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Abstract

High-resolution Regional Climate Models (RCMs) are driven at their lateral boundaries by
information from global models (usually coupled Atmosphere/Ocean General Circulation
Models — AOGCMs). RCMs are generally driven by 6-hourly data from the AOGCM, and the
spatial AOGCM data are interpolated to the boundaries of the RCM grid. When driven by
observed (reanalysis) data, RCMs show high skill in their simulations of present-day climate
within their domain, attributable largely to the improved resolution of surface boundary
conditions (especially orography) relative to global models. For projections of future climate,
however, when the RCM is driven by future climate-change output from an AOGCM, the skill
of an RCM will depend to some degree on the skill of the AOGCM. For the best RCM results it
is likely that these will be produced by the best driver AOGCMSs. The question therefore arises
as to how to decide what are the best AOGCMs.

There are different ways to assess the relative skill of different AOGCMs. We consider four
methods here. First, we investigate how well different AOGCMs simulate present-day climate —
better models are those that simulate present climate better. Second, we compare projections of
future climate across a range of AOGCMs. We judge models whose projections differ greatest
from the model-mean projections (outlier models) as least reliable. Third, we consider ENSO
performance. Present and future climate over the California region is strongly linked to the El
Nino/Southern Oscillation phenomenon (ENSO). Thus, AOGCMs that produce poorer
simulations of ENSO should be judged less useful as RCM drivers.

As a fourth criterion we consider the western boundary fluxes directly. Climate and climate
changes within an RCM domain must be dependent to a large degree on the fluxes of mass,
momentum, heat and moisture into the domain along its western boundary. It is important,
therefore, to assess how well AOGCMs can simulate present-day lateral boundary conditions.
This provides a fourth criterion for selecting those AOGCMs that are best as RCM drivers. We
consider both real fluxes calculated using 6-hourly data (viz. <uX> for variable “X” where u is the
westerly wind speed and <...> denotes a time average) and “pseudo fluxes” defined by <u><X>,
which require only monthly data for their calculation. We show that, in terms of their
implications for validation of model fluxes, pseudo fluxes give the same results as real fluxes
and so may be used as a replacement for real fluxes.

For the validation of boundary fluxes, we use the Mahalanobis Distance as a metric for
determining how well a model matches the observations, and we develop statistical tests to
determine whether model/observed differences are statistically significant.

We have assessed 20 models from the AR4/CMIP3 data base. For the validation, outlier and
ENSO test criteria we are able to divide the models into three groups. Superior model are
CCSM3.0, GFDL2.0, GFDL2.1, IPSL, MIROCmedres and HadCM3. Inferior models that cannot
be recommended as RCM drivers are CNRM, FGOALS, GISS-EH, GISS-ER, INM and PCM.
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Intermediate models are CCCMA, MRI, ECHO-G, BCCR, CSIRO, MIROChires, ECHAMS5 and
HadGEM1. We note that CCMA, MRI and ECHO-G are flux adjusted models, which may
produce a favorable bias in their validation performance, so these should be used, if at all, with
caution.

For direct validation of western boundary flux performance we have examined only CCSM3.0,
GDFL2.1, PCM, GISS-EH and MIROCmedres. We find major errors in all of these models in
their simulations of the strengths of the subtropical and polar jets — all models produce jets that
are too strong. Moisture flux simulations are better. Here, MIROCmedres is the best model,
followed in order by GFDD2.1, CCSM3.0, GISS-EH and PCM. The last two models here cannot
be recommended as RCM drivers.

Keywords: AOGCMs, regional models, RCMs, boundary fluxes, model validation
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1.0 Introduction

The primary tools for investigating the impacts of future climate change are Atmosphere/Ocean
General Circulation Models (AOGCMs). In many climate impact areas, however, particularly
agriculture and water resources, the analyses require higher resolution data than is generally
available from these models. There are three standard methods for generating such high-
resolution information, grouped under the name ‘downscaling’. Statistical downscaling makes
use of present-day relationships between AOGCM-scale data (typically around 300km by
300km) and higher resolution data (50km by 50km or less, and often at the single station level)
and applies these to future simulations. Physical downscaling uses a higher-resolution (50km by
50km or less) limited-area model (a Regional Climate Model - RCM) effectively ‘embedded’
within the AOGCM to produce finer-scale detail. The RCM is driven by lateral boundary
condition data from the AOGCM. Time-slice experiments use AOGCM sea-surface temperature
(SST) data to drive a global atmospheric model (AGCM) that has much finer resolution than the
original AOGCM. Hybrid schemes are also used, where the AOGCM drives an intermediate
resolution AGCM, and lateral boundary data from the AGCM are used to drive the RCM.
Further information and key literature references are given in Wigley (2004) and in the IPCC
Fourth Assessment Report (AR4; Christensen and Hewitson, 2007).

In physical downscaling one has to make a choice as to which AOGCM or AOGCMs should be
used to provide the (time-varying) lateral boundary conditions for driving an ‘embedded” RCM.
The primary criterion for choosing an AOGCM is its skill in simulating present-day climate.
There is no standard way to assess model skill, and different skill criteria may give different
results —i.e., a model that is skillful by one criterion may be less skillful by another.

We will consider four methods to assess skill and we will use a set of 20 AOGCMs from the
AR4/CMIP3 data base archived at PCMDI, LLNL as candidate driver AOGCMs. The goal is to
identify the most skillful models overall, and to identify those models that are particularly
unskillful. Between the best and the worst there will be a number of models of intermediate
skill.

The first skill criterion is the fidelity with which different AOGCMs simulate present-day
climate. This involves choosing which climate variables to consider, which region to use for the
skill assessment, and which comparison statistic to use to quantify skill, For the variable, we use
the one that is arguably the most important for regional climate change assessments over the
California/Western USA region (CA/WUSA), namely precipitation. As study regions we use (1)
a latitude/longitude box, 20-55N, 100-130W that represents the western USA, and (2) the whole
globe. For WUSA we use winter (DJF) precipitation. For the whole globe we consider annual
rather than DJF precipitation because DJF is summer in the Southern Hemisphere. There are
physical differences between the seasons that would make the hemispheric results for DJF less
directly comparable.
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The WUSA regional analysis represents, to some degree, the model’s response to boundary
fluxes around the box, and so is an indirect indicator of flux skill. Skill at the global level is a
measure of the credibility of the model’s internal physics. Using two regions helps to account
for results in a single small region that might be skillful purely by chance.

The second skill criterion we use is a measure of the consistency of future climate projections for
a particular model compared with other models. By analogy with, e.g., a group of marching
soldiers in which one or a few are out of step with the rest, models that differ markedly from
other models (‘outliers’) are less likely to be useful as driver AOGCMs for regional climate
modeling. We carry out outlier analyses for the same two regions and variables as noted above.

The third criterion is ENSO. ENSO variability is one of the main factors in determining the
mean state and variability of climate over the CA/WUSA region; and we will show that the
inter-annual variability of fluxes into the CA/WUSA region is strongly correlated with ENSO, It
is crucially important, therefore, that any chosen driver AOGCM has a credible ENSO
component. We therefore examine a number of aspects of ENSO that together allow us to
determine which models are best at simulating this key determinant of natural variability. We
will consider ENSO spectra, sea surface temperature (SST) variability in the Nino 3.4 region,
and the patterns of SST during ENSO warm events.

The fourth criterion is the fluxes themselves. We consider fluxes of mass, momentum, heat and
moisture along a western boundary situated at 130W (230E). For future climate, the quality of
any RCM simulation will depend both on the quality of the RCM, and on the quality and
realism of the lateral boundary conditions. Clearly, if the fluxes into the RCM domain are
incorrect in their magnitudes or spatial patterns, then the climate simulated within the domain
is almost certain to be flawed. We compare model simulations of the western boundary fluxes
with observed fluxes as defined by reanalyses (see below). That flux fidelity is an important
consideration has been demonstrated by the Hadley Centre’s (unpublished) work with their
regional model 'PRECIS’ (more details are given in Wigley, 2004).

1.1 Observed data

As noted above, we employ so-called ‘reanalysis” data to provide the lateral boundary
conditions, specified at 6-hourly intervals and interpolated appropriately in space and time. To
date, most studies using reanalysis data have used information from the ‘first-generation’
NCEP-NCAR reanalysis (Kalnay et al., 1996). Recently, a new ‘second-generation’ reanalysis has
become available, the ECMWF reanalysis ‘ERA-40" (Simmons and Gibson, 2000). Reanalyses are
not ‘pure’ observations, but synthesized atmospheric states, derived by reprocessing sequences
of past weather observations from both in situ and satellite sources using model-based data
assimilation techniques developed to initiate numerical weather forecasts (Trenberth and Olson,
1988; Bengtsson and Shukla, 1988). Reanalyses provide an internally-consistent view of past
climate changes over the whole globe, uncontaminated by the changes in model physics that
affect the results from operational analyses.
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Reanalyses have well-recognized deficiencies, especially prior to the satellite era beginning in
1979 (see, e.g., Basist and Chelliah, 1997; Pawson and Fiorino, 1998; Santer et al., 1999; Trenberth
et al., 2001). There is strong evidence, however, that the ERA-40 product is superior to the
NCEP-NCAR product (Santer et al., 2004). For the purposes of the present proposal we will
assume that the reanalyses represent our best estimate of the observed ‘truth’. By using two
different reanalyses, we will provide some insights into the validity of this assumption. Our
analyses will only consider data from 1979; specifically, the interval 1980 through 1999 that is
common to the observations and all models in the AR4/CMIP3 data base.

1.2 Choice of AOGCMs

We use results from a number of different AOGCMSs as complied in the AR4/CMIP3 data base.
We consider 20 of these models, as listed in Table 1.1 below. These are the AOGCMs in the
MAGICC/SCENGEN data base (http://www.cgd.ucar.edu/cas/wigley/magicc/). An additional
model (GISS AOM) is also listed. This is not in the SCENGEN data base, but it is one of the
models for which ENSO analyses have been performed.

Table 1.1 has two indicators — red type and bold font — to distinguish certain model aspects.
First, four of the models (indicated in red) are “flux adjusted” (see Randall and Wood, 2007). In
other words, ocean data have been adjusted to improve the consistency between atmosphere-to-
ocean and ocean-to-atmosphere fluxes. This is important because such models often fit
observations better, and this may be partly an artifact of the flux adjustment process. One
should be wary of model validation results and apparent skill in these cases. Second, our ENSO
assessments rely on the comprehensive analysis of AR4 models by AchutaRao and Sperber
(2006). The AOGCMs included in this analysis are indicated by bold, larger-font type in Table
1.1. Only BCCR and ECHO-G are not considered in the ENSO analysis.

For the boundary flux work, our most complete analyses employ data from NCAR’s CCSM3.0,
which runs at T85 spatial resolution (about 1% deg. by 1v4 deg.), extracted from an ensemble of
simulations driven by observed natural and anthropogenic forcings. These runs have been
designed to simulate recent climate variations and are appropriate for comparison with post-
1979 reanalysis data.
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Table 1.1: AOGCMs considered in the study.

CMIP3 designator Country SCENGEN name Name used in text
BCCR-BCM2.0 Norway BCCRBCM2 BCCR
CGCM3.1(T47) Canada CCCMA-31 CCCMA-
CCSM3.0 USA CCSM—30 CCSM3.0
CNRM-CM3 France CNRM-CM3 CNRM
CSIRO-Mk3.0 Australia CSIRO-30 CSIRO
ECHO-G Germany/Korea ECHO---G ECHO-G
FGOALS-g1.0 China FGOALS1G FGOALS
GFDL-CM2.0 USA GFDLCM20 GFDL2.0
GFDL-CM2.1 USA GFDLCM21 GFDL2.1
GISS-EH USA GISS—EH GISS-EH
GISS-ER USA GISS—ER GISS-ER
INM-CM3.0 Russia INMCM-30 INM
IPSL-CM4 France IPSL_CM4 IPSL
MIROC3.2(hires) Japan MIROC-HI MIROChires
MIROC3.2(medres) Japan MIROCMED MIROCmedres
MRI-CGCM2.3.2 Japan MRI-232A MRI
ECHAMS5/MPI-OM Germany MPIECH-5 ECHAMS5
PCMA1 USA NCARPCM1 PCM
UKMO-HadCM3 UK UKHADCMS3 HadCM3
UKMO-HadGEM1 UK UKHADGEM HADGEM1
GISS-AOM USA

16




1.3 Fluxes versus Pseudo Fluxes

One of the primary reasons for the focus on CCSM3.0 is that this is the only model for which we
could obtain 6-hourly data. For a correct calculation of lateral boundary fluxes, 6-hourly data
must be used. For all other models in the AR4/CMIP3 data base, only monthly-mean data have
been archived. True fluxes cannot be calculated with monthly data, so we must distinguish
between true fluxes and what we refer to here as ‘pseudo fluxes’. If <...>is used to indicate a
time mean using 6-hourly data, then the true flux for a quantity ‘X’, is ...

F =<uX>

Here, u is the westerly wind component, and X = p (density) for mass flux, X = u for momentum
flux, X =T for heat flux, and X = q (specific humidity) for moisture flux. A pseudo flux can be
defined as ...

P = <u><X>

True and pseudo fluxes differ because time variations in u and X are correlated. Pseudo fluxes,
have the advantage that they can be calculated with monthly data —i.e., with pseudo fluxes we
do not require 6-hourly data. One of the tasks we tackle with CCSM3.0 is to compare the true
and pseudo fluxes. If the implications for model skill from pseudo fluxes are similar to those for
real fluxes, then we can use the monthly data in the AR4/CMIP3 archive to assess the credibility
of AOGCM fluxes for a range of AOGCMs. In any event, the use of pseudo fluxes is a valid
model/observed comparison tool. The key here is to use the same variables and comparison
metrics from the climate model (AOGCM) and the observations (reanalysis).

1.4 Choice of Spatial Domain

There are a number of papers that have carried out regional modeling studies over the western
United States, or the whole (contiguous) United States (see Wigley, 2004). Most of these studies
have used domains that do not follow latitude and longitude lines. For the current analyses, it is
both physically desirable and analytically simpler to employ a latitude-longitude domain. In the
PIRCS regional model inter-comparison (Takle et al., 1999), where the basic domain was the
contiguous United States, one of the eight models compared (viz. HIRHAM) used a latitude-
longitude domain (one that is consistent with the domains used by the other seven models in
PIRCS, and consistent with domains used in studies concentrating on the western United States;
see Takle et al., 1999). We have therefore chosen to use the HIRHAM PIRCS domain as the basic
domain for the present work. This runs from 55N, 130W to 20N, 70W - see the rectangular box
in Figure 1.1. Figure 1.1 also shows a larger domain proposed for the NARCCAP project
(Mearns et al., 2004; see Appendix 1). The western boundary of the rectangular box in Figure 1.1
(at 130W) is that used in the present study for calculating fluxes.
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Figure 1.1: The rectangular latitude/longitude HIRHAM RCM region use to define the
western flux boundary for the present study (130W), compared with the region proposed
for the NARCCAP project (Mearns et al., 2004), red box.
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2.0 Validation Analysis

For assessing model skill, our first method is to compare model simulations of present-day climate with
observations. We do this considering two regions, WUSA and the globe. We use winter (DJF)
precipitation as the key variable for WUSA and annual precipitation as the key variable for the global
analysis. There are considerable uncertainties in quantifying both absolute skill and the relative skill of
different models (see, e.g., Gleckler et al., 2008), so these results must be seen as just one of a number of
possible skill assessments. As a validation variable we use precipitation in part because of its significance
to California, and partly because precipitation is more difficult to model than, e.g., temperature. Models
do less well in simulating precipitation than temperature, so using precipitation is a more stringent test
of model skill.

The comparison statistics (i.e., skill metrics) used are: pattern correlation (r), root-mean-square error
(RMSE), bias (B), and a bias-corrected RMSE (RMSE-corr). All statistics used here are employ cosine
weighting to account for the changing area of grid boxes with latitude.

Bias is simply the difference, model minus observed, averaged over the chosen validation region. Of
these four statistics, bias is probably the least important, since it is generally thought that biased models
can still produce good information regarding future change, provided the bias is not too large. Bias may
reflect incorrect baseline forcing (i.e., atmospheric composition and/or loadings of radiatively important
species) in the runs used for validation, rather than a problem with model physics. Bias, however, can
affect RMSE, which is why RMSE-corr results are given as a test statistic. RMSE-corr is the root-mean-
square error after a correction is applied to the model-mean field to remove any overall bias. It is related
to RMSE by

(RMSE-corr)? = (RMSE)? - B2

Table 2.1 shows these statistics for all models in the SCENGEN data base. To rank models we have used
a semi-quantitative skill score that rewards relatively good models and penalizes relatively bad models.
Each model gets a score of +1 if it is in the top seven (top third approximately) for any statistic over the
globe or over the WUSA, and a score of -1 if it is in the bottom seven. The maximum skill score is
therefore +8, which would mean that the model was in the top seven for all four statistics over both
regions. The worst possible score is —8. In Table 2.1, models are listed in order of their skill scores. Other
skill scores could be devised — but the results for others that we have considered are similar.

Table 2.1 shows the clear superiority of the first three models — but note also that these three models are
all flux adjusted. This may give them an advantage in a model validation exercise, so one should treat
these results with caution. On the other hand, flux adjustment is not thought to be an issue for future
climate change projections (see, e.g., Gregory and Mitchell, 1997), i.e., projections for a given model do
not depend significantly on whether the model is flux adjusted or not. Nevertheless, if a flux-adjusted
model validates well against present climate, as here, this may not be a good indicator of model quality.
In these cases, other indicators of model quality should also be considered.

Not counting these three models, the best models are the two GFDL models, HadCM3, MIROCmedres
and the CSIRO model. A few models are abysmally bad — GISS-ER, GISS-EH, CNRM and INM (the latter
even though it is flux adjusted).
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Table 2.1: Validation statistics used for ranking models. The variable used for ranking is
annual precipitation for the globe and winter (DJF) precipitation for the western USA
region (20-55N, 100-130W). The first numbers in each column are for the globe, while the
second numbers are for western USA. The top three models for each statistic are shown
in bold red type, while the worst three models in each case are shown in bold blue type.
MODBAR refers to results for the model average. The score (column 1) is the number of
top seven placings minus the number of bottom seven placings.

RANK | FLUX | MODEL Pattern RMSE Bias RMSE-corr
(score) | ADJ? correlation | (mm/day) (mm/day) (mm/day)
1(+8) | Yes |MRI 0.886/0.918 | 0.967/0.683 | -0.084/+0.381 | 0.963/0.567
1(+8) | Yes |CCCMA 0.888/0.927 | 0.949/0.798 | -0.010/+0.592 | 0.949/0.536
3(+7) |Yes |ECHO-G 0.910/0.894 | 0.864/1.098 | +0.128/+0.793 | 0.854/0.760
4 (+6) MIROCmedres | 0.833/0.880 | 1.162/1.119 | +0.035/+0.534 | 1.162/0.983
4 (+6) GFDL2.0 0.868/0.857 | 1.099/1.136 | +0.091/+0.803 | 1.095/0.804
6 (+4) GFDL2.1 0.857/0.841 | 1.149/1.260 | +0.215/+0.840 | 1.128/0.938
7 (+3) HadCM3 0.858/0.850 | 1.256/1.155 | +0.230/+0.647 | 1.235/0.957
7 (+3) CSIRO 0.814/0.882 | 1.209/1.234 | -0.161/+0.780 | 1.198/0.955
9 (-1) IPSL 0.808/0.870 | 1.269/1.531 | -0.090/+1.175 | 1.266/0.981
9 (-1) ECHAMS5 0.808/0.890 | 1.351/1.318 | +0.247/+1.030 | 1.328/0.822
9 (-1) MIROChires 0.800/0.894 | 1.340/1.532 | +0.281/+0.892 | 1.311/1.245
12 (-2) BCCR 0.793/0.804 | 1.311/1.243 | +0.307/+0.629 | 1.275/1.072
13 (-3) CCSM3.0 0.797/0.798 | 1.327/1.354 | +0.160/+0.956 | 1.317/0.958
13 (-3) FGOALS 0.816/0.757 | 1.226/2.121 | +0.307/+1.729 | 1.187/0.969
13 (-3) HadGEMA1 0.797/0.929 | 1.614/1.349 | +0.385/+0.437 | 1.568/1.276
13 (-3) PCM 0.665/0.797 | 1.715/1.212 | +0.343/+0.843 | 1.680/0.870
17 (-6) | Yes | INM 0.700/0.528 | 1.606/1.757 | +0.116/+1.106 | 1.590/1.365
18 (-7) GISS-EH 0.733/0.718 | 1.512/1.403 | +0.340/+0.840 | 1.473/1.124
19 (-8) CNRM 0.772/0.794 | 1.438/1.488 | +0.540/+1.020 | 1.333/1.084
19 (-8) GISS-ER 0.774/0.770 | 1.430/1.740 | +0.297/+1.271 | 1.399/1.189
MODBAR 0.910/0.919 | 0.870/1.090 | +0.184/+0.865 | 0.850/0.663
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Model Error {100*(Mod.-Obs.)/0bs.) for Dec/Jan/Feb Precipitation Global range
-92.1to 1000.0
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Figure 2.1: Bias in model simulations of DJF precipitation. The map shows the model-

mean percentage error for the listed models. Blue areas show where model simulations
are too wet, red areas are where model simulations are too dry. Note the serious model-
mean positive bias over the western USA. This is common to all models (see Table 2.1)

An interesting result (now well known) is that averaging all the model results together (MODBAR in
Table 2.1) leads to better overall validation performance than any individual model. Of course, this is not
relevant for the present purpose. More relevant is the fact that all models have a positive bias over
WUSA - they rain too much. The DJF bias ranges from 0.38 to 1.73 mm/day (about 5.5 to 24.8
inches/year) — see detail in Figures 2 and 3. The reasons for this are still uncertain, but the pattern of the
bias suggests it is something to do with orography. As we will show below, these precipitation errors do
not seem to be related to any moisture flux bias

Note also that models that perform well in terms of global statistics generally perform well over the
much smaller western USA region. Models with high regional bias, however, may still perform
adequately with the other statistics - CCSM3.0 and the two GFDL models are examples.

The biases shown in Figure 2.1 compare AOGCM control runs with the CMAP precipitation data base,
which has the same resolution as the SCENGEN AOGCM data base (viz. 2.5 by 2.5 deg.
latitude/longitude). The results here are consistent with other analyses of precipitation bias. An example
(from Caldwell et al., 2009) is shown in Figure 2.2, which compares CCSM3 data with two much higher
resolution precipitation data bases. (The extra spatial detail in Figure 2.2 comes from the high resolution
observations, and would appear similarly if these data were compared with the lower-resolution CMAP
data.) Caldwell et al. note that similar positive precipitation biases are common to many regional
models, implying that the AOGCM errors are not simply due to orography, but must reflect flaws in
model physics as well.
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Figure 2.2: Comparison of model (CCSM3) and observed annual precipitation for two
different high-resolution precipitation data bases (from Caldwell et al., 2009). The maps
show results for (100*(Model minus Observed)/Observed).
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3.0 Outlier Analysis

In selecting models it is also useful to compare model simulations of future climate. This is a way of
factoring in the convergence criterion proposed by Giorgi and Mearns (2002) — these authors suggest that
models that are less similar to other models (outliers) should be down-weighted. The analysis here uses
all 20 models in the SCENGEN data base. We consider all 20 models even though it has already been
noted in the previous section that some models (GISS-ER, GISS-EH, CNRM, INM) perform so poorly in
validation that they almost certainly should not be used as RCM drivers.

To determine possible outliers we use normalized annual precipitation projections over the globe. The
projections are in percentage terms, so it is percentage changes that we are comparing here. For each
model we compare its projection with the average projection for all other models. In other words, if ‘n’
models are being considered, the normalized percentage changes for model ‘i” are compared with the
average of changes over all n-1 remaining models.

Note that, for “all other models’, this is the average of the percentage changes, which is not the same as
(although generally similar to) the average absolute change expressed as a percentage. We use
normalized projections (i.e., percentage change per degree C global-mean warming) to remove inter-
model differences arising from differences in the climate sensitivity. We use the same comparison
statistics that were used in the validation exercise — pattern correlation, RMSE, bias, and bias-corrected
RMSE. Results are given in Table 3.1.

Based on this outlier analysis, there are a number of models that are strikingly different from other
models in terms of their response patterns (based on the pattern correlation and bias-corrected RMSE
results), viz., CNRM, GISS-ER, PCM, CSIRO, MRI and ECHAMS. Two of these (GISS-ER and CNRM)
have already been identified as poor models on the basis of the validation analysis. It is interesting that
two of the worst models based on this outlier analysis (ECHO-G and MRI) are among the best in terms
of validation skill. Other models that show conflicting validation/outlier results are CSIRO, FGOALS and
HadGEMI1.
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Table 3.1: Outlier analysis. For each model, the comparison statistic compares the model
result for the normalized percentage change in annual precipitation with the average
across all other models. For bias, this is model-i minus the average over the remaining 19
models. The analysis field is the whole globe.

MODEL Pattern RMSE Bias RMSE-corr
correl. [rank] | (%) (%) (%)

BCCR 0.480 [6] 6.873 0.515 6.854
CCCMA 0.608 [1] 5.737 -0.074 5.736
CCSM3.0 0.319 [15] 8.810 1.093 8.754
CNRM 0.260 [18] 8.243 0.271 8.239
CSIRO 0.291 [17] 9.548 0.709 9.521
ECHO-G 0.293 [16] 8.709 -0.759 8.676
FGOALS 0.513 [4] 8.647 -1.145 8.571
GFDL2.0 0.424 [7] 10.307 0.604 10.289
GFDL2.1 0.414 [9] 11.107 -2.058 10.914
GISS-EH 0.394 [12] 7.895 0.609 7.871
GISS-ER 0.124 [19] 24.100 0.245 24.099
INM 0.408 [10] 7.186 0.274 7.161
IPSL 0.422 [8] 10.000 -0.983 9.952
MIROChires 0.497 [5] 5.665 0.632 5.630
MIROCmedres 0.588 [2] 5.700 -0.121 5.699
MRI 0.350 [14] 15.456 0.960 15.426
ECHAMS 0.369 [13] 10.679 0.353 10.673
PCM -0.099 [20] 15.363 0.914 15.336
HadCM3 0.404 [11] 10.149 -0.838 10.114
HadGEM1 0.525 [3] 6.513 -0.021 6.513
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4.0 ENSO Assessment

ENSO is a quasi-periodic variation in sea surface temperatures in the tropical Pacific, which affects and is
affected by the longitudinal Walker Circulation. ENSO variations are characterized by a normalized
form of the pressure difference between Darwin and Tahiti (the Southern Oscillation Index) or by SST
variations in the Nino 3 region or the Nino 3.4 region (see Figure 4.1). We use the SST indices here.
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Figure 4.1: Sea surface temperature regions used for characterizing ENSO variations.
The longitude (130W = 230E) used for determining easterly fluxes is shown by the vertical
line.

ENSOQO is known to have a statistically significant effect on winter precipitation in California. During El
Ninos (warm SSTs in the tropical Pacific), precipitation is enhanced, especially in southern California. In
La Ninas (cool events), the signal is in the opposite direction and is less strong, but still detectable in
southern California. A key criterion in choosing models for driving RCMs therefore should be the
model’s skill in simulating ENSO. More to the point, the key factor should be a model’s skill in
projecting future changes in ENSO. As we have no way to judge such skill, we rely on the assumption
that skill in simulating present-day ENSOs is a guide to and prerequisite for skill in projections of
change.

ENSO variations also appear to be an important determinant of changes in the western boundary fluxes,
so this is another (and possibly more important) reason why RCM driver models should be those that
are skillful in simulating ENSO.

4.1 ENSOf/flux relationships

ENSO/flux relationships for both observations and CCSM3.0 are shown below in Figures 4.2 to 4.6. We
characterize the fluxes by using the first principal component (PC1) of the monthly time series of the
latitude-height patterns at 130W (over 1980 to 1999). Figure 4.2 shows ERA40 and CCSM3.0 results for
the zonal flow.

25



-1 *ERA40 PC 1

‘l_ N —_— ERALD PC 1 wilh'2
(T'I = .—. fgdég.eo%c::ss—cu'r
o | | | | | | | | | | | | | | | | | | | |
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
-1*CCSM PC 1
o - 'T gﬁgglwithﬁ'n:.lag
~ l— 'E.ﬁ%‘:ss-mrr
' |
1 ‘ | 1\ ‘ ‘
D | 1

1 TN WK AR AV

A ’ '
‘l_ _ | i
fl\l -

I | | | |

| | | | ] I | | | I ] | | | I
14980 1982 1984 1986 1988 1990 1892 1994 1996 1598

Figure 4.2: Comparison of zonal flow PC1 time series with ENSO (Nino 3.4 SSTs) time
series for ERA40 and CCSM3.0. PC1 time series have been multiplied by —1 to facilitate
comparison. For ERA40, the flow PC1 is lagged by 2 months to maximize the correlation.
For CCSM3.0 the corresponding maximizing lag is 6 months.

There is a clear relationship between zonal flow and ENSO in the observations, maximized when the
flow PC1 lags 2 months behind the ENSO series. The correlation between the PC1 and ENSO time series
is r =-0.538, but the sign here is arbitrary. When flow magnitude is looked at directly, stronger flows are
associated with warmer SSTs.

Can AOGCMs emulate this relationship? The answer appears to be “not well”. The bottom panel in
Figure 4.2 shows the same relationship using CCSM3.0 data. In CCSM3.0, the ENSO time series
necessarily differs from the observed ENSO time series, not only because the model world is essentially
in a different universe, but also because CCSM3.0 does not simulate the ENSO power spectrum very
well. The Figure shows that CCSM3.0’s ENSO has a very strong (and unrealistic) 2-year cycle (of which
more will be said below). Furthermore, in the model world there is a much weaker link between ENSO
and the zonal flow (r = 0.155), maximized at an unrealistic lag of 6 months.

Results for momentum flux <uu> are shown in Figure 4.3 using data from both the ERA40 and NCEP
reanalyses, compared with CCSM3.0. (Note that CCSM3.0 is the only model for which we have 6-hourly
data, and so is the only model where we can do a full flux comparison.) The results for the two
reanalyses are virtually identical. Here, the maximum observed correlation occurs (as for the zonal flow)
when the flux PC1 lags 2 months behind the SSTs (r = 0.623 for NCEP, r = 0.632 for ERA40). For
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CCSM3.0, the relationship is much weaker (r = 0.286), maximized at zero lag. In terms of explained
variance (r?), the observed value of 40% (ERA40) drops to only 8% in the model.
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Figure 4.3: Comparison of momentum flux and ENSO variations for two reanalyses
(NCEP and ERA40) and CCSM3.0.

Lag relationships between the momentum flux PC1 time series and Nino 3.4 SSTs are shown in Figure
4.4.
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Figure 4.4: Lag correlations between momentum flux (PC1) and ENSO (Nino 3.4 SSTs)
variations. Results are for ERA40 observed data (black line) and CCSM3.0 data (blue
dashed line).

The reason for the ENSO/zonal wind and ENSO/momentum flux correlations almost certainly arises
from the thermal wind relationship. Inter-annual SST variability is larger at low latitudes, so it is likely
that the south-to-north temperature gradient will vary in parallel with tropical SSTs —i.e., in parallel
with ENSO. The stronger this gradient, the larger will be the thermal wind, and, hence, the stronger will
be the jet and the magnitude of the PC1 loading for zonal wind and momentum flux. The issue is
complicated by the fact that there are two jets (see below). Further testing is required for this hypothesis.

Results for heat fluxes are shown in Figure 4.5. As heat flux involves absolute temperature, the spatial
variations in temperature are much less than the variations in wind speed, so it is the spatial speed
variations that will dominate the heat flux pattern. The results for heat flux are therefore similar to those
for momentum flux: i.e., the flux/ENSO link is much weaker in the model than in the observations, and
is maximized at zero lag compared with 2 months for the observations. There is essentially no difference
between the two reanalyses.
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PC 1 time series for Heat Flux
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Figure 4.5: Comparison of heat flux and ENSO variations for two reanalyses (NCEP and
ERA40) and CCSM3.0.

We can speculate what might hold for moisture fluxes. Here, atmospheric moisture content is much
greater at low elevations, and is almost zero at the height of the jet. Moisture fluxes are therefore
virtually independent on the strength of the jet, and, since it is jet strength that determines the ENSO
links to zonal flow, momentum flux and heat flux, we might expect a much weaker link for moisture
flux. On the other hand, lower atmosphere moisture content is strongly dependent on tropical SSTs, so
there must be a direct link between moisture content (and, hence, moisture flux) and ENSO, independent
of the jet. ENSO is therefore still likely to be an important factor in determining model skill for moisture
flux. ENSO/moisture flux comparisons are shown in Figure 4.6, and results for all relationships are
summarized in Table 4.1.

As with the zonal flow and fluxes, there is a statistically significant relationship between moisture flux
and SSTs in the observations, but it is considerably weaker than for the other variables. Correlations are
maximized at 2 months lag (which is somewhat surprising). In the model, the flux/ENSO link is much
weaker, and maximized at zero lag.
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PC 1 time series for Moisture Flux
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Figure 4.6: Comparison of moisture flux and ENSO variations for two reanalyses (NCEP

and ERA40) and CCSM3.0.

Table 4.1: Comparison of zonal flow and fluxes at 130W with ENSO for reanalyses and

CCSM3.0. Zonal flow and fluxes are characterized by PC1 of the monthly-mean time
series over 1980 to 1999. ENSO is characterized by the Nino 3.4 SST time series.

Numbers in the Table are correlation coefficients, followed in square brackets by the lag

(positive lag means that the flow or flux lags behind ENSO) that gives the maximum

correlation. The positive correlations for the flow/ENSO link indicate that zonal flows are

stronger when Nino 3.4 SSTs are warmer. All flux correlations are shown as positive
because the sign of the PC loading is arbitrary.

Field correlated with NCEP ERA40 CCSM3.0 (rune)

ENSO

Zonal flow 0.523 [2 mo.] 0.538 [2 mo.] 0.155 [7 mo.]
0.328 [2 mo.]*

Momentum flux 0.623 [2 mo.] 0.632 [2 mo] 0.286 [0 mo.]

Heat flux 0.514 [2 mo.] 0.531 [2 mo.] 0.211 [0 mo.]’

Moisture flux 0.258 [2 mo.] 0.274 [2 mo.] 0.109 [0 mo.]°

! The 2 mo. lag result is given for direct comparison with the NCEP and ERA40 results.

2 Larger correlations occur at negative lags (ENSO lagging), which is physically unrealistic. Hence zero lag result is

given instead.
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4.2 Direct ENSO validation

We now consider the ENSO performance of other AOGCMs in the AR4/CMIP3 data base. The results
reported below are from the paper by AchutaRao and Sperber (2006). We consider three different metrics
for ENSO performance, the power spectrum, the temperature response pattern, and variability,
comparing observed data with control-run model simulations. We do not examine model relationships
between ENSO and fluxes.
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Figure 4.7: Power spectra for Nino3 SSTs for models in the AR4/CMIP3 data base.

Figure 4.7 shows the power spectra for these models. This is Fig. 2 from AchuaRao and Sperber (the
same Figure is shown in the IPCC AR4 WGI report, p. 624 — the version shown here is a higher quality
plot obtained from Ken Sperber.) There a number of models where the ENSO spectrum is seriously
deficient. The following models have virtually no SST periodicity (i.e., no identifiable ENSO signal in the
appropriate part of the tropical Pacific) - CCCMA, GISS-EH, GISS-ER, GISS-AOM, MIROCmedres and
MIROChires. The following models have periodicities that are far too strong (or at the wrong frequency)
— CNRM, FGOALS and CCSM3.0. As the AchutaRao and Sperber analysis did not consider the ECHO-G
and BCCR models, this leaves 10 models with acceptable SST spectra (see Table 4.2).
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Table 4.2: ENSO performance metrics. Performance ranks only are given for RMSE and
pattern correlation. The top 10 models are indicated by blue type. Cases where the model
variability is too high (rather than too low) are shown as red in the last column.

Model Power RMSE Pattern N34 vblty
Spectrum Correl index

BCCR N.A. N.A. N.A. N.A.

CCCMA Poor 8 12 1811 [14]
CCSM3.0 Poor 3 8 183 [7]
CNRM Poor 16 3 3055 [15]
CSIRO 14 14 325 [9]
ECHO-G N.A. N.A. N.A. N.A.

FGOALS Poor 18 10 4116 [16]
GFDL2.0 4 5 204 [8]
GFDL2.1 17 6 1182 [12]
GISS-EH Poor 13 17 4 [1]
GISS-ER Poor 5 9 22456 [18]
INM 19 18 143 [6]
IPSL 1 2 125 [5]
MIROChires Poor 12 13 5011 [17]
MIROCmedres Poor 11 16 1075 [11]
MRI 2 4 466  [10]
ECHAM5 10 1 1741 [13]
PCM 7 11 20 [3]
HadCM3 6 7 63 [4]
HADGEM1 9 15 15 [2]
(GISS-AOM) Poor 15 19 22456 [18]

The next ENSO metric we consider is the pattern of SST variations during an ENSO warm event (see
AchutaRao and Sperber, Figures 3 and 4). Table 4.2 shows relative skill in the simulated pattern,
quantified using both the RMS error and the observed versus model pattern correlations over 30S to
30N, 90 to 270W. The Table shows model rank, with the best models having the lowest RMSE values or
the highest correlations. RMSE values range from 0.23 degC (IPSL) to 0.60 degC (INM), and pattern
correlations range from 0.40 (GISS-AOM) to 0.86 (ECHAMS).

Our third metric is SST variability in the Nino 3.4 region. These results are given in AchutaRao and
Sperber’s Table 2. Since both too high and too low variability (relative to observations) are undesirable,
we use the following index ...

I=10000 [0.5 (s/z + z/s) — 1]
where s and z are the observed (HadISST v1.1) and model standard deviations. Small values of I indicate

a better fit, and I=0 for a perfect fit. Cases where the model variability is too high (rather than too low)
are shown as red in the Table.
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Overall, the best models are IPSL, MRI, HadCM3 and GFDL2.0. CCSM3.0 also performs well except for
its strong 2-year periodicity. Note that MRI is flux adjusted, and its performance may be partly an
artifact of the flux adjustment. The worst models are FGOALS, MIROChires, INM and HadGEM1.

The version of CCSM used in the above analyses (3.0) is the version archived in the AR4/CMIP3 data
base. This is now a few years out of date (as is the case for most of the models in this data base) and
substantial improvements have been made since then to CCSM’s ENSO performance. Figure 4.8 (from
Jerry Meehl, NCAR, pers. comm..) shows this. It is clear that the spectrum has improved markedly (there
is no longer the pronounced 2-year cycle). The variability, however, is still somewhat larger than the

observed variability.
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Figure 4.8: Nino3 SST simulations comparing observed changes with two versions of
CCSM. Note that the time scale is arbitrary.

4.3 Summary to date

At this stage, the models may be separated into three groups, those that are clearly superior, those that
are clearly inferior, and those that are in between.

Superior models are CCSM3.0, GFDL2.0, GFDL2.1, IPSL, MIROCmedres and HadCM3. Inferior models
that have levels of performance that make them unsuitable as RCM drivers are CNRM, FGOALS, GISS-
EH, GISS-ER, INM and PCM. Models that are in between are CCCMA, ECHO-G and MRI (which are
mainly suspect because they are flux adjusted) BCCR, CSIRO, MIROChires, ECHAMS5 and HadGEM1.
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5.0 Flux Assessments for CCSM3.0

Fluxes across the western boundary are determined by the westerly wind strength and the prevailing
tield for the flux variable. For momentum flux, therefore, the latitude-height flux pattern will closely
mirror the pattern for the wind (u). This will also be the case for heat flux, as noted above. The situation
for moisture fluxes is quite different. Here, both moisture content (specific humidity) and wind speed
vary substantially both latitudinally and vertically, so both will affect the flux pattern. It is the spatial
moisture variations that have the dominant effect. The key determinants of fluxes, therefore, are the
westerly wind and specific humidity latitude-height patterns over the boundary at 130W (= 230E).

5.1 Variable profiles

We begin with an analysis of the wind speed, temperature and moisture fields over the western
boundary, comparing CCSM3.0 data with reanalyses.

Figures 5.1, 5.2 and 5.3 compare the westerly wind speed fields, the temperature fields and the specific
humidity fields for CCSM3.0 with ERA40 for months that are central to (and typical of) the winter,
spring, summer and fall seasons. For the wind fields (Figure 5.1), CCSM has stronger jet maxima,
especially in the winter/spring half of the year (see also below). The implications of this are not
immediately clear. As noted above, moisture fluxes are probably more important than other fluxes, and
the positions of the anomalous jet speed maxima are too high to affect moisture fluxes significantly.
Below about 700 hPa, the CCSM and ERA wind fields are quite similar. Note that the mean wind
direction south of 30N is easterly in the lower troposphere in both the model and the observations.
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Figure 5.1: Vertical profiles for westerly wind speeds (m/s) along the western boundary
(130W)
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Figure 5.2: Vertical profiles for temperature (K) along the western boundary at 130W

Temperature fields (Figure 5.2) are very similar in CCSM and the observations. The differences are so
small that they can have only negligible effects on heat fluxes.
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Figure 5.3: Vertical profiles for moisture content (specific humidity, gm/gm) along the
western boundary at 130W

Moisture fields (Figure 5.3) show larger differences. Near the surface, model specific humidities are
around 10% less than observations in January, and around 20% less in July. It is the January differences
that are most important, since this is the wet season. As the westerly wind speeds in the model and
observations are very similar in the lower troposphere, one might expect moisture fluxes in the model to
be less than observed (this is, however, not the case — see below).

Another test for model simulations of fluxes is to examine how well models simulate the observed
seasonal cycles of jet latitude and jet speed. Note that, at certain times of the year, there are two distinct
jets over the Pacific, both a subtropical jet at lower latitudes and a polar jet at higher latitudes (see the
April and October plots in Figure 5.1). Figures 5.4 and 5.5 compare observed and model (CCSM3.0)
seasonal cycles of jet latitude and jet strength. The model simulates the jet locations very well over the
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seasonal cycle (Figure 5.4), but is less good at simulating the strength of the subtropical jet (Figure 5.5).
CCSM3.0 produces considerably higher jet speeds than observed, as already noted, especially in
December through April.
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Figure 5.4: Seasonal movements of jet latitudes in the model (CCSM3.0) and reanalysis
(NCEP). Given the difficulty in precisely defining jet location, the agreement is very good.
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Figure 5.5: Seasonal changes in jet strengths in the model (CCSM3.0) and reanalysis
(NCEP). The model seriously over-estimates the strength of the sub-tropical jet.

5.2 Flux profiles

We noted above that true fluxes can only be calculated using high temporal resolution (6-hourly) data,
and that, of the models in the AR4/CMIP3 data base, such high temporal resolution data are available
only for CCSM3.0. We therefore introduced the concept of pseudo fluxes, which can be calculated using
monthly data. Real fluxes (for variable X) are defined by <uX>, whereas pseudo fluxes are defined by
<u><X>, where <...> denotes a time average.

In this section we consider both real and pseudo fluxes for CCSM3.0 and compare these with real and

pseudo fluxes based on the ERA40 reanalysis data. Figure 5.6 compares both real and pseudo
momentum fluxes for CCSM3.0 with those for ERA40 data.
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Figure 5.6: Vertical profiles of momentum fluxes across the western boundary at 130W.
Results for both true fluxes (<uu>) and pseudo fluxes (<u><u>) are shown, comparing
model (CCSM3.0) and observed (ERA40 reanalysis) results. (Units are m?/s?.)

These plots are similar to those for the westerly wind field (Figure 5.1). The top two rows show the same
relative results as Figure 5.1, with fluxes in the region of the subtropical jet in January and April being
appreciably stronger in CCSM3.0 than in the observations. In the lower troposphere, however, model
and observed fluxes are similar. The pseudo flux patterns (bottom two rows) are very similar to the true
flux patterns, but with weaker maxima. The pseudo flux results for the model show the same relative
errors as for the true fluxes. It is clear that a comparison of pseudo momentum fluxes leads to the same
conclusions as a comparison of real momentum fluxes.

Figure 5.7 compares both real and pseudo heat fluxes for CCSM3.0 with those for ERA40 data.
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Figure 5.7: Vertical profiles of heat fluxes across the western boundary at 130W. Results
for both true fluxes (<uT>) and pseudo fluxes (<u><T>) are shown, comparing model
(CCSM3.0) and observed (ERA40 reanalysis) results. (Units are K m/s.)

Consider the real fluxes first. As anticipated, the latitude-height patterns of the heat fluxes are controlled
mainly by the westerly wind structure, with maximum fluxes at the positions of the jet maxima. The
seasonal variations also follow the seasonal variations in the westerly wind speed. There is a region of
easterly flux south of 30N in January and April, extending a little further north in July and October. At
20N this runs up to around 700 hPa in January, April and October, and to around 400 hPa in July.
Although the heat fluxes in the upper troposphere are larger in the model than in the observations,
model and observed heat fluxes below around 500 hPa are virtually identical. (Note that some plots
show contour lines at 1000 K m/s, while others have a 2000 K m/s interval.)

For pseudo fluxes the relative results, model versus observed, are the same as for real fluxes, so, again,
the use of pseudo fluxes will lead to the same conclusions as for real fluxes.

Figure 5.8 shows results for moisture fluxes.
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Figure 5.8: Vertical profiles of moisture fluxes across the western boundary at 130W.
Results for both true fluxes (<ug>) and pseudo fluxes (<u><q>) are shown, comparing
model (CCSM3.0) and observed (ERA40 reanalysis) results. (Units are kg m/kg s.)

As anticipated, the latitude-height patterns reflect the influences of both the wind speed and specific
humidity patterns. Largest moisture fluxes occur in the lower troposphere where specific humidity
levels are greatest. South of around 30N and up to around 700 hPa the fluxes are easterly due to
dominantly easterly winds in these regions. There are clear flux maxima are around 850 hPa in January
and October, and nearer to the surface in April and July. The maxima occur around 40 to 45N in January
and April, and slightly further north in July and October. These are latitude ranges that correspond to
the latitudes of the northern half of California. These features are common to both the model and the
observations.

The seasonal cycles of moisture fluxes differ between model and observations. Both the observations and
the model show a maximum in October (although the seasonal cycle range is quite small, much less than
for precipitation), but the model shows a clear minimum in April. Model fluxes are noticeably less than
the observed (ERA40) fluxes — for pseudo fluxes the deficits range from around 40% in April to 10% less
in October (24% less in January).To our knowledge these moisture flux maxima have not previously
been identified. As a new (and somewhat unexpected) feature it is a reassuring measure of model skill
that they are well simulated in the model.
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A key issue is whether model/observed moisture flux differences can help to explain the fact that all
AOGCMs over-estimate precipitation in the western USA. We showed this problem in Figure 2.1 using
model average results, noting (see Table 2.1) that it was a feature common to all models. Figure 5.9
shows that it is a significant problem in CCSM3.0 in particular (see also Figure 2.2).
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Figure 5.9: Bias in the CCSM3.0 model simulation of DJF precipitation. The map shows
the model-mean percentage error. Blue areas show where the model simulation is too
wet, red areas are where the model simulation is too dry.

It is clear that moisture fluxes biases in the model cannot explain these precipitation errors. In the lower
troposphere, moisture fluxes in the model are slightly larger than in the observed data in April, July and
October. In January, however, model and observed flux magnitudes are very similar. These differences
are small compared with the precipitation errors, which are up to over 100% (i.e., the model gives DJF
values that are more than double those observed) over much of the western USA. This conclusion is
consistent with the less comprehensive analysis of Caldwell et al. (2009).

Figure 5.8 shows that pseudo fluxes for moisture are very similar in both patterns and magnitude to the

real fluxes. Once again we can conclude that the same inferences would be drawn from pseudo fluxes as
from real fluxes.
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6.0 Flux Assessments for Other Models

In this section we consider four other AOGCMs from the AR4/CMIP3 data base, two that have been
judged on the criteria already considered to be superior models (GFDL2.1 and MIROCmedres) and two
that hav been judged to be inferior models, unsuitable as an RCM driver (PCM and GISS-EH). As noted
previously, we only have monthly data for these models, so we must use pseudo fluxes for our flux
assessment. We have already shown using CCSM3.0 data that pseudo fluxes are a perfectly adequate
measure for flux assessment.

6.1 Presentation of Results

Figures 6.1 to 6.5 compare results for momentum fluxes for these four models with those for CCSM3.0
and the ERA40 reanalysis. For the models we show two or three realizations, i.e., runs with the same
forcing but with different initial states.
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Figure 6.1: Vertical profiles of pseudo momentum fluxes across the western boundary at
130W, comparing CCSM3.0 model results with observed (ERA40 reanalysis —top row)
results. (Units are m?/s2.). Two runs (using different initializations) are shown for the
model — bottom two rows.
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Figure 6.2: Vertical profiles of pseudo momentum fluxes across the western boundary at
130W, comparing model (GFDL2.1) and observed (ERA40 reanalysis — top row) results.
(Units are m?%s?.). Two runs (using different initializations) are shown for the model —
bottom two rows.
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Figure 6.3: Vertical profiles of pseudo momentum fluxes across the western boundary at
130W, comparing model (PCM) and observed (ERA40 reanalysis —top row) results. (Units
are m?/s2.). Two runs (using different initializations) are shown for the model — bottom
two rows.
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Figure 6.4: Vertical profiles of pseudo momentum fluxes across the western boundary at
130W, comparing model (GISS-EH) and observed (ERA40 reanalysis — top row) results.
(Units are m?%s?.). Two runs (using different initializations) are shown for the model —
bottom two rows.
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Figure 6.5: Vertical profiles of pseudo momentum fluxes across the western boundary at
130W, comparing model (MIROCmedres) and observed (ERA40 reanalysis —top row)
results. (Units are m?/s2.). Three runs (using different initializations) are shown for the
model — bottom three rows.

Figures 6.6 to 6.10 show results for the pseudo heat fluxes.
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Figure 6.6: Vertical profiles of pseudo heat fluxes across the western boundary at 130W,
comparing model (CCSM3.0) and observed (ERA40 reanalysis) results. (Units are K m/s.).
Two runs (using different initializations) are shown for the model.
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Figure 6.7: Vertical profiles of pseudo heat fluxes across the western boundary at 130W,
comparing model (GFDL2.1) and observed (ERA40 reanalysis) results. (Units are K m/s.).
Two runs (using different initializations) are shown for the model.
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Figure 6.8: Vertical profiles of pseudo heat fluxes across the western boundary at 130W,
comparing model (PCM) and observed (ERA40 reanalysis) results. (Units are K m/s.). Two
runs (using different initializations) are shown for the model.
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Figure 6.9: Vertical profiles of pseudo heat fluxes across the western boundary at 130W,
comparing model (GISS-EH) and observed (ERA40 reanalysis) results. (Units are K m/s.).

Two runs (using different initializations) are shown for the model.
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Figure 6.10: Vertical profiles of pseudo heat fluxes across the western boundary at 130W,
comparing model (MIROCmedres) and observed (ERA40 reanalysis) results. (Units are K
m/s.). Three runs (using different initializations) are shown for the model.

Moisture flux results are shown in Figures 6.11 to 6.15.
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Figure 6.11: Vertical profiles of pseudo moisture fluxes across the western boundary at
130W, comparing model (CCSM3.0) and observed (ERA40 reanalysis) results. (Units are
kg m/kg s.). Two runs (using different initializations) are shown for the model.
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Figure 6.12: Vertical profiles of pseudo moisture fluxes across the western boundary at
130W, comparing model (GFDL2.1) and observed (ERA40 reanalysis) results. (Units are
kg m/kg s.). Two runs (using different initializations) are shown for the model.
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Figure 6.13: Vertical profiles of pseudo moisture fluxes across the western boundary at
130W, comparing model (PCM) and observed (ERA40 reanalysis) results. (Units are kg
m/kg s.). Two runs (using different initializations) are shown for the model.
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Figure 6.14: Vertical profiles of pseudo moisture fluxes across the western boundary at
130W, comparing model (GISS-EH) and observed (ERA40 reanalysis) results. (Units are
kg m/kg s.). Two runs (using different initializations) are shown for the model.
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Figure 6.15: Vertical profiles of pseudo moisture fluxes across the western boundary at
130W, comparing model (MIROCmedres) and observed (ERA40 reanalysis) results. (Units
are kg m/kg s.). Two runs (using different initializations) are shown for the model.
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6.2 Discussion of Results

To facilitate this discussion we summarize the key characteristics of the above results in Tables 6.1 and
6.2 — namely the magnitudes and latitudes of the flux maxima for the pseudo momentum and pseudo
moisture fluxes. We consider momentum flux results first.

Table 6.1: Observed and modeled momentum flux characteristics — maximum flux and
latitude of the maximum. The MODEL MEAN results are to give a simple overview — it
hides large inter-model differences. The first number is the latitude of the maximum
(degrees N) and the second number is the maximum flux(m?/s?).

MODEL | Jan. Apr.STJ |Apr.PJ | July STJ [July PJ [ Oct.STJ | Oct. PJ
ERA40 30/650 20/710 46/230 25/240 51/650
CCS|\/|3(a) 25/1220 21/1400 36/230 49/220 25/500 49/920
CCSM3(c) | 24/1100 20/1400 37/260 25/500 48/880
GFDL2. 1(1) 30/1300 21/700 33/220 50/220 43/930
GFDL2.1(2) | 29/1210 22/800 34/220 49/230 45/1000
PC|\/|(1) 27/1500 22/1020 42/810 36/210 55/210 49/820
PC|\/|(2) 26/1620 23/1210 36/220 50/210 51/850
G|SS-EH(1) 26/1050 25/1400 32/150 48/220 28/900 46/520
GISS-EH(2) | 26/1050 27/1420 33/210 47/220 29/880 42/620
|\/||ROC(1) 41/1010 23/1500 32/230 26/460 47/800
MIROC(2) | 41/1210 23/1700 31/220 26/450 46/830
MIROC(3) | 42/1100 22/1410 29/260 25/430 47/720
MODEL MEAN | 29.6/1226 22.6/1242 49.6/219 26.4/612 46.6/811

For the central winter month (January), when only the sub-tropical jet (ST]) is evident in the
observations, all models greatly overestimate the momentum flux (and the speed of the jet), most
seriously in PCM. The jet is noticeably too far south in CCSM, PCM and GISS-EH, but reasonably placed
in GFDL2.1. In MIROC, because of the simulated jet is so far north, it is likely that the jet that the model
simulates is the Polar Jet (PJ). In other words, the MIROC model is simulating incorrect seasonal cycles
for both the STJ and the PJ.

By April, GFDL2.1 improves to a realistic representation of the STJ both in terms of position and
strength. All other models still seriously overestimate the jet strength, although (with the exception of
GISS-EH) they do simulate the position reasonably well. In one simulation, PCM produces a strong PJ,
an error in the timing of the PJ seasonal cycle. There is no PJ this early in the observations.

In July, there is no clear STJ in the observations, but all models show a (relatively weak) STJ. MIROC fails
to simulate a PJ, another manifestation of this model’s failure to get a realistic seasonal cycle for the PJ.
The other four models produce a PJ with reasonable location and speed.

In October, both an ST] and a PJ are evident in the observations. Both GFDL2.1 and PCM show
reasonable representations of the PJ, although the positions tend to be too far south and the jet is too
strong. Neither model has any evidence of an ST]. GISS and MIROC show both jets, but in both models
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the PJ is too far south (especially in GISS-EH). Jet intensity is good in GISS-EH, but too strong in MIROC.
The STJ is well positioned in both of these models, but too strong in MIROC by about 100% and by about
300% in GISS-EH.

To summarize these results, all models generally overestimate the strength of both the STJ and the PJ,
often with momentum fluxes being double what is observed and sometimes with model fluxes being as
much as four times the observed values. Of the models, GFDL2.1 is superior to the other models. CCSM
and MIROC are on a par, although MIROC has serious errors in the timing of the seasonal cycles of both
the STJ and the PJ. PCM and GISS-EH are clearly inferior.

Table 6.2: Observed and modeled moisture flux characteristics — maximum fl;ux and
latitude of the maximum. The first number is the latitude of the maximum (degrees N) and
the second number is the maximum flux(kg m/ kg s).

MODEL | Jan. Apr. STJ | July PJ | Oct. STJ

ERA40 40/0.026 | 40/0.026 | 48/0.037 | 47/0.030

CCSM3(a) |41/0.027 |43/0.023 | 49/0.031 | 45/0.036

CCSM3(c) | 42/0.026 |45/0.022 | 50/0.030 | 45/0.036

GFDL2.1(1) | 36/0.023 | 40/0.017 | 48/0.023 | 42/0.037

GFDL2.1(2) | 36/0.026 | 41/0.012 | 48/0.023 | 44/0.038

PCM(1) 42/0.017 | 43/0.027 | 55/0.020 | 47/0.033

PCM(2) 42/0.017 44/0.022 50/0.020 47/0.037

GISS-EH(1) | 40/0.030 [ 35/0.022 | 46/0.027 | 47/0.026

GISS-EH(2) | 40/0.032 | 35/0.025 | 45/0.027 | 44/0.028

MIROC(1) |43/0.036 | 44/0.021 | 48/0.026 | 46/0.026

MIROC(2) |42/0.087 |42/0.022 |50/0.031 | 46/0.036

MIROC(3) 42/0.038 41/0.022 49/0.032 46/0.036

Table 6.2 shows results for moisture fluxes. Model fluxes are too weak in all models in April and July.
For PCM the moisture flux in October is grossly in error. The flux is too low by almost 50% and the
maximum flux is too far north. In January and October, moisture fluxes tend to be too strong. The
exceptions are GFDL and PCM in January and GISS-EH in October. Combined with the April and July
results, this means that all models are seriously in error in terms of their seasonal moisture-flux cycles.

In addition, in PCM, apart from the flux being much larger than observed, the flux maximum is also too
high above ground — the maximum is at around 700 hPa compared with 850 hPa for the observations.
This height error in PCM is even more pronounced in July, with the maximum flux at 700 hPa instead of
near the surface.

The other major errors are as follows: for CCSM, maximum fluxes are too far north in April; for GFDL,

maximum fluxes are not far enough north in January and October; for PCM, maximum fluxes are too far
north in April and July; and for GISS-EH, maximum fluxes are not far enough north in April.
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In comparing the models, the MIROC model has the fewest deficiencies. CCSM is the next best, then
GFDL, GISS-EH and PCM in that order. While there are substantial errors in some seasons, the model
moisture fluxes compare much more favorably with the observations than the momentum fluxes. The
latter errors are associated, in general, with large errors in the strengths of the sub-tropical and polar jets.
As these are in the upper troposphere, where moisture contents are low, they have no significant effect
on the moisture fluxes. Still, they may well influence circulation patterns over the western USA, which in
turn can effect how much of the moisture that impinges on the land is converted into precipitation.
Diagnosing these linkages is a task for the future.
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7.0 Significance of Flux Differences

In this chapter we consider the statistical significance of differences between modeled and observed
fluxes. We use the Mahalanobis Distance (MD) to quantify model/observed differences, and test to see
whether MD values are significantly different from what would be expected by chance due to natural
variability (Section 7.1). Most of the calculations use pseudo fluxes, so we conclude (Section 7.2) with a
discussion of true versus pseudo fluxes.

7.1 Use of the Mahalanobis Distance

In order to compare two spatial fields (such as a model field and an observed field), and to quantify their
degree of similarity, we use some form of distance metric. A simple example of such a similarity index is
the Euclidean distance metric, defined by

Deucid(8,0) = || s — 0 || = {Zi (si - 0)2 }'”2

where s=(si, ..., sd) and 0=(01, ..., 0d) are the model and observed vectors, and ‘d” is the number of data
points (here, 255, corresponding to 15 latitude points by 17 points in the vertical). If we divide by ‘d’
before taking the square root, this is simply the root-mean-square difference between the two fields.
(Strictly speaking, D is a dissimilarity metric, in that larger values of D indicate greater dissimilarity.)

A generalization of the Euclidean distance is the normalized Euclidean distance defined by

Dnorm(S,0) = {Zi [(si - 0i)?]/Zi2}1/2

where Z:2 is some form of composite variance. This is a way of giving less weight to grid points that have
greater variability. As greater variability is an indication of uncertainty in the mean, inverse variance
weighting puts less emphasis on points where the means are more uncertain.

The Euclidean distance is an appropriate metric for isotropic, stationary spatial fields. However, the
assumption of isotropy is often not a good one in climate science. Instead, we use the Mahalanobis
Distance (MD), a measure that calculates the degree of similarity between two random vectors that have
the same mean, o, and covariance structure, o, and thus applies to anisotropic fields. The Mahalanobis
distance is defined as

Dwm(s,0) ={(s-0) X1 (s-0) }'2

Here X is the covariance matrix of the observation-based reanalysis field. If the time variations in s and o
at different latitude-height grid points are uncorrelated, then the Mahalanobis Distance simply reduces
to the normalized Euclidean distance. The MD is a more general way to account for uncertainties in the
data sets being compared.

We now use the MD to compare model and observed fields. The model simulations are compared to two
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reanalyses products, the NCEP/NCAR and ERA40 reanalyses. These reanalyses are based on similar
observations, but they differ in the models used to process the observational data sets. Errors in the
reanalyses arise from observational measurement errors, or biases, as well as errors resulting from the
model synthesis. There is an extensive literature on these problems. Nevertheless, for most climate
variables, the time-varying spatial patterns are very similar in the two reanalyses. Comparing them gives
us a baseline against which to assess differences between model and reanalysis results. If the latter
differences are similar to the differences between the two reanalyses, this would mean that the model
result was an excellent simulation of the observations.

We concentrate on three particular fields, monthly-mean fields over the 20-year period 1980-1999 for
zonal wind, temperature and specific humidity along 230E, from 20N to 55N. Additionally, we calculate
the momentum flux, heat flux and moisture flux at 230E. The MD value is computed using ERA40 as the
reference reanalysis, and comparing this to the CCSM3.0 20t century model simulations, the CMIP3/AR4
model simulations, and the NCEP/NCAR R1 reanalysis.

The 20-year mean fields, calculated for the meteorological variables of interest, are given as

yi= (1/n)2xit where 1 is the number of replicates, I represents location and t represents time. Suppose,
xit are independent and distributed as N(u, ti2) where 12 is a known measurement error such that ti2 =
(1/(t-1))2(xit— yi)? and [, p2,... pn]T are distributed as multivariate normal with mean constant vector, Lo,
and variance %,,o. The variance of the underlying constant mean field, £, is estimated by a Bayesian
Treed Gaussian Process Model (BTGP; Gramacy and Lee, 2008), and parameterizes the correlation
structure using a stationary, anisotropic, nonseparable Gaussian correlation as given by

K(x;, )= exp{-X((x- y)2 / d} (7.1)

The nonseparable correlation parametrization fits the range parameter, d, specifying the distance at
which two locations exhibit no correlation. A stationary and isotropic covariance structure assumes that
the statistical properties of the field do not change under translation and rotation.

To reduce the MD’s sensitivity to outliers, we temper the estimated spatio-temporal covariance
structure required to calculate the MD value using a basic hierarchical model. For assessing significance
we need a threshold value for MD. When the covariance matrix is known, for a Gaussian process the
square of the MD is distributed as chi-square with p degrees of freedom. At the 5% significance level the
chi-square statistic with p=255 degrees of freedom is 293, so only MD values more than (293) > =17.1
would be significant at the 5% level (i.e., only values larger than this would indicate a significant
difference in the fields). When the correlation matrix is unknown, however, and is estimated using
sample data, the resulting distribution of the MD contains more uncertainty and is known to be
distributed as Hotelling’s two-sample t>-distribution, a generalization of Student’s ¢ statistic that is used
in multivariate hypothesis testing. In our case, the covariance matrix is not estimated by the sampled
data, but by BTGP (see equ. 7.1). When the covariance structure is estimated parametrically, the MD
distribution is no longer in closed form. We therefore estimate the null distribution using Monte Carlo
simulations based on the Gaussian covariance structure parameters. The critical value for significance at
the 5% level is still around 17.

Some data points were excluded from the computation of the MD — specifically, those points where
values at the lower pressure levels were sometimes below the surface, viz. at 52.5N and 1000hPa, and at
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55N and both 1000hPa and 925hPa.

Figure 7.1 shows the 20-year monthly-mean zonal wind field for the ERA40 and NCEP R1 reanalyses,
and the CCSM3.0 run a, c and e model simulations. Zonal wind fields are averaged for each January over
20 years, 1980-1999. The Figure also shows, on the right column, the normalized Euclidean distance
fields, as defined above, signed as CCSM minus ERA40; and, top of right column, the spatio-temporal
inter-annual standard deviation field (SD) for ERA40. The spatio-temporal field accounts for both spatial
and temporal variations in the field. The locations with small variation provide heavier weighting
between the observation and model differences. Likewise, the locations with large variation weight the
differences between model and observation less heavily. As noted previously, the jet in the model is
noticeably stronger than in the observations (see the normalized Euclidean distance fields). The jet is also
the location of greatest variability (the high variability at the top of the domain is an edge effect, and
does not adversely affect the MD values because it is strongly downweighted.)
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Figure 7.1: 20-year monthly mean zonal wind field for the ERA40 and NCEP R1
reanalyses, and the CCSM3.0 run a, ¢c and e model simulations. Zonal wind fields are
averaged for each January over 20 years, 1980-1999.
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Figure 7.2 shows MD results for ERA40 versus NCEP and ERA40 versus CCSM runs a, c and e. The
MDs conform to the visual similarity between the ERA40 reanalysis and model-simulated mean fields.
These results show no significant difference between the reanalysis zonal fields and marginally
significant differences between the model and observed fields. These differences arise through
differences in the jet speed, which are apparent in Figure 7.1. The largest jet wind speed differences are
for run “e’, which also gives the largest MD value. The results shown here are for January only, but
qualitatively similar results are obtained for the other months.

MD

I | I | | | |
0 2 4 6 8 10 12

Figure 7.2: Mahalanobis Distance (MD) between the ERA40 and NCEP reanalyses, and
CCSM3.0 20" century runs A, C and E corresponding to the fields in Figure 7.1. The MDs
are computed with respect to ERA40. NCEP is indicated as a red circle; CCSM
simulations are displayed in green.

Figure 7.3 shows the 20-year monthly-mean specific humidity fields for the ERA40 reference reanalyses
against the NCEP reanalysis and the CCSM3.0 simulated fields (i.e., the same as Figure 7.1, but for
humidity instead of zonal wind). Figure 7.4 shows the corresponding MD results. Figures 7.5 and 7.6
display the analogous plots for the 20-year monthly mean temperature fields. For temperature it is clear
that there are significant differences between the model and ERA40 — but this result must be tempered
by the fact that ERA40 and NCEP also show marginally significant differences. For water vapor, there
are clear differences between the two reanalyses (Figure 7.5, right column, second panel from top). These
differences are greater than the differences between the CCSM3.0 model simulations and ERA40, as is
clear from both Figure 7.3 and Figure 7.4.
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Figure 7.3: 20-year monthly mean specific humidity fields for the ERA40 and NCEP R1
reanalyses, and the CCSM3.0 run a, ¢ and e model simulations.

each January over 20 years, 1980-1999.

600 400

1000 850

600 400

1000 850

500 400

1000 850

20

20

20

67

SpatioTemp SD{x1e-03)

Normalized Difference Field

25 30 35 40 45 50 55

Normalized Difference Field

25 30 35 40 45 50 55

Normalized Diff_erél_lce Field

50

25 30 35 40 45 55

Normalized Difference Field

Fields are averaged for



MD

| | | | | | |
0 2 4 6 8 10 12

Figure 7.4: Mahalanobis Distance (MD) between the ERA40 and NCEP reanalyses, and
CCSM3.0 20" century runs A, C and E corresponding to the fields in Figure 7.4. The MDs
are computed with respect to ERA40. NCEP is indicated as a red circle; CCSM
simulations are displayed in green.
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Figure 7.5: 20-year monthly mean temperature fields for the ERA40 and NCEP R1
reanalyses, and the CCSM3.0 run a, c and e model simulations. Fields are averaged for
each January over 20 years, 1980-1999.
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MD

Figure 7.6: MDs corresponding to the fields in Figure 7.5.

The above results show that the MD is a useful new metric for use as a measure of the similarity (or
dissimilarity) between spatial fields. In addition to the above examples, we have rigorously tested the
MD by simulating spatial fields using a multivariate normal distribution with a prescribed correlation
structure to gain understanding of the strengths and weaknesses of the MD as a measure of spatial field
similarity.

Ultimately, we want to compare the model simulations of the CMIP3/AR4 global circulation models to
the ERA40 and NCEP R1 reanalysis data sets. Most of the GCM data sets are recorded on monthly
timescales in the CMIP3 archive, whereas 6-hourly data are required to compute fluxes. We only have 6-
hourly data for one model and one run, CCSM3.0, run ‘e’.

The flux of variable X at grid point ‘i’ is defined by <uiXi>, where ui is the zonal wind speed and <..>
denotes a time average. For cases where 6-hourly data are not available, we have introduced the concept
of pseudo fluxes defined by <ui><Xi>. Pseudo fluxes can be calculated with monthly data. We have
shown that pseudo fluxes may be used instead of true fluxes for assessing the validity of model fluxes.
We now compare the ERA40, NCEP and CCSM3.0 run e data and MDs for momentum, heat and
moisture pseudo fluxes.

Figure 7.7 shows momentum fluxes constructed using 6-hourly data, for the NCEP, ERA40 and CCSM3.0

run e simulations in October (left column) together with the normalized difference fields and the spatio-
temporal SD field for ERA40.
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Figure 7.7: True momentum fluxes.
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Figure 7.8 shows pseudo flux data analogous to Figure 7.7 for the ERA40 reanalysis and the CCSM3.0
run e simulation. The pseudo fluxes are computed using the monthly data; whereas the fluxes in Figure
7.7 are computed using the 6-hourly data. Figures 7.7 and 7.8 provide a comparison between the true
flux data and the pseudo flux fields (which are the fields used to compare the CMIP3/AR4 models to the
reanalyses data). Figure 7.8 also shows a subset of the CMIP/AR4 20t century simulations, including
CCSM3.0 runs a and ¢, GFDL runs 1 and 2, PCM runs 1 and 2, GFDL2.0 runs 1, 2 and 3, GFDL2.1 run 2,
IPSL run 1, GISS runs 1 and 2, HadleyCM3 runs 1 and 2, HadleyGEM1 run2.

Figure 7.9 shows the MD results from Figure 7.7, viz. for ERA40 versus NCEP, and ERA40 versus
CCSM3.0 run e. The results are similar to those in Figure 7.2, except that the model shows an even larger
difference from the observations (as expected because the flux involves the square of the mean wind
speed). Note that the MD magnitudes for the fluxes computed using 6-hourly data closely match the
pseudo flux MD magnitudes. The MD values are dependent on the difference between the mean fields,
and the spatio-temporal variation in the reanalysis field. Even though these quantities vary on different
time-scales, the true flux and pseudo flux MDs approximate each other well for each of the 20-year
monthly mean momentum flux fields.
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Figure 7.9: MD results for data in Figure 7.7.
® NCEP ® gfdl cm2.0 giss e h # hadcm3
cecsm3.0ace € gfd cm2. ¥ miroc3 2 # hadgem’
A pcmi ipsl_cmd4 B cccma
@ vveel Nl —vyw o * &
| | | | |
0 10 20 30 40

Figure 7.10: MD results for momentum pseudo flux data in Figure 7.8.
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Figure 7.10 shows MD results for the momentum pseudo fluxes in Figure 7.8. The model MDs range
approximately from 10 to 75. Some of the CMIP3/AR4 model resemble the ERA40 momentum flux field
more closely than they resemble the NCEP reanalysis. The GFDL CM2.0, CCSM3.0 and GISS models are
more similar to the ERA40 reanalysis. The IPSL model has the largest MD of all the CMIP3/AR4 models
included in this plot. Clearly, this model has a significant error, associated with its over-estimate of
wind speed in the sub-tropical jet. Similar results are obtained for January, April and October pseudo
flux fields.

The corresponding 20-year averaged heat flux results for the month of July are shown in Figures 7.11a
(the analog of Figure 7.7) and 7.12a (the analog of Figure 7.8). Figures 7.11b and 7.12b show the
computed MDs corresponding to Figures 7.11a and 7.12a, respectively.The July heat flux MDs range
from approximately 15 to 40. Again GFDL CM2.0, CCSM3.0 and the Hadley models most closely
resemble the ERA40 mean field according to the MDs and the IPSL model lags far behind. The
magnitudes of the MDs do vary by month. For example, the April and January MDs for the pseudo
fluxes range from only 5 to 25; whereas, the October pseudo flux MD values range from about 8 to 40.
In all months, except for July, the NCEP reanalysis has the smallest MD relative to the CMIP3/AR4
models, marking the best resemblance to ERA40.
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Figure 7.11a: July heat fluxes (cf. Figure 7.7).
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Figure 7.12a: July heat fluxes (cf. Figure 7.8).
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Figure 7.12b: MDs for data in Figure 7.12a.

Figures 7.13a (cf Figure 7.11a) and 7.14a (cf Figure 7.12a) show the July moisture pseudo fluxes for the
reanalysis and GCM simulations. Figures 7.13b and 7.14b show the corresponding MDs for moisture
fluxes. Many of the simulations match the pattern of the ERA40 moisture flux field, as well as the NCEP
reanalyses. The GFDL CM2.0, CCCMA, Hadley and CCSM3.0 simulations are amongst those that
produce the smallest MDs, whereas, the GISS MDs are much larger. Visually, the GISS model shows
poor pattern correlation.
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Figure 7.13a: July moisture pseudo fluxes.
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Figure 7.14a: July moisture fluxes.
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Figure 7.14b: MDs for the data in Figure 7.14a.

7.1 True flux versus pseudo flux results

The NCEP reanalysis moisture flux field, based on 6 hourly data, is a better match to the ERA40 data
than the CCSM3.0 run e simulation (see Figure 7.13b). However, the reverse is true for the pseudo-flux
fields (see Figure 7.14b). In this case all three CCSM3.0 runs (a, ¢ and e) match the ERA40 reanalysis
more closely than the ERA40/NCEP match. Whether this recersal is significant, however, is doubtful. The
relatively low MD magnitudes produced by the moisture flux fields mean that none of the moisture flux
fields are significantly different, within the variability in the fields themselves. This is as much a result of
the variability as it is an indication of model skill. With highly variable fields it is more difficult to detect
differences in the mean fiekds. For heat fluxes, however, the magnitudes of the heat flux fields MDs are
much larger, by a factor of ten, conveying greater differences with respect to the ERA40 reanalysis
variability. We see similar relationships between the moisture flux and pseudo-flux derived MDs for
January, April, July and October monthly mean fields.
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Appendix 1: NARCCAP

NARCCAP (North American Regional Climate Change Assessment Program) is an international
program to serve the climate scenario needs of both the United States and Canada. The goal is to
investigate the uncertainties in regional scale projections of future climate and to produce high-
resolution climate change scenarios. NARCCAP will use different future emissions scenarios, and a
number of RCMs (at around 50km resolution) driven by a range of AOGCMs. The study domain covers
the conterminous US and most of Canada. NARCCAP also includes a validation aspect through nesting
the participating RCMs within reanalyses. RCMs to be used include HadRM3, RegCM, the Canadian
regional climate model (CRCM), the NCEP regional spectral model (RSM), and MM5. Candidate
AOGCMs include the Hadley Centre HadCM3, NCAR’s CCSM3.0, the Canadian CGCM3 (CCCMA),
and a GFDL model. High-resolution global time slice experiments based on the GFDL atmospheric
model and the NCAR atmospheric model (CAMS3) will also be produced and will be compared with the
regional model results.
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