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Abstract: Living in communities with more vegetation during pregnancy has been associated with
higher birth weights, but fewer studies have evaluated other birth outcomes, and only one has been
conducted in the Eastern United States, in regions with a broad range, including high levels, of
greenness. We evaluated associations between prenatal residential greenness and birth outcomes
(term birth weight, small for gestational age, preterm birth, and low 5 min Apgar score) across a
range of community types using electronic health record data from 2006–2013 from the Geisinger
Health System in Pennsylvania. We assigned greenness based on mother’s geocoded address using
the normalized difference vegetation index from satellite imagery. We used propensity scores to
restrict the study population to comparable groups among those living in green vs. less-green areas.
Analyses were adjusted for demographic, clinical, and environmental covariates, and stratified
by community type (city, borough, and township). In cities, higher greenness (tertiles 2–3 vs. 1)
was protective for both preterm (OR = 0.78, 95% CI: 0.61–0.99) and small for gestational age birth
(OR = 0.73, 95% CI: 0.58–0.97), but not birth weight or Apgar score. We did not observe associations
between greenness and birth outcomes in adjusted models in boroughs or townships. These results
add to the evidence that greener cities might be healthier cities.

Keywords: greenness; pregnancy outcome; preterm birth; low birth weight; small for gestational age;
propensity score; machine learning

1. Introduction

The biologist E.O. Wilson developed the theory of biophilia, which postulated that, since human
beings evolved out of nature, they have a biologically-ingrained affinity for nature [1]. Indeed, studies
have demonstrated that exposure to areas with higher amounts of community vegetation has many
benefits, as would be expected by these evolutionary links, including higher levels of physical activity,
lower levels of obesity, improved mental health outcomes, and lower cardiovascular disease and overall
mortality [2]. The relationship between community vegetation and birth outcomes has been explored
in Europe [3–8], Israel [9], Canada [10], and the U.S. [11–13]. These studies derived greenness—the
density of vegetation in a given area—from satellite imagery as the normalized difference vegetation
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index (NDVI), which can range from´1.0 to 1.0 (higher values indicating higher greenness). This body
of literature shows consistent evidence that living in areas with higher greenness during pregnancy
is associated with higher birth weights (e.g., in Vancouver, British Columbia, a 0.1 increase in NDVI
was associated with a 21 g increase in birth weight) [10]. However, findings varied for other birth
outcomes, including preterm and small for gestational age birth [4,8,9,13].

The majority of studies on greenness and birth outcomes have been conducted in urban areas
where absolute levels of greenness are low (NDVI < 0.4) and are often limited to within-city
comparisons in small geographic areas. To our knowledge, only one other study has examined
the relationship between greenness and birth outcomes across a range of communities, encompassing
the full spectrum of rural to urban areas in a large geography in the United States [13]. Associations
may not be consistent across communities that vary on individual (e.g., race/ethnicity, diet, education
level), social, healthcare, environmental, and community factors. The relevant geographic context for
greenness exposure may also differ by community. Such factors could result in community-based
differences in observed relationships between environmental exposures and health [14–17]. For
example, a recent study reported a significant association between greenness and reduced blood
pressure among children in Munich, but no association among children in a more rural area [15].

We sought to evaluate the relationship between prenatal exposure to greenness and birth outcomes
in a range of Pennsylvania communities. Such analysis, which included participants from diverse
communities, while adjusting for individual and neighborhood-level confounders, may lead to
practical violations of the positivity assumption (i.e., participant subgroups in green areas with few or
no comparable counterparts in less-green areas and vice versa). We addressed concerns about violations
of the positivity assumption (i.e., each individual has a non-zero probability of being in either treatment
group) by (1) performing analyses separately by community type; and (2) using propensity scores
derived from machine learning [18,19] to restrict our analysis to exchangeable groups. We were also
able to account for potentially important factors not considered in prior studies, including exposure to
animal feeding operations (AFOs) [20,21], unconventional natural gas development (UNGD) [22,23],
and well water use [24].

2. Materials and Methods

2.1. Conceptual Framework

We proposed a conceptual framework outlining the mechanisms by which greenness might
affect birth outcomes (Figure S1): by altering maternal levels of physical activity, reducing maternal
stress, enhancing social contacts among mothers, reducing maternal noise and air pollution exposure,
and moderating ambient temperatures [2,4]; and by which spatially-correlated environmental and
social exposures and individual-level factors might confound or mediate this relationship. Although
several exposures, including individual socioeconomic status (SES), UNGD, and AFOs likely have
bi-directional associations with NDVI (i.e., wealthier individuals may plant more trees, but greener
neighborhoods might also attract individuals with more money), we chose to treat them as confounders
in our analysis as we considered this the primary direction. We used the conceptual framework to
guide our covariate selection, model building, and interpretation of results.

2.2. Setting and Study Population

We used electronic health record (EHR) data on mothers who delivered neonates at one of
two labor and delivery-equipped Geisinger Health System hospitals between 1 January 2006 and
31 January 2013. Geisinger’s primary catchment area covers nearly 40 counties, containing a range of
self-governed Pennsylvania communities, including suburban and rural townships, moderate-to
high-density boroughs, and cities, with median population densities ranging from 34 to 738
to 1360 people per km2, respectively. The Geisinger primary care population is representative of
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the general population of the region [22]. The Institutional Review Board at the Geisinger Health
System approved this study (#00004966).

We identified mothers who gave birth and infants born at Geisinger from primary and
non-primary care records using International Classification of Diseases, Ninth Revision codes V27.x and
V30.x. We linked these mothers to their neonates in the EHR, primarily using medical record numbers,
but also with addresses, names, and dates (n = 20,569 delivery events and n = 20,598 neonates). We
geocoded the mother’s most recent address using ArcGIS 10.2 (Environmental Systems Research
Institute, Redlands, CA, USA) with a series of basemaps [25]. We then assigned each home address to
one of three community types, defined using U.S. Census minor civil division and census tract
boundaries, which included 390 townships, 237 boroughs, and 124 census tracts in cities [26].
This mixed definition of place is thought to appropriately capture the cultural and geographic
space significant to residents [26]. We excluded mothers and neonates who we could not match
(n = 622 neonates, n = 433 deliveries), with primary addresses outside Pennsylvania (n = 492), those
we could not geocode (n = 1389), non-singleton births (n = 1019), stillbirths (n = 13), and neonates with
serious birth defects (n = 74), birth weights <500 g (n = 22), or gestational ages <22 weeks (n = 8) [22].

2.3. Outcome Assessment

We identified four birth outcomes: term birth weight (ě37 weeks), small for gestational age birth,
preterm birth (<37 weeks gestation), and low 5 min Apgar score (<7). We used physician-estimated
gestational age, which was determined based on mother-reported last menstrual period and 20 week
ultrasound. We extracted birth weight and 5 min Apgar score from the EHR vitals file and labor and
delivery notes (free text), and a separate labor and delivery database maintained continuously by
nursing personnel. Small for gestational age was assigned based on an internal reference of babies
born at Geisinger between 2006–2013 [27]. Neonates with a birth weight below the sex-specific 10th
percentile for gestational age were considered small for gestational age. We dichotomized 5 min Apgar
score at a clinically meaningful cutpoint (<7) where infants are more likely to require respiratory
support and are at elevated risk of mortality [28].

2.4. Individual- and Community-Level Covariates

We obtained demographic characteristics from the EHR. These included neonate sex, gestational
age, season and year of birth; maternal age, race/ethnicity, primary care status (primary or
non-primary), smoking status during pregnancy, pre-pregnancy body-mass index, parity, number
of antibiotic orders during pregnancy, and receipt of Medical Assistance, a means-tested program
often used as a surrogate for low family socioeconomic status (SES) [25,29]. Smoking status
was assigned from the social history, problem list, and medications files. If a mother smoked
during gestation she was defined as an ever-smoker. We considered mothers to receive Medical
Assistance when we identified receipt (from 1 of 24 codes) at >2 encounters [30]. Season of birth
was assigned as winter (December–February), spring (March–May), summer (June–August), and fall
(September–November) [31]. We used a mother’s home address to link potentially confounding spatial
covariates: well water use [24]; community walkability [10,32]; community socioeconomic deprivation
(CSD) [33,34]; distance to nearest road [35]; exposure to swine AFOs [20,21]; and UNGD [22,23],
the latter three potential sources of air pollution. Due to sparse U.S. Environmental Protection
Agency air quality monitors in the study area we were unable to include estimates of exposure to
specific air pollutants. Distance to nearest major road, a surrogate for traffic-related air pollution [35],
was calculated using 2013 U.S. Census Bureau Topologically Integrated Geographic Encoding and
Referencing files. Swine AFOs may contribute to air pollution or allergen exposure [20]; we estimated
exposure to swine AFOs using a cumulative metric that incorporated number of animals at each
operation and the inverse-squared distance between operations and the home address [25]. To
incorporate information about UNGD we used Pennsylvania Department of Environmental Protection
(PADEP) and the Pennsylvania Department of Conservation and Natural Resources data to create
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a continuous variable of the number of unconventional wells drilled within 20 km of the home at
the time of birth. Well water use was based on public water service areas compiled by the PADEP.
We created a walkability metric that measured key features of urban development by z-transforming
and summing three census block group level metrics: population density, land-use mix, and street
network connectivity, using data compiled by the U.S. Environmental Protection Agency through Smart
Location Database [36]. CSD, a version of the Townsend Index modified for use in rural communities,
was generated by z-transforming and summing six American Community Survey (2006–2010) minor
civil division level variables: proportion of the population with less than a high school education,
unemployed, not in the labor force, in poverty, receiving public assistance, and households without
a car [37].

2.5. Greenness Exposure Assessment

Exposure to green, natural areas around each home address was estimated using NDVI, a
satellite-image based vegetation index. Chlorophyll in plants absorbs visible light for use in
photosynthesis, while leaves reflect near-infrared light. NDVI calculates the ratio of the difference
between the near-infrared region and red reflectance to the sum of these two measures, and ranges
from ´1.0 to 1.0, with larger values indicating higher levels of vegetative density [38–40]. For this
study, we used data from the Moderate-resolution Imaging Spectroradiometer (MODIS) from the
National Aeronautics and Space Administration’s Terra satellite. MODIS provides composite images
at a 250 m resolution every 16 days over the study period. We linked NDVI imagery to geocoded
addresses and calculated the average greenness in the 250 m and the 1250 m radius including and
surrounding the home address (Figure 1). We chose the 250 m radius as a measure of greenness directly
accessible outside each home, and the 1250 m radius as a measure of greenness within a 10–15 min
walk based on prior work on neighborhood environments and health behaviors [41]. We assigned
each mother the average greenness at her home address based on greenness data in the 3 seasons prior
to her child’s birth date, unless the child was born more than halfway through a season, in which case
the greenness in the two prior seasons and the season of birth were assigned.

250m

250m

1250m

Figure 1. Schematic of residential greenness measurement, which was completed by taking the average
of NDVI in a 5-pixel (1250 m) radius surrounding and including the home in the three seasons
preceding birth.
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2.6. Statistical Analysis

The distribution of greenness differed by community type (Figure 2). We were concerned about
lack of overlap in distributions of variables strongly correlated with both NDVI and birth outcomes
among women living in more vs. less green communities (e.g., low proportion of black mothers in
townships where levels of greenness were highest). This could result in model extrapolation rather
than adjustment in evaluating our primary associations of interest. We also hypothesized that the
association between greenness and birth outcomes might operate differently in different community
types. To make the compared groups more similar on greenness and covariates, we first stratified
our analyses by community type (i.e., city, borough, and township) and then confined analysis to
comparable patients.

0

100

200

300

0.2 0.4 0.6 0.8
Greenness (NDVI))

C
ou

nt Township

Borough

City

Figure 2. Distribution of greenness (NDVI) by community type.

To restrict our analysis to comparable mothers we evaluated the predicted probabilities of
greenness as a function of baseline covariates including maternal age, race/ethnicity, alcohol and
tobacco use, number of prenatal clinical visits, receipt of Medical Assistance, and UNGD exposure,
and others. We compared the distributions of the predicted probabilities (i.e., propensity scores [19]) of
living in a more green area (tertiles 2–3 of greenness) as a function of baseline covariates, within each
community type. Propensity scores were estimated using super learning [42], an ensemble machine
learning algorithm that has been used previously to improve propensity score estimation [43,44] The
Super Learner package optimally weights multiple machine learning algorithms (e.g., generalized
additive models, neural networks) to minimize the V-fold cross-validated prediction error. In predicting
a complex exposure like exposure to residential greenness, using machine learning may present an
advantage in reducing reliance on correct specification of the parametric exposure model.

Plots confirmed different distributions of predicted probabilities of high greenness exposure
(Figure 3 (cities) and Figure S2 (cities, boroughs, and townships)). As has been recommended in order
to reduce model extrapolation [45], we restricted the population, by community type, to those with
propensity scores between the 1st propensity score percentile among those living in green environments
(tertiles 2 and 3) and the 99th propensity score percentile among those living in non-green environments
(tertile 1). For example, in cities, for 29% of participants whose NDVI values were in the 2nd or 3rd
tertile, there were no comparable participants with NDVI values in the 1st tertile; likewise, for 18% of
participants with NDVI values in the 1st tertile, there were no similar participants with NDVI values
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in the 2nd and 3rd tertile. Restricting to this area of overlap in the distributions ensured that each
participant had a counterpart comparable on propensity to live in a greener environment.

We evaluated associations between residential greenness (tertile 2–3 vs. tertile 1) and four birth
outcomes using linear and logistic regression, depending on outcome, accounting non-independent
observations due to neonates nested within mothers (i.e., multiple singleton births per mother) and
mothers nested within communities in our estimated standard errors [46]. Adjusted models controlled
for neonate sex, year and season of birth, maternal age at delivery (linear and quadratic, years),
maternal race/ethnicity (white, black, Hispanic), primary care status (yes vs. no), smoking status
during pregnancy (never vs. ever), pre-pregnancy body mass index (underweight: <18.5 kg/m2;
normal: 18.5–24.9 kg/m2; overweight: 25–29.9 kg/m2; or obese: ě30 kg/m2), parity (nulliparous vs.
multiparous), receipt of Medical Assistance (never vs. ever, surrogate for low family SES), number of
antibiotic orders during pregnancy, distance to nearest major road (meters), drinking water source
(municipal vs. non-municipal), the number of unconventional natural gas wells drilled prior to birth
within 20 km of the home, exposure to swine operations, block group walkability (continuous), and
CSD (quartiles). We tested all two-way interactions between model covariates and retained those
that significantly improved model fit. We also specifically evaluated whether CSD or receipt of
Medical Assistance modified relations between residential greenness and birth outcomes by including
interaction terms. We used quadratic and cubic terms to assess non-linear relationships.

Figure 3. Propensity score distributions for patients in cities comparing those with NDVI values in
the 2nd and 3rd tertiles (darker green) to the 1st (lighter green). The propensity score is the predicted
probability of living in tertiles 2 or 3 (NDVI > 0.43), given baseline covariates. The analysis was
restricted to participants with propensity scores outside of dark grey shaded regions to ensure that
those living in green and non-green environments were comparable.

Models were selected using a priori hypotheses about confounders and likelihood ratio testing
(p < 0.05). Residual semivariograms showed that model residuals did not exhibit spatial autocorrelation.
In the original population data missingness was minimal (0%–5.8% on outcomes and 0%–5.2% on
confounders) and in the restricted population data was not missing on confounders and again minimal
for outcomes (0%–5.0%), thus we excluded mothers from models when they were missing data.
Statistical analyses were implemented using Stata version 13 (StataCorp., College Station, TX, USA)
and R version 3.1.1 (R Core Team, Vienna, Austria) and the R SuperLearner package [42].
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2.7. Sensitivity Analyses

To evaluate the sensitivity of associations to choices about NDVI metric and residential
environment size, we calculated greenness exposure based on mean and maximum greenness
during pregnancy in 250 m and 1250 m radii. To test sensitivity to the greenness cutpoint we
also evaluated associations dichotomizing greenness at the community-specific 20th-percentile
(comparing <20th-percentile to ě20th-percentile). Finally, we evaluated the association between
continuous NDVI and birth outcomes in both the original and restricted population.

3. Results

From January 2006 through January 2013, a total of 16,184 mothers delivered 20,598 infants at two
Geisinger Health System hospitals. After exclusion, we had a sample size of 16,913 mother-infant pairs.
The use of propensity scores to further restrict to exchangeable groups left 12,821 infants (2563 in cities,
3797 in boroughs, and 6461 in townships) born to 10,787 mothers (Figure 4). The median (interquartile
range) term birth weight in cities, boroughs, and townships was 3308 g (3010 g–3628 g), 3360 g
(3068 g–3668 g), and 3390 g (3090 g–3697 g), respectively. More infants were born preterm and small
for gestational age in cities (13% and 13%) compared to boroughs (11% and 10%) and townships
(11% and 9%). The overall prevalence of a low 5 min Apgar score was low (2%). The proportion
of mothers who resided in cities and lived in the top 66.7% (2nd or 3rd tertile) of the overall NDVI
distribution was just 29% (Table 1). Season of birth was strongly associated with NDVI tertile with
neonates born in spring much more likely to fall in 2nd or 3rd tertile across community types.
Women living in cities were more likely to receive Medical Assistance than women in boroughs
and townships, and within cities women residing in areas with lower greenness were more likely to
receive Medical Assistance; several other covariates also differed between community types, as well as
within community by NDVI tertile.

Figure 4. Distribution of greenness (normalized difference vegetation index (NDVI)) statewide overlaid
with the location of Geisinger Medical Center (GMC) and Geisinger Wyoming Valley (GWV), the
delivery hospitals, and most recent home addresses of mothers who delivered at the Geisinger Health
System, Pennsylvania (PA), 2006–2013.

We did not observe significant associations between residential greenness and term birth weight
or 5 min Apgar score in any community type (Table 2), though birth weight associations in cities were
suggestive of a protective effect. In adjusted analyses, higher NDVI was associated with lower odds of
small for gestational age births in cities, but not in boroughs or townships. Higher levels of residential
greenness in cities were also associated with lower odds of preterm birth, an association that was
not apparent in the original, non-restricted population that included non-comparable participants
(Table S1). We did not observe evidence of effect modification by Medical Assistance or CSD (results
not shown).
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Table 1. Study population demographics restricted sample, n = 12,821.

Variable, n (%) unless Specified City n = 2563 Borough n = 3797 Township n = 6461

Community-Specific NDVI Tertile Community-Specific NDVI Tertile Community-Specific NDVI Tertile

1, n = 927 2–3, n = 1636 1, n = 1253 2–3, n = 2544 1, n = 2249 2–3, n = 4212

NDVI, mean (SD) 0.39 (0.04) 0.50 (0.05) 0.44 (0.04) 0.57 (0.05) 0.48 (0.05) 0.62 (0.05)
NDVI, tertile 1 for all community types 927 (100) 889 (54.3) 1253 (100) 10 (< 1) 1195 (53.1) 0
NDVI, tertiles 2–3 for all community types 0 747 (45.7) 0 2534 (100) 1054 (46.9) 4212 (100)

Maternal characteristics

Age, median (IQR) 28.3 (24.0–32.3) 28.6 (24.4–32.8) 26.9 (23.2–30.8) 26.8 (22.8–31.0) 25.1 (21.7–30.0) 25.6 (21.8–30.1)
Nulliparous 438 (47.2) 752 (46) 587 (46.8) 1141 (44.9) 1148 (51.0) 2024 (48.1)
Multiparous 489 (52.8) 884 (54) 666 (53.2) 1403 (55.1) 1101 (49.0) 2188 (51.9)

Race/ethnicity

White 640 (69.0) 1231 (75.2) 1149 (91.7) 2359 (92.7) 2126 (94.5) 4037 (95.8)
Black 160 (17.3) 215 (13.1) 54 (4.3) 98 (3.9) 49 (2.2) 72 (1.7)
Hispanic 106 (11.4) 171 (10.5) 41 (3.3) 65 (2.6) 42 (1.9) 53 (1.3)
Other 21 (2.3) 19 (1.2) 9 (0.7) 22 (0.9) 32 (1.4) 50 (1.2)

Ever smoker 148 (16.0) 333 (20.4) 280 (22.4) 587 (23.1) 501 (22.3) 901 (21.4)
No receipt of medical assistance 356 (38.4) 690 (42.2) 645 (51.5) 1338 (52.6) 1435 (63.8) 2815 (66.8)
Receipt of medical assistance 571 (61.6) 946 (57.8) 608 (48.5) 1206 (47.4) 814 (36.2) 1397 (33.2)

Pre-pregnancy body mass index, kg/m2

Normal (18.5–24.9) 386 (41.6) 740 (45.2) 523 (41.7) 1127 (44.3) 897 (39.9) 1715 (40.7)
Overweight (25.0–29.9) 247 (26.6) 360 (22.0) 328 (26.2) 634 (24.9) 616 (27.4) 1185 (28.1)
Obese (ě30.0) 275 (29.7) 495 (30.3) 375 (30.0) 728 (28.6) 694 (30.9) 1225 (29.1)
Underweight (<18.5) 19 (2.0) 41 (2.5) 27 (2.2) 55 (2.2) 42 (1.9) 87 (2.7)

No antibiotic orders during pregnancy 644 (69.5) 1195 (73.0) 925 (73.8) 1945 (76.5) 1700 (75.6) 3299 (78.3)
ě1 antibiotic orders during pregnancy 283 (30.5) 441 (27.0) 328 (26.2) 599 (23.5) 549 (24.4) 913 (21.7)
Non-primary care patient 593 (64.0) 1012 (61.9) 652 (52.0) 1289 (50.7) 1057 (47.0) 1973 (46.8)
Primary care patient 334 (36.0) 624 (38.1) 601 (48.0) 1255 (49.3) 1192 (53.0) 2239 (53.2)
Community socioeconomic deprivation, median (IQR) 4.4 (2.5–6.6) 4.1 (2.2–6.5) 0.6 (´1.0–2.5) 0.6 (´1.1–2.6) ´1.4 (´2.5–0) ´1.6 (´2.8–0)
Walkability z-score, median (IQR) 2.0 (1.1–3.3) 1.8 (0.5–3.1) 0.8 (´0.1–1.9) 0.7 (´0.2–1.8) ´1.2 (´1.9–´0.5) ´1.2 (´2.4–´0.9)
Distance to nearest major road (m), median (IQR) 278 (137–535) 309 (141–610) 411 (167–1034) 498 (175–1173) 1784 (611–5017) 2444 (735–6121)
Drilled unconventional natural gas wells within 20 km of home, mean (SD) 5 (21) 8 (26) 21 (89) 22 (86) 43 (131) 38 (118)
Swine operation exposure (animal units per km2 surrounding home), median (IQR) 5.9 (5.6–21.3) 6.3 (5.6–21) 10.8 (5.6–34.1) 11.2 (5.7–35.0) 16.6 (6.6–32.8) 16.3 (6.3–31.9)

Infant characteristics

Female 450 (48.5) 817 (49.9) 617 (49.2) 1236 (48.6) 1099 (48.9) 2036 (48.3)
Male 477 (51.5) 819 (50.1) 636 (50.8) 1308 (51.4) 1150 (51.1) 2176 (51.7)

Year of birth

2006–2007 209 (22.5) 343 (21.0) 262 (20.9) 686 (27.0) 410 (18.2) 1349 (32.0)
2008–2010 403 (43.5) 708 (43.3) 601 (48.0) 1092 (42.9) 1215 (54.0) 1867 (44.3)
2011–2013 315 (34.0) 585 (35.8) 390 (31.1) 766 (30.1) 624 (27.7) 996 (23.6)

Season of birth

Winter (December–February) 277 (29.9) 366 (22.4) 341 (27.2) 683 (26.8) 520 (23.1) 1040 (24.7)
Spring (March–May) 49 (5.3) 589 (36.0) 78 (6.2) 851 (33.5) 124 (5.5) 1509 (35.8)
Summer (June–August) 237 (25.6) 420 (25.7) 318 (25.4) 654 (25.7) 555 (24.7) 1120 (26.7)
Fall (September–November) 364 (39.3) 261 (16.0) 516 (41.1) 356 (14.0) 1050 (46.7) 543 (12.9)

Term birth weight, median (IQR) 3293 (2993–3606) 3312 (3028–3637) 3345 (3060–3666) 3370 (3072–3668) 3390 (3090–3697) 3391 (3090–3698)
Small for gestational age birth 126 (13.6) 180 (11.0) 109 (8.7) 237 (9.3) 210 (9.3) 352 (8.4)
Preterm birth (<37 weeks gestational age) 127 (13.7) 195 (11.9) 117 (9.3) 297 (11.7) 248 (11.1) 465 (11.0)
5 min Apgar score <7 17 1.8) 41 (2.5) 26 (2.1) 39 (1.5) 42 (1.9) 88 (2.1)
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Table 2. Unadjusted and adjusted associations of residential greenness and birth outcomes in restricted sample.

Variable b

Unadjusted Adjusted a

Term Birth
Weight (g)

Small for
Gestational Age Preterm Birth 5 min Apgar

Score <7
Term Birth
Weight (g)

Small for
Gestational Age Preterm Birth 5 min Apgar

Score <7

β (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) β (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

City, N births 2125 2420 2460 2497 2125 2420 2460 2497
Greenness T1 0 1 1 1 0 1 1 1

Greenness T2–3 36 (´5–78) 0.77 (0.60–1.00) 0.85 (0.67–1.07) 1.24 (0.82–1.87) 42 (´1–85) 0.73 (0.58–0.97) 0.78 (0.61–0.99) 1.42 (0.69–2.92)
Borough, N births 3184 3565 3609 3658 3184 3565 3609 3658

Greenness T1 0 1 1 1 0 1 1 1
Greenness T2-3 ´3 (´28–21) 1.09 (0.90–1.32) 1.29 (1.02–1.62) 1.08 (0.75–1.53) 4 (´22–30) 1.19 (0.88–1.59) 1.25 (0.96–1.59) 0.94 (0.57–1.55)

Township, N births 5546 6205 6281 6209 5546 6205 6281 6209
Greenness T1 0 1 1 1 0 1 1 1

Greenness T2–3 5 (´18–29) 0.89 (0.73–1.09) 1.00 (0.85–1.18) 1.15 (0.81–1.65) 2 (´21–24) 0.90 (0.71–1.15) 0.95 (0.79–1.15) 1.20 (0.79–1.82)
a All models were adjusted for year and season of birth, sex, and gestational age of the neonate; maternal characteristics: age at delivery, race/ethnicity, primary care patient status,
ever smoking, pre-pregnancy body mass index, parity, number of antibiotic orders during pregnancy, receipt of Medical Assistance, delivery hospital, drinking water source, distance
to nearest major road, proximity to swine livestock operations, number of unconventional natural gas wells within 20 km; and community socioeconomic deprivation quartile and
community walkability. The birth weight model was additionally adjusted for gestational age. Interactions that improved model fit were additionally included; b Greenness (NDVI)
tertile cut points differed by community type: city = 0.43; borough = 0.49; and township = 0.54.
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In a sensitivity analysis, we observed high correlation (Spearman > 0.7) between mean and
maximum residential greenness defined by 250 m and 1250 m radii. Analysis produced similar
associations for both buffer sizes (results not shown). In evaluation of sensitivity of results to decisions
regarding NDVI cutpoints, a division at the 20th percentile yielded similar associations to the primary
analysis (results not shown). Analysis in the restricted population with a continuous NDVI variable
suggested a statistically significant relationship between continuous NDVI and preterm birth in cities
(Table S2). Additional greenness also appeared protective of reduced term birth weight in cities, but the
association was not statistically significant. Continuous NDVI was not associated with birth outcomes
in boroughs or townships and there did not appear to be a departure from linearity in any community
as assessed by quadratic and cubic terms and splines.

4. Discussion

In an analysis of birth outcomes across a range of communities, from rural to urban, in
Pennsylvania, we found that higher levels of residential greenness, in cities only, were associated with
lower odds of preterm and small for gestational age births. The analysis presented challenges, for
reasons often not recognized or acknowledged in environmental epidemiologic studies. Specifically,
we had to address structural confounding by restricting the analysis to mothers with comparable
counterparts while controlling for numerous spatially correlated exposures. Prior studies of greenness
in cities did not have to deal with this methodological complication. As studies of contextual and
community influences on health increase in their geographic scope, they will continue to run into
complex data problems including issues of structural confounding. We provide an example of how to
use machine-learning based propensity scores and stratification to study communities ranging from
urban to very rural while reducing the possibility that the associations were explained by either model
extrapolation or confounding due to a number of important environmental exposures and conditions.

In addition to the methodological contributions we also add data from outside cities to the
greenness and birth outcome literature. In our study, greenness only conferred benefits in cities. This
could suggest that in communities with higher absolute levels of greenness, for example boroughs and
townships, additional greenness does not benefit neonate health.

Greenness exposure may provide opportunities for physical activity, lower psychophysiological
stress and depression, increase social interactions, and lower exposure to noise, air pollution and
extreme temperatures (Figure S1). These potential mediators have been linked to birth outcomes,
including birth weight, intrauterine growth, gestational age at delivery, and maternal mental
health [47–52], which may explain our observed association between increased greenness and lower
odds of SGA and preterm birth. High ambient temperatures have been linked to adverse pregnancy
outcomes [53], and greenness may buffer heat islands within urban areas [54]. This may partially
explain why we observed associations within participants who lived in cities, but not in rural areas
where heat island effects were unlikely to occur.

Two prior studies reported greenness as protective of preterm birth. In Southern California,
Laurent et al. [12] found that an IQR increase in NDVI (0.13) in the 150 m area around each
mother’s home was associated with 2% lower odds of preterm birth in models adjusted for air
pollution and traffic density (p = 0.05). An analysis of 64,705 singleton births in Vancouver, Canada
showed that a 0.1 increase in NDVI was associated with a 5% decrease (95% CI: 1%, 9%) in the
odds of a moderately preterm (30–36 weeks) birth [10], adjusting for air pollution, noise, and
neighborhood walkability.

Three studies have also reported that greenness is protective for small for gestational age birth.
The Vancouver study found that a 0.1 increase in NDVI was associated with a 3% (95% CI: 0%–6%)
decrease in small for gestational age birth [10]. Donovan et al. [11] found that a 10% increase in
tree canopy cover in the 50 m surrounding a mother’s home in Portland, Oregon was associated
with 1.42 fewer small for gestational age babies per 1000 births. A recent study in Connecticut reported
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that an IQR increase in NDVI (0.38) was associated with 2.6% fewer (95% CI: ´5.1–´0.1) small for
gestational age births [13].

Most studies of greenness and birth outcomes have reported that NDVI is associated with
continuous birth weight [4–6,8–10,12]. We found that neonates in cities in the 2nd and 3rd tertile
of greenness weighed 42 g (95% CI: ´1, 85) more than those in the 1st tertile and that a 0.1 unit
increase in NDVI in cities was associated with an increase in term birth weight of 21 g (95% CI: ´7, 49),
although neither association crossed an inferential boundary. Hystad et al. (2014) observed a similar
effect size, 20.6 g (95% CI 16.5, 24.7) per 0.1 unit increase in NDVI. Our findings were also similar
in magnitude compared to those seen in other studies [4,6,8,9], but larger than those observed by
Laurent et al. and Ebisu et al. in the U.S. [12,13]. Differences may result from different distributions
of socioeconomic or other factors or different absolute levels of greenness among study populations,
which may affect susceptibility to greenness exposures and birth weight. Additionally, we restricted
our study population to comparable groups. While we were able to account for unconventional natural
gas development and animal feeding operations, other studies were able to include factors such as
noise or maternal education in their analyses, and these model specifications could have led to different
estimated associations.

Prior studies have reported stronger associations of greenness with birth outcomes among
individuals with low SES or living in poorer communities [4–6,9]. We did not find evidence of
effect modification by family SES (i.e., Medical Assistance) or CSD. Since more mothers on Medical
Assistance resided in cities and cities in general had higher levels of community deprivation, it is
possible that we did not observe effect modification by family SES and community deprivation since
we stratified analyses by community type.

Our study had limitations. First, while stratifying our analysis by community type and restricting
to comparable populations to prevent model extrapolation was a key strength, this methodology
prevented us from testing interactions between community type and greenness, or greenness and
overall CSD or modeling NDVI as a continuous variable in our main analysis. We cautiously present
linear associations between continuous NDVI and birth outcomes in the Supplemental Appendix
(Table S2). Second, we had some misclassification of exposure and other covariates since the EHR
only maintains each mother’s most recent address. However, previous analysis in this population
suggests residential stability is high. We compared the addresses of >300,000 Geisinger patients and
determined that 86% did not change address or moved <1500 m between 2010–2013 [22]. Third,
maternal SES is a known risk factor for poor birth outcomes [55,56]. It is likely we did not fully adjust
for this potential confounder since we used receipt of Medical Assistance as a proxy for family SES
because the EHR data did not include information on mothers’ occupation, wealth, or education.
Fourth, the EHR also lacked other relevant data on maternal nutrition and exercise. Fifth, we cannot
describe qualitatively the types of vegetation associated with improved outcomes or how mothers
interacted with their green space (e.g., increased physical activity, reduced stress) and therefore cannot
know how living in a greener area may account for better birth outcomes. Sixth, we lacked direct
measurement of noise and air pollution. As proxies for air pollution we used distance to nearest
road and number of unconventional gas wells within 20 km of the mother’s residence. While not
comprehensive, because air pollution is emitted from other industrial activities, these variables may
be adequate in this large region with a range of community settings. Finally, we calculated NDVI
around the participants’ homes, but did not have information about their workplaces or other natural
environment exposures. In general, uncertainty in this area of study persists over the appropriate
location and scale for accurately measuring environmental exposures.

Despite these limitations, our analysis offered improvements over past studies. A main
contribution is limiting analysis to the area of common support, which prevented reliance on model
extrapolation. The EHR provided detailed patient data (e.g., antibiotic orders during pregnancy) and
accurate outcome ascertainment. Our NDVI exposure summarized exposure across pregnancy by
averaging NDVI by trimester. We were able to assign a suite of confounders including information
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on drinking water source, industrial agriculture, and unconventional gas wells not available in other
analyses. Although it is possible that including some of these factors may have over-controlled
for exposure, each was hypothesized to act primarily as a confounder and was included based on
substantive knowledge.

5. Conclusions

We observed an association between higher levels of greenness and lower odds of preterm
and small for gestational age birth only among city-dwelling mothers. This finding was observed
after restriction to mothers with similar probabilities of residing in areas with greenness and
adjustment for a host of spatially correlated social and environmental exposures. Future environmental
epidemiology studies that include participants from a range of communities should consider the issue
of non-positivity in analyses. While more research is needed to identify the specific mechanisms
through which greenness may impact birth outcomes, planners and policy makers should consider
incorporating additional vegetation in urban areas.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/13/3/311/s1,
Table S1: Unadjusted and adjusted associations of tertiles 2–3 versus tertile 1 of residential greenness exposure and
pregnancy outcomes in original population, Table S2: Unadjusted and adjusted associations of continuous
residential greenness exposure and pregnancy outcomes in original and restricted populations, Figure S1:
Conceptual framework with relations among residential greenness, confounders, mediators and birth outcomes,
Figure S2: Propensity score distributions for patients in (A) boroughs; (B) townships; and (C) cities comparing
those with NDVI values in the 2nd and 3rd tertiles.
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