =

2.4 × 10−5), and “glycosaminoglycan [GAG] degradation”
(q = 0.053), among others (Additional file 10). Enriched
modules included a two-component system involved in
sporulation control (q = 0.018), as well as transporters for
rhamnose (q = 0.14), cellobiose (q = 0.14), and α- and
β-glucosides (q = 0.14 and q = 0.19, respectively). These
results are consistent with the hypothesis that one func-
tion of the gut microbiome is to encode carbohydrate-
utilization enzymes the host lacks [55]. Additionally,
recent experiments showed that the major gut commensal
Bacteroides thetaiotaomicroncontains enzymes adapted
to the degradation of sulfated glycans including GAGs
[56, 57] and that many Bacteroides species can in
fact use the GAG chondroitin sulfate as a sole carbon
source [58].
Out of the 298 significantly variable gene families with

the above median PD, we found no pathway enrich-
ments but three module enrichments. These included the
archaeal (q = 1.5 × 10−3) and eukaryotic (q = 8.7 ×
10−9) ribosomes, which reflects differences in the relative
abundance of microbes from these domains of life across
hosts (Fig. 3b). The third conserved but variable module
was the type VI secretion system (q = 0.039). Intrigu-
ingly, specialized secretion systems were also observed
to vary within gut-microbiome-associated species in a
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A B

Fig. 5 Central Kdo and lipid A biosynthesis is invariable, but many genes involved in covalent modifications to LPS are variable. a Pathway schematic
showing a selection of measured gene families involved in lipopolysaccharide metabolism. Gene families are color-coded by whether they were
variable (red) or invariable (blue), with strength of color corresponding to the FDR cutoff (color intensity). Central Kdo and lipid A metabolism is
highlighted in light gray. Abbreviated metabolites are (GlcNAc N-acetylglucosamine), (Kdo ketodeoxyoctonate), (R5P ribose-5-phosphate), (S7P
sedoheptulose-7-phosphate), (GMH glyceromannoheptose), (aminoarabinose 4-amino-4-deoxy-L-arabinose). b Heatmaps showing scaled residual
log-RPKG for gene families (rows) involved in lipopolysaccharide metabolism, as in Fig. 4

strain-specific manner, using a wholly separate set of data
[59]. Finally, gene families described as “hypothetical”
were enriched in the high-PD but variable gene set (p =
2.4 × 10−8, odds ratio = 2.2) and depleted in the low-PD
but invariable set (p = 5.4 × 10−13, odds ratio = 0.41).
Transporters show strain-specific variation in copy

number across different human gut microbiomes [59],
and analyses by Turnbaugh et al. identified membrane
transporters as enriched in the “variable” set of func-
tions in the microbiome [12]. However, we mainly found
transporters enriched among gene families with simi-
lar abundance across hosts, despite being phylogeneti-
cally restricted (low-PD but invariable genes; Additional
file 11). Part of this difference is likely due to our strati-
fying by phylogenetic distribution, a step previous studies
did not perform.

Proteobacteria are the major source of variable genes
To assess which taxa contributed these variable and
invariable genes, we first computed correlations between
phylum relative abundances (predicted usingMetaPhlAn2
[60]) and gene family abundances. Specifically, we used a
permutation test based on partial Kendall’s τ correlation.
This test is rank-based and thus distribution-agnostic,
handles ties (unlike Spearman’s ρ), and accounts for study-
to-study variation by using partial correlation (see the
“Methods” section). The resulting p values were corrected
for multiple testing using the q value method and thresh-
olded at an FDR of q ≤ 0.05. Based on these results, we
then determined whether phyla were enriched for variable

or invariable genes by Fisher’s exact test (Bonferroni-
corrected p ≤ 0.05). This analysis revealed that the pre-
dicted abundance of Proteobacteria was strongly enriched
for correlations with variable gene families (Bonferroni-
corrected p ≤ 10−8): Fig. 7b). The abundance of the
archaeal phylum Euryarchaeota was also enriched for cor-
relations with variable gene families, to a lesser extent
(Bonferroni-corrected p ≤ 10−4).
Proteobacteria were a comparatively minor component

of these metagenomes (median = 1%), compared to Bac-
teroidetes (median = 59%) and Firmicutes (median =
33%: see Additional file 12: Figure S10), which were more
associated with invariable genes (Bonferroni-corrected
p ≤ 10−8). Euryarchaeota comprised an even smaller
fraction of the microbiome (median = 0%) and was
only detected in 33% of metagenomes (though this could
potentially be explained by unreliable extraction effi-
ciency for archaea, as mentioned above [43]). How-
ever, seven samples from the GC and T2D cohorts
had ≥15% Proteobacteria, with four having ≥20% and
one having 41%. Overgrowth of Proteobacteria has been
associated with metabolic syndrome [32] and inflam-
matory bowel disease [61]. Also, Proteobacteria can be
selected (over Bacteroidetes and Firmicutes) by intesti-
nal inflammation as tested by TLR5-knockout mice [62],
and some Proteobacteria can induce colitis in this back-
ground [63], potentially leading to a feedback loop.
Thus, the variable gene families we discovered could be
biomarkers for dysbiosis and inflammation in otherwise
healthy hosts.
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Fig. 6 Phylogenetic distribution (PD) of gene families partially
explains gene family variability. Scatter plot shows log10 PD (x-axis) vs.
log10 residual variance statistic (y-axis). Red points were significantly
variable and blue points were significantly invariable. Gene families in
specific functional groups are also highlighted in different colors,
specifically the bacterial ribosome (green), the type VI secretion
system (or “T6SS”; orange), the KinABCDE-Spo0FA sporulation control
two-component signaling system (yellow), and hypothetical genes
(tan squares). Gene families that were significantly invariable (ribosome
and sporulation control) or significantly variable (hypothetical genes
and the T6SS) at an estimated 5% FDR are outlined in black. The
bacterial ribosome, as expected, had very high PD and was strongly
invariable. The type VI secretion system genes, in contrast, were
conserved but variable, and some genes involved in the Kin-Spo
sporulation control two-component signaling pathway had low PD
but were invariable. Only gene families with at least one annotated
bacterial or archaeal homolog are shown

It has been proposed that a small number of
“enterotypes” may exist in the human gut microbiome,
each with distinct taxonomic composition [25, 26].
Most recently, abundances of the taxa Ruminococcaceae,
Bacteroides, and Prevotella were found to explain the
most taxonomic variation across individuals [28]. These
enterotypes appeared to be linked to long-term diet, with
Prevotella highest in individuals with the most carbohy-
drate intake and Bacteroides correlating with protein and
animal fat. However, while these clades contributed most
to taxonomic variation, in our study, all were actually
depleted for associations with variable genes. In contrast,
the Proteobacterial family Enterobacteriaceae (Additional
file 13: Figure S12B), and to a lesser extent, Gammapro-
teobacteria in general (Additional file 13: Figure S12C)
were much more likely to be associated with variable gene
families. Similar results were also obtained using the cen-
tered log-ratio (clr) transform to correct potential com-
positionality artifacts (see Additional file 14: Figure S16).
This suggests that compared to previously identi-
fied enterotype marker taxa, levels of Proteobacteria,

and potentially Euryarchaeota, better explain person-to-
person variation in gut microbial gene function. These
less abundant phyla were missed in enterotype studies,
likely because enterotypes were identified by methods
that will tend to weight higher-abundance taxa more, and
enterotypes were identified from taxonomic, not func-
tional data.
Because Proteobacteria are a relatively well-annotated

yet low-abundance phylum, we explored whether either
of these characteristics explain their association with
variable genes. Importantly, genes correlated with
Actinobacteria did not tend to be variable, even though
Proteobacteria and Actinobacteria had similar levels of
abundance (Additional file 12: Figure S10). Also, while
they were comparatively low abundance compared to
Bacteroidetes or Firmicutes, Proteobacteria were also
generally not close to the limit of detection when present:
Proteobacterial relative abundance was more than 0.18 in
90% of samples, whereas MetaPhlAn2 was able to detect
taxa with relative abundances of only 0.0004% in our
data. Low abundance therefore does not appear to explain
this association.
The number of phyla present in our data was not

enough to determine whether there was any trend for
low-prevalence or low-abundance taxa to be more cor-
related with variable genes. To answer this question, we
conducted the same analysis with bacterial and archaeal
taxa at the family level. However, when considering the
30 families with significant enrichments for (in)variable
or non-significant gene families, there was no signifi-
cant association between the degree of enrichment for
variable genes and either prevalence (r = −0.07, p =
0.72) or abundance (r = −0.1, p = 0.58) (Additional
file 13: Figure S12D-E). In fact, Enterobacteriaceae, a Pro-
teobacterial family, was significantly enriched for corre-
lations with variable genes despite a prevalence of 86%,
in the top 25% of all families detected. Thus, preva-
lence and abundance do not explain the variability of
Proteobacterial genes.
To investigate annotation bias, we first compared the

numbers of genomes in KEGG for each phylum. There are
1111 Proteobacterial genomes compared to 575 for Fir-
micutes, 276 for Actinobacteria, 104 for Euryarchaeota,
and only 97 for Bacteroidetes. Accordingly, Proteobac-
teria had the most gene families (1417) not annotated
in any other phylum (“private” gene families), com-
pared to 538 for Firmicutes, 342 for Euryarchaeota,
215 for Actinobacteria, and 21 for Bacteroidetes. Con-
sidering only these private gene families, Proteobacte-
ria and Euryarchaeota were enriched for variable genes,
as before, whereas variable genes were depleted in the
other three phyla (Additional file 15: Figure S13A). This
suggests that the level of annotation does not predict
the amount of variable genes. In a further test, we
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Fig. 7 Variable gene families correlate with the predicted abundance of Proteobacteria. Bar plots give the fraction of gene families in each category
(significantly invariable, non-significant, and significantly variable, 5% FDR) that were significantly correlated to predicted relative abundances of
phyla, as assessed by MetaPhlAn2, using partial Kendall’s τ to account for study effects and a permutation test to assess significance. Asterisks give
the level of significance by chi-squared test of non-random association between gene family category and the number of significant associations.
(***p ≤ 10−8 by chi-squared test after Bonferroni correction; **p ≤ 10−4)

repeated the entire statistical test on a subset of genes,
sampling one part phylum-specific genes drawn equally
from Proteobacteria, Actinobacteria, Firmicutes, and Eur-
yarchaeota, and one part genes annotated to all four
phyla (see the “Methods” section). Again, Proteobacteria-
and Euryarchaeota-specific genes were significantly vari-
able more often than those from either Actinobacteria or
Firmicutes (Additional file 15: Figure S13B). We there-
fore concluded that phylum abundance and annotation
bias do not explain the enrichment of variable genes
in Proteobacteria.
Finally, variable genes also do not appear to be biomark-

ers for either taxonomic statistics or measured host char-
acteristics. To explore this question, we used the same
two-sided partial Kendall’s τ test as above. With regard
to taxonomic statistics, we tested α-diversity (measured
by Shannon entropy), the Bacteroidetes/Firmicutes ratio,
and average genome size (AGS): however, all of these
correlated more often with invariable gene families (see
Additional file 9, Additional file 13: Figure S12A). For
host characteristics, we selected bodymass index, sex, and
age, which were measured in all three studies we ana-
lyzed. None of these variables correlated significantly with
any variable gene family abundances, even at a 25% false
discovery rate.

One study (GC) measured blood levels of three inflam-
matory markers, TNFα, IL-1, and CD163, which did not
correlate with Proteobacterial abundance in this study
(Holm-corrected p value > 0.2, Kendall’s τ ). However,
other inflammatory markers directly linked to changes
in Proteobacterial abundance (e.g., IgA, IL-10, and IL-
17, reviewed in [32]) were not measured in this panel.
These results suggest that major correlates of variation in
microbiota gene levels, possibly including diet and specific
inflammatory markers, remain to be measured.

Bacterial phyla have unique sets of variable genes
The variable gene families we identified seem to include
both genes whose variance is explained by phylum-level
variation (e.g., Proteobacteria) and genes that vary within
fine-grained taxonomic classifications, such as strains
within species. Also, some gene families may confer adap-
tive advantages in the gut only within certain taxa. To
detect gene families that are variable or invariable within a
phylum, we repeated the test, but using only reads whose
best RAPSearch2 [64] alignments were to sequences from
whole genomes of each of the four most abundant bac-
terial phyla (Bacteroidetes, Firmicutes, Actinobacteria,
and Proteobacteria). Most (77%) gene families showed
phylum-specific effects. Invariable gene families tended to
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agree, but the reverse was true for variable gene families:
19.4% of gene families that were invariable in one phy-
lum were invariable in all, compared to just 0.34% (eight
genes) in the variable set (Fig. 8a, b). This trend was robust
to the FDR cutoff (Additional file 16: Figure S14A–B).
Gene families invariable in all four phyla were enriched
for basal cellular machinery, as expected (Additional
file 17: C–D).
The relationship between phylum-specific and over-

all gene family abundance variability differed by phylum.
Proteobacteria-specific variable gene families tended to
be variable overall (59%), whereas the proportions of

gene families that were also variable overall were much
lower for Bacteroidetes- (12%), Firmicutes- (29%), and
Actinobacteria-specific (18%) gene families (Fig. 8c). This
supports the hypothesis that Proteobacterial abundance
is a dominant factor influencing functional variability in
the human gut microbiome. It further suggests that many
overall-variable gene families are not only merely markers
for the amount of Proteobacteria (or some other phylum)
but are also variable at finer taxonomic levels, such as the
species or even the strain level [59, 65].
Comparing the two dominant phyla in the gut, Bac-

teroidetes and Firmicutes, we further observe that the

A

C

B

Fig. 8 Phylum-specific tests reveal hidden variability in the most prevalent bacterial phyla. a, b Venn diagrams showing the number of significantly
variable (a) and invariable (b) gene families across Proteobacteria, Bacteroidetes, and Firmicutes, FDR ≤ 5%. c Bars indicate the fraction of
phylum-specific variable gene families that were also variable overall (yellow, “both tests”) or that were specific to a particular phylum (red,
“phylum-specific test only”)
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overall proportions of variable and invariable fami-
lies were similar across pathways, with some inter-
esting exceptions. For example, LPS biosynthesis had
more invariable gene families in Bacteroidetes than in
Firmicutes, which we expected given that LPS is pri-
marily made by Gram-negative bacteria. Conversely, both
two-component signaling and the PTS system had many
more invariable gene families in Firmicutes than in Bac-
teroidetes (Additional file 16: Figure S14C). However,
phylum-specific variable gene families tended not to over-
lap (median overlap, 0%, compared to 46% for invari-
able gene families). This was even true for pathways
where the overall proportion of variable and invariable
gene families was similar, such as cofactor and vita-
min biosynthesis and central carbohydrate metabolism
(Additional file 16: Figure S14D). Thus, unique genes
within invariable pathways vary in their abundance across
microbiome phyla.
Furthermore, the enriched biological functions of the

phylum-specific variable gene families differed by phylum
(Additional file 18). For instance, Proteobacterial-specific
variable gene families were enriched (Fisher’s test enrich-
ment q = 0.13) for the biosynthesis of siderophore group
nonribosomal peptides, which may reflect the importance
of iron scavenging for the establishment of both pathogens
(e.g., Yersinia) and commensals (e.g., Escherichia coli) [66].
Another phylum-specific variable function appeared to
be the type IV secretion system (T4SS) within Firmi-
cutes (q = 0.021). Homologs of this specialized secretion
system are involved in a wide array of biochemical interac-
tions, including the conjugative transfer of plasmids (e.g.,
antibiotic-resistance cassettes) between bacteria [67]. We
conclude that our approach enables the identification of
substantial variation within all four major bacterial phyla
in the gut, much of which is not apparent when data
are analyzed at broader functional resolution or without
stratifying by phylum.

Discussion
This study presents a novel test for genes whose abun-
dances are significantly more or less variable across indi-
viduals than expected. This test, which we call CCoDA,
provides a finer resolution andmore statistically grounded
estimate of “functional redundancy” [68] than was pre-
viously possible in the human microbiome. CCoDA dif-
fers from earlier approaches to quantifying variability
in microbiome function in several key ways. First, we
focus explicitly on the variability of gene family abun-
dance, not differences in mean abundance between prede-
fined groups, as has been done to reveal pathways whose
abundance differs between body sites [69] or disease
states [6].
Second, by using a null distribution based on the nega-

tive binomial, our model accounts for stochastic variation

in gene family abundance between individuals caused by
sampling. This parametric bootstrap null is more compu-
tationally intensive than previous approaches. However,
the use of such a null allows us much better control
over the false discovery rate than previous approaches
that dichotomized gene families based on binary pres-
ence/absence [12]. Dichotomizing in this way may be
acceptable for small datasets. However, based on the
data used here, dichotomizing would classify 12% of sig-
nificantly invariable (FDR ≤ 0.05) gene families and,
more problematically, 85% of non-significant gene fam-
ilies (q ≥ 0.25) as part of the “variable” metagenome.
This problem is not easily avoided by picking a dif-
ferent presence/absence cutoff (see Additional file 19:
Figure S15).
A third important aspect of our method is that the

underlying model accounts for the mean-variance rela-
tionship in count data and corrects for systematic biases
between studies. While estimating this mean-variance
relationship accurately requires a significant sample size
(the best results in simulations were obtained with n ≥ 40
per study), CCoDA can identify individual gene families
as well as pathways that break this overall trend. Because
we account for the mean-variance relationship, we iden-
tify different variable pathways than the previous studies
that relied on the sample variance only [13]. Additionally,
our major findings are robust when we apply the cen-
tered log-ratio transform (see Additional file 14: Figure
S16). Importantly, unlike previous work, CCoDA tends to
call pathways that are well-conserved across prokaryotes
invariable (for example, the Sec general secretory system;
see Fig. 6). This suggests that this method better captures
biological intuition about meaningful variation. Fourth,
the null distribution is estimated from the shotgun data
and does not require comparisons to sequenced genomes
[12]. Finally, unlike previous approaches, CCoDA can be
used for meta-analysis, integrating data from multiple
different populations.
We found that basic microbial cellular machinery,

such as the ribosome, tRNA-charging, and primary
metabolism, were universal functional components of the
microbiome, both in general and when each individual
phylum was considered separately. This finding is con-
sistent with the previous results [12] and indeed is not
surprising given the broad conservation of these processes
across the tree of life. In contrast, we identified invariable
gene families that have narrower phylogenetic distribu-
tions. These included, for example, proteins involved in
two-component signaling, starch metabolism (including
glucosides), and glycosaminoglycan metabolism. Previous
experimental work has underscored the importance of
some of these pathways in gut symbionts: for instance,
multiple gut-associated Bacteroides species use the gly-
cosaminoglycan chondroitin sulfate as a sole carbon
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source [56], and the metabolism of resistant starch in
general is thought to be a critical function of the omnivo-
rous mammalian microbiome [55]. These results suggest
that our method identifies protein-coding gene families
that contribute to fitness of symbionts within the gut.
Finally, we found a number of invariable gene families
whose function is not yet annotated. These gene families
may represent functions that are either essential or pro-
vide advantages for life in the gut and may therefore be
particularly interesting targets for experimental follow-up
(e.g., assessing whether strains in which these gene fam-
ilies have been knocked out in fact have slower growth
rates, either in vitro or in the gut).
We also identified significantly variable gene fami-

lies, including enzymes involved in carbon metabolism,
specialized secretion systems such as the T6SS, and
LPS biosynthetic genes. Proteobacteria, rather than Bac-
teroidetes or Firmicutes, emerge as a major source of
variable genes, including some genes whose abundance
also varied within the Proteobacteria (e.g., T6SS). Since
Proteobacteria have been linked to inflammation and
metabolic syndrome [32], we speculate that inflamma-
tion may be one variable influencing functions in the
gut microbiome. Some variable genes, including many of
unknown function, had surprisingly broad phylogenetic
distributions.
Variable gene families have a variety of ecological inter-

pretations, e.g., first-mover effects, drift, host demogra-
phy, and selection within particular gut environments.
Computationally distinguishing among these possibilities
is likely to present challenges. For example, distinguishing
selection from random drift will probably require longi-
tudinal data and appropriate models. Separating effects of
host geography, genetics, medical history, and lifestyle will
be possible only when richer phenotypic data is available
from a more diverse set of human populations. To con-
trol for study bias and batch effects, it will be important to
include multiple sampling sites within each study.
While statistical tests focused on differences in vari-

ances are not yet common throughout genomics, there
is recent precedent using this type of test to quantify
the gene-level heterogeneity in single-cell RNA sequenc-
ing data [19, 20] and to identify variance effects in
genetic association data [70]. Like Vallejos et al. [20], we
model gene counts using the negative binomial distribu-
tion and identify both significantly variable and invariable
genes. In contrast, we frame our method as a frequen-
tist hypothesis test as opposed to a Bayesian hierarchical
model. Our method also accounts for study-to-study vari-
ation. Also, unlike previous approaches in this domain,
CCoDA does not require biological noise to be explic-
itly decomposed from technical noise. Thus, our method
does not require the use of experimentally spiked-in con-
trols, which are not present in most experiments involving

sequencing of the gut microbiome. Instead, we detect
differences from the average level of variability using a
robust non-parametric estimator, which we show through
simulation leads to correct inferences under reasonable
assumptions.
Our null model does not explicitly account for zero-

inflation, that is, the presence of more zeros than
predicted by the negative binomial model; models incor-
porating zero-inflation have been proposed for taxo-
nomic microbiome data [71–73]. However, only 1–2%
of gene families showed significant zero-inflation, and
our method tended to call these genes non-significant
(Table 2). This suggests that zero-inflation may not be
as severe a problem for measuring gene family abun-
dance as it is for measuring microbial species. However, if
applied to a dataset where measurements were expected
to be more sparse, the method could be modified to
generate the null from a zero-inflated negative binomial
distribution.
A statistical method for detecting significant

(in)variability similar to the one we present here could
also be applied to other biomolecules measured in counts,
such as metabolites, proteins, or transcripts. Performing
such analyses on human microbiota would reveal pat-
terns in the variability in the usage of particular genes,
reactions, and pathways, which would expand on our
investigation of potential usage based on presence in the
DNA of organisms in host stool. Integrating the results of
these analyses could also further help to validate or inter-
pret the functional variability we observe in this dataset.
For example, mass spectrometry methods that can resolve
differently modified LPS molecules could reveal whether
the variation we observe at the metagenomic level is also
seen across LPS molecules with different immunogenic
properties. Of course, we would also expect that key
functions provided by the microbiome would be highly
regulated at the level of transcript or protein abundance.
Integrating transcript and/or protein variability with

Table 2 Number of genes (with at least one bacterial/archaeal
representative) with significant zero-inflation in each dataset,
q ≤ 0.05

Glucose
control

Type II
diabetes

Human
microbiome
project

Invariable (5% FDR) Inflated 16 42 34

Total 3768 3768 3768

Variable (5% FDR) Inflated 6 11 21

Total 1218 1218 1215

Non-significant Inflated 55 67 72

Total 2161 2151 2117
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DNA variability would allow us to come up with more
precise hypotheses about which functions are effectively
constitutive and which are more strongly modulated by
the gut environment.
Another important extension will be to generalize our

method for comparing hosts from different predefined
groups (e.g., disease states, countries, diets) to identify
gene families that are invariable in one group (e.g., healthy
controls) but variable in another (e.g., patients), analo-
gously to recent methods for the analysis of single-cell
RNAseq [21] and GWAS [70] data. In particular, gene
families whose variance differs between case and control
populations could point to heterogeneity within com-
plex diseases, interactions between the microbiome and
latent variables (e.g., environmental or genetic), and/or
differences in selective pressure between healthy and
diseased guts. Investigating group differences in func-
tional variability could thereby allow the detection of
different trends from the more common comparison
of means.

Conclusions
We present a statistical test for variability called CCoDA
that can integrate data from multiple studies to identify
individual variable and invariable gene families. Simula-
tions reveal CCoDA has high accuracy and power across
a range of realistic scenarios. Applying this test to shot-
gun metagenomes from healthy human gut microbiota,
we uncovered thousands of variable gene families whose
abundances were more variable than expected. In general,
more conserved genes tended to be less variable, but sig-
nificantly variable genes also included somewith relatively
broad phylogenetic distributions. Finally, while the phyla
Bacteroidetes and Firmicutes varied substantially between
healthy individuals, consistent with previous studies of the
human gut microbiome, we found that these phyla were
actually depleted for associations with variable genes. The
same was true for genera and families used to define
“enterotypes.” Instead, a less abundant phylum, Proteobac-
teria, contributed most to functional variation in this
population. These results argue that gene function in the
healthy human gut microbiome may be more variable
than previously assumed and that the major axes of taxo-
nomic variation in microbiota do not necessarily capture
the most variation in function.

Methods
Overview
CCoDA takes as input reads that have been mapped to a
reference library of gene families, yielding counts of gene
families in each sample (see “Data collection and pro-
cessing” in the “Methods” section). The following general
process is then applied (see also Additional file 2: Figure S2
for a graphical depiction):

• Counts are normalized for genome size and gene
length, yielding reads per kilobase of genome
equivalent (RPKG) (the “Data normalization” section)

• Confounding factors, like study-to-study variation,
are regressed out using a linear model (the “Model
fitting to correct for covariates” section)

• The variance of the resulting residuals is calculated
per gene (the “Model fitting to correct for covariates”
section);

• A null distribution is generated (the “Modeling
residual variances under the null distribution”
section):

– An overdispersion parameter ky giving the
mean-variance relationship is fit (per study y)

– This parameter, along with the estimated
means of each gene, is used to generate null
count data via parametric bootstrap

– The first four steps are repeated on the null
count data to obtain null residual variances for
each gene

– Repeat until the desired number of bootstrap
samples is reached

• Based on the resulting null distribution, p-values are
calculated and corrected for multiple testing.

Data collection and processing
Stool metagenomes from healthy human guts were
obtained from three sources:

1. Two American cohorts from the Human
Microbiome Project [13], n = 42 samples selected,

2. A Chinese cohort from a case-control study of type II
diabetes (T2D) [33], n = 44 samples from controls
with neither type II diabetes nor impaired glucose
tolerance, and

3. A European cohort from a case-control study of
glucose control [34], n = 37 samples from controls
with normal glucose tolerance.

These studies were chosen because they contained large
cohorts of healthy individuals and were publicly available
at the time at which we began this study. Samples (see
Additional file 20 for SRA IDs) were chosen to have at
least 1.5×107 reads andmode average quality scores≥ 20
(estimated via FastQC [74]). For consistency, each sample
was rarefied to a depth of 1.5 × 107 reads, and as reads
from HMP were particularly variable in length, they were
trimmed to a uniform length of 90 bp.
After downloading these samples from NCBI’s

Sequence Read Archive (SRA), the FASTA-formatted
files were mapped to KEGG Orthology (KO) [75] protein
families with ShotMAP [35], an algorithm based on the
aligner RAPSearch2 [64]. Bit-score cutoffs for matching
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a particular protein family were selected based on the
average read length of each sample as described [35].
The KEGG Orthology database was chosen because
it annotates a large number of bacteria and archaea,
including many species observed in the human gut, and
covers a wide range of gene families, including metabolic
enzymes, signaling proteins, and virulence factors.

Data normalization
The gene family counts were normalized for two con-
founders:

1. Average family length (AFL) or the average length of
the matched genes within a gene family

2. Average genome size (AGS) or the estimated average
genome length based on single-copy universal
marker genes (estimated using MicrobeCensus: [36]
http://github.com/snayfach/MicrobeCensus).

Normalization for these two factors yielded abundance
values in units of RPKG or reads per kilobase of genome
equivalents [36].
These RPKG abundance values were strictly positive

with a long right tail and highly correlated with the vari-
ances (Spearman’s r = 0.99). This strong mean-variance
relationship is likely simply because these abundances are
derived from counts that are either Poisson or negative
binomially distributed. We therefore took the natural log
of the RPKG values as a variance-stabilizing transforma-
tion. Because log 0 is infinite, we added a pseudocount
before normalizing the counts and taking the log trans-
form. Since there is no AFL when there are no reads for a
given gene family in a given sample, we imputed it in those
cases using the average AFL across samples.

Model fitting to correct for covariates
We fit a linear model to the data matrix of log-RPKG D
of log-RPKG described above, with n gene families by m
samples. The purpose of this linear model is to regress
out variation caused by factors we were not interested in
(here, study-to-study variation and per-gene-family mean
values):

Dg,s = μg +
∑

y∈Y
Iy,sβg,y + εg,s (3)

where g ∈ [1, n] is a particular gene family, s ∈ [1,m] is a
particular sample, μg is estimated by the grand (i.e., over-
all) mean of log-RPKG

∑
s Dg,s
m for a given gene family g,

Y is the set of studies, Iy,s is an indicator variable val-
ued 1 if sample s is in study y and 0 otherwise, βg,y is a
mean offset for gene family g in study y, and the resid-
ual for a given gene family and sample are given by εg,s.
For each gene family, the variance across samples of these
εg,s, which we term the “residual variance” or V ε

g , was our

statistic of interest. In this case, residuals can be obtained
simply by subtracting the per-dataset means from each
gene family.
Overall trends in these data are explained well by this

model, with an R2 = 0.20. The residuals, which are
approximately symmetrically distributed around 0, repre-
sent variation in gene abundance not due to study effects.

Modeling residual variances under the null distribution
Having calculated this statistic V ε

g for each gene family
g, we then needed to compare this statistic to its distri-
bution under a null hypothesis H0. This required us to
model what the data would look like if in fact there were
no surprisingly variable or invariable gene families. To do
this, we used the negative binomial distribution to model
the original count data (before adding pseudocounts and
normalization to obtain RPKG).
The negative binomial distribution is commonly used

to model count data from high-throughput sequencing. It
can be thought of as a mixture of Poisson distributions
with different means (themselves following a Gamma
distribution). Like the Poisson distribution, the negative
binomial distribution has an intrinsic mean-variance rela-
tionship. However, instead of a single parameter control-
ling bothmean and variance as in the Poisson, the negative
binomial has two, a mean parameter μ and a “size” or
“overdispersion” parameter k. k is defined by k = μ2

σ 2−μ
.

(If the sample mean is plugged into μ and the sample
variance into σ 2, this equation also gives a method-of-
moments estimator for k.) k ranges from (0,∞), with
smaller values corresponding to more overdispersion
(i.e., higher variance given the mean) and larger values
approaching, in the limit, the Poisson distribution.
To model the case where no gene family has unusual

variance given its mean value (i.e., our null hypothesis),
we assumed that the data were negative binomially dis-
tributed with the observed means μg,y for each gene g
and study y, but where the amount of overdispersion
was modeled with a single size parameter ky for each
study y. This has similarities to previous approaches to
model RNAseq distributions [22, 39, 76] and to identify
(in)variable genes from single-cell RNAseq data [20] (see
also the “Discussion” section).

H0 : V ε
g = V ε

g |Dg,s ∼ NB
(
μg,y, ky

)

Halt : V ε
g �= V ε

g |Dg,s ∼ NB
(
μg,y, ky

)

To estimate this k̂y, the overall size parameter for a given
study y, we first calculated a k̂ value for every gene in
that study with the method-of-moments estimator from
above, then estimated the mode of these individual k̂g,y
values. We estimated the mode by fitting a Gaussian

http://github.com/snayfach/MicrobeCensus
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kernel density estimate to the log-transformed k̂g,y values,
and then finding the k̂y value that gave the highest density.
(From simulations, we found that the mode method-of-
moments was more robust than the median or harmonic
mean; see Additional file 21: Figure S3. We use the har-
monic mean here because the arithmetic mean of k̂g,y is
highly unstable, probably because the distribution of k̂ has
a long right-hand tail [77]).
Having estimated k̂y and the per-gene means μ̂g , we

can now easily generate count data under this null distri-
bution, yielding a parametric bootstrap null. These null
count data are then treated identically to the real data: we
add a pseudocount and normalize by AFL and AGS, fit the
above linear model, and obtain null residual variances V ε0

g
exactly as before.
Once the null is generated, statistical significance was

obtained by a two-tailed test:

pg =
#

((
V ε0
g −V ε0

g

V ε0
g

)2
≥

((
V ε
g −V ε0

g

V ε0
g

)2))
+ 1

B + 1

Here, B refers to the number of null test statisticsV ε0
g (in

this case, B = 750), and the overlined test statistics refer
to their mean across the null distribution.
The resulting p values were then corrected for multiple

testing by converting to FDR q-values using the proce-
dure of Storey et al. [78] as implemented in the qvalue
package in R [79].
An alternative approach to determining significance is

based on the bootstrap. While using a parametric null
distribution allows us to explicitly model the null hypoth-
esis, it also breaks the structure of covariance between
gene families, which may be substantial because genes are
organized into operons and individual genomes within a
metagenome. This structure can, optionally, be restored
using a strategy outlined by Pollard and van der Laan [80].
Instead of using the test statistics V ε0

g obtained under the
parametric null as is, we can use these test statistics to cen-
ter and scale non-parametric bootstrap test statistics V ε′

g ,
which we derive from applying a cluster bootstrap with
replacement from the real data and then fitting the above
linear model (3) to the resampled data to obtain bootstrap
residual variances:

V ε0′
g =

⎛

⎝

⎛

⎝V ε′
g − V ε′

g

sd
(
V ε′
g

)

⎞

⎠ × sd
(
V ε0
g

)
⎞

⎠ + V ε0
g

A similar non-parametric bootstrap approach has pre-
viously been successfully applied to testing for differences
in gene expression [80].

Visualization
As expected, when the residuals are plotted in a heatmap
as in Additional file 6: Figure S7, variable gene fami-
lies were generally brighter (i.e., more deviation from the
mean) than invariable gene families, though not exclu-
sively: this is because our null distribution, unlike the
visualization, models the expected mean-variance rela-
tionship. We visualized this information by scaling each
gene family by its expected standard deviation under the
negative binomial null (i.e., by the mean root variance
∑

b∈[1,B]
√
V ε0
gb /B) (Additional file 7: Figure S8).

In Fig. 4, for comparability with existing literature, gene
families in the T6SS were named by mapping to the COG
IDs used in Coulthurst [47], except when multiple KOs
mapped to the same COG ID; in these cases, the original
KO gene names were kept. Schematics of the T3SS, T6SS,
Tat, and Sec pathways were modeled on previous reviews
[47, 81, 82] and on the KEGG database [75]. The pathway
diagram in Fig. 5 is based on representations in the KEGG
database [75], MetaCyc [83], and reviews by Wang and
Quinn [84] and Whitfield and Trent [85]. These reviews
were also used to identify KEGG Orthology gene families
that were involved in lipopolysaccharide metabolism but
not yet annotated under that term.

Power analysis
Statistical tests should have reasonable power (also called
“recall”) and control α, the false positive or type I error
rate, at the desired level (e.g., 5% for a p value cutoff of
0.05). Our test controls α as expected if the correct size
parameter k is estimated from the data (Additional file 21:
Figure S3a-b). Estimating this parameter accurately is dif-
ficult, however, particularly for highly over-dispersed data
[77], and in this case, we must also estimate this param-
eter from a mixture of true positives and nulls. We found
that the mode of per-gene-family method-of-moments
estimates was more robust to differences in the ratio of
variable to invariable true positives (Additional file 21:
Figure S3e–g) than the median or harmonic mean (the
harmonic mean mirrors the approach in Yu et al. [76]).
Power analysis was performed on simulated datasets

comprising three simulated studies. For each study, 1000
gene families were simulated over n ∈ {60, 120, 480, 960}
samples. Null data were drawn from a negative binomial
distribution with a randomly selected size parameter k
common to all gene families, which was drawn from a
log-normal distribution (log-mean= −0.65, sd= 0.57).
Gene family means were also drawn from a log-normal
(log mean= 2.94, sd = 2.23). True positives were drawn
from a similar negative binomial distribution, but where
the size parameter was multiplied by an effect size z (for
variable gene families) or its reciprocal 1/z (for invari-
able gene families). The above test was then applied to the
simulated data, and the percents of type I and II errors
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(i.e., false positive and false negatives) were calculated
by comparing to the known gene family labels from the
simulation. Using similar parameters to those estimated
from our real data, we saw that α decreased and power
approached 1 with increasing sample size (see Additional
file 4: Figure S4) and that n = 120 appeared to be sufficient
to achieve control over α.

Calculation of an empirical FDR
At n = 120, we also noted that α appeared to be greater
for variable vs. invariable gene families (Additional file 5:
Figure S5). This could be because accurately detecting
additional overdispersion in already over-dispersed data
may be intrinsically difficult. Instead of using a single q
value cutoff for both variable and invariable genes, we per-
formed additional simulations to determine what q value
cutoff corresponded to an empirical FDR of 5%. We cal-
culated appropriate cutoffs based on datasets with 43%
true positives and a variable to invariable gene family ratio
ranging from 0.1 to 10, taking the median cutoff value
across these ratios (Additional file 10). Using these cutoffs,
the overall dataset had 45% true positives and a variable to
invariable gene family ratio of 0.43, indicating that these
simulations were realistic.

Estimating the phylogenetic distribution of gene families
To obtain estimates of the PD of KO gene families, we first
obtained sequences of each full-length protein annotated
to a particular KO. These sequences were then aligned
using ClustalOmega [86]. The resulting multiple align-
ments were then used to generate trees via FastTree [87].
For both the alignment and tree building, we used default
parameters for homologous proteins.
For all gene families represented in at least five dif-

ferent archaea and/or bacteria (6703 families total), we
then computed tree densities, or the sum of edge lengths
divided by the mean tip height. Using tree density instead
of tree height as a measure of PD corrects for the rate
of evolution, which can otherwise cause very highly con-
served but slow-evolving families like the ribosome to
appear to have a low PD (DongyingWu, personal commu-
nication, 2015). Empirically, this measure is very similar
to the number of protein sequences (Additional file 22:
Figure S11) but is not as sensitive to high or variable
rates of within-species duplication: for example, families
such as transposons, which exhibit high rates of duplica-
tion as well as copy number variation between species,
have a larger number of sequences than even very well-
conserved proteins such as RNA polymerase, but have
similar or even lower tree densities, indicating that they
are not truly more broadly conserved.
Many protein families (8931 families) did not have

enough observations to reliably calculate tree density,
with almost all of these being annotated in only a single

bacterial/archaeal genome. For these, we predicted their
PD by extrapolation. To predict PD, we used a linear
model that predicted tree density based on the total num-
ber of annotations (including annotations in eukaryotes).
In fivefold cross-validation, this model actually had a rel-
atively small mean absolute percentage error (MAPE) of
13.1%. We also considered a model that took into account
the taxonomic level (e.g., phylum) of the last common
ancestor of all organisms in which a given protein family
was annotated, but this model performed essentially iden-
tically (MAPE of 13.0%). Predicted tree densities are given
in Additional file 23. The PD of gene families varied from
1.2 (an iron-chelate-transporting ATPase only annotated
in Helicobacter pylori) to 434.9 (the rpoE family of RNA
polymerase sigma factors).

Gene family enrichment
We were interested in whether particular pathways were
enriched in several of the gene family sets identified in this
work. For subsets of genes (such as those with specifically
low PD), a two-tailed Fisher’s exact test (i.e., hypergeomet-
ric test) was used instead to look for cases in which the
overlap between a given gene set and a KEGG module or
pathway was significantly larger or smaller than expected.
The background set was taken to be the intersection of the
set of gene families observed in the data with the set of
gene families that had pathway- or module-level annota-
tions. p values were converted to q values as above. Finally,
enrichments were enumerated by selecting all modules or
pathways below q ≤ 0.25 that had positive odds ratios (i.e.,
enriched instead of depleted).

Associations with clinical and taxonomic variables
We used a general, non-parametric approach to detect
association of residual RPKG with clinical and taxonomic
variables (e.g., the inferred abundance of a particular phy-
lum or other clade via MetaPhlAn2). To take into account
potential study effects in clinical and taxonomic vari-
ables without using a parametric modeling framework, we
used partial Kendall’s τ correlation as implemented in the
ppcor package for R [88], coding the study effects as binary
nuisance variables.
Kendall’s τ was used instead of Spearman’s ρ because

while both are correlations based on ranks, Kendall’s τ

performs better when many observations have the same
rank. This is a particular problem with taxonomic data
because many taxa have zero abundance in some samples,
making their ranks equal.
The null distribution was obtained by permuting the

clinical/taxonomic variables within each study 250 times
and then re-assessing the partial τ . Finally, p values were
calculated by taking the fraction of null partial correla-
tions equally or more extreme (i.e., distant from zero) than
the real partial correlations.



Bradley and PollardMicrobiome  (2017) 5:36 Page 19 of 23

Taxonomic relative abundances were predicted from
the shotgun data by MetaPhlAn2 with the very
sensitive flag [60].
Two approaches were used to test for annotation bias.

First (Additional file 15: Figure S13A), gene families pri-
vate to a phylum (i.e., those annotated in only a single bac-
terial/archaeal phylum) were identified from the KEGG
database. We then tested whether these private gene fam-
ilies were enriched or depleted for significantly variable
gene families (5% FDR) using Fisher’s exact test. Second
(Additional file 15: Figure S13B), we performed a test in
which we sampled 215 private gene families from each
of Proteobacteria, Firmicutes, Actinobacteria, and Eur-
yarchaeota, totaling 860, plus 860 gene families annotated
in all four phyla. (Since Bacteroidetes only had 21 pri-
vate genes, that phylum was dropped from this analysis.)
Enrichment/depletion for variable gene families within
each phylum was performed as above.

Phylum-specific tests
We created taxonomically restricted datasets in which the
abundance of each gene family was computed using only
metagenomic reads aligning best to sequences from each
of the four most abundant bacterial phyla (Bacteroidetes,
Firmicutes, Actinobacteria, and Proteobacteria). Phylum-
specific data were obtained from the overall data as fol-
lows. First, the NCBI taxonomy was parsed to obtain
species annotated below each of the four major bacte-
rial phyla (Bacteroidetes, Firmicutes, Actinobacteria, and
Proteobacteria); these species were then matched with
KEGG species identifiers. Next, the original RAPSearch2
[64] results were filtered, so that the only reads remain-
ing were those for which their “best hit” in the KEGG
database originally came from the genome of a species
belonging to the specific phylum in question (e.g., E. coli
for Proteobacteria).
Since estimates of average genome size made from the

entire metagenome might differ from estimates made on
specific clades only, when performing the test, we normal-
ized for AGS by dividing gene family counts by themedian
abundance of a set of 29 bacterial single-copy marker
gene families [37]. These gene families were filtered in the
same phylum-specific way as all other gene families. This
approach is similar to the MUSiCC method for average
genome size correction [89] and also controls for overall
changes in phylum abundance. We also corrected for AFL
as above.
Finally, we estimated the average level of overdisper-

sion k̂y for individual studies based on the full dataset
(not phylum-restricted). We took this approach because
the expectation that <50% of gene families were differ-
entially variable might not hold within each individual
phylum. This could happen if, for example, different phyla
had larger or smaller “core” genomes or were more or less

prone to taking up DNA from the environment. We used
the same q value cutoffs as in the overall test to set an
estimated empirical FDR (Table 1). Otherwise, tests were
performed as above.

Zero inflation
Zero inflation was assessed separately for each gene in
each dataset by fitting the observed counts to a zero-
inflated model (using the zeroinfl function in the R
package pcsl [90, 91]) and testing significance of the
zero-inflation term. If the observed counts did not contain
any zeros, the p value was assumed to be 1. p values were
converted to q values as above to correct for multiple
testing.

Figures
Source data used to create main-text figures is provided in
Additional file 24.

Additional files

Additional file 1: Figure S1. The mean-variance relationship does not
depend on the total number of samples. The glucose control (GC) study
(n = 37) was subsampled to various numbers of samples (9, 12, 18, 28), and
the means, variances, and best-fits were computed as in Fig. 1, showing
that this relationship is highly robust to sample size. (PDF 4298 kb)

Additional file 2: Figure S2. Schematic shows overview of data
processing and method. (A) Data were collected from multiple datasets,
mapped using Shotmap [35] and normalized for average genome size [36]
and average gene family length. (B) The test integrates multiple studies
using a linear model, then uses a parametric bootstrap to generate the null
distribution for this linear model’s residual variance. See Additional file 9 for
a full description. (PDF 57 kb)

Additional file 3: Figure S6.We identified significantly variable and
invariable gene families, which are not explained by means near the limit of
detection or by large numbers of zeros. (A) Density plots of distributions of
residual variance (VG) statistics for significantly invariable (blue dashed line),
non-significant (black solid line), and significantly variable (red dashed line)
gene families. The distributions had the expected trend (e.g., significantly
variable gene families tended to have higher residual variance) but also
overlapped, indicating the importance of the calculated null distribution.
The inset shows the proportion of zero values for the non-significant
(black) and significantly invariable (blue) gene families with VG falling in the
lowest range (vertical dashed lines), indicating that the test differentiates
between gene families that only appear invariable because they have few
observations and gene families that are consistently abundant yet
invariable. (B-C) Density plots of distributions of log10 mean counts (B) and
fraction of zeros (C) across all three datasets for significantly invariable (blue
dashed line), non-significant (black solid line), and significantly variable (red
dashed line) gene families. Invariable gene families are not shown on the
right because they overwhelmingly have small numbers of zeros. Gene
families with very low mean abundances or large numbers of zeros tend to
be called non-significant, not variable, indicating that the test correctly
accounts for stochastic noise from low numbers of observations in
determining statistical significance. (PDF 186 kb)

Additional file 4: Figure S4. Size parameter estimation affects power
and α, with the mode method-of-moments giving the best control. α (A)
was minimized and power (B) was maximized when the mode
method-of-moments estimator was used to get estimates of the
study-specific dispersion parameters k̂y . Bars are from four simulations. The
proportion of variable/invariable gene families was 0.4, and 43% of genes
were true positives. (PDF 44 kb)
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Additional file 5: Figure S5. The mode estimator is robust to changes in
the proportion of true positives and the ratio of variable to invariable gene
families. α (A-C) and power (D-F) as a function of the proportion of true
positives (x-axis) and the ratio of variable to invariable true positives (y-axis)
for n = 120. α = 0.05 and power = 1 are shown in color-bars to the left of
each heatmap for reference. α and power were calculated overall (left), for
variable gene families (center), and for invariable gene families (right). In
general, α was better controlled for the invariable gene families than for
the variable gene families; we therefore used different empirical cutoffs for
each set of genes. (PDF 131 kb)

Additional file 6: Figure S7. Heatmap showing significantly variable and
invariable gene families (unscaled). Heatmap showing residual log-RPKG
abundances (i.e., after normalizing for between-study effects and
gene-specific abundances) of significantly invariable (blue) and
significantly variable (red) gene families. Variable and invariable gene
families were clustered separately, while samples were clustered within
each dataset. (PDF 158 kb)

Additional file 7: Figure S8. Heatmap showing significantly variable and
invariable gene families (scaled). As with Additional file 6: Figure S7, but
residual log-RPKG abundances were scaled by their expected variance
under the negative binomial null model (see the “Methods” section).
(PDF 161 kb)

Additional file 8: Figure S9. Carbon metabolism contains variable and
invariable gene families. (A) Pathway schematic showing a selection of
measured gene families involved in central carbohydrate metabolism.
Gene families are color-coded by whether they were variable (red) or
invariable (blue), with strength of color corresponding to the FDR cutoff
(color intensity). Genes involved in the Entner-Doudoroff pathway (edd),
pentose metabolism (fae-hps), hexose metabolism (K01622, K16306), and
tricarboxylic acid cycle intermediate metabolism (frdCD) were variable
across healthy hosts. Abbreviated metabolites are glucose-6-phosphate
(G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP),
glyceraldehyde-3-phosphate (GAP), dihydroxyacetone phosphate (DHAP),
6-phosphogluconolactone (6PGL), 6-phosphogluconate (6PG),
2-keto-3-deoxy-phosphonogluconate (KDPG), ribulose-5-phosphate (R5P),
ribose-5-phosphate (R5P), pyruvate (pyr), hexulose-6-phosphate (Hu6P),
formaldehyde (HCHO), 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate
(ADTH), and tetrahydromethanopterin (H4MPT). B) Heatmaps showing
scaled residual log-RPKG for gene families (rows) involved in central
carbohydrate metabolism. Variable (red) and invariable (blue) gene families
were clustered separately, as were samples within a particular study
(columns). log-RPKG values were scaled by the expected variance from the
negative-binomial null distribution. (PDF 248 kb)

Additional file 9: Supplementary information. (PDF 98 kb)

Additional file 10: Module and pathway enrichments for variable and
invariable gene sets (Fisher’s exact test q ≤ 0.25). (CSV 7 kb)

Additional file 11: Module and pathway enrichments for
variable/high-PD and invariable/low-PD gene sets (Fisher’s exact test
q ≤ 0.25). (CSV 2 kb)

Additional file 12: Figure S10. Violin plots showing distributions of
abundant phyla. (A) Abundance and (B) logit-transformed abundance
(log ( a

1−a + 10−6), where 10−6 was added to prevent taking the log of
zero) distributions were plotted for the six most abundant phyla.
(PDF 155 kb)

Additional file 13: Figure S12. Variable gene families are less-often
correlated to measured host characteristics or enterotype-associated taxa
and are more often correlated to Proteobacterial clades. (A-C) Bar plots
give the fraction of gene families with at least one bacterial or archaeal
representative in each category (significantly invariable, non-significant,
and significantly variable) that were significantly correlated to various
sample characteristics or taxonomic abundances, using partial Kendall’s τ

to account for study effects and a permutation test to assess significance.
(A) Fraction correlating (q ≤ 0.05) to average genome size (AGS), the ratio
of Bacteroidetes to Firmicutes (B/F ratio), and a measure of α-diversity
(Shannon index). (B) Fraction correlating (q ≤ 0.05) to the predicted
abundance of specific bacterial clades (the genera Bacteroides and
Prevotella, and the families Ruminococcaceae and Enterobacteriaceae). (C)
Fraction correlating (q ≤ 0.1) to classes of Proteobacteria. (***p ≤ 10−8 by

chi-squared test after Bonferroni correction; **p ≤ 10−4.) (D-E) Significant
enrichment for variable gene families is not explained by taxon abundance
or prevalence. log10(abundance) (D) and log10(prevalence) (E) were
plotted vs. the degree of enrichment for variable gene families (a log-ratio
of the number of significantly associated variable vs. invariable genes, with
a pseudocount to avoid division by zero). Each family is represented as a
circle; filled green circles represent significant (Bonferroni p < 10−2)
enrichments for variable, invariable, or non-significant gene families.
Considering taxa with significant enrichments, there is no significant
correlation with abundance (r = −0.1, p = 0.58) or prevalence (r = −0.07,
p = 0.72). (PDF 200 kb)

Additional file 14: Figure S16. Proteobacteria, particularly
Enterobacteriaceae, are still most strongly associated with variable gene
families following clr-transformation. This transformation eliminates
spurious correlation arising from the analysis of compositional data such as
taxonomic relative abundances (see Additional file 9: Supplementary
Information for details). (A–C) Associations of phylum abundances with
gene families. Associations were computed as in Fig. 7 except using
clr-transformed data, with an association significance threshold of (A)
q ≤ 0.05, (B) q ≤ 0.035, and (C) q ≤ 0.02. (D–F) Same as A–C, but for clr-
transformed “enterotype” taxa (compare Figure S12B). (G) Same as A and D,
but for clr-transformed taxonomic families. (H-I) Significant enrichment for
variable/invariable gene families, based on clr-transformed data, plotted vs.
(H) abundance and (I) prevalence (compare Figure S12D-E). (PDF 1177 kb)

Additional file 15: Figure S13. Genes only annotated in Proteobacteria
or Euryarchaeota, but not Actinobacteria or Firmicutes, are more likely to
be variable. (A) Bar plots give the fraction of gene families with at least one
bacterial or archaeal representative in each category (significantly
invariable, non-significant, and significantly variable) that were annotated
only in the phylum listed (x-axis). Significance was assessed as in Additional
file 13: Figure S12, using a Holm correction for significance. p values are
color-coded by whether a phylum was enriched (red), depleted (blue), or
neither (gray) for variable gene families (Holm-corrected p ≤ 0.1). (B) Bar
plots are as per (A), but test results come from a test sampling equal parts
phylum-specific genes and genes annotated in all four listed phyla, with
phylum-specific genes themselves uniformly sampled across phyla.
(PDF 149 kb)

Additional file 16: Figure S14. Comparison between Bacteroidetes- and
Firmicutes-specific variable and invariable genes. A-B) Venn diagrams
showing the number of significantly variable (A) and invariable (B) gene
families across Proteobacteria, Bacteroidetes, and Firmicutes, FDR ≤ 25%.
Compare to Fig. 8a, b. C) Bars indicate the fraction of phylum-specific
variable gene families that were also variable overall (red, “both tests”) or
that were specific to a particular phylum (yellow, “phylum-specific test
only”). For the Bacteroidetes- (left) and Firmicutes- (right) specific tests, the
proportion of invariable (blue), non-significant (gray), and variable (red)
gene families, at an estimated 5% FDR (using cutoffs from overall test).
Pathways with at least five total gene families across both phyla are shown.
(D) Rectangular Venn diagrams showing the proportion of
Bacteroidetes-specific (left), shared (center, bright), and Firmicutes-specific
(right) invariable (blue) and variable (red) gene families for each of the
pathways enumerated in A. (PDF 367 kb)

Additional file 17: Module and pathway enrichments for gene families
with invariable abundances in every phylum-specific test (Fisher’s exact
test, q ≤ 0.25). (CSV 3 kb)

Additional file 18: Module and pathway enrichments for gene families
variable in each phylum-specific test (Fisher’s exact test, q ≤ 0.25).
(CSV 2 kb)

Additional file 19: Figure S15. Distribution of proportions of zeros (i.e.,
proportion with read counts equal to zero) of invariable (FDR ≤ 0.05),
non-significant (FDR ≤ 0.05), and variable (FDR ≤ 0.05) gene families
identified by CCoDA. (PDF 138 kb)

Additional file 20: SRA IDs and characteristics (read length, average
genome size fromMicrobeCensus) for samples used in this study. (CSV 5 kb)

Additional file 21: Figure S3. Size parameter estimator choice affects
accuracy of estimation. For each mock dataset y, simulated null data was
generated from a negative binomial distribution, fixing the size parameter
ky but allowing the mean μg,y to vary for each of 1000 genes; simulated
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true-positive gene families were drawn from a negative binomial
distribution with size equal to zky or ky/z, where z is the effect size. A-C)
The choice of estimator affected the accuracy of size estimates. The mode
method-of-moments estimator (C, y-axis) more accurately estimated the
true size specified in the simulation (x-axis) than the harmonic mean (A,
y-axis) or median (B, y-axis), and was more tolerant to differences in the
ratio of true-positive variable and invariable gene families (colors). D-E)
When the size parameter was known, α (D) and power (E) were well
controlled, with α approximately equal to 0.05 at p ≤ 0.05 and power
approaching 1. Here, each simulation comprised three mock studies with
different size parameters, mirroring our actual data. Bar heights represent
means from four simulations and error bars are ±2 SD. The proportion of
variable/invariable gene families was 0.5, and 44% of genes were true
positives.(PDF 170 kb)

Additional file 22: Figure S11. Number of leaves correlates with tree
density, but tree density corrects for the overall rate of evolution. The
number of leaves (i.e., individual sequences) was plotted vs. tree density on
a log-log scatter plot, with each circle representing one gene family. Two
outliers with lower density than expected were plotted in colors: a putative
transposase (green) and a Staphylococcus leukotoxin (red). Both families
have large numbers of sequences from the same organism. (PDF 492 kb)

Additional file 23: Predicted tree densities. (CSV 314 kb)

Additional file 24: Source data for figures. Figure 1, source data 1: matrix
of read counts (after rarefaction) for every gene family in each sample
included in the present study. Figure 1, source data 2: matrix of average
family lengths for every gene family in each sample included in the present
study. Figure 1, source data 3: log-RPKG abundances for every gene family
mapped in the present study. Figure 2, source data 1: residual log-RPKG
abundances (i.e., after fitting the linear model) for every gene family
mapped in the present study. Figure 3, source data 1: counts of invariable,
non-significant, and variable gene families per pathway. “Strong,”
“medium,” and “weak” refer to FDR cutoffs of 0.05, 0.10, and 0.25,
respectively. Figure 3, source data 2: counts of invariable, non-significant,
and variable gene families for ribosomes in each domain of life. Figure 4,
source data 1: residual log-RPKG scaled by the expected variance under the
null model (see the “Methods” section). Figure 6, source data 1: log10
phylogenetic distribution (PD), log10 residual variance statistics (residvar),
significance at 5% FDR (invariable coded as “dn”, variable coded as “up”,
non-significant coded as “ns”), presence in at least one bacterial/archaeal
genome in KEGG, and annotations for all measured gene families. Figure 6,
source data 2: counts of significant associations of invariable, non-
significant, and variable gene families with taxonomic summary statistics.
Figure 7, source data 1: counts of significant associations of invariable,
non-significant, and variable gene families with phylum-level abundances.
Figure 8, source data 1: q values for gene families in the overall test.
Figure 8, source data 2: q values for gene families in phylum-specific tests.
Figure 8, source data 3: JSON-formatted lists of significantly (in)variable or
non-significant gene families at 5% (“strong”), 10% (“med”), and 25% FDR
(“weak”); overall test. Figure 8, source data 4: JSON-formatted lists of
significantly (in)variable or non-significant gene families at 5% (“strong”),
10% (“med”), and 25% FDR (“weak”); phylum-specific tests. (BZ 51464 kb)
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