
UC Riverside
UC Riverside Previously Published Works

Title
SeqTrans: Automatic Vulnerability Fix via Sequence to Sequence Learning

Permalink
https://escholarship.org/uc/item/4qq072wz

Authors
Chi, Jianlei
Qu, Yu
Liu, Ting
et al.

Publication Date
2020-10-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qq072wz
https://escholarship.org/uc/item/4qq072wz#author
https://escholarship.org
http://www.cdlib.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

SeqTrans: Automatic Vulnerability Fix via
Sequence to Sequence Learning

Jianlei Chi, Yu Qu, Ting Liu, Member, IEEE, Qinghua Zheng, Member, IEEE, Heng Yin, Member, IEEE

Abstract—Software vulnerabilities are now reported at an unprecedented speed due to the recent development of automated
vulnerability hunting tools. However, fixing vulnerabilities still mainly depends on programmers’ manual efforts. Developers need to
deeply understand the vulnerability and try to affect the system’s functions as little as possible.
In this paper, with the advancement of Neural Machine Translation (NMT) techniques, we provide a novel approach called SeqTrans to
exploit historical vulnerability fixes to provide suggestions and automatically fix the source code. To capture the contextual information
around the vulnerable code, we propose to leverage data flow dependencies to construct code sequences and fed them into the
state-of-the-art transformer model. Attention and copy mechanisms are both exploited in SeqTrans. We evaluate SeqTrans on both
single line and multiple line vulnerability fixes on a dataset containing 1,282 commits that fix 624 vulnerabilities in 205 Java projects.
Results show that the accuracy of SeqTrans can achieve 77.6% in single line fix and 52.5% in multiple line fix. In the meantime, we look
deep inside the result and observe that NMT model performs very well in certain kinds of vulnerabilities like CWE-287 (Improper
Authentication) and CWE-863 (Incorrect Authorization).

Index Terms—Software vulnerability, vulnerability fix, neural machine translation, machine learning

F

1 INTRODUCTION

SOFTWARE evolves quite frequently due to numerous
reasons such as deprecating old features, adding new

features, refactoring, vulnerability fixing, etc. Software vul-
nerability is one of the major threats to software security.
Vulnerabilities like HeartBleed [1], Spectre [2] and Melt-
down [3], introduced significant threats to millions of users.
Vulnerabilities are reported at an unprecedented speed due
to the recent development of automated vulnerability hunt-
ing tools like AFL [4], AFLGo [5], AFLFast [6]. On the
other hand, fixing vulnerabilities still mainly depends on
programmers’ manual efforts, which are tedious and error-
prone. Automatically learn to generate vulnerability fixes is
urgently needed and will greatly improve the efficiency of
software development and maintenance processes.

There are a large number of works of automated pro-
gram repair or called code migration in both industrial and
academic domains. [7]. Many research works focus on one
type of code modification, such as API change [8], [9], [10],
[11], [12] and suggestion [13], refactoring [14], [15]. IDEs
also provide specific kinds of automatic changes [16]. For
example, refactoring, generating getters and setters, adding
override/implement methods, etc. However, although some
promising results have been achieved, current works of
automated program repair face a list of limitations. Firstly,
most of them heavily rely on domain-specific knowledge or
predefined change templates, which leads to limited scala-
bility [7]. Secondly, traditional techniques leverage search
space, statistical analysis to rank similar repair records
needs to define numerous features, which can be time-
consuming and not accurate enough. In this paper, we
focus on automatic vulnerability fixing that relies entirely
on machine learning to capture grammatical and structural
information as common change patterns. By combining
vulnerability fixing with machine learning, our goal is to
assist the developer in getting rid of tedious repair works

and benefiting from training with the continuous growing
historical vulnerability fixing records.

To model these historical records, we choose the general
framework of Neural Machine Translation (NMT) to learn
rules from historical records and apply them in future edits.
It is widely utilized in Natural Language Processing (NLP)
domain, such as translate one language (e.g., English) to
another language (e.g., Swedish). NMT model can gen-
eralize numerous sequence pairs between two languages
and learn the probability distribution of changes, assign
higher weights to appropriate editing operations. Previous
works such as Tufano et al. [17] and Chen et al. [18]
have shown an initial success of using the NMT model
for predicting code changes. However, both of them only
focus on simple scenarios such as short sequences and
single line cases. In fact, since the NMT model is originally
exploited for natural language, we should think about the
gap between natural language and programming language
[19]. Firstly, program language falls under the category of
languages called context-sensitive languages. Dependencies
in one statement may come from the entire function or even
the entire class. Nevertheless, in natural language, token
dependencies are always distributed in the same sentence or
neighbouring sentences. Secondly, the vocabulary of natural
languages is filled with conceptual terms. The vocabulary of
programming languages is generally only grammar word
like essential comments, plus various custom-named things
like variables and functions. Thirdly, programming lan-
guages are unambiguous, while natural languages are often
multiplied ambiguous and require interpretation in context
to be fully understood.

In this work, in order to solve the dependency problem
across the entire class, we construct the define-use (def-use)
[20] chain which represents the data flow dependencies to
capture important context around the vulnerable statement.

ar
X

iv
:2

01
0.

10
80

5v
1

 [
cs

.C
R

]
 2

1
O

ct
 2

02
0

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Another problem previous works do not mention is that
they only focus on single line prediction, which means only
statement replacement is supported. If one vulnerability
fixing contains statement insertion or deletion, these works
will fail to change the code or even ignore it. In this case,
we also try to construct def-use chains for multi-line fixing
to cover statement deletion and addition. Last but not the
least, the seq2seq model [21] that previous works used
cannot process long sentences very well. Therefore the token
numbers are limited to 1000 [18] or even 100 [17]. To solve
this problem, we introduce the state-of-the-art transformer
model [22] to reduce the performance degradation caused
by long statements. This enables us to process long state-
ments and captures a broader range of dependencies.

We called our approach SeqTrans, and it works as
follows: Firstly, we collect historical vulnerability fixing
records, carefully create statement-level and function-level
training and testing set for single line and multiple line
prediction tasks. Secondly, we leverage a transformer model
with attention and copy mechanism [23] to address existing
problems mentioned before. Thirdly, if new vulnerable ob-
ject is inputted to the trained model, beam search will be
utilized first to obtain a list of candidate predictions. Then,
a syntax checker will be used to check the list and select
the most suitable candidate prediction. Recovered patching
will be generated to developers. In order to evaluate our
approach, we calculate the accuracy of both single line and
multiple line predictions over 624 publicly disclosed vulner-
abilities affecting 205 distinct open-source Java projects from
the work of Ponta et al. in MSR 2019 [24]. The experimental
result shows that our approach SeqTrans reaches a promis-
ing accuracy of single line prediction by 77.6%, outperforms
the state-of-the-art model SequenceR [18] by 17.9% and
substantially surpasses the performance Tufano et al. [17]
and other NMT models. As for multiple line prediction,
our approach also achieves the accuracy of 52.5%. To the
best of our knowledge, this is the first report on utilizing
sequence-to-sequence learning for multi-line prediction on
vulnerability fix.

In the meantime, we also observed internally what types
of vulnerability fixes can be well predicted by SeqTrans. An
interesting observation we find is that our model has a large
gap between different types of CWEs. Our model performs
quite well in specific types of CWEs like CWE-287 (Im-
proper Authentication) and CWE-863 (Incorrect Authoriza-
tion) but even cannot make any prediction for certain CWEs
like CWE-918 (Server-Side Request Forgery). We conclude
training a general model to fix vulnerabilities automatically
is too ambitious to cover all cases. But if we can focus
on specific types of them, NMT model can make a very
promising result to help developers. SeqTrans can actually
cover about 60% of the types of CWEs in the data set.

The paper makes the following contributions:

1) We introduce the NMT model transformer to learn
and generalize common patterns from data for vul-
nerability fixing.

2) We propose to leverage data flow dependencies to
construct vulnerable sequences and maintain the
vital context around them.

3) We implement our approach SeqTrans and evaluate

624 real publicly disclosed vulnerabilities affecting
205 distinct open-source Java projects. Our SeqTrans
outperforms other program repair technique and is
able to achieve the accuracy of 73.6% in single line
prediction and 52.5% in multiple line prediction.

4) We make an internal observation about prediction
results on different CWEs and find some interesting
CWE fixing operations captured by our model. Our
model can predict specific types of CWEs pretty
well.

2 MOTIVATION EXAMPLE

Figure 1 shows a motivating example of our approach. In
Figure 1, there are two vulnerability fixes for CVE-2017-
1000390 and CVE-2017-1000388, respectively. These two
CVEs belong to the same CWE: CWE-732, which is named
”Incorrect Permission Assignment for Critical Resource.”
CWE-732 emphasizes that ”the product specifies permis-
sions for a security-critical resource in a way that allows
that resource to be read or modified by unintended actors,”
which means that when using a critical resource such as a
configuration file, the program should carefully check if the
resource has insecure permissions.

In Figure 1 (a), before the function getIconFileName
returns the IconFileName, it should check whether the
user has the corresponding permission. In Figure 1 (b),
before the function EdgeOperation accesses two resources
JobName, it should also check the permission.

Although these two CVEs belong to different projects,
their repair processes are very similar. This inspired us
that it might be possible to learn common patterns from
historical vulnerability fixes that correspond to the same or
similar CWEs.

In this paper, we propose a novel method to exploit
historical vulnerability fix records to provide suggestions
and automatically fix the source code. If the function with
similar structure requests accesses to a critical resource, our
deep learning model can learn to check permissions before
allowing access, eliminating the tedious process for devel-
opers to search for vulnerability and recapitulate repair
patterns.

3 METHODOLOGY

We introduce the neural machine translation method to
guide automatically vulnerability fixing, which aims at
learning common change patterns from historical records
and applying them on the new input files. The overview
of our approach is given in Figure 2, which contains two
stages: Preprocessing and training, prediction and patching.

SeqTrans provides fixed predictions at two granularity:
statement level and method level, due to the reason that
statement level (single line) prediction itself is not enough
since it only considers code replacement. Another reason is
that SeqTrans can work with other vulnerability detection
tools such as Eclipse Steady [26]. They always provide
vulnerability location information at the method level. Then,
we perform normalization and abstraction based on data
flow dependencies to extract the def-use chains. We believe
def-use chains are suitable for deep learning models to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) CVE-2017-1000390, jenkinsci/tikal-multijob-plugin, 2424cec7a099fe4392f052a754fadc28de9f8d86

(b) CVE-2017-1000388, jenkinsci/tikal-multijob-plugin, d442ff671965c279770b28e37dc63a6ab73c0f0e

Fig. 1: Two similar vulnerability fixes belonging to CWE-732

Vulnerability fixes

Statement level

diffsDiff

matching

Function level

diffs

Abstraction and

normalization

Preprocessing

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Decoder

DecoderInput

Output

T
ra

n
s
fo

rm
e
r

Training

Vulnerable

source code

Abstraction

Normalization

Preprocessing

Input

sequences

Trained model

Prediction

Detect illegal code

structure

Refill literals and

variable names

Recovering

Fixed source

code

Fig. 2: Overview of our SeqTrans for automatically vulnerability fixing

capture syntax and structure information around the vul-
nerabilities with fewer noises. Then, these def-use chains
are fed into the trained transformer model to generate a
list of candidate predictions automatically. Syntax checker is
exploited to check the error and select the best prediction (or
predictions). After that, we refill abstraction and generate
patches. We will discuss the details of each part in the
following part of this section.

3.1 Code Change Mining

The dataset we exploit 1 [24] provides vulnerability fixing
records as following shows:

(vulnerability id; repository url; commit id)

where vulnerability id is the identifier of a vulnerability
that is fixed in the commit id in the open source code
repository at the repository url. Each line in the dataset
represents a commit that contributes to fixing a vulnerabil-
ity. Then, we utilize a crawler to collect program repositories
mentioned in the dataset. Pull Request (PR) data will be ex-
tracted based on commit id. After that, in each PR we need
to find out java file changes involved. Because our approach
SeqTrans only supports java files now. With the help of a git
version control system JGit [27], we can retrieve the version

1. https://github.com/SAP/vulnerability-assessment-kb

of java files before and after code changes implemented in
the PR. We call these java file pairs ChangePair(CP), each
CP contains a list of code diffs.

3.2 Code Diff Extraction
After we obtaining CPs from PR, we need to locate
the method-level code changes and statement-level codes
changes for multi-line prediction and single line prediction.
Although we can exploit the ”git diff” command provided
by git to search line-level code diffs, they are not precise
enough. Even a slight code structure change such as a new-
line, adding space will be recognized as a code diff. For this
reason, we choose to search for code diffs by using Abstract
Syntax Trees (ASTs). The state-of-the-art diff searching tool
named GumTree [28] is utilized to search for fine-grained
AST node mappings. It is worth noting that GumTree only
provides a fine-grained mapping between AST nodes, so
we modified the code of GumTree and combined with an-
other tool, Understand [29], to extract the method-level and
statement-level code diffs. In the meantime, we found some
bugs of Gumtree that leads to incorrect mismatching and
reported to the author. After that, each CP is represented as
a list of code diffs:

CP = (msrc,mdst)1, ..., (msrc,mdst)n

CP = (stsrc, stdst)1, ..., (stsrc, stdst)n

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Test.java: source
private String foo(int i, int k) {
 if(i == 0) return "Foo!";

 if(k == 1) return 0;}

Test.java: normalized source
private String foo(int var1, int var2) {
 if(var1 == num1) return "str";

 if(var2 == num2) return num1;}

Fig. 3: Normalize the source code

where (msrc,mdst) represents method from the source file
and the destination file. Similarly, the statement-level code
diff will be represented as (stsrc, stdst)

Then, we will extract data flow dependencies around
code diffs to construct our def-use chains. The reasons why
we use data flow dependencies are shown as follows: 1)
Context around the vulnerable statements is valuable to
understand the risky behavior and capture structure rela-
tionships. However, it is too heavy to maintain the full
context in the class-level with lots of unrelated code. 2)
Data flow dependencies provide enough context for trans-
formation. If one use statement needs to be modified, there
is a high probability to co-change its definition statements
simultaneously. 3) Control flow dependencies often contain
branches, which makes them too long to be tokenized.

The definition and use (def-use) dependencies can be
extracted from the ASTs. The process can be shown as
follows: Firstly, we traverse the whole AST and label each
variable name. These variable names are distributed over
the leaf nodes of the AST. Then, We will traverse up the
leaf node to its defined location. With the help of modified
GumTree and Understand, SeqTrans changes each CP as the
following shows:

CP = ((def1, ..., defn,msrc), (def1, ..., defn,mdst))1, ...,

((def1, ..., defn,msrc), (def1, ..., defn,mdst))n

CP = ((def1, ..., defn, stsrc), (def1, ..., defn, stdst))1, ...,

((def1, ..., defn, stsrc), (def1, ..., defn, stdst))n

In this paper, we ignore code changes that involve the
addition or deletion of entire methods/files.

3.3 Code Abstraction & Normalization
In the training process of the NMT model, there exist a
couple of drawbacks. Because NMT models output a prob-
ability distribution over words, they can become very slow
with a large number of possible words. We need to impose
an artificial limit on how of the most common words we
want our model to handle. This is also called the vocabulary
size. In order to reduce the vocabulary size, we need to
preserve the semantic information of the source code while
abstracting the context.

The normalization process is shown in Figure 3. We
replace variable names to ”var1”,, ”varn”, each literal
and string are also replaced to ”num1”,, ”numn” and
”str”. The reasons why we do this involves: 1) reduce the
vocabulary size and the frequency of specific tokens; 2)

reduce the redundancy of the data and improve the con-
sistency of the data. We will maintain a dictionary to store
the mappings between the original label and the substitute
so that they can be refilled after prediction. Through the
above optimization, we can control the vocabulary size to
about 1500, which makes the NMT model to concentrate on
learning common patterns from different code changes.

Subsequently, we split each abstract CP into a series of
tokens. It is worth to mention that the seq2seq model uti-
lized in previous works faces severe performance degrada-
tion when processing long sequences. For example, Tufano
et al.[17] limited the token number to 50-100, Chen et al.[18]
limited the token number to 1000. Because the transformer
model we utilized can better handle long sequences. In
our approach, we will limit the statement-level CP to 1500
tokens and not limit the length of function-level CP. We will
discuss the details in the following subsection.

3.4 Neural Machine Translation Network
In this phase we train SeqTrans to learn how to trans-
form the vulnerable codes to correct version and generate
patches.

3.4.1 Transformer Model
In this work, we choose to use the transformer model [22] to
solve the performance degradation problem of the seq2seq
model on long sequences. It has been widely utilized by
OpenAI and DeepMind in their language models. Unlike
Recurrent Neural Network (RNN) [30] or Long Short Term
Memory (LSTM) [31] models, transformer relies entirely
on the attention mechanism to draw global dependencies
between input and output data. This model is more paral-
lel and achieves better translation results. The transformer
consists of two main components: a set of encoders chained
together and a set of decoders chained together. The encode-
decoder structure is widely used in NMT models, the en-
coder maps an input sequence of symbol representations
(x1, ..., xn) to an embedding representation z = (z1, ..., zn),
which contains information about the parts of the inputs
which are relevant to each other. Given z, the decoder
then exploits this incorporated contextual information to
generate an output sequence. Generates an output sequence
(y1, ..., ym) of symbols one element at a time. At each step
the model consumes the previously generated symbols as
additional input when generating the next [32]. The trans-
former follows this overall architecture using stacked self-
attention and point-wise, fully connected layers for both
the encoder and decoder. Each encoder and decoder make
use of an attention mechanism to weigh the connections be-
tween every input and refer to that information to generate
output [22].

As for the parameter selection, we discussed a variety
of settings for SeqTrans. Most of the major components are
verified with the sensitivity analysis experiments in RQ3.
The model is trained with a batch size of 4096 for 30000
iterations. In order to prevent the overfitting problem, we
use a dropout of 0.1. In relation to the components shown
in RQ3, some primary parameters are shown as follows:

• Word vector size : 512
• Attention layers: 6

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

• Size of hidden transformer feed-forward: 2048
• Dropout:0.1
• Batch size: 4096
• Train steps: 30000

3.4.2 Encoder
The encoder is composed of a stack of 6 identical layers.
Each layer consists of two sub-layers: a multi-head self-
attention mechanism and a feed-forward neural network.
Residual connection [33] and normalization [34] have been
employed to each sub-layer so that we can represent the
output of the sub-layer as:

sub layer output = Layer normization(x+(SubLayer(x)))

where Sublayer(x) is the function implemented by the sub-
layer itself. The self-attention mechanism takes in a set of
input encodings from the previous encoder and weighs
their relevance to each other to generate a set of output
encodings. The feed-forward neural network then further
processes each output encoding individually. These output
encodings are finally passed to the next encoder as its input.
All sub-layers as well as the embedding layers produce
outputs of dimension dmodel = 512

3.4.3 Decoder
The decoder also contains a stack of 6 identical layers. How-
ever, each layer consists of three sub-layers: an attention
sub-layer has been added to perform multi-head attention to
draw relevant information from the encodings generated by
the encoders. A masking has been used to prevent positions
from attending to subsequent positions and ensure that the
predictions for position i can depend only on the known
outputs at positions less than i [22]. The other parts are the
same as the encoder.

3.4.4 Attention Mechanism
The purpose of an attention mechanism is to use a set of
encodings to incorporate context into a sequence. For each
token the attention mechanism requires a query vector Q
of dimension dk, a key vector K of dimension dk and a
value vector V of dimension dv . These vectors are created
by multiplying the embedding by three matrices that we
trained during the training process. Self-attention refers to
the situation where the queries, keys, and values are all
created using encodings of the sequence. Then the output
Z of this attention mechanism is:

Z = Attention(Q,K, V) = softmax(
QKT

√
n

)V

The multi-head attention utilized in transformer imple-
ments several attention mechanisms in parallel and then
combine the resulting encoding in a process.

3.4.5 Beam Search
In many cases, developers have certain domain-specific
knowledge. We can generate a list of prediction results to let
them pick the most suitable one. Instead of greedily choos-
ing the most likely next step as the sequence is constructed,
the beam search [35], [36] expands all possible next steps
and keeps the k most likely, where k is a user-specified

parameter and controls the number of beams or parallel
searches through the sequence of probabilities. These k
candidates will be provided as suggestions to developers
to select the best result.

3.5 Patch Generation
The original output (or a list of outputs) is far from the
version that can be successfully compiled. Because it con-
tains abstraction and normalization, it even may contain
grammatical errors after prediction. Our patch generation
consists of two steps to solve these problems: abstraction
refill and grammar check.

3.5.1 Abstraction Refill
As mentioned above, we maintain a dictionary to store
the necessary information for restoration before abstraction.
After prediction, the output will be concretized and all the
abstraction contains in the dictionary will be refilled. The
code will be automatically indented in this process. It should
be noted that all comments will be deleted and will not be
refilled again.

3.5.2 Grammar Check
We combine beam search with a grammar check tool to
analyze the syntax and grammatical errors contained in
the predictions. The static analysis tool FindBugs [37] is
exploited to identify different types of potential errors in
Java programs. Potential errors can be divided into four
levels: scariest, scary, troubling, and of concern based on
their possible impact or severity. In our SeqTrans, if the top
1 candidate prediction cannot pass the check of FindBugs
and contains scariest or scary level bugs, we will search
for the candidate list provided by beam search to test the
next candidate until anyone has passed the check process.
Finally, we can generate the newly patched file and provide
it to developers.

We provide flexible choices for developers whether to
enable this feature or judge by their domain-specific knowl-
edge. In addition, we believe that with the continuous
improvement of model training, these grammatical errors
will become less and less. In the end, we will no longer rely
on third-party grammatical error check tools.

4 EMPIRICAL STUDY & EVALUATION

In this section, we conduct our experiment on a public
dataset [24] of vulnerability fixes and evaluate our method:
SeqTrans by investigating two research questions.

4.1 Research Questions
We explore the following research questions:

• RQ1: Can SeqTrans be competent for neural machine
learning to capture common features and complete
predictions?
RQ1 aims to prove that NMT is a feasible approach
to learn code transformations and outperforms other
state-of-the-art techniques.

• RQ2: Does SeqTrans perform better in predicting
specific types of CWEs?

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

RQ2 will explore in depth the prediction results and
the source codes of the data set to observe whether
our method performs inconsistently when predicting
different kinds of code transformations.

• RQ3: Sensitivity analysis of SeqTrans.
RQ3 will evaluate the impacts of the main compo-
nents of SeqTrans on performance such as the data
structure and the transformer model.

4.2 Experimental Design

In this section, we discuss our experimental design for RQ1,
RQ2 and RQ3.
Dataset: Our evaluation is based on a public vulnerabil-
ity repair dataset in MSR 19 [24]. The data was obtained
both from the National Vulnerability Database (NVD) and
from project-specific Web resources that they monitor on a
continuous basis. From that data, they extracted a dataset
that maps 624 publicly disclosed vulnerabilities affecting
205 distinct open-source Java projects, used in SAP products
or internal tools, onto the 1282 commits that fix them. Out
of 624 vulnerabilities, 29 do not have a CVE identifier at
all and 46, which do have a CVE identifier assigned by
a numbering authority, are not available in the NVD yet.
These vulnerabilities have been removed from the dataset,
the final number of vulnerabilities is 549.

The dataset is released under an open-source license,
together with supporting scripts that allow researchers to
automatically retrieve the actual content of the commits
from the corresponding repositories and to augment the
attributes available for each instance. Also, these scripts
allow to complement the dataset with additional instances
that are not security fixes (which is useful, for example, in
machine learning applications).

We choose two different deduplication strategies: the
first one is to remove all duplicates; The second strategy is to
delete duplicate data between each commit. We believe that
the second strategy can better simulate the data scenarios
in the real environment, but we found that other techniques
generally use the first strategy. We call them Dsmall and
Dmedian

(a) Dsmall for single line
prediction

(b) Dmedian for single line
prediction

Fig. 4: Data distribution for single line prediction

Figure 4 and Figure 5 shows the toke distribution of each
dataset. We can find that different deduplication strategies
will produce different token distributions.

4.2.1 RQ1 Setup:
We discuss our design for RQ1 from model used, compari-
son, and metric used, which are illustrated as follows:

(a) Dsmall for multiple line
prediction

(b) Dmedian for multiple line
prediction

Fig. 5: Data distribution for multiple line prediction

Model used: In order to evaluate the performance of Seq-
Trans, we implement and train two different NMT models:
Seq2seq, and Transformer model.

Seq2seq model is a RNN encoder-decoder model which
has been widely utilized in NMT domain, previous works
such as SequenceR [18] and Tufano et al. [17] are also based
on this model. Transformer model has been introduced in
the previous section.
Metric used: We have calculated the prediction accuracy
for each technique. Prediction accuracy will be calculated
using 10 cross validation for each technique. Then we will
calculate the number of correct predictions divided by the
total number to calculate the accuracy.
Comparison: Given the same dataset, we extract function-
level and statement-level code diffs with def-use chains to
separately train two models (seq2seq and transformer) for
single line and multiple line predictions.

In single line prediction, we will compare the trans-
former model with and Tufano [17], [38] et al. and Se-
quenceR [18]. Tufano has investigated the feasibility of
using neural machine translation for learning wild code. The
disadvantage of his method is that only sentences with less
than 100 tokens are analyzed. SequenceR presents a novel
end-to-end approach to program repair based on sequence-
to-sequence learning. It utilizes the copy mechanism to
overcome the unlimited vocabulary problem. To the best
of our knowledge, it achieves the best result reported on
such a task. However, the abstract data structure of this
method retains too much useless context. It does not use
the normalization method either. We have also added the
model that utilizing the same data structure as we but using
seq2seq model.

In multiple line prediction, we will just compare the
transformer model with seq2seq model. To the best of our
knowledge, we have not seen related works focus on multi-
line prediction.

4.2.2 RQ2 Setup:
In this part, we will discuss the observations when we look
deep inside the prediction result. We only manually analyze
the prediction results generated by SeqTrans in single line
prediction. Other models are not considered.

Metric used: We have calculated the prediction accuracy
for each CWE and each category of code transformation.

Comparison: We will compare the accuracy for each
CWE and each category of code transformation between the
two dataset Dsmall and Dmedian. If some CWEs perform
very differently between the two data sets, we will conduct
a detailed case study.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

4.2.3 RQ3 Setup:
In this part, we will discuss the impacts of the main factors
that affect the performance of SeqTrans.

The process is shown as follows: Firstly, we will select a
list of parameters that may affect the performance of our
model. Then we will change one parameter in one time
and make the experiment in the same dataset. The final
parameter selections of SeqTrans will produce the highest
acceptance rates for the configurations we tested. For each
parameter, we will utilize cross validation for 10 times and
calculate the mean value as the final precision. The training
set we choose is Dmedian for single line prediction.

Metric used: Parameters that we have tested contain
encoder and decoder layers, word size of the embedding,
data structure, code normalization and copy mechanism.

4.3 Experimental Results
4.3.1 RQ1: Can SeqTrans be competent for neural ma-
chine learning to capture common features and complete
predictions?

Table 1 shows the accuracy results of single line prediction in
four different NMT models including the transformer model
that we exploit, Seq2Seq model, SequenceR and the work of
Tufano et al.. For Seq2Seq model and transformer model,
we use the same training set with def-use chains. As for the
SequenceR [18] and Tufano et al. [38], we strictly follow their
original codes and data structures. We have tried to exploit
the beam search to generate a list of predictions. Figure 6
shows the performance on Dsmall when beam size increases
from 1 to 50. Figure 7 shows the performance on Dmedian

when beam size increases from 1 to 50. The x-axis represents
beam size and the y-axis represents the prediction accuracy.
For example, if Beam=10, for each input we will search
all 10 generated predictions. When one of the prediction
results is identical to the code transformation performed
by developers, we determine that it is a correct prediction.
We employ 10 cross-validation to calculate the accuracy of
the model, in which 90% is utilized as a training set and
validate set and the remaining 10% is used as a test set. If
the predicted statement equals to the statement in the test
set, there is a right prediction.

From the table, we see that our SeqTrans performs the
best and achieves an accuracy of 242/2130 (11.3%) when
Beam=1 on Dsmall, followed by Seq2seq 121/2130 (7.5%),
SequenceR 252/3661 (6.9%) and Tufano et al. 20/1010
(2.0%). On Dmedian, SeqTrans also reaches the best accuracy
of 2052/3334(61.6%), followed by SequenceR 2498/4610
(54.2%), Seq2seq 1621/3334 (48.6%) and Tufano et al.
252/1577 (15.9%).

To our surprise is that SequenceR is not as good as
described. It even performs worse than Seq2seq when
beam=1 on Dsmall. The poor performance of SequenceR
can be explained by the difference between data structures.
SequenceR utilize the buggy context which contains the
buggy line and the context around the buggy line in the
same function. Other variable declarations and method dec-
larations in the same class will be retained, too. However,
this buggy context keeps a lot of statements that have no
relationship with the buggy line. The whole data structure

0 2 4 6 8 10 12

Beam Size

0

5

10

15

20

25

P
re

c
is

io
n

Performance in different models

SeqTrans

SequenceR

Seq2seq

Tufano

Fig. 6: Performance on Dsmall

is too long and contains a large number of declaration
statements that are not related to the buggy line, which
performs not well in our public vulnerable dataset. Another
disadvantage is that SequenceR only supports single line
prediction, but in vulnerability fixing it always contains
line deletion and addition. Our approach SeqTrans supports
not only statement-level code replacement but also method-
level prediction which contains line deletion and addition.

In our SeqTrans, we only maintain the data depen-
dencies before the vulnerable statement. Meanwhile, we
will normalize the data and replace variable names by
”var1, var2....vark”. Literal and numerical value will also
be replaced by constants and maintained in a dictionary
for future recovery. The poor performance of Tufano et
al. may be due to few data samples, we strictly follow
their method and only select sequences with less than 100
tokens. Overall, data structure can significantly affects the
performance of NMT models. Our model leverages def-use
chains [20] to maintain data dependencies, which can help
the NMT model reach higher accuracy.

The second experiment is multi-line prediction. Because
of some implementation issues, we only compared the
transformer and the seq2seq models. We input the same
training set which contains a list of method-level abstracted
code diffs with def-use chains. The validation process is the
same as the experiment of single line prediction. Results in
Table 2 shows that our transformer model achieves an accu-
racy of 491/8036 (6.1%) when Beam=1 on Dsmall, followed
by Seq2seq 453/8036 (5.6%). On Dmedian, SeqTrans also
reaches the best accuracy of 4705/10047 (46.8%), followed
by Seq2seq 3201/10047 (31.9%).

The gap is even larger than the result of single line
prediction. We think the reason is that if we utilize the whole
vulnerable functions as the training set, the token number is
always bigger than 1000, which may be too long for seq2seq
model to capture relationships between each token.

Answer to RQ1: In summary, NMT models are able
to learn meaningful code changes from historical code
repair records and generate predicted code like a de-
veloper. Our approach SeqTrans based on transformer
model outperforms other NMT model in both single line
prediction and multi-line prediction. Even outperforms
the state-of-the-art approach SequenceR in our public
vulnerability fix dataset.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0 2 4 6 8 10 12

Beam Size

10

20

30

40

50

60

70

80

P
re

c
is

io
n

Performance in different models

SeqTrans

SequenceR

Seq2seq

Tufano

Fig. 7: Performance on Dmedian

TABLE 1: Performance results of different criteria in single
line prediction

Approach Beam
Accuracy

Dsmall Dmedian

SeqTrans

1 242/2130(11.3%) 2270/3334(68.1%)

10 338/2130(15.5%) 2504/3334(75.1%)

50 473/2130(22.1%) 2587/3334(77.6%)

SequenceR

1 252/3661(6.9%) 2498/4610(54.2%)

10 418/3661(11.4%) 2946/4610(63.90%)

50 725/3661(19.8%) 3167/4610(68.7%)

Seq2seq

1 121/2130(7.5%) 1621/3334(48.6%)

10 242/2130(11.3%) 1927/3334(57.7%)

50 390/2130(18.3%) 2032/3330(61.0%)

Tufano et al.

1 20/1010(2.0%) 252/1577(15.9%)

10 41/1010(4.0%) 335/1577(21.0%)

50 63/1010(5.9%) 373/1577(23.6%)

TABLE 2: Performance results of different criteria in
multiple line prediction

Approach Beam
Accuracy

Dsmall Dmedian

SeqTrans

1 491/8036(6.1%) 4705/10047(46.8%)

10 1176/8036(14.6%) 4862/10047(48.4%)

50 1531/8036(19.1%) 5275/10047(52.5%)

Seq2seq

1 453/8036(5.6%) 3201/10047(31.9%)

10 1289/8036(15.9%) 4377/10047(43.6%)

50 1320/8036(16.4%) 443/10047(44.5%)

4.3.2 RQ2: Does SeqTrans perform better in predicting
specific types of CWEs?

We now look at what types of vulnerabilities fix our model
can well identify and generate predictions. Figure 8, Figure
9 and Table 3 shows the prediction accuracy of each CWE.
The Common Weakness Enumeration (CWE) is a category
system for software weaknesses and vulnerabilities. Every
CWE contains a list of CVEs. In order to make the picture
more concise, we deleted the CWE with an accuracy rate of

Fig. 8: Prediction accuracy of each CWE (Dmedian)

Fig. 9: Prediction accuracy of each CWE (Dsmall)

0. Figure 8 presents the prediction accuracy in Dmedian. As
we have shown before that the average accuracy of Beam=1
is 61.6%, 8 types of CWEs have higher accuracy. The highest
one is CWE-287, which achieves the accuracy of 86%. Figure
9 is the prediction accuracy in Dsmall. 13 types of CWEs is
higher than the average accuracy of 11.3%. The highest one
is CWE-306 and it achieves a surprising prediction perfor-
mance of 50%, 5 times average performance. Detailed results
are given in Table 3. CWE No. indicates the CWE number.
The first column of Accu is the right prediction number
and the total prediction number. The second column of
Accu is prediction accuracy. A surprising finding is that one
CWE with the highest prediction accuracy in one data set
achieves 0 in another data set. We can also find out there are
more CWEs in Dsmall with the prediction accuracy that is
higher than the average, which may due to the fact that the
distribution in Dsmall is more sparse. In the following, we
will compare the difference between these two datasets and
make a detailed analysis of why the model performs so well
on certain specific CWEs.

In order to deeply analyze these specific CWEs, we
derived Table 4 that shows the classification of code trans-
formations by manually analyzing prediction results and
source codes. We analyzed not only the correct prediction
but also the wrong prediction. The first column is the type

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 3: Prediction results in the data set

D meidan D small
CWE No. Accu CWE No. Accu
CWE-287 188/219 0.86 CWE-306 1/2 0.5

CWE-863 42/56 0.75 CWE-444 2/5 0.4

CWE-444 21/28 0.75 CWE-287 24/84 0.29

CWE-502 1351/1911 0.71 CWE-362 3/11 0.27

CWE-22 65/104 0.64 CWE-863 4/17 0.24

CWE-362 15/26 0.63 CWE-22 5/30 0.17

CWE-94 8/16 0.5 CWE-522 10/67 0.15

CWE-361 2/4 0.5 CWE-361 1/7 0.14

CWE-522 41/84 0.49 CWE-502 202/1511 0.13

CWE-78 12/27 0.44 CWE-78 3/23 0.13

CWE-200 40/120 0.33 CWE-284 1/8 0.13

CWE-297 47/166 0.28 CWE-noinfo 7/59 0.12

CWE-noinfo 18/69 0.26 CWE-200 3/28 0.11

CWE-20 28/112 0.25 CWE-19 5/56 0.09

CWE-611 28/112 0.2 CWE-611 4/52 0.08

CWE-79 7/42 0.17 CWE-310 15/202 0.07

CWE-310 27/163 0.17 CWE-20 7/97 0.07

CWE-284 10/76 0.13 CWE-74 1/14 0.07

CWE-19 1/8 0.13 CWE-269 2/29 0.07

CWE-835 1/10 0.1 CWE-264 4/60 0.07

CWE-264 5/60 0.08 CWE-352 1/17 0.06

CWE-352 3/40 0.08 CWE-320 3/57 0.06

CWE-269 2/29 0.07 CWE-79 2/37 0.05

CWE-320 1/26 0.04 CWE-94 1/61 0.01

CWE-74 0/14 0 CWE-297 1/140 0.01

CWE-434 0/3 0 CWE-835 0/10 0

CWE-306 0/3 0 CWE-434 0/3 0

CWE-295 0/12 0 CWE-295 0/12 0

CWE-918 0/16 0 CWE-918 0/8 0

CWE-521 0/4 0 CWE-521 0/2 0

CWE-89 0/3 0 CWE-89 0/3 0

CWE-327 0/1 0 CWE-327 0/1 0

CWE-732 0/2 0 CWE-732 0/2 0

CWE-Other 0/7 0 CWE-Other 0/6 0

name of code transformations. We roughly divided the code
transformation types into 17 categories. It is worth noting
that some single predictions can include multiple types of
code changes, they are classified into different code change
types. For this reason, the sum of the classified changes is
not equalled to the number in Table 3. Detailed definitions
are shown in the following:

• Change Parameter: Add, delete the parameter or
change the parameter order.

• Change Throw Exception: Add, delete or replace the
block of throw exception, add or delete the exception
keywords in method declaration.

• Change Variable Definition: Change variable type or
value.

• Change Method Call: Add, delete a method call or
replace a method call by another.

• Change Target: Maintain the same method call but
change the target of the method call.

• Change Annotation: Add, delete or replace the anno-
tation.

• Change Method Declaration: Add, delete or replace
method name and the qualifier.

• Change Class Declaration: Modify the declaration of

TABLE 4: Types of code transformation learned by
SeqTrans

Code Transformations
Number

Dsmall Dmedian

Change Parameter 51/495(10.3%) 535/818(65.4%)

Change Throw Exception 52/227(22.9%) 216/447(48.3%)

Change Variable Definition 24/265(9.8%) 195/418(46.7%)

Change Method Call 25/194(12.9%) 69/231(29.9%)

Change Target 14/123(11.3%) 99/221(44.8%)

Change Annotation 40/178(22.5%) 248/346(71.7%)

Change Method Declaration 28/197(14.2%) 119/229(52.0%)

Change Class Declaration 1/57(1.8%) 31/101(30.7%)

Change If Condition 10/167(6.0%) 170/292(58.2%)

Change Switch block 3/31(9.7%) 8/54(14.8%)

Change Loop Condition 2/38(5.3%) 12/41(29.3%)

Change Return Statement 5/180(2.8%) 181/453(40.0%)

Change Keywords ”this/super” 6/18(33.3%) 24/41(58.5%)

Add Try Block 2/17(11.8%) 15/27(55.6%)

Change Catch Exception 1/13(7.7%) 7/36(19.4%)

Refactoring 4/85(4.7%) 89/159(56.0%)

Other 3/22(13.6%) 57/136(41.9%)

a class.
• Change if Condition: Add, delete or replace

operands and operators in the if condition.
• Change Switch Block: Add, delete or replace the

”case” statement.
• Change Loop Condition: Modify the loop condition.
• Change Return Statement: Change return type or

value, add or delete ”return” keyword.
• Change Keywords ”this/super”: add or delete these

keywords.
• Add Try Block: Put statements into the try block.
• Change Catch Exception: Add, delete or replace the

block of catch exception.
• Refactoring: Rewrite the code without changing

functionality.
• Other: Other transformations which are hard to be

categorized or occur infrequently.

We can observe some conclusions from Table 4. In Dsmall

of Table 4, SeqTrans performs well in predicting throw
exception, annotation and keywords changes. All of them
achieve the accuracy that twice as good as the average.
When predicting method call, target, method declaration
and try block changes. SeqTrans also performs better than
the average accuracy. In Dmedian, SeqTrans performs well
in most of the code transformations. Only method call, class
declaration, switch block, loop condition, catch exception
changes show lower accuracy than others. Some of them
involve sophisticated code changes, while others may only
be due to insufficient samples, resulting in the model not
learning well.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Finding 1: SeqTrans performs well in handling throw ex-
ception change, annotation change and keywords change
in both datasets. When SeqTrans is trained on Dmedian,
SeqTrans can handle nearly 70% of the code transforma-
tions, all of them are higher than or close to 50% accuracy.
Simple code transformations is easier to be learned by
the model, even in unseen situations. Multiple line and
complex code transformations may require more training
data to be learned by the model.

In the following, we will discuss some CWEs in Table
3. These CWEs with significant differences in prediction
performance between the two datasets have been bolded.
All of them perform poorly or even achieves 0 accuracy
in one dataset. We will focus on these CWEs to illustrate
the differences in the same model using different training
datasets.

Case Study: CWE-306: CWE-306 means ”Missing Au-
thentication for Critical Function”. The software does not
perform any authentication for functionality that requires a
provable user identity or consumes a significant amount of
resources. It is a specific case which is the only one performs
better in Dsmall than in Dmedian. The right prediction
(second line) is to add annotation ”@SuppressWarnings (
”resource”)” before the method declaration.

> public static JMXConnectorServer createJMXServer (int port, boolean local) throws IOException

= @SuppressWarnings ("resource") public static JMXConnectorServer createJMXServer (int

port, boolean local) throws IOException

< @Override public static JMXConnectorServer createJMXServer (int port, boolean local) throws

IOException

Fig. 10: Case: wrong prediction of CWE-835

However, as shown in the third line, the model using
Dmedian incorrectly predicts the annotation, which may due
to the reason that the token ”@Override” appears more
frequently in the training set and achieves a higher atten-
tion weight. The other two incorrect predictions belong to
variable definition changes, neither model is able to make
the correct prediction.

Case Study: CWE-94: CWE-94 means ”Improper Control
of Generation of Code”. The software constructs all or part
of a code segment using externally-influenced input from
an upstream component, but it does not neutralize or in-
correctly neutralizes special elements that could modify the
syntax or behaviour of the intended code segment. The only
one case that is handled by Dsmall belongs to parameter
change. The other code transformations of CWE-94 belongs
to variable definition changes and catch exception change,
which can be seen from Table 4 that both of them perform
poorly on Dsmall but perform well in Dmedian.

> return URLDecoder.decode (translatedInput, encoding)

= return URLDecoder. decode (encoding, translatedInput)

< return URLDecoder. decode (encoding, translatedInput)

Fig. 11: Case: right prediction of CWE-94

Case Study: CWE-502: CWE-502 means ”Deserialization
of Untrusted Data”. The application deserializes untrusted
data without sufficiently verifying that the resulting data
will be valid. CWE-502 related code transformations account
for half of the entire training set. It contains large numbers

of repetitive code transformations, such as delete one throw
exception and add a return statement, change parameter
orders. We will list some typical code changes that are well
captured and handled by SeqTrans.

> throw data.instantiationException(_valueClass, ClassUtil.getRootCause(cause))

= return data.handleInstantiationProblem(_valueClass, root, ClassUtil getRootCause(cause))

< return data.handleInstantiationProblem(_valueClass, root, ClassUtil.getRootCause(cause))

Fig. 12: Case: right prediction of CWE-502

In Figure 12, developer delete the throw keyword and
add a return keyword to transfer the instantiation problem.
In addition, a new parameter was inserted into the second
position. This code transformation can be well captured by
SeqTrans.

> if (type.isAssignableFrom(raw))

= if (raw.getParameterCount() == 1)

< if (raw.getParameterCount() == 1)

Fig. 13: Case: right prediction of CWE-502

In Figure 13, developer firstly changes the target of the
method call. Then, replace the method call from ”isAs-
signableFrom” to ”getParameterCount”. Finally, the condi-
tional expression ”== 1” is added. This code transformation
contains three single code transformations but is also well
captured by SeqTrans. In general, our tool SeqTrans per-
forms stable and outstandingly for vulnerability fixes like
CWE-502 that contain a lot of repetitive code transforma-
tions.

Overall, for some CWEs that contain duplicate vulnera-
bility fixes or can be learned from historical repair records,
our SeqTrans performs very well.

Finding 2: SeqTrans performs well in predicting specific
kinds of vulnerability fixes like CWE-287 (Improper Au-
thentication) and CWE-863 (Incorrect Authorization). It
can well predict most code transformations in Dmedian

such as annotation change and throw exception change.
The prediction range will become wider and wider as the
historical repair records increases.

4.3.3 RQ3: Sensitivity Analysis of SeqTrans

TABLE 5: Factor impact analysis with selected parameters

Factor Precision Impact

SeqTrans Model 0.6813 -

Smaller Word Size (256 vs 512) 0.6543 -4%

Larger Word Size (512 vs 1024) 0.6672 -3%

Without Data Dependency 0.5786 -15%

Without Code Normalization 0.6436 -6%

Without Copy Mechanism 0.6553 -4%

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

1 2 3 4 5 6 7

Layers

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

P
re

c
is

io
n

Prediction results with different layer parameters

(a) Layers
10000 20000 30000 40000 50000

0.668

0.67

0.672

0.674

0.676

0.678

0.68

0.682
Prediction results with different training steps

(b) Training Steps

Fig. 14: Factor analysis with selected parameters

Table 5 and Figure 14 shows an sensitivity analysis for each
major component of SeqTrans.

From Table 5, we can see the prediction result of our
SeqTrans against the results of single changes on the model.
We will explain them one by one.

In the third and fourth rows we have explored the effect
of word size on the performance of our model. Results
shows that both the smaller and larger word size perform
worse than the feature that we choose. We think the reason
is that Smaller word sizes may lead to transitional com-
pression of features and loss of some valid information.
Larger word sizes may not be appropriate for the size of
our dataset.

In the fifth row we have discussed whether data de-
pendency can help the model produce better predictions.
Result shows a 15% improvement in model performance
when comparing our data structure to the original single
vulnerable line. Result in the sixth row shows that ode
normalization in data preprocessing will lead to a 6% in-
crease in performance. The seventh row shows that the copy
mechanism wo choose to mitigate OOV problem will result
in a 4% increase in performance.

Figure 14 is the factor analysis for different model layers
and training steps. Figure 14a is the test of model layers,
we have tried different features and the conclusion is that 6
layers is a suitable choice. It is worth noting that we need to
ensure that the encoder and decoder parts of the transformer
model have the same number of layers, so we use the same
number of layers on both encoder and decoder. Results
show that prediction performance rises with the number of
layers until it reaches 6. The performance of layer 7 is not
better than 6, so we decide on 6 as the parameter.

Figure 14 is the experiment result for different training
steps. We can see that performance rises as steps goes up
until it reaches 30000. The performance of step 40000 is
identical to 30000 and the performance of step 50000 is
worse. This may be due to the overfitting of the model to
the training data.

The sensitivity analysis results demonstrate that param-
eter selections for the SeqTrans produce the highest accep-
tance rates for the configurations we tested.

5 THREATS TO VALIDITY

5.1 Internal Validity
The performance of the NMT model can be significantly
influenced by the hyperparameters we adopted. The trans-

former model is susceptible to hyperparameters. In order to
mimic the Google setup we set a bunch of options suggested
by OpenNMT [39] to simulate their result. However, there
are gaps between source code language and natural lan-
guage. We also modified and test part of the hyperparame-
ters and choose the one that achieves the best performance.

We manually analyzed the prediction result and the
source code, classified them into 17 types. This number of
categories is based on our experience during the experiment
process, which may not be complete enough to cover all
the code transformations. More refined classification may
lead to more discoveries. However, during our analysis, we
find that most of the code changes can be categorized into
specific code transformations or a list of them. Only a few
code changes cannot be identified, classified and even partly
should be attributed to the mismatch of Gumtree [28].

5.2 External Validity

Our training data set comes from Ponta’s work that pub-
lished in MSR 2019 [24]. Because our goal is automatic
vulnerability fix, we do not apply our tool on Defect4J [40],
which is a real-world bug repair repository and is widely
utilized by some works. In order to simulate the real world
environment, we conduct 10 cross-validations. We believe
this can also lead to the same observation. We will search for
a suitable dataset to validate the performance in the future.

During the experiment we find that Gumtree [28] will
introduce mismatches, which will affect the quality of the
training set. In order to solve this, we fixed some bugs
in Gumtree and submitted the author. We also modified
Gumtree to support statement-level code matching. We
believe that through these we have minimized the impact
of Gumtree.

Moreover, our experiment is only based on Java lan-
guage now. However, we believe that there is a common
logic between programming languages, and the rules and
features learned by the model can be easily applied to other
languages.

6 RELATED WORKS

In recent years, Deep Learning (DL) has become a powerful
tool to solve problems of Software Engineering (SE), which
can capture and discover features by the DL model rather
than manual derivation. In this work, we apply the Neural
Machine Translation (NMT) model into the program repair
field to learn from historical vulnerability repair records,
summarize common pattern rules to apply to subsequent
vulnerability fix. In the following, we will introduce works
focus on program repair and compare our work with related
research.

Program Repair Meditor [8] provides a novel algorithm
that flexibly locates and groups MR (migration-related) code
changes in commits. For edit application, Meditor matches
a given program with inferred edits to decide which edit is
applicable and produce a migrated version for developers.
AppEvolve [10] can automatically perform app updates for
API changes based on examples of how other developers
evolved their apps for the same changes. This technique is
able to update 85% of the API changes considered, but it is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

quite time-consuming and not scalable enough. ARJA-e [41]
proposes a new evolutionary repair system for Java code
that aims to address challenges for the search space. These
works are still based on statistical ranking or strict context
matching. However, more and more works are beginning to
exploit machine learning to rank the similar code transfor-
mations and automatically generate code recommendations.

DeepFix [42] is a program repair tool using a multi-
layered sequence-to-sequence neural network with atten-
tion for fixing common programming errors. In a collection
of 6,971 incorrect C language programs written by students
for 93 programming tasks, DeepFix can completely repair
1881 (27%) of them, and can partially repair 1338 (19%) of
them. TRACER [43] is another work that is very similar
to Deepfix for fixing compiler errors, and its accuracy rate
exceeds that of Deepfix. Tufano [17], [38] has investigated
the feasibility of using neural machine translation for learn-
ing wild code. The disadvantage of his method is that only
sentences with less than 100 tokens are analyzed.

SequenceR [18] presents a novel end-to-end approach
to program repair based on sequence-to-sequence learning.
It utilizes the copy mechanism to overcome the unlim-
ited vocabulary problem. To the best of our knowledge, it
achieves the best result reported on such a task. However,
the abstract data structure of this method retains too much
useless context. It does not use the normalization method
either.

Transformer and Tree Structure Another popular direc-
tion is utilizing a transformer model or treat source code
as a syntax tree to maintain richer information. TranS3 [44]
proposes a transformer-based framework to integrate code
summarization with code search. Tree-based neural network
such as TreeLSTM [45], [46], ASTNN [47] or TreeNet [48]
are also being applied on program analysis. Shiv et al. [49]
propose a method to extend transformers to tree-structured
data. This approach abstracts the sinusoidal positional en-
codings of the transformer, using a novel positional en-
coding scheme to represent node positions within trees. It
achieves a 22% absolute increase in accuracy on a JavaScript
to CoffeeScript [50] translation dataset. TreeCaps [51] pro-
poses a tree-based capsule network for processing program
code in an automated way that encodes code syntactical
structures and captures code dependencies more accurately.
However, to the best-of-our knowledge, there is no work
using tree-based neural machine translation for program
repairing at the time of writing this paper. This situation
is more challenging than translate one language to another
language. Converting the generated prediction tree into
readable code also faces challenges. Overall, we believe that
using a tree-based neural network or even combining it with
a transformer structure will become a future work of us.

7 CONCLUSION

In this paper, we design the automatic vulnerability fix
tool SeqTrans that is based on the NMT technique to learn
from historical vulnerability fixes. It can provide sugges-
tions and automatically fix the source code for develop-
ers. We conduct our study on real-world vulnerability fix
records and compare our SeqTrans with three kinds of other
NMT techniques. We investigated two research questions

based on these collected data. Experiment results show that
our technique outperforms state-of-the-art NMT model and
achieves an accuracy rate of 73.6% in single line prediction
and 52.5% in multiple line prediction. We also look deeply
into the model and manually analyze the prediction result
and the source code. Our observation finds that SeqTrans
performs quite well in specific kinds of CWEs like CWE-
287(Improper Authentication) and CWE-863 (Incorrect Au-
thorization). The prediction range will become wider and
wider as the historical repair records increases.

REFERENCES

[1] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference, 2014, pp. 475–488.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre at-
tacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
arXiv preprint arXiv:1801.01207, 2018.

[4] M. Zalewski, “American fuzzy lop: a security-oriented fuzzer,”
URl: http://lcamtuf.coredump.cx/afl/(visited on 06/21/2017), 2010.

[5] K. Serebryany and M. Böhme, “Aflgo: Directing afl to reach
specific target locations,” 2017.

[6] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Transactions on Software
Engineering, vol. 45, no. 5, pp. 489–506, 2017.

[7] M. Monperrus, “Automatic software repair: a bibliography,” ACM
Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[8] S. Xu, Z. Dong, and N. Meng, “Meditor: inference and application
of api migration edits,” in 2019 IEEE/ACM 27th International Con-
ference on Program Comprehension (ICPC). IEEE, 2019, pp. 335–346.

[9] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to api usage adapta-
tion,” ACM Sigplan Notices, vol. 45, no. 10, pp. 302–321, 2010.

[10] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update
for android apps,” in Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, 2019, pp.
204–215.

[11] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen,
“Statistical migration of api usages,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C). IEEE, 2017, pp. 47–50.

[12] M. Lamothe, W. Shang, and T.-H. Chen, “A4: Automatically assist-
ing android api migrations using code examples,” arXiv preprint
arXiv:1812.04894, 2018.

[13] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “Api code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 511–522.

[14] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang,
“Intellimerge: a refactoring-aware software merging technique,”
Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 1–28, 2019.

[15] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and
D. Dig, “Accurate and efficient refactoring detection in commit
history,” in 2018 IEEE/ACM 40th International Conference on Soft-
ware Engineering (ICSE). IEEE, 2018, pp. 483–494.

[16] I. Eclipse, “Eclipse ide,” Website www. eclipse. org Last visited: July,
2009.

[17] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-
fixing patches in the wild via neural machine translation,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 832–837.

[18] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshy-
vanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence
learning for end-to-end program repair,” IEEE Transactions on
Software Engineering, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[19] C. Casalnuovo, K. Sagae, and P. Devanbu, “Studying the difference
between natural and programming language corpora,” Empirical
Software Engineering, vol. 24, no. 4, pp. 1823–1868, 2019.

[20] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng, “Do
i use the wrong definition? defuse: Definition-use invariants for
detecting concurrency and sequential bugs,” in Proceedings of the
ACM international conference on Object oriented programming systems
languages and applications, 2010, pp. 160–174.

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp. 5998–
6008.

[23] A. See, P. J. Liu, and C. D. Manning, “Get to the point:
Summarization with pointer-generator networks,” arXiv preprint
arXiv:1704.04368, 2017.

[24] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-
source software,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). IEEE, 2019, pp. 383–387.

[25] “Supplementary Material,” https://www.dropbox.com/sh/
ycwi8apjy978vmw/AABnAGE4IZMBfIIgJGclK aWa?dl=0, 2020.

[26] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-
centric and usage-based analysis of known vulnerabilities in open-
source software,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2018, pp. 449–460.

[27] “Eclipse jgit,” https://www.eclipse.org/jgit/, Accessed April 4,
2017.

[28] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monper-
rus, “Fine-grained and accurate source code differencing,” in Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering, 2014, pp. 313–324.

[29] “Scitools understand,” https://scitools.com/features/, Sep 20,
2019.

[30] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh
annual conference of the international speech communication association,
2010.

[31] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” 1999.

[32] A. Graves, “Generating sequences with recurrent neural net-
works,” arXiv preprint arXiv:1308.0850, 2013.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[35] V. Raychev, M. Vechev, and E. Yahav, “Code completion with sta-
tistical language models,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2014, pp. 419–428.

[36] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural
machine translation,” arXiv preprint arXiv:1702.01806, 2017.

[37] “Findbugs™ - find bugs in java programs,” http://findbugs.
sourceforge.net/, March 06, 2015.

[38] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshy-
vanyk, “On learning meaningful code changes via neural machine
translation,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 25–36.

[39] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush,
“OpenNMT: Open-source toolkit for neural machine translation,”
in Proc. ACL, 2017. [Online]. Available: https://doi.org/10.18653/
v1/P17-4012

[40] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 437–440.

[41] Y. Yuan and W. Banzhaf, “Toward better evolutionary program
repair: An integrated approach,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 1, pp. 1–53,
2020.

[42] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing
common c language errors by deep learning,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[43] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, “Com-
pilation error repair: for the student programs, from the student
programs,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering Education and Training,
2018, pp. 78–87.

[44] W. Wang, Y. Zhang, Z. Zeng, and G. Xu, “Transˆ 3: A transformer-
based framework for unifying code summarization and code
search,” arXiv preprint arXiv:2003.03238, 2020.

[45] M. Ahmed, M. R. Samee, and R. E. Mercer, “Improving tree-lstm
with tree attention,” in 2019 IEEE 13th International Conference on
Semantic Computing (ICSC). IEEE, 2019, pp. 247–254.

[46] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory net-
works,” arXiv preprint arXiv:1503.00075, 2015.

[47] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
novel neural source code representation based on abstract syntax
tree,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 783–794.

[48] Z. Cheng, C. Yuan, J. Li, and H. Yang, “Treenet: Learning sentence
representations with unconstrained tree structure.” in IJCAI, 2018,
pp. 4005–4011.

[49] V. Shiv and C. Quirk, “Novel positional encodings to enable tree-
based transformers,” in Advances in Neural Information Processing
Systems, 2019, pp. 12 058–12 068.

[50] J. Ashkenas et al., “Coffeescript,” 2009.
[51] V. Jayasundara, N. D. Q. Bui, L. Jiang, and D. Lo, “Treecaps: Tree-

structured capsule networks for program source code processing,”
arXiv preprint arXiv:1910.12306, 2019.

