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Normalization of RNA-sequencing (RNA-seq) data has proven 
essential to ensure accurate inference of expression levels. 
Here, we show that usual normalization approaches mostly 
account for sequencing depth and fail to correct for library 
preparation and other more complex unwanted technical 
effects. We evaluate the performance of the External RNA 
Control Consortium (ERCC) spike-in controls and investigate 
the possibility of using them directly for normalization. We 
show that the spike-ins are not reliable enough to be used 
in standard global-scaling or regression-based normalization 
procedures. We propose a normalization strategy, called remove 
unwanted variation (RUV), that adjusts for nuisance technical 
effects by performing factor analysis on suitable sets of 
control genes (e.g., ERCC spike-ins) or samples (e.g., replicate 
libraries). Our approach leads to more accurate estimates of 
expression fold-changes and tests of differential expression 
compared to state-of-the-art normalization methods. In 
particular, RUV promises to be valuable for large collaborative 
projects involving multiple laboratories, technicians, and/or  
sequencing platforms.

Normalization, a crucial step in the analysis of RNA-seq data, has a 
strong impact on the detection of differentially expressed genes1–3.  
In the last few years, several normalization strategies have been pro-
posed to correct for between-sample distributional differences in read 
counts, such as differences in total counts (i.e., sequencing depths)1,4, 
and within-sample gene-specific effects, such as gene length or GC-
content effects2,5. Although there have been efforts to systematically 
compare normalization methods1,3,6, this important aspect of RNA-seq 
analysis is still not fully investigated or resolved. In particular, when 
data arise from complex experiments, involving, for instance, cell sort-
ing, low-input RNA or different batches (e.g., multiple sequencing 
centers or different read lengths), there may be more to correct for 

than simply differences in sequencing depths; we refer to such typically 
unknown nuisance technical effects as unwanted variation.

One largely unexplored direction is the inclusion of spike-in controls  
in the normalization procedure. Controls have been successfully 
employed in microarray normalization, for mRNA arrays7,8 and, 
more recently, microRNA arrays9. One of the advantages of using 
negative controls in the normalization procedure is the possibility of 
relaxing the common assumption that the majority of the genes are 
not differentially expressed between the conditions under study. This 
assumption can be violated when a global shift in expression occurs 
between conditions9–11; in this case, control-based normalization may 
be the only option.

Recently, the ERCC developed a set of RNA standards for RNA-
seq12,13. This set consists of 92 polyadenylated transcripts that mimic 
natural eukaryotic mRNAs. They are designed to have a wide range 
of lengths (250–2,000 nucleotides) and GC-contents (5–51%) and 
can be spiked into RNA samples before library preparation at various 
concentrations (106-fold range). We refer to these standards as ERCC 
spike-in controls.

Lovén et al.11 have made use of the ERCC spike-in controls in 
their normalization approach in the context of a global expression 
shift. Their procedure may be summarized as follows: (i) count the 
number of cells in each sample; (ii) add the ERCC spike-in sequences 
to each sample in proportion to the number of cells; (iii) normalize 
read counts based on cyclic loess robust local regression14,15 on the 
spike-in counts. Although their approach does not make any assump-
tions concerning differences in gene expression between samples, it 
relies on another equally important assumption: technical effects 
should affect the spike-ins in the same way as they do the genes. If, 
for instance, some library preparation step affects spike-in and gene 
counts differently, then normalization based on the spike-ins may 
incorrectly adjust the expression measures for the bulk of the genes. 
Unfortunately, the data set used by the authors to illustrate their 
approach lacks both technical and biological replication, making it 
impossible to quantify the extent of variation of the spike-ins and its 
relation to gene variation11.

Recently, Qing et al.16 showed that the percentage of RNA-seq reads 
mapping to the ERCC spike-ins could vary substantially between 
technical replicate samples and be markedly different from the nomi-
nal value. Moreover, the dependence of spike-in read counts on the 
poly(A) selection protocol (polyA+ versus RiboZero) suggests that 
poly(A) selection may play a role in spike-in detection. Given the 
growing interest in the ERCC spike-in standards, it is essential to 
evaluate their performance, with particular focus on their inclusion 
in normalization procedures.

normalization of Rna-seq data using factor analysis  
of control genes or samples
Davide Risso1, John Ngai2–4, Terence P Speed1,5,6 & Sandrine Dudoit1,7

1Department of Statistics, University of California, Berkeley, Berkeley, California, 
USA. 2Department of Molecular and Cell Biology, University of California, 
Berkeley, Berkeley, California, USA. 3Helen Wills Neuroscience Institute, 
University of California, Berkeley, Berkeley, California, USA. 4Functional 
Genomics Laboratory, University of California, Berkeley, Berkeley, California, 
USA. 5Bioinformatics Division, The Walter and Eliza Hall Institute of Medical 
Research, Parkville, Victoria, Australia. 6Department of Mathematics and 
Statistics, The University of Melbourne, Victoria, Australia. 7Division of 
Biostatistics, University of California, Berkeley, Berkeley, California, USA. 
Correspondence should be addressed to D.R. (davide.risso@berkeley.edu) or  
S.D. (sandrine@stat.berkeley.edu).

Received 27 November 2013; accepted 14 May 2014; published online  
24 August 2014; doi:10.1038/nbt.2931

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nbt.2931
http://www.nature.com/naturebiotechnology/


nature biotechnology	 VOLUME 32 NUMBER 9 SEPTEMBER 2014 897

a n a ly s i s

In this paper, our aim is twofold. We propose a normalization strat-
egy for RNA-seq, remove unwanted variation (RUV), that uses factor 
analysis to adjust for nuisance technical effects, based on counts 
(or residuals counts) for either negative control genes or negative 
control samples, that is, genes or samples that are not expected to be 
influenced by the biological covariates of interest. We also evaluate 
the behavior of the ERCC spike-in standards in two very different 
data sets, involving different organisms and designs, and explore 
the possibility of using them as controls for normalization. We show 
that the spike-ins are not reliable enough to be used in standard 
global-scaling or regression-based normalization procedures. We 
further demonstrate that RUV, whether based on controls or not, 
generally outperforms state-of-the-art normalization approaches 
in the context of differential expression inference. In particular, it 
improves upon other control-based methods and is thus promising 
when relying on controls is the only option (e.g., in case of global 
expression shift).

RESULTS
Data sets
To evaluate the performance of the ERCC spike-in controls and to val-
idate our RUV normalization strategy, we considered two very differ-
ent data sets (Online Methods). The first, from the Sequencing Quality 
Control (SEQC) Consortium17, compares two commercial RNA sam-
ples, Stratagene’s Universal Human Reference (UHR) RNA (sample A)  
and Ambion’s Human Brain Reference RNA (sample B). This data 
set is valuable for assessing normalization methods, as there are 
several technical replicates for both samples A and B, both at the 
library preparation (4 libraries for each sample type) and sequencing  
(16 lanes for each library) levels, and one can rely on external controls 
from qRT-PCR18. However, the absence of biological replication and 
the extreme difference between sample A and sample B make the 
data rather artificial and a more realistic and biologically meaningful 
data set was required to confirm our findings. To this end, we also 
relied on our recently published RNA-seq data19 for three treated and 
three control zebrafish samples, each corresponding to a single FACS  
(fluorescence-activated cell sorting) run on pools of cells from dif-
ferent fish. Here, cell sorting and library preparation effects are con-
founded with biological variability between pools of fish cells.

Unwanted variation in RNA-seq data
For both the SEQC and the zebrafish data sets, existing methods did 
not lead to satisfactory normalization of read counts (Figs. 1 and 2). In 
particular, for the SEQC data set, although the huge biological difference 
between sample A and sample B was captured by the first principal com-
ponent, residual library preparation and flow-cell effects were revealed 
by the second and third principal components (Fig. 1a). Upper-quartile 
normalization successfully adjusted for flow-cell effects (cf. sequencing 
depth), but not for library preparation effects (Fig. 1b).

Figure 2 reveals similar findings for the zebrafish data set and a 
clear need for normalization. The boxplots of unnormalized relative 
log expression (RLE) show large distributional differences between 
replicate libraries (Fig. 2a). As for the SEQC data set, upper-quar-
tile normalization was not fully satisfactory and, in particular, 
failed to capture the excessive variability of library 11 (Fig. 2b).  
Moreover, libraries failed to cluster by treatment in the first two  
principal components, when considering both unnormalized counts 
(Fig. 2c) and upper-quartile-normalized counts (Fig. 2d).

We compared other state-of-the-art normalization methods and 
found that none led to satisfying results in terms of the removal 
of library preparation effects for the SEQC data set and clustering  
of samples by treatment for the zebrafish data set (Supplementary 
Figs. 1–3).

Removing unwanted variation through normalization
Building on a previously described method for normalizing microar-
ray data20,21, we developed RUV as a normalization strategy for RNA-
seq data. Briefly, RUV works as follows. Consider a generalized linear 
model (GLM), where the observed RNA-seq read counts are regressed 
on both the known covariates of interest (e.g., treatment status) and 
unknown nuisance variables, that is, factors of unwanted variation 
(e.g., library preparation). RUV makes use of a subset of the data to 
estimate the factors of unwanted variation and adjusts for these in the 
model for differential expression analysis.

We propose three alternative approaches for estimating the factors 
of unwanted variation: (i) RUVg uses negative control genes, assumed 
not to be differentially expressed with respect to the covariates of 
interest (e.g., ERCC spike-ins); (ii) RUVs uses negative control sam-
ples for which the covariates of interest are constant (e.g., centered  
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UQ-normalized countsa bFigure 1 Unwanted variation in the SEQC 
RNA-seq data set. (a) Scatterplot matrix of 
first three principal components (PC) for 
unnormalized counts (log scale, centered). 
The principal components are orthogonal 
linear combinations of the original 21,559-
dimensional gene expression profiles, with 
successively maximal variance across the 128 
samples, that is, the first principal component 
is the weighted average of the 21,559 gene 
expression measures that provides the most 
separation between the 128 samples. Each 
point corresponds to one of the 128 samples. 
The four sample A and the four sample B 
libraries are represented by different shades of 
blue and red, respectively (16 replicates per 
library). Circles and triangles represent samples 
sequenced in the first and second flow-cells, 
respectively. As expected for the SEQC data set, the first principal component is driven by the extreme biological difference between sample A and 
sample B. The second and third principal components clearly show library preparation effects (the samples cluster by shade) and, to a lesser extent, 
flow-cell effects reflecting differences in sequencing depths (within each shade, the samples cluster by shape). (b) Same as a, for upper-quartile  
(UQ)-normalized counts. UQ normalization removes flow-cell effects (the circles and triangles now cluster together), but not library preparation effects. 
All other normalization procedures but RUV behave similarly as UQ (Supplementary Fig. 1).
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counts for technical replicates of sample 
A and of sample B in the SEQC data set);  
(iii) RUVr uses residuals from a first-pass 
GLM regression of the unnormalized counts 
on the covariates of interest.

We first applied RUVg to the SEQC and zebrafish data sets using a 
set of in silico empirical control genes (Online Methods and Fig. 3); 
RUVr and RUVs performed similarly (Supplementary Figs. 4–6). 
RUVg effectively reduced library preparation effects for the SEQC data 
set without weakening the sample A versus B effect (Fig. 3a). We also 

performed differential expression analysis between technical replicates 
for both sample A (Fig. 3b) and sample B (Supplementary Fig. 7).  
In the absence of differential expression, the P-value distribution 
should be as close as possible to the uniform distribution (identity 
line for the empirical cumulative distribution function in Fig. 3b). 
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Figure 2 Unwanted variation in the zebrafish 
RNA-seq data set. (a) Boxplots of RLE for 
unnormalized counts. Purple: treated libraries 
(Trt); green: control libraries (Ctl). We expect 
RLE distributions to be centered around zero 
and as similar as possible to each other. 
The RLE boxplots clearly show the need for 
normalization. (The bottom and top of the 
box indicate, respectively, the first and third 
quartiles; the inside line indicates the median; 
the whiskers are located at 1.5 the inter-
quartile range (IQR) above and below the box.) 
(b) Same as a, for upper-quartile-normalized 
counts. UQ normalization centers RLE 
around zero, but fails to remove the excessive 
variability of library 11. (c) Scatterplot of first 
two principal components for unnormalized 
counts (log scale, centered). Libraries do not 
cluster as expected according to treatment. 
(d) Same as c, for UQ-normalized counts. UQ 
normalization does not lead to better clustering 
of the samples. All other normalization 
procedures but RUV behave similarly as UQ 
(Supplementary Figs. 2 and 3).
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Figure 3 RUVg normalization using in silico 
empirical control genes. (a) For the SEQC data 
set, scatterplot matrix of first three principal 
components after RUVg normalization (log 
scale, centered). RUVg adjusts for library 
preparation effects (cf. Fig. 1), while retaining 
the sample A versus B difference. (b) For 
the SEQC data set, empirical cumulative 
distribution function (ECDF) of P-values for 
tests of differential expression between sample 
A replicates (given a value x, the ECDF at x is 
simply defined as the proportion of P-values 
≤ x). We expect no differential expression and 
P-values to follow a uniform distribution, with 
ECDF as close as possible to the identity line. 
This is clearly not the case for unnormalized 
(gray line) and upper-quartile-normalized (red) 
counts; only with RUVg (purple) do P-values 
behave as expected. (c) For the zebrafish data 
set, boxplots of RLE for RUVg-normalized 
counts. RUVg shrinks the expression measures 
for library 11 toward the median across 
libraries, suggesting robustness against outliers. 
(The bottom and top of the box indicate, 
respectively, the first and third quartiles; the 
inside line indicates the median; the whiskers 
are located at 1.5 the inter-quartile range 
above and below the box.) (d) For the zebrafish 
data set, scatterplot of first two principal 
components for RUVg-normalized counts (log 
scale, centered). Libraries cluster as expected 
by treatment.
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There were substantial library preparation effects for unnormal-
ized counts. These were only attenuated (and not fully removed) by 
upper-quartile normalization. By contrast, RUVg fully adjusted for 
library preparation effects. For the zebrafish data set, RUVg down-
weighted the effect of outlying library 11 on subsequent analyses 
(e.g., differential expression), by shifting its read counts towards 
the median counts across samples, as shown in the RLE boxplots  
of Figure 3c, thus leading to more robust differential expression 
results (see “Impact on differential expression analysis”). More 
importantly, RUVg led to better separation between treated and 
control samples (Fig. 3d).

Behavior of the ERCC spike-in controls
The main assumption of RUVg is that one can identify a set of nega-
tive control genes, that is, genes whose expression is not influenced 
by the biological covariates of interest. Although using a set of  
in silico empirical controls worked well in practice (Fig. 3), an obvi-
ous strategy is to design synthetic negative controls, known a priori 
not to be influenced by the biological covariates under study. To this 
end, we explored the possibility of using the recently proposed ERCC 
spike-in controls in the normalization procedure.

In order for the spike-ins to be trusted for normalization, two condi-
tions must be satisfied: (i) spike-in read counts are not affected by the 
biological covariates of interest and (ii) the unwanted variation affects 
spike-in and gene read counts similarly. Note that these assumptions 
are not limited to our RUV normalization approach and are needed 
also by other control-based methods11; hence, careful exploration of 
the behavior of the ERCC spike-ins is essential before applying any 
normalization method that makes use of them.

First, we considered the relationship between the ERCC spike-in 
counts and their nominal concentrations. Although there was a good 
linear relationship between log-read count and log-concentration13 
(Supplementary Figs. 8 and 9), strong library preparation effects 
were observed. We used a Poisson GLM to regress the spike-in counts 
on the nominal concentrations. Figure 4a displays the estimates of 
the regression coefficients for each of the 128 SEQC samples (see 
Supplementary Fig. 10 for the zebrafish data set). Ideally, the coef-
ficients should be as close as possible to 1. Replicate samples clus-
tered by library (Fig. 4a), suggesting library preparation effects on 
the spike-in counts.

The proportion of reads mapping to the ERCC spike-ins was highly 
variable between samples and deviated markedly from the nominal 
value (Fig. 4b,c). In addition to the already observed library prepa-
ration effects, spike-in counts seemed to be affected by the biologi-
cal factor of interest, a disturbing observation. In particular, for the 
SEQC data set, spike-ins consistently received a greater proportion of 
reads in sample B than in sample A (Fig. 4b). This was true for all the 
sequencing centers (Supplementary Fig. 11). Similar patterns were 
observed for the zebrafish data set (Fig. 4c). The proportion of reads 
mapping to the spike-ins was stable between sequencing runs of the 
same library, but was very variable between libraries and exhibited a 
strong treatment effect (being consistently higher in treated than in 
control samples). These distributional properties of the spike-ins have 
important implications for inferring differential gene expression. For 
the zebrafish data set, the mean-difference plot (MD-plot) in Figure 4d  
contrasts read counts for two control fish libraries, for which there 
was no treatment effect and for which the spike-ins were expected to 
have log-fold-changes of zero. The distribution of log-fold-changes 

Ctl.1 Ctl.3 Ctl.5 Trt.9 Trt.11 Trt.13
0

2

4

6

8

10
R

ea
ds

 m
ap

pi
ng

 to
 E

R
C

C
 s

pi
ke

-in
s 

(%
)

a b

c d

0 5 10 15

–5

0

5

Lo
g-

fo
ld

−
ch

an
ge

Average log-count

GLM coefficient
0.98 1.00 1.02 1.04

A1

A2

A3

A4

B1

B2

B3

B4

S
am

pl
es

0

0.5

1.0

1.5

2.0

2.5

3.0

A1 A2 A3 A4 B1 B2 B3 B4

R
ea

ds
 m

ap
pi

ng
 to

 E
R

C
C

 s
pi

ke
-in

s 
(%

)

Samples

Figure 4 Behavior of the ERCC spike-in 
controls. (a) For the SEQC data set, GLM 
regression coefficients of spike-in read 
counts on nominal concentrations. Each 
point corresponds to one of the 128 samples. 
The four sample A and the four sample B 
libraries are represented by different shades 
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samples sequenced in the first and second 
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library preparation effects. (b) For the SEQC 
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to the spike-ins deviates markedly from the 
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versus B effects, which may bias the inference 
of differential expression. (c) For the zebrafish 
data set, the proportion of reads mapping 
to the spike-ins deviates markedly from the 
nominal value (dashed line). Again, there 
are library preparation and treatment effects 
(purple: treated libraries (Trt); green: control 
libraries (Ctl); data for the two runs of each 
library are displayed in adjacent bars). (d) For 
the zebrafish data set, mean-difference plot of 
unnormalized counts (log scale) for two control 
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zero line, indicating that most genes are equally expressed in the two control samples. The negative slope of the black line suggests the need for 
normalization. The difference between the two lowess fits indicates that, disturbingly, the spike-ins do not behave as the bulk of the genes.
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for the spike-ins was markedly different from that of the genes. Using 
a loess fit on the spike-ins to normalize this pair of samples, in a 
procedure similar to that of Lovén et al.11, would result in wrongly 
shifting the gene log-fold-changes upward (Fig. 5). Indeed, because 
we were comparing two control samples, we did not expect this global 
shift in expression to be real.

Using the ERCC spike-in controls for normalization
Properly behaved spike-ins could be a valuable resource for normali-
zation: by design, their read counts are expected to be constant (or to 
have known fold-changes) between samples and hence any deviations 
from nominal fold-changes should reflect nuisance technical effects. 
One could therefore use functions of the spike-in counts to scale gene-
level read counts, using existing procedures such as upper-quartile or 
trimmed mean of M values (TMM)4 normalization. Unfortunately, 
given the troubling behavior of the ERCC spike-ins in our two data sets 
(Fig. 4), global-scaling normalization factors based on these were unre-
alistic and led to poorly normalized counts (Supplementary Fig. 3).  
Note that similar findings were reported for TMM normalization 
using a different set of spike-ins4. Cyclic loess normalization based 
on the spike-ins led to similarly poor results (Fig. 5a). By contrast, 
RUVg normalization led to reasonable results when based on the 
spike-ins (Fig. 5b). In particular, cyclic loess normalization unreal-
istically shifted log-fold-changes upward in the comparison between 
two control libraries (Figs. 4d and 5c), whereas both spike-in and 
gene expression log-fold-changes were centered around zero with 
RUVg (Fig. 5d).

The good performance of RUVg compared to global-scaling and 
regression-based normalization can be explained by the different 
assumptions underlying each approach. Global-scaling and regression-
based normalization methods assume that unwanted technical effects 
(i.e., between-sample differences excluding biological effects of inter-
est) are roughly the same for genes and spike-ins and are captured 
by either a single parameter per sample or a regression function 
between pairs of samples. Such assumptions were clearly violated for 
our data sets (e.g., Fig. 4d). RUVg, on the other hand, only assumes 
that the factors of unwanted variation estimated from the spike-ins 
span the same linear space as the factors of unwanted variation W 
for all of the genes. The effects of the unwanted factors on the counts 
(i.e., the nuisance parameter α) are gene-specific and reestimated  
for all of the genes in step 4 of RUVg (see RUVg and equation (1) 
in Online Methods). These different and more general assumptions 
seem reasonable for our data sets (Supplementary Fig. 12). However, 
the estimation of W was problematic when based on such a small 

set of negative controls (only 59 spike-ins). This explains the better 
performance of RUVg when it was based on a larger set of empirical 
controls (Fig. 6, Supplementary Figs. 12 and 13).

Impact on differential expression analysis
One of the most important applications of RNA-seq is in the study 
of differential gene expression between two or more biological con-
ditions (e.g., treated versus control samples in the zebrafish data 
set or sample A versus B in the SEQC data set). Normalization has 
been shown to have a strong impact on the inference of differentially 
expressed genes1–3. To compare RUV to other normalization methods 
in terms of differential expression results, we exploited the availability 
of external qRT-PCR controls for the SEQC data set. By viewing qRT-
PCR as a gold standard, one can estimate the bias in RNA-seq sample 
A/sample B expression log-fold-changes by the differences between 
the RNA-seq and corresponding qRT-PCR estimates.

For the SEQC data set, we observed a slight bias in the unnormalized 
sample A versus B log-fold-changes (Fig. 6a), which suggests the need 
for normalization, although the balanced design, the large number of 
technical replicates, and the extreme differences between samples A 
and B somewhat alleviated the impact of technical effects on measures 
of differential expression. Upper-quartile normalization based on all 
genes led to unbiased estimates of log-fold-changes. However, using 
the ERCC spike-ins for upper-quartile or cyclic loess normalization 
led to biased estimates. All versions of RUV (with empirical or spike-
in controls) yielded unbiased estimates. The receiver operating char-
acteristic (ROC) curves led to similar conclusions (Fig. 6b), although 
the extreme power of the differential expression tests (resulting from 
the large sample sizes and extreme differences between samples A 
and B) made it difficult to distinguish between methods. Indeed, even 
unnormalized counts led to a reasonable ROC curve, despite their 
biased fold-change estimates (Fig. 6a).

In the absence of a gold standard for the zebrafish data set, one 
can nonetheless examine the distribution of P-values for tests of dif-
ferential expression between treated and control samples. Ideally, 
one expects a uniform distribution for the bulk of non-differentially 
expressed genes, with a spike at zero corresponding to a few differ-
entially expressed genes. This was indeed the case for upper-quar-
tile normalization based on all genes and all RUV versions (Fig. 6c). 
However, upper-quartile and cyclic loess normalization based on 

–4

–2

0

2

4

–4

–2

0

2

4

Ctl.1 Ctl.3 Ctl.5 Trt.9 Trt.11 Trt.13

0 5 10 15
Average log-count

0 5 10 15

–5

0

5

–5

0

5

Average log-count

Lo
g-

fo
ld

-c
ha

ng
e

Lo
g-

fo
ld

-c
ha

ng
e

R
LE

R
LE

a

c

b

d
Ctl.1 Ctl.3 Ctl.5 Trt.9 Trt.11 Trt.13
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the ERCC spike-ins led to a distribution of P-values very far from 
uniform. Finally, the heatmaps of Figure 6d,e confirm the robust 
nature of RUVg (cf. Fig. 3c). The 61 genes identified as differentially 
expressed by upper-quartile normalization but not by RUVg were 
driven solely by the extreme expression of library 11, as indicated 
by the hierarchical clustering (Fig. 6d). On the other hand, the 475 
genes identified as differentially expressed by RUVg but not by upper-
quartile normalization yielded a more balanced clustering, reflecting 
the treatment effect (Fig. 6e). These heatmaps and the scatterplot of 
the first two principal components in Figure 3d suggest that RUVg 
led to a more realistic and robust list of differentially expressed genes 
than other methods.

DISCUSSION
Normalization is an essential, yet often overlooked, aspect of RNA-seq 
data analysis. As RNA-seq has become the assay of choice for measur-
ing gene expression levels, the availability of data from large collabora-
tive projects (such as The Cancer Genome Atlas22 and ENCODE23) has 
grown dramatically in the last few years. With such projects employ-
ing multiple library preparation protocols (e.g., poly(A)+, total RNA) 
and sequencing platforms, and with the sequencing technology evolv-
ing quickly (cf. read length, paired- versus single-end reads), many 
sources of unwanted variation can affect read counts. Normalization 

procedures must therefore be able to adjust for often unknown and 
more complex effects than simple differences in sequencing depths.

We have used the two very different SEQC and zebrafish data sets to 
illustrate the misbehavior of the ERCC spike-in controls. Disturbingly, 
individual spike-in read counts were highly variable compared to their 
nominal concentrations (Supplementary Figs. 14 and 15), the overall 
proportion of reads mapping to the spike-ins was also highly variable 
and deviated markedly from the nominal proportion16 (Fig. 4b,c), 
and technical effects (e.g., library preparation effects) were different 
for the spike-ins than for the bulk of the genes (Fig. 4d). We have also 
demonstrated the need for careful normalization and proposed a nor-
malization strategy, RUV, which adjusts for nuisance technical effects 
by performing factor analysis on counts (or residual counts) for suit-
able sets of control genes or samples. The different RUV versions gen-
erally outperformed state-of-the-art normalization approaches and 
led to more accurate estimates of expression fold-changes and tests of 
differential expression (Fig. 6). For the SEQC data set, upper-quartile 
normalization led to good differential expression results (Fig. 6a,b),  
even though it failed to adjust for library preparation effects  
(Fig. 1b). Such behavior is due to the extreme difference between 
sample A and sample B and is not generalizable to more biologically 
relevant data sets, where the effects of interest are more subtle and 
comparable in magnitude to the unwanted technical effects. This was 
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confirmed by the zebrafish data set, where RUV led to better results 
than upper-quartile normalization in terms of clustering and differen-
tially expressed gene lists (Figs. 3d and 6e). Although RUV performed 
more robustly when applied to a set of empirical control genes or, 
when feasible, a set of replicate samples, it was the only method that 
gave reasonable results when using the ERCC spike-ins (Fig. 5).

In this study, our three proposed RUV approaches performed 
equally well. However, they rely on different assumptions and the 
validity of these assumptions for the data at hand should guide the 
choice of the method (Online Methods and Supplementary Table 1). 
RUVg assumes that one can identify a set of negative control genes 
(e.g., housekeeping genes or spike-ins) that are not affected by the bio-
logical covariates of interest and are affected by the factors of unwanted 
variation in the same way as the rest of the genes. This is essentially 
the discrete version of RUV-2 (refs. 20,21). RUVr, similarly to previ-
ously proposed microarray methods24, does not make this assumption; 
in fact, one can use all of the genes to normalize the data with this 
version. RUVs stands in the middle. Formally, one still needs a set 
of negative control genes for the estimation of the unwanted factors, 
but RUVs is much less sensitive to poorly chosen control genes than 
is RUVg. Indeed, we found that RUVs worked well in practice when 
using all genes as negative controls. However, both RUVr and RUVs 
assume that the unwanted factors are uncorrelated with the covariates 
of interest. This assumption is usually reasonable, but it is not met 
when, for example, all treated samples are in one batch and all control 
samples in another. In this case, RUVr and RUVs will not remove the 
unwanted variation, whereas RUVg should still work, provided it is 
based on a reliable set of control genes20,21. Although RUVs on all 
genes should perform well if the unwanted factors are not too corre-
lated with the covariates of interest, it can only account for variation 
that occurs within replicate groups; for example, it can capture library 
preparation effects only if the replicate groups include multiple librar-
ies. This has implications for experimental design: technical replica-
tion at the library preparation level can facilitate normalization and is a 
good investment in large sequencing projects, especially when multiple 
centers or platforms are involved25. Although we have focused on nor-
malization in the context of differential expression, the RUV approach 
can be adapted to other settings such as cluster analysis26.

Internal and external controls are essential for the analysis of 
high-throughput data and spike-in sequences have the potential to 
help researchers better adjust for unwanted technical factors. With 
the advent of single-cell sequencing27, the role of spike-in standards 
should become even more important, both to account for technical 
variability28 and to allow the move from relative to absolute RNA 
expression quantification. It is therefore essential to ensure that spike-
in standards behave as expected and to develop a set of controls that 
are stable enough across replicate libraries and robust to both differ-
ences in library composition and library preparation protocols.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GEO: GSE53334 and GSE47792.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data sets. Zebrafish data set. All procedures were conducted in compli-
ance with US federal guidelines in an AAALAC-accredited facility and were 
approved by the UC Berkeley Office of Animal Care and Use. Cell pools were 
created from zebrafish (Danio rerio), TgOMP-Gal4;UASGCaMP1.6, mixed 
sex, 5 days post-fertilization. Olfactory sensory neurons were isolated from 
three pairs of gallein-treated and control embryonic zebrafish pools and 
purified by fluorescence-activated cell sorting (FACS)19. Each RNA sample 
was enriched in poly(A)+ RNA from 10–30 ng total RNA and 1 µL (1:1,000 
dilution) of Ambion ERCC ExFold RNA Spike-in Control Mix 1 was added 
to 30 ng of total RNA before mRNA isolation. cDNA libraries were prepared 
according to manufacturer’s protocol. The six libraries were sequenced in 
two multiplex runs on an Illumina HiSeq2000 sequencer, yielding approxi-
mately 50 million 100-base-pair (bp) paired-end reads per library.

We considered for mapping a custom reference sequence, defined as the union 
of the zebrafish reference genome (Zv9, downloaded from Ensembl30, v. 67)  
and the ERCC spike-in sequences (http://tools.invitrogen.com/downloads/
ERCC92.fa). Reads were mapped with TopHat31 (v. 2.0.4, default parameters 
and supplying the Ensembl GTF annotation through the -G option). Gene-
level read counts were obtained using the htseq-count Python script (http://
www-huber.embl.de/users/anders/HTSeq/) in the “union” mode and Ensembl 
(v. 67) gene annotation. After verifying that there were no run-specific biases 
(data not shown), we used the sums of the counts of the two runs as the expres-
sion measures for each library. Genes/spike-ins with more than five reads in at 
least two libraries were retained, resulting in a total of 20,806 (out of 32,561) 
expressed genes and 59 (out of 92) “present” spike-ins.

FASTQ files containing the unmapped reads are publicly available in GEO 
with the accession number GSE53334.

SEQC data set. The third phase of the MicroArray Quality Control (MAQC) 
project, also known as the Sequencing Quality Control17 (SEQC) project, aims 
to assess the technical performance of high-throughput sequencing platforms 
by generating benchmarking data sets. The design includes four different sam-
ple types, namely samples A, B, C and D. Sample A is Stratagene’s universal 
human reference (UHR) RNA; sample B is Ambion’s human brain reference 
RNA; samples C and D are mixes of samples A and B, in a 3:1 and 1:3 ratio, 
respectively. The four reference samples were sent to several sequencing cent-
ers around the world and sequenced using different platforms. Here, we focus 
on sample A and sample B sequenced at the Australian Genome Research 
Facility (AGRF) using the Illumina HiSeq2000. Four libraries were prepared 
for each of sample A and B and multiplex pools of the resulting 8 barcoded 
libraries were sequenced in 8 lanes of 2 flow-cells, yielding a total of 16 (tech-
nical) replicates per library and 64 replicates per sample type. Prior to library 
preparation, Ambion ERCC ExFold RNA Spike-in Control Mix 1 and Mix 2 
were added to sample A and sample B RNA, respectively, in a proportion of 
50 µl per 2,500 µl of total RNA. The data consist of an average of 10 million 
100-bp paired-end reads per sample.

We considered for mapping a custom reference sequence, defined as the 
union of the human reference genome (GRCh37, downloaded from Ensembl, 
v. 69) and the ERCC spike-in sequences. Reads were mapped with TopHat  
(v. 2.0.6, default parameters and supplying the Ensembl GTF annotation 
through the -G option). Gene-level read counts were obtained using the  
htseq-count Python script in the “union” mode and Ensembl (v. 69) gene 
annotation. Genes/spike-ins with more than five reads in at least ten samples 
were retained, resulting in a total of 21,559 (out of 55,933) expressed genes 
and 59 (out of 92) present spike-ins.

In addition to the internal ERCC spike-in positive and negative controls, 
we used external qRT-PCR positive and negative controls from the original 
MAQC study18. As in our previous work1,2, among the genes assayed by qRT-
PCR, we considered only those that match a unique Ensembl gene, are called 
present in at least three out of each of the four sample A and sample B qRT-
PCR runs, and have standard errors across the eight runs not exceeding 0.25. 
We found 698 qRT-PCR genes in common with the RNA-seq filtered genes 
and used this subset to compare expression measures between the two assays. 
The sample A/sample B expression log-fold-change of a gene is estimated by 
the log-ratio between the average of the four qRT-PCR measures of sample A 
and the average of the four measures of sample B.

FASTQ files containing the unmapped reads are publicly available in  
GEO with the accession number GSE47792. Additional details on the SEQC 
data set (e.g., blinding, randomization, and statistical power) are available 
in ref. 17.

ERCC spike-in controls. The External RNA Control Consortium (ERCC)12 
developed a set of 92 polyadenylated transcripts that mimic natural eukaryotic 
mRNAs. Ambion commercializes two ERCC spike-in mixes, ERCC ExFold 
RNA Spike-in Control Mix 1 and Mix 2. The two mixes contain the same 
set of 92 spike-in standards, but at different concentrations. This allows the 
design of experiments in which the spike-ins can be used both as positive and 
negative controls. In particular, the spike-ins are divided into four groups of 23 
transcripts each, spanning a 106-fold concentration range, with approximately 
the same transcript size and GC-content distributions. The first group has an 
expected fold-change of 4:1 between the two mixes (Mix 1:Mix2); the second 
group has an expected fold-change of 1:1 (negative controls); the third and 
fourth groups have expected fold-changes of 2:3 and 1:2, respectively. (See the 
white paper at http://tools.invitrogen.com/content/sfs/manuals/cms_086340.
pdf for additional details.)

In the zebrafish data set, Mix 1 was used for all samples, so that all spike-ins 
can be used as negative controls. In the SEQC data set, Mix 1 was added to 
sample A and Mix 2 to sample B, so that 23 spike-ins can be used as negative 
controls and 69 as positive controls (23 over-represented and 46 under-rep-
resented in sample A).

ruV normalization. Gagnon-Bartsch et al.20,21 developed a method for nor-
malizing (continuous) microarray data coined RUV-2, for remove unwanted 
variation in two steps. Here, we propose the following extensions of the RUV 
approach to normalize discrete RNA-seq data. For n samples and J genes, 
consider the log-linear regression model

log E [Y| W, X, O] = Wα + Xβ + O,       (1)

where Y is an n × J matrix containing the observed gene-level read counts, X is 
an n × p matrix corresponding to the p covariates of interest/factors of “wanted 
variation” (e.g., treatment status) and β its associated p × J matrix of parameters 
of interest, W is an n × k matrix corresponding to hidden factors of “unwanted 
variation” and α its associated k × J matrix of nuisance parameters, and O is 
an n × J matrix of offsets that can either be set to zero or estimated with some 
other normalization procedure (such as upper-quartile normalization). The 
matrix X is assumed to be known a priori. For instance, in the usual two-class 
comparison setting (e.g., treated versus control samples), X is an n × 2 design 
matrix with a column of ones corresponding to an intercept and a column of 
indicator variables for the class of each sample (e.g., 0 for control and 1 for 
treated)32. The matrix W is an unobserved random variable and α, β, and k 
are unknown parameters. The simultaneous estimation of W, α, β and k is 
infeasible. For a given k, we consider instead the three approaches below to 
estimate the factors of unwanted variation W.

Unlike previously proposed normalization procedures, RUV can be used 
to simultaneously normalize read counts (Wα term in equation (1)) and infer 
differential expression (Xβ term), using standard techniques for GLM regres-
sion. Normalized counts can also be obtained separately as the residuals from 
regression of the original counts on the unwanted factors. Note, however, that 
removing Wα from the original counts bears the risk of removing part of the 
effect of X (ref. 21).

RUVg—RUV with negative control genes. 
1.  Assume one can identify a set of Jc negative control genes, i.e., non-differen-

tially expressed genes, for which bc = 0 and log , , ]E Y W X O W Oc c c[ | = +a ,  
where the subscript c denotes the restriction of matrices to the set of Jc 
control genes.

2.  Define Z Y O= −log  and Z* as the column-centered version of Z (i.e., the 
columns of Z* have zero mean).

3.  Perform the singular value decomposition (SVD) of Zc
*, that is, Z U Vc

T* = Λ ,  
where U is an n × n orthogonal matrix with columns the left singular  
vectors of Zc

*, V a Jc × Jc orthogonal matrix with columns the right singular  
vectors, and  an n × Jc rectangular diagonal matrix of singular values (at 
most min (n, Jc) distinct non-zero singular values). For a given k, estimate  
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Wαc by W U Vc k
Ta = Λ  and W by Ŵ U k= Λ , where k is the n × Jc rec-

tangular diagonal matrix obtained from  by retaining only the k larg-
est singular values and setting other diagonal entries to zero (drop null  
columns to obtain Ŵ ).

4.  Substitute Ŵ  into equation (1) for the full set of J genes and estimate both 
α and β by GLM regression.

5.  (Optionally) Define normalized read counts as the residuals from ordinary 
least squares (OLS) regression of Z on Ŵ .

This is essentially the discrete version of RUV-2 (refs. 20,21). The key 
assumption is that one can identify a set of negative control genes, as detailed 
below. However, RUV-2 has been found to be quite sensitive to the choice of 
control genes20,21,26. We therefore consider the following two adaptations, 
which either do not require negative control genes (RUVr) or are more robust 
to the choice of controls (RUVs).

RUVr—RUV with residuals. 
1.  Compute an n × J matrix of residuals E from a first-pass GLM regression of 

the counts Y on the covariates of interest X (model in equation (1) without 
Wα term), e.g., deviance residuals. The counts may be either unnormalized 
or normalized with a method such as upper-quartile normalization.

2.  Perform the singular value decomposition of the residual matrix, E = 
UVT, and estimate the unwanted factors W by the n × k matrix Ŵ U k= Λ .  
Proceed as in steps 4 and 5 of the control gene version of RUV.

RUVs—RUV with replicate/negative control samples. 
1.  Assume one has replicate samples for which the biological covariates of 

interest are constant. Then, their count differences behave like those of 
negative control samples, as they contain no effects of interest. Let r(i) ∈ 
{1,…,R} denote the replicate group to which sample i belongs; if i does not 
belong to any replicate group, set r(i) = 0. For example, for the SEQC data 
set, the 64 (= 4 libraries × 2 flow-cells × 8 lanes) replicates of sample A and 
of sample B each form a replicate group.

2.  Column-center the counts within each set of replicate samples, that is, 
replace the original counts Yi, j by Y Yi j r i j, ( ),− , where

Y I r i r Y I r i rr j
i

i j
i

, ,( ( ) ) / ( ( ) )= = =∑ ∑ .

    Let Yd denote the resulting nd × J matrix of column-centered counts for the

n I r id
i

= ≠∑ ( ( ) )0

    replicate samples. Then log , , ]E Y W X O W Od d d[ | = +a , where Wd is nd × 
k, α is k × J, and Od is nd × J.

3.  Perform the singular value decomposition Z U Vd
T* = Λ  (where Zd

*  is 
defined as in step 2 of RUVg) and estimate the nuisance parameter α by the  
k × J matrix â = Λk

TV  obtained by retaining only the k largest singular 
values. Here, k ≤ min (nd, J), the upper-bound for the number of distinct 
non-zero singular values.

4.  Estimate the unwanted factors W by OLS regression of Zc, for all n original 
samples and a set of Jc negative control genes, on âc , ˆ ˆ ˆ ˆ( )W Zc c

T
c c

T= −a a a 1.  
Proceed as in steps 4 and 5 of the control gene version of RUV.

RUV assumptions and scope. Here, we detail the main assumptions and scope 
of the three proposed RUV approaches. This information is summarized in 
Supplementary Table 1.
1.  Negative control genes with common unwanted factors: RUVg and RUVs. 

There exists a set of negative control genes (e.g., empirical or spike-in con-
trols, chosen as indicated below) whose read counts are not influenced by 
the covariates of interest (βc = 0) and for which the estimated factors of 
unwanted variation span the same linear space as the factors of unwanted 
variation for all of the genes ( log , , ]E Y W X O W Oc c c[ | = +a ).
 Interpretation. By modeling the unwanted variation as in equation (1) with 
the term Wα and reestimating α in step 4 using all the genes, RUVg allows 
gene-specific nuisance effects α. The RUVg assumption is therefore differ-
ent and more general than the assumptions of global-scaling and regression- 
based normalization methods, which require unwanted technical   

  effects to be roughly the same for the controls and for the rest of the genes 
and to be captured by either a single parameter per sample or a regression 
function between pairs of samples. This is particularly relevant when using 
the ERCC spike-in controls for normalization purposes.

     Robustness. In practice, this assumption can be relaxed for RUVs,  
as the method performs well even when its step 4 is based on all genes, 
provided that the unwanted factors W are not too correlated with the  
covariates of interest X (ref. 26).

2.   Replicate/negative control samples: RUVs. There exists a set of negative 
control samples, that is, samples whose read counts are not influenced 
by the biological covariates of interest. Such a set can be created easily by 
computing differences between (technical) replicate samples for which the 
biological covariates of interest are constant.

  Interpretation. RUVs can only account for variation that occurs within 
replicate groups, e.g., it can capture library preparation effects only if the 
replicate groups include multiple libraries.

3.  Known matrix X: RUVg(empirical controls) and RUVr. 
     Interpretation. This assumption is essential for RUVr in order to  

compute residuals from a first-pass GLM regression of the counts on  
the covariates of interest. It is needed for RUVg only when there are no a 
priori known negative control genes and one relies on empirical controls  
from a first-pass differential expression analysis. The main consequence 
of this assumption is that RUVg (empirical controls) and RUVr are  
applicable only to classical differential expression settings (e.g., treatment 
versus control comparison) and not to clustering (where X is unknown) 
or time-course (where X is only partially known and model selection may 
be involved) problems.

4.  Unwanted factors uncorrelated with covariates of interest: RUVr and RUVs. 
The unwanted factors W are uncorrelated with the covariates of interest X.
    Interpretation. This assumption is natural for any regression-based 
method.

    Robustness. In practice, both RUVr and RUVs perform well with modest 
correlation between W and X.

The residual version RUVr does not need the negative control gene  
assumption and is suited to situations where the effects of interest are much 
larger than the unwanted variation (e.g., SEQC data set, see Fig. 1). It is  
similar to previously presented microarray methods24,33. The replicate  
sample version RUVs is adapted to the SEQC data set, with large library 
preparation effects and replicate libraries for each biological condition, and, 
to a lesser extent, to the zebrafish data set, where one has three libraries per  
biological condition.

Choice of negative control genes. The main assumption of RUVg is that one 
can identify a set of negative control genes. Several types of negative controls 
could be used, including housekeeping genes, spike-in sequences (e.g., ERCC), 
or “in silico” empirical controls such as the Jc least significantly differentially 
expressed genes based on a first-pass differential expression analysis per-
formed prior to RUVg normalization.

Interestingly, one can relax the negative control gene assumption by 
requiring instead the identification of a set of Jc positive or negative con-
trols, for which the value of βc is known a priori but need not be zero. 
Then, Xβc is known and one can perform the singular value decomposition  
of logY X Oc c c− −b  to estimate W as in step 3 of RUVg above. Steps 4 and 
5 remain the same. This allows us to make full use of all 92 ERCC spike-in 
controls for the SEQC data set.

In this study, we consider two different sets of controls for both the zebrafish 
and the SEQC data sets: (i) a set of empirical controls, defined as all but the 
top 5,000 differentially expressed genes, as ranked by edgeR P-values for UQ-
normalized counts (15,839 genes for the zebrafish data set and 16,500 genes 
for the SEQC data set); (ii) the 59 ERCC spike-in controls called present. 
Supplementary Figures 16 and 17 show that RUVg is robust to the set of 
empirical control genes.

Choice of number of factors of unwanted variation. The main tuning parameter 
of RUV is the number of factors of unwanted variation, k. The choice of k should 
be guided by considerations that include sample size, extent of technical effects 
captured by the first k factors and extent of differential expression20,21.
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For instance, the small sample size (n = 6) for the zebrafish data set only 
allows the estimation of one or two factors of unwanted variation. Here, we 
set k = 1. The SEQC data set has a much greater sample size (n = 128) and 
more factors can be considered. Here, we set k = 6; for the RUVg version, we 
drop the first unwanted factor, as it captures the biological factor of interest, 
and retain the next k = 6 factors. Supplementary Figure 18 shows that RUV 
is robust to the choice of k.

Linear model version of RUV. Although GLM are a natural choice for count 
data and have been successfully applied to address a broad range of questions 
in RNA-seq34,35, a simpler alternative is to consider a linear model (LM) for 
some suitable transformation of the read counts (e.g., logarithmic transfor-
mation). Such an LM-based version of RUVg reduces to RUV-2 (refs. 20,21). 
Additionally, using a linear model allows approaches such as RUV-4 and RUV-
inv (ref. 21).

Supplementary Figures 19 and 20 show that LM-based RUVg on log-
counts does not perform as well as our proposed GLM-based RUVg. In par-
ticular, although LM-based RUVg seems effective at removing the unwanted 
variation (cf. uniform distribution of P-values in Supplementary Fig. 19), 
it does not yield enough power to detect any differentially expressed genes, 
neither when using a standard t-test nor when using an empirical Bayes mod-
erated t-test (limma36).

other normalization methods. We compare our RUV approach to the  
following normalization procedures. 

Global-scaling normalization scales gene-level counts by a single factor per 
sample, such as the per-sample total read count (TC), a.k.a., Reads Per Kilobase 
of exon model per Million mapped reads, or RPKM37, a housekeeping gene 
count (e.g., POLR2A), a quantile of the per-sample count distribution1 (e.g., 
upper-quartile, UQ) or other robust summaries obtained by relating each 
sample to a reference sample (e.g., the trimmed mean of M values (TMM)4 
and the approach of Anders and Huber (AH)35).

In full-quantile (FQ) normalization1,14, all quantiles of the gene count  
distributions are matched between samples. Specifically, for each sample, the 
distribution of sorted read counts is matched to a reference distribution defined 
in terms of a function of the sorted counts (e.g., median) across samples.

In loess normalization7,11,15, loess robust local regression fits are performed 
for mean-difference plots of log-counts for pairs of samples, e.g., all possi-
ble pairs as in cyclic loess or each sample paired with a synthetic reference 
obtained by averaging counts across samples.

When a reasonable number of negative controls are available and behave as 
desired across samples, these could be used directly as part of the normaliza-
tion procedure, e.g., scaling counts by the upper-quartile of the ERCC spike-in 
counts or fitting a loess regression only on the spike-ins.

In the main comparison, we focused on four RUV procedures (RUVg using 
empirical control genes or the ERCC spike-ins, RUVr using all genes, and 
RUVs using all genes), upper-quartile normalization (using all genes or only 
the spike-ins) and cyclic loess normalization (using only the spike-ins). All 
other methods led to very similar results as upper-quartile normalization, as 
shown in Supplementary Figures 1–3.

Evaluation criteria. Relative log expression. A particularly useful transforma-
tion of read counts is their relative log expression (RLE), defined, for each 
gene, as the log-ratio of a read count to the median count across samples. 
Comparable samples should have similar RLE distributions that are centered 
around zero. Unusual RLE distributions could reveal suspicious samples (e.g., 
problematic library preparation) or batch effects.

Differential expression analysis. To compare normalization procedures  
in terms of their impact on differential expression results, we consider the 
negative binomial GLM of edgeR34, with tag-wise dispersion. Upper-quartile 
normalization is performed through an offset using the calcNormFactors  
function. RUV normalization is performed by including the estimated W matrix  

in the GLM. Cyclic loess and upper-quartile normalization using the  
ERCC spike-ins are performed by directly providing the offset argument  
to the glmFit function. Differentially expressed genes are identified by likeli-
hood ratio tests for the effects of interest: for the zebrafish data set, treatment 
effect; for the SEQC data set, sample A versus B effect and, in the null experi-
ment of Figure 3b, library preparation effect. A gene is declared differentially 
expressed if the associated null hypothesis is rejected at a false discovery rate 
(FDR)38 of 0.05.

Bias. In order to evaluate bias in log-fold-change estimation, one needs to 
know the true value of the expression fold-change. For the SEQC data set, one 
can use the estimate of the sample A/sample B fold-change from qRT-PCR 
as the true value, since qRT-PCR is often considered as a gold standard for 
producing accurate estimates of expression levels. The RNA-seq estimated 
fold-change is the ratio of the average of the normalized counts for the 64 
sample A replicates to the average of the normalized counts for the 64 sample 
B replicates. For a given gene, bias is then estimated as the difference between 
the estimated log-fold-changes from the two technologies.

Receiver operating characteristic curves. For the SEQC data set, the qRT-PCR 
measures are used as gold standard to determine “true” differential expression 
and derive receiver operating characteristic (ROC) curves for the various nor-
malization methods. As in previous work1, we divide the genes assayed by qRT-
PCR into three sets, “non-differentially expressed”, “differentially expressed” 
and “no-call”, based on whether their absolute expression log-fold-change is 
less than 0.2, greater than 1 or falls within the interval [0.2, 1], respectively. 
We ignore the no-call genes when determining true/false positives/negatives. 
False positives (FP) are defined as genes declared differentially expressed by 
RNA-seq (edgeR FDR adjusted P-value less than 0.05) but not by qRT-PCR. 
True negatives (TN) are defined as genes declared non-differentially expressed 
by both RNA-seq and qRT-PCR. True positives (TP) are declared differentially 
expressed by both RNA-seq and qRT-PCR. The true positive rate (TPR) is then 
defined as the number of TP divided by the number of differentially expressed 
genes according to qRT-PCR. The false positive rate (FPR) is defined analo-
gously as the ratio of the number of FP to the number of non-differentially 
expressed genes according to qRT-PCR.

Software implementation. RUV is implemented in the open-source R package 
RUVSeq, with source code freely available through the Bioconductor Project39 
(http://www.bioconductor.org/packages/devel/bioc/html/RUVSeq.html) and 
as Supplementary Software. Gene-level counts for the zebrafish data set are 
provided in the Bioconductor R package (http://www.bioconductor.org/pack-
ages/devel/data/experiment/html/zebrafishRNASeq.html).
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