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Abstract

Lung adenocarcinoma (LUAD) is a morphologically heterogeneous disease with five predominant 

histologic subtypes. Fully supervised convolutional neural networks can improve the accuracy 

and reduce the subjectivity of LUAD histologic subtyping using hematoxylin and eosin (H&E)-

stained whole slide images (WSIs). However, developing supervised models with good prediction 

accuracy usually requires extensive manual data annotation, which is time-consuming and labor-

intensive. This work proposes three self-supervised learning (SSL) pretext tasks to reduce labeling 

effort. These tasks not only leverage the multi-resolution nature of the H&E WSIs but also 

explicitly consider the relevance to the downstream task of classifying the LUAD histologic 

subtypes. Two tasks involve predicting the spatial relationship between tiles cropped from lower 

and higher magnification WSIs. We hypothesize that these tasks induce the model to learn to 

distinguish different tissue structures presented in the images, thus benefiting the downstream 

classification. The third task involves predicting the eosin stain from the hematoxylin stain, 

inducing the model to learn cytoplasmic features relevant to LUAD subtypes. The effectiveness 

of the three proposed SSL tasks and their ensemble was demonstrated by comparison with other 

state-of-the-art pretraining and SSL methods using three publicly available datasets. Our work 

can be extended to any other cancer type where tissue architectural information is important. The 

model could be used to expedite and complement the process of routine pathology diagnosis tasks. 

The code is available at https://github.com/rina-ding/ssl_luad_classification.
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1. Introduction

Lung cancer is the leading cause of cancer death in the United States (U.S.), and 

around 85% of all lung malignancies are non-small cell lung cancers (NSCLC) [1]. Lung 

adenocarcinoma (LUAD) is the most common subtype of NSCLC and is morphologically 

heterogeneous. The most recent World Health Organization cancer guidelines classify 

invasive nonmucinous LUAD into five subtypes, including lepidic, acinar, papillary, 

micropapillary, and solid. Moreover, LUAD frequently exhibits a heterogeneous mixture of 

multiple histologic subtypes in the same tumor [2]. The heterogeneous histologic subtypes 

are associated with different prognostic impacts on patient outcome, with lepidic having a 

good prognosis, acinar and papillary having an intermediate prognosis, and micropapillary 

and solid having a poor prognosis [3]. In resected tumors, each histologic subtype is usually 

manually quantified by pathologists, and then the most predominant histologic subtype is 

derived based on the percentage of each subtype [2]. However, this grading system might not 

be sufficient for capturing the aggressiveness of the disease. For example, a small amount of 

micropapillary pattern can be associated with poor prognosis even though the predominant 

subtype may not be micropapillary [4]. In addition, the subjective nature of predominant 

histologic subtype grading is associated with poor to intermediate inter-reader agreement. A 

study reported pulmonary pathologists having good kappa scores of 0.70 to 0.84 for ‘typical’ 

cases representing the five histological subtypes and poor kappa scores of 0.24 to 0.52 for 

more ‘difficult’ ones [5].

Fully supervised convolutional neural networks (CNNs) can improve the accuracy and 

reduce the subjectivity of LUAD histologic subtyping using Hematoxylin and Eosin (H&E)-

stained whole slide images (WSIs) [6], [7]. However, training these models requires labeled 

data, which is time-consuming and labor-intensive. One approach is to pretrain the model 

using a large unrelated dataset such as ImageNet [8] and then transfer the learned knowledge 

to a new model re-trained using the specific and smaller dataset. Although many tasks 

can benefit from transfer learning using ImageNet compared to training from scratch [9], 

medical tasks such as histopathology classification may not benefit as much since the 

natural images from ImageNet may not be as relevant to the medical images. Recently, 

self-supervised learning (SSL) approaches [10] have been used to first train the model on 

a pretraining task (pretext task) from the medical images that are not labeled by experts 

and then transfer the learned knowledge to the downstream task where expert labels are 

provided. Koohbanani et al. showed that pretext tasks that leverage the multi-resolution 

nature of pathology images were more useful for the downstream task of pathology image 

classification than generic pretext tasks such as predicting image rotation or flipping [11]. 

Another category of SSL is contrastive learning, where the model is trained to maximize the 

similarity between comparable samples [12].

In this work, we propose three SSL tasks designed to focus the model on leveraging the 

multi-resolution nature of the H&E WSIs and to consider explicitly the relevance to the 

downstream task of classifying the LUAD histologic subtypes. WSIs can be acquired at 

different magnification levels, capturing local cellular features at higher magnification and 

global spatial morphology at lower magnification. As shown in Figure 1a, each LUAD 
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histologic subtype has a different gland architecture, tissue morphology, and cytoplasm 

features, which should be reflected in the learned representations from the pretext tasks. 

To this end, we devised an SSL task that predicts whether an image tile cropped at 

a higher magnification level from the WSI is contained in another image cropped at a 

lower magnification level and the order of concatenation of the low-high magnification 

tiles (PContained, Figure 1b). We devised a second SSL task where the model predicts the 

grid position of the higher magnification tile from the lower magnification tile (PGrid) 

(Figure 1c). The hypothesis behind both tasks is that they induce the model to learn 

to match different tissue structures presented in the WSI, mimicking the process of 

pathologists distinguishing subtypes by identifying unique tissue structures, and thus benefit 

the downstream classification where those structures are also present. We also proposed a 

third SSL task where an E-stained image is predicted from an input hematoxylin-stained 

image (PStain, Figure 1d). The rationale is that since each LUAD subtype is characterized by 

different patterns such as cytoplasmic features and they are stained pink by the E stain, PStain

can induce the model to learn these features and benefit the downstream classification task. 

Once the SSL model was trained for each SSL task, the learned weights were transferred to 

its downstream model for further finetuning on expert-labeled data. In the end, to leverage 

the advantage of all three proposed SSL tasks, the final prediction of the LUAD subtype was 

derived using weighted average prediction from each downstream model pretrained with the 

corresponding proposed SSL task. Our main contributions are as follows:

1. Existing studies do not explicitly consider the relevance of an SSL task to the 

downstream task in various domains. This work is among the first to demonstrate 

the benefit of devising SSL tasks that are closely tailored to the downstream 

tasks.

2. Specifically, we devised three novel SSL tasks relevant to the downstream 

task of LUAD histologic subtype classification. These tasks force the model 

to understand tissue structures and identify features across magnifications.

3. Using three different publicly available datasets National Lung Screening Trial 

(NLST) [13], The Cancer Genome Atlas (TCGA) [14], and Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) [15], we showed the effectiveness of the 

three SSL tasks and the ensemble of the three by comparing them with other 

pretraining methods including ImageNet-pretrained weights, state-of-the-art 

pathology-specific SSL tasks, and state-of-the-art contrastive learning methods.

2. Methods

2.1 Overview

The three SSL tasks: PContained, PGrid, and PStain are summarized in Figure 1b, c, d. For each SSL 

task, a CNN-based model was used to learn the task on self-labeled (non-expert labeled) 

data. Specifically, self-labeled means the labels are derived from existing information (e.g., 

image metadata) that did not require expert-derived labels. The learned weights were then 

transferred to the downstream LUAD histologic subtype classification task models for 

finetuning, where expert annotation was used. Once all three downstream models were 
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trained, a final ensemble prediction was derived using the weighted average predictions from 

the three trained individual models (Figure 1e). Each SSL task and the downstream task are 

elaborated on in the following sections. Pseudocode of PContained, PGrid, and PStain are in Figure 

2.

2.2 Proposed SSL Task 1: PContained

In the first proposed SSL task PContained, a learning model takes a pair of channel-wise 

concatenated lower and higher magnification image tiles cropped from a WSI as input. 

The order of the concatenation is random. A ResNet18 [16] model is trained to predict 

whether the higher magnification tile is contained in the lower magnification tile and the 

order of the two images in the concatenation. Specifically, the model predicts a total of 

four classes: “contained and higher magnification tile comes first in the concatenation”, “not 

contained and higher magnification tile comes first in the concatenation”, “contained and 

lower magnification tile comes first in the concatenation”, and “not contained and lower 

magnification tile comes first in the concatenation” (Figure 1b). A lower magnification 

image is first generated from a higher magnification image using down-sampling factor d. 

Non-overlapping higher magnification tiles are then cropped from the lower magnification 

tile. Each lower magnification tile generates a total of d2 non-overlapping tiles at the higher 

magnification level. All tiles, regardless of magnification level, have the same dimensions. 

The mathematical relationship between a lower and a higher magnification tile given d is:

xH, yH, wH, ℎH = xL × d, yL × d, wL × d, ℎL × d

where xL, yL are the lower magnification tile L’s upper left corner coordinates, wL and ℎL

are L’s width and height, and xH, yH are the higher magnification tile H’s upper left corner 

coordinates, wH and ℎH are H’s width and height. Figure 1b shows an example of the higher 

magnification tile being contained in the lower magnification tile (“contained”) and the 

higher magnification tile being ordered before the lower magnification tile. For the “not 

contained” image pair, the higher magnification tile was randomly sampled from another 

lower magnification tile from the same patient.

2.3 Proposed SSL Task 2: PGrid

The second proposed SSL task PGrid is a variant of PContained. A ResNet-18 model takes in a 

pair of channel-wise-concatenated lower and higher magnification image tiles and predicts 

the grid class of the higher magnification tile relative to the lower magnification tile. The 

mathematical relationship between a lower and a higher magnification is the same as in 

PContained. The higher magnification tile always comes first, and the lower magnification tile 

always comes second in concatenation. For a WSI with down-sampling factor d, since there 

are d2 non-overlapping higher magnification tiles from the lower magnification tile of the 

same size, each of the d2 higher magnification tiles resides in one of the d2 spatially ordered 

grid. This pretext task asks the model to classify which of the grid the higher magnification 

tile resides in its lower magnification one (Figure 1c).
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2.4 Proposed SSL Task 3: PStain

In H&E images, cell nuclei are dyed blue or purple by hematoxylin (H), while other 

contents, such as cytoplasm, are dyed pink by eosin (E). The third proposed pretext task 

PStain, depicted in Figure 1d, takes in an H-stained image tile and predicts the E stain of that 

same image tile using a U-Net model with ResNet18 as backbone [17]. Since each LUAD 

histologic subtype is characterized by patterns such as cytoplasmic features [3], PStain might 

induce the model to learn these features and benefit the downstream classification task. H 

and E stains were separated using sparse non-negative matrix factorization (SNMF) [18]. 

Each single dye staining is restored by solving a matrix decomposition problem, where the 

staining is decomposed into the dye spectra and the contribution of the dye to the image 

pixel intensity.

2.5 Preventing the Model from Learning Shortcuts during SSL

When designing any SSL task, we must ensure that the model learns desired information 

without trivial shortcuts [19]. For the proposed SSL tasks PContained and PGrid that both involve 

learning the spatial relationships between lower and higher magnification tiles, it is possible 

that low-level cues such as boundary patterns of each low and high magnification tile can 

serve as a model learning shortcut. For PContained, on the low and high magnification tiles, 

respectively, random data transformation was applied, consisting of random horizontal and 

vertical flips, random rotation, and random brightness jittering, during batch generation in 

training reduces the risk of shortcut learning. For PGrid, random rotation was used.

2.6 Downstream Task: Subtype Classification

The downstream classification tasks pretrained using PContained and PGrid, denoted DContained and 

DGrid respectively, take in a channel-wise concatenated image formed by two identical image 

tiles of the same size as in PContained and PGrid, since the input dimensions of the pretrained and 

downstream models need to be consistent (both with dimensions 224 × 224 × 6). DStain takes 

in a single image tile as input. All three downstream models use ResNet18 [16] architecture. 

Once all three downstream models are trained, they are ensembled by multiplying each 

of the three trained individual models’ (DContained, DGrid, and DStain) prediction probabilities by 

a fixed weight found by grid search on the validation sets with average F1 score as the 

metric (Figure 1e). Formally, the prediction probability pEnsemble of the ensemble model can be 

expressed as:

pEnsemble = pContained × wContained + pGrid × wGrid + pStain × wStain

where pContained, pGrid, and pStain are the prediction probabilities of proposed models DContained, DGrid, 

and DStain and wContained, wGrid, and wStain are their corresponding weights found by grid search, 

and wContained + wGrid + wStain = 1.

Ding et al. Page 5

Comput Biol Med. Author manuscript; available in PMC 2024 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Experiments

3.1 Data

Three publicly available datasets from the NLST (146 patients, 407 WSIs), TCGA (325 

patients, 355 WSIs), and CPTAC (139 patients, 667 WSIs) were used. For all three datasets, 

the inclusion criteria include the patients being stage I or II LUAD and having at least one 

H&E WSI. Cases with substantial slide artifacts, such as pen marks on the WSIs, were 

excluded. Table 1 provides more details about each dataset, and Figure 3 illustrates the 

participant selection process.

3.1.1 Annotation—Two pathologists (E.R. and A.S.) were involved in the tile-level 

annotation of six tissue classes (five LUAD subtypes plus non-tumor). Specifically, each 

WSI was presented to the pathologists as a uniform grid of tiles cropped at either 10x 

or 20x magnification depending on the WSI’s objective magnification (Supplementary 

Table 1), and they randomly chose tiles from the grid to annotate. During annotation, the 

pathologists had access to the original multi-resolution WSI where they could zoom in or 

out of any region. Due to tissue heterogeneity and the uniform grid tiling of the WSI, 

multiple subtypes may be present in the same tile. In this scenario, the most predominant 

class was used as the label. If one pathologist (A) was unsure of the label, the tile was 

marked as needing consensus from the other pathologist (B). That tile was then reviewed 

and labeled independently by pathologist B. A total of 30 tiles were marked as needing 

consensus across three datasets, and they were not included in modeling. An inter-reader 

agreement experiment was conducted to calculate Cohen’s kappa score [20], [21] between 

the pathologists’ labels on those 30 tiles. Table 3 summarizes the number of annotated tiles 

that were used in modeling.

3.1.2 Data Used for SSL Experiments—For model training and evaluation of the 

three proposed SSL tasks, both NLST and TCGA were used. In both PContained and PGrid, non-

overlapping lower magnification tiles were cropped at 2.5x with size 512 × 512, from which 

16 non-overlapping higher magnification tiles were cropped at 10x with size 512 × 512 

for patients with 40x objective magnification WSIs; non-overlapping lower magnification 

tiles were cropped at 5x with size 1024 × 1024, from which 16 non-overlapping higher 

magnification tiles were cropped at 20x with size 1024 × 1024 for patients with 20x 

objective magnification WSIs. In PStain, each tile (H&E-stained) was cropped at either 10x 

magnification with size 512 × 512 or 20x magnification with size 1024 × 1024 depending 

on the WSI’s objective magnification, from which the corresponding H-stained tiles and 

E-stained tiles were derived. In PContained and PGrid, a pair of tiles is defined as one sample; in 

PStain, a single tile is one sample. In all three SSL tasks, 310,201 (80%) samples were used 

for training, and 77,520 (20%) were used for validation. All tiles were resized to be 224 × 

224.

3.1.3 Data Used for Downstream Subtype Classification Experiments—For 

model training and evaluation of the downstream task of LUAD histologic subtype 

classification, NLST, TCGA, and CPTAC data were used. NLST and TCGA tiles were 

annotated at either 10x magnification with size 512 × 512 or 20x magnification with size 
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1024 × 1024, and all CPTAC tiles were annotated at 20x magnification with size 1024 × 

1024. The total pixel area a tile covers is the same across three datasets (Supplementary 

Table 1). All tiles were resized to be 224 × 224. Many more non-tumor tiles were annotated 

compared to other classes in the NLST and TCGA datasets. To ensure class balance during 

model learning, non-tumor tiles were under sampled in training and validation sets such that 

the final number of non-tumor tiles was equal to the number of lepidic tiles. The annotated 

tiles across three datasets were mixed for model training (60%, 988 tiles), validation (20%, 

336 tiles), and testing (20%, 373 tiles) (Table 2).

3.2 Comparison Approaches

Our proposed SSL tasks were compared with other state-of-the-art pretraining methods P  in 

terms of their benefit for the downstream classification. PFromScratcℎ is when no pretraining was 

used. PImageNet represents when ImageNet pre-trained weights were used as the pretraining [8]. 

PMagLevel is an SSL task that predicts the magnification level of a tile (4 classes, 40x, 10x, 

2.5x, and 1.25x) [11]. PJigMag is another SSL task where the model takes in a sequence of 

image tiles cropped at different magnification levels with various orders and predicts the 

arrangement of those tiles. The tiles have a contextual relationship with each other. Starting 

from the current higher magnification level, the next lower magnification tile was cropped 

and downsampled such that its center is also the center of the current higher magnification 

tile [11]. There are 24 different arrangements of 4 tiles with different magnification levels. 

Therefore PJigMag is a 24-class prediction task. The original paper did not provide details 

on how the tiles were inputted into the model, but we did channel-wise concatenation of 

the 4 tiles. Both PMagLevel and PJigMag used cross-entropy loss. PBYOL, PSimSiam are contrastive 

learning methods BYOL [22] and SimSiam [23] that aim to learn representations which are 

invariant to transformations on images such as random cropping, rotations, and flipping. The 

models learn losses that minimize the negative cosine similarity between learned feature 

representations for different transformations. The difference between the two models is that 

BYOL uses a momentum encoder network to prevent the model from collapsing. SimSiam 

showed that the use of momentum encoder is unnecessary and the stop-gradient operation 

on one branch of the Siamese network is critical. The sample size for training and validating 

PMagLevel, PJigMag, PBYOL, and PSimSiam was the same as in proposed SSL tasks.

3.3 Model Training and Evaluation

3.3.1 SSL Models—In all three proposed SSL tasks PContained, PGrid, and PStain and two 

of the baseline SSL tasks PMagLevel and PJigMag, the models were trained using an Adam 

optimizer with batch size 32, a learning rate and weight decay of 0.0001. The models of 

PContained, PGrid, PMagLevel, and PJigMag used cross entropy loss and the model of PStain used Absolute 

Error Loss (L1) loss computed between the predicted and original images.

For PBYOL and PSimSiam, the batch size was 128, and the learning rate was 0.005. Stochastic 

gradient descent (SGD) optimizer with a momentum of 0.9 was used.

All models had a dropout layer (p = 0.2) before the linear prediction layer. All models were 

trained on 80% of samples/tiles, validated on the remaining 20% of samples/tiles (Table 2), 
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and had early stopping monitored by validation loss with a patience of 10 epochs and a 

maximum of 200 epochs.

3.3.2 Downstream Subtype Classification Models—1,697 annotated tiles were 

used to train and evaluate models for the downstream tasks D. Data transformation, 

including random horizontal and vertical flips and random rotations, was applied 

during the generation of each training batch to increase the diversity of training data. 

Stratified five-fold cross-validation was used. Within each fold, tiles were split into 60% 

training, 20% validation, and 20% testing. Performance was measured using the F1 

score on test sets with paired t-test as a statistical significance test to compare model 

performance (where p<0.05 was considered significant). The F1 score was computed as 

2 × Precision×Recall
Precision+Recall = TP

TP + 1
2 FP + FN

 where TP is true positive, FP is false positive, and 

FN is false negative. Benjamini and Hochberg method was used to correct for multiple 

comparisons [24]. The models had a dropout layer (p = 0.2) before the linear prediction 

layer and had early stopping monitored by validation loss with a patience of 10 epochs. The 

hyperparameters were the same as in PContained except that the batch size was 16.

4. Results

4.1 Inter-reader Agreement on Tile-level Annotation

Cohen’s kappa score was 0.72 (0.53 – 0.92) on the 30 tiles marked as needing consensus 

from the other pathologist. This score indicates good agreement between the two readers on 

the tiles that they were relatively unsure of. There was disagreement on a total of 6 out of 

30 tiles. The most common disagreements were between acinar and micropapillary tiles and 

nontumor and lepidic tiles.

4.1 Avoiding Shortcuts in SSL Tasks

Table 4 shows that the downstream classification results of DContained and DGrid are better when 

applying shortcut-avoiding techniques, forcing the model to learn useful cues from images.

4.2 Downstream Classification Results Under Different Annotation Budgets

4.2.1 100% annotation budget.—Table 5 summarizes the average F1 score and 

standard deviation for the downstream task of classifying LUAD subtypes using different 

pretraining methods when given the entire training and validation set. PContained achieved the 

highest average F1 score for lepidic, papillary, and micropapillary. PStain achieved the highest 

average F1 score for acinar, solid, and non-tumor. While PGrid did not have the highest 

F1 score on any class, it achieved similar performance as PContained on lepidic, had a higher 

F1 score for the micropapillary class as compared to PStain, and had a higher F1 score for 

non-tumor as compared to PContained. The average F1 score was not significantly different 

between DContained, DGrid, and DStain. The model of DEnsembled achieved better performance on all 

classes except for papillary, as compared to the individual model of DContained, DGrid, and DStain. 

Even though the model of DContained had higher average F1 score on papillary, its standard 

deviation was larger than the one of DEnsemble.
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PContained, PGrid, and PStain substantially improved the downstream task DContained, DGrid, and DStain

respectively, compared to DFromScratcℎ. The models of DImageNet, DMagLevel, DJigMag, DBYOL, and DSimSiam

had improved results upon DFromScratcℎ but did not outperform DContained, DGrid, DStain, or DEnsemble, 

demonstrating the informative value of our pretext learning tasks. Further, as shown in 

Figure 4a, the model from DEnsemble had statistically significantly higher average F1 score 

as compared to all six baseline models in all classes except for lepidic. The model from 

DEnsemble showed slightly improved performance on lepidic when compared with the models of 

DImageNet, but the difference was not statistically significant.

4.2.1 50% annotation budget.—Table 6 summarizes the downstream results when the 

annotation budget is only half of the training and validation cases. PContained achieved the 

highest average F1 score for lepidic, acinar, and papillary; PStain achieved the highest average 

F1 score for micropapillary, solid, and non-tumor. The model of DEnsembled achieved better 

performance on lepidic, acinar, papillary, and micropapillary, as compared to the individual 

model of DContained, DGrid, and DStain.

The model from DEnsemble had a significantly better average F1 score when compared with all 

six other baseline models for acinar, papillary, and solid.

The percent improvement of average F1 scores across all six classes from DFromScratcℎ to DEnsemble

was 0.309, which was much higher than the improvement when 100% annotation budget 

was used (0.228).

4.3 Error Analysis

According to Figure 5a, the most likely classes to be misclassified are non-tumor and 

lepidic, acinar and papillary, and micropapillary and papillary when the annotation budget 

is 100%. When the annotation budget is 50%, as illustrated in Figure 5b, the most likely 

classes to be misclassified are between acinar and papillary, acinar and micropapillary, and 

micropapillary and papillary. These trends are consistent with prior literature stating that 

papillary and micropapillary subtypes and papillary and acinar subtypes are particularly 

challenging to distinguish [25].

4.4 Visualizing Downstream Classification Results

As shown in Figure 1e, each WSI can be fed into the ensemble model during inference to 

generate predictions for all tiles, overlaying the results on the original WSI. Figure 6 shows 

some example predictions for each dataset. The pathologists independently derived the 

predominant subtype label. While some WSIs show a more heterogeneous prediction map, 

in general, the model predictions are consistent with the pathologists-derived predominant 

subtype label.

In addition, correctly classified example tiles from the test sets of three proposed models 

DContained, DGrid, and DStain were interpreted and visualized using Gradient-weighted Class 

Activation Mapping (Grad-CAM) [26] as shown in Figure 7. In general, for subtypes 

(acinar, papillary, and micropapillary) that have prominent architectural features, such as 

acini and papillae, the models focused on these features. However, the model attention is 
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less consistent in lepidic and non-tumor since no prominent structures exist. As for the solid 

tile, DGrid had negative attention on the stromal region, which indicates that the model could 

recognize the region as not being a solid subtype.

5. Discussion

Early-stage LUAD is the most common subtype of NSCLC, which exhibits heterogeneous 

biological behaviors and aggressiveness within the same tumor. Each patient has one of five 

predominant histologic subtypes (lepidic, acinar, papillary, micropapillary, and solid). Each 

has a different prognostic impact on recurrence and predictive value for response to adjuvant 

therapy [3], [27], [28]. Fully supervised CNNs can improve the accuracy and reduce the 

subjectivity of LUAD histologic subtype classification [6], [7]. However, they rely on a large 

amount of expert annotation. In this work, we used three SSL tasks to train the models on a 

non-expert annotated large dataset and learn representations from SSL tasks that are closely 

relevant to the downstream task of LUAD histologic subtype classification.

All three proposed SSL tasks outperformed all baseline pretraining methods in terms of 

their benefit to the downstream classification of the LUAD histologic subtype. In most 

classes, the proposed ensemble model achieved better results than each model individually, 

indicating the value of combining downstream models pre-trained using different SSL 

tasks. Each baseline pretraining method including PImageNet, PMagLevel, PJigMag, PBYOL, and PSimSiam

improved the downstream task results as compared to when not having any pretraining, 

but they did not outperform our proposed SSL tasks. For PImageNet, even though the dataset 

was a large, labeled dataset ImageNet, the inherent difference between natural images from 

ImageNet and the pathology images might reduce the benefit of this pretraining method. For 

PMagLevel and PJigMag, they were shown to benefit the downstream pathology prediction tasks 

more as compared to pathology-agnostic SSL tasks. However, they were not designed with 

a specific downstream task in mind, and thus, the learned representations might not be as 

closely relevant to the downstream task. Results show that DJigMag generally performed better 

than DMagLevel under 100% annotation budget, consistent with the findings in Koohbanani 

et al [11]. Further, in general, results show that the contrastive learning methods PBYOL

and PSimSiam do not benefit the downstream results as much as PMagLevel and PJigMag do. These 

two contrastive learning methods aim to learn feature representations by maximizing the 

feature similarity between a positive image pair formed by two transformed versions of the 

original image. The purpose is to make the model learn representations invariant to various 

transformations. However, false positive pairs might exist in heterogeneous pathology 

images such as LUAD WSIs during the positive view generation step [29]. For example, 

if the image transformation involves random cropping, then there is a chance that the two 

randomly cropped regions are semantically different (different tissue categories), but the 

model is still forced to learn similar representations from them. That might be misleading for 

the model learning process.

A unique aspect of our proposed SSL tasks is that they were devised based on understanding 

features and relationships that are helpful in LUAD histologic subtype classification. As 

shown in Figure 1a, each subtype has different tissue morphology, gland architecture, 
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and cytoplasmic features. Our SSL tasks were devised to learn those tissue features from 

unlabeled data. Both proposed SSL tasks PContained and PGrid are related to learning the spatial 

relationships between a lower and higher magnification tile cropped from a multi-resolution 

WSI. The hypothesis is that these two tasks induce the model to learn to distinguish different 

tissue structures presented in the WSIs, thus benefiting the downstream classification where 

those structures are also present. The third proposed SSL task PStain aims to learn the 

cytoplasm structures by predicting an E-stain from an H-stain. This task can benefit the 

downstream classification since each LUAD histologic subtype is characterized by different 

cytoplasmic features [3].

Further, the percent improvement of average F1 scores from DFromScratcℎ to DEnsemble indicates 

that our SSL tasks can benefit the downstream performance more when less downstream 

data is annotated. This trend is also commonly observed in other SSL works [11], [30]. 

Therefore, one can use SSL based on their downstream annotation budget and the amount of 

available unlabeled data. In general, there is no specific rule on what a reasonable annotation 

budget is. Typically, the desired amount of annotated data depends on the prediction 

task’s complexity and the data’s representativeness. If the task is simple and the data is 

homogeneous and representative of the task, then SSL might not be needed. However, if 

the task is relatively complex, data is heterogeneous, and unlabeled data is abundant, then 

SSL can be a good option. Our results also indicate that tailoring the SSL task to the 

downstream task is important. The SSL task should be designed to allow the model to 

learn downstream-relevant information. For example, if color is an important feature for the 

downstream task, one can design an SSL task related to learning different color schemes in 

the images. The pipeline of our work can be extended to any other prediction tasks where 

tissue architectural information is important, such as prostate cancer Gleason pattern grading 

[31].

In general, F1 scores on each class show that for the proposed ensemble model, lepidic, 

solid, and non-tumor are the easier classes, whereas acinar, papillary, and micropapillary 

are the harder classes. The confusion between acinar and papillary, between papillary and 

micropapillary, was also reflected in Figure 5 and the disagreement between the pathologists 

during tile labeling. The reason might be that acinar, papillary, and micropapillary patterns 

all have similar architectural features, such as acini and papillae [3], [32], which adds more 

confusion and challenge to the model learning. These trends align with the findings from 

Gertych et al. and Wei et al. that the models had better performance in solid, lepidic, and 

non-tumor classes than the others [6], [7]. Although we used fewer expert annotations, the 

F1 scores for each LUAD histologic subtype are on par with or better than the ones in 

Gertych et al. [7] and Wei et al. [6], indicating that our SSL tasks can potentially not only 

reduce labeling efforts but also improve model performance.

The clinical impact of our SSL-pretrained LUAD histologic subtype classification model is 

that it can expedite and complement the process of routine pathology diagnosis tasks. As 

illustrated in Figure 1e and Figure 6, WSIs can be given to the model, which generates 

tile-level predictions overlaid on the original WSIs. The prediction heatmaps can then be 

presented to the pathologists as the starting point of the diagnosis task. The pathologists will 

further verify or modify the model predictions as needed.
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A limitation of this work is that it currently lacks generalizability on external validation 

sets. For example, when using CPTAC data as an external validation set in the downstream 

task, the results were much worse (average F1 scores around 0.5, see Supplementary Table 

2) than when mixing CPTAC data with NLST and TCGA data for training and evaluation 

(average F1 scores around 0.9), which is what we did in this work. As presented by Howard 

et al. [33], there are many site-specific characteristics, including sample preprocessing, 

slide staining, scanner parameters, and population differences. We tried different stain 

normalization techniques, such as Macenko [34] and Reinhard [35] normalization and 

color jittering as data transformation during training, but the external validation results 

were not improved. These results indicate that other site-specific factors may contribute to 

the suboptimal results. For example, NLST and TCGA WSIs were acquired from formalin-

fixed paraffin-embedded (FFPE) blocks, whereas CPTAC WSIs were obtained from frozen 

specimens. In addition, the scanner parameters differ between NLST, TCGA, and CPTAC. 

Unfortunately, we have yet to find a method effective at mitigating these site-specific 

differences. Another limitation is that the model prediction of the LUAD histologic subtype 

is at the tile level, which cannot accurately characterize very heterogeneous regions.

6. Conclusion

In summary, we demonstrated the benefit of tailoring SSL tasks to the downstream task 

by proposing three SSL pretext tasks that induce the model to learn important tissue 

features and morphology closely relevant to the downstream task of LUAD histologic 

subtype classification. Extensive experiments were conducted to show the advantage of our 

proposed SSL tasks over the other state-of-the-art pretraining methods. Although the disease 

domain of this work is in LUAD, one can easily use our proposed SSL tasks in any other 

prediction tasks of any domains where tissue architectural information is important. Going 

beyond LUAD histologic subtype classification, as part of our future work, we will further 

characterize and quantify the tumor microenvironment features specific to each LUAD 

subtype and leverage both such features and deep features extracted from the trained subtype 

classifier to predict patient outcomes such as overall survival and recurrence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the SSL-pretrained LUAD histologic subtype classification pipeline. (a) 

Example tiles for each class. (b) Workflow of proposed SSL task PContained. (c) Workflow of 

proposed SSL task PGrid. (d) Workflow of proposed SSL task PStain. (e) Workflow of inference 

on new data.
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Figure 2. 
Pseudocode for each proposed SSL task PContained, PGrid, and PStain.
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Figure 3. 
Patient selection diagrams for NLST, TCGA, and CPTAC cohorts.
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Figure 4. 
Box plots from 5-fold cross-validation test sets for each downstream model initialized 

with different pretraining methods. Statistical significance after correcting for multiple 

comparisons was represented by * (p ≤ 0.05), ** (p < 0.01), *** (p < 0.001), **** (p < 

0.0001), or ns (p > 0.05).
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Figure 5. 
Confusion matrix from one of the test set folds in the ensemble models under 100% and 

50% annotation budget.
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Figure 6. 
Tile-level prediction of LUAD histologic subtypes overlaid on the original WSI by the 

ensemble model under 100% annotation budget. The predominant histologic subtype of each 

WSI was derived by the pathologists blinded from the model prediction.
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Figure 7. 
GradCAM visualization of correctly classified example test set tiles predicted by 

DContained, DGrid, and DStain. Negative values (red) indicate that the pixels negatively contribute to 

the prediction of that class, while positive values (green) indicate that the pixels positively 

contribute to the prediction.
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Table 1.

Patient characteristics of the three datasets used in this study.

# Patients # WSIs Mean age # Stage I # Females

NLST 146 407 63.7 121 (82.9%) 72 (49.3%)

TCGA 325 355 65.3 227 (69.8%) 175 (53.9%)

CPTAC 139 667 64.5 91 (65.5%) 50 (36.0%)
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Table 2.

Number of samples/tiles used in SSL and downstream tasks respectively, stratified into train, validation, and/or 

test sets.

SSL (# of samples) Downstream (# of tiles)

Training (80%) Validation (20%) Training (60%) Validation (20%) Testing (20%)

NLST 131,693 32,916 392 134 164

TCGA 178,508 44,604 116 41 46

CPTAC 0 0 480 161 163

Total 310,201 77,520 988 336 373
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Table 3.

Total number of tiles used for each class in downstream classification.

Lepidic Acinar Papillary Micropapillary Solid Non-tumor Total

NLST 123 122 111 49 133 152 690

TCGA 30 34 35 32 37 35 203

CPTAC 120 160 136 120 136 132 804
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Table 4.

Comparison between without versus with shortcut-avoiding techniques in downstream tasks DContained and DGrid. 

Results are average F1 score on test sets (n = 373) for downstream classification task D.

Lepidic
(n = 55)

Acinar
(n = 64)

Papillary
(n = 58)

Micropapillary
(n = 41)

Solid
(n = 63)

Non-tumor
(n = 92)

DContained
(proposed)

Binary prediction of 
“contained” vs “not 
contained”

0.877 ± 
0.0322

0.717 ± 
0.0243

0.838 ± 0.0345 0.752 ± 0.0113 0.860 ± 
0.0127

0.829 ± 
0.0580

4-class prediction 
(binary + tile order)

0.887 ± 
0.0344

0.785 ± 
0.0275

0.862 ± 0.0365 0.807 ± 0.0382 0.878 ± 
0.0210

0.834 ± 
0.0231

4-class prediction 
+ data transform

0.904 ± 
0.0207

0.829 ± 
0.0349

0.897 ± 0.0352 0.844 ± 0.0341 0.900 ± 
0.0362

0.849 ± 
0.0345

DGrid
(proposed)

16-class prediction 0.815 ± 
0.0220

0.718± 
0.0458

0.780 ± 0.0344 0.720 ± 0.0376 0.844 ± 
0.0070

0.813 ± 
0.0322

16-class prediction 
+ data transform

0.900 ± 
0.0194

0.797 ± 
0.0209

0.861 ± 0.0264 0.812 ± 0.0471 0.874 ± 
0.0233

0.860 ± 
0.0336
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Table 5.

Average F1 score on test sets (n = 373) for downstream classification task D, using 100 % expert annotation 

budget during training and validation. The best individual model was underlined, and the overall best model 

(individual or ensemble) was bolded.

DPretrain Lepidic
(n = 55)

Acinar
(n = 64)

Papillary
(n = 58)

Micropapillary
(n = 41)

Solid
(n = 63)

Non-tumor
(n = 92)

DFromScratch 0.803 ± 0.0137 0.564 ± 0.0786 0.704 ± 0.0551 0.676 ± 0.0638 0.768 ± 0.0248 0.837 ± 0.0340

DImageNet 0.894 ± 0.0167 0.773 ± 0.0298 0.825 ± 0.0231 0.751 ± 0.0589 0.861 ± 0.0113 0.800 ± 0.0401

DMagLevel 0.875 ± 0.0262 0.700 ± 0.0610 0.792 ± 0.0475 0.711 ± 0.0431 0.854 ± 0.0160 0.842 ± 0.0374

DJigMag 0.870 ± 0.0239 0.753 ± 0.0258 0.838 ± 0.0320 0.746 ± 0.0150 0.858 ± 0.0246 0.846 ± 0.0278

DBY OL 0.835 ± 0.0437 0.652 ± 0.0442 0.814 ± 0.0277 0.700 ± 0.0607 0.846 ± 0.0162 0.868 ± 0.0221

DSimSiam 0.865 ± 0.0299 0.683 ± 0.0178 0.788 ± 0.0313 0.756 ± 0.0197 0.850 ± 0.0140 0.792 ± 0.0664

DContained(proposed) 0.904 ± 0.0207 0.829 ± 0.0349 0.897 ± 0.0352 0.844 ± 0.0341 0.900 ± 0.0362 0.849 ± 0.0345

DGrid(proposed) 0.900 ± 0.0194 0.797 ± 0.0209 0.861 ± 0.0264 0.812 ± 0.0471 0.874 ± 0.0233 0.860 ± 0.0336

DStain(proposed) 0.893 ± 0.0327 0.833 ± 0.0202 0.863 ± 0.0426 0.801 ± 0.0242 0.907 ± 0.0182 0.925 ± 0.0174

DEnsemble(proposed) 0.918 ± 0.0239 0.851 ± 0.0317 0.881 ± 0.0192 0.849 ± 0.0330 0.915 ± 0.0192 0.928 ± 0.00906
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Table 6.

Average F1 score on test sets (n = 373) for downstream classification task D, using 50 % expert annotation 

budget during training and validation. The best individual model was underlined, and the best model of any 

kind (individual or ensemble) was bolded.

DPretrain Lepidic
(n = 55)

Acinar
(n = 64)

Papillary
(n = 58)

Micropapillary
(n = 41)

Solid
(n = 63)

Non-tumor
(n = 92)

DFromScratch 0.727 ± 0.0281 0.514 ± 0.100 0.665 ± 0.125 0.572 ± 0.0739 0.710 ± 0.0226 0.729 ± 0.0593

DImageNet 0.842 ± 0.0519 0.644 ± 0.0529 0.721 ± 0.0492 0.664 ± 0.0313 0.787 ± 0.0491 0.799 ± 0.0641

DMagLevel 0.800 ± 0.0357 0.643 ± 0.0461 0.770 ± 0.0611 0.712 ± 0.0405 0.798 ± 0.0443 0.857 ± 0.0396

DJigMag 0.796 ± 0.0509 0.654 ± 0.0519 0.766 ± 0.0208 0.675 ± 0.0807 0.790 ± 0.0583 0.831 ± 0.0470

DBY OL 0.773 ± 0.0698 0.551 ± 0.0353 0.679 ± 0.0356 0.707 ± 0.0787 0.762 ± 0.0343 0.788 ± 0.0463

DSimSiam 0.772 ± 0.0493 0.577 ± 0.0672 0.735 ± 0.0592 0.628 ± 0.119 0.835 ± 0.0298 0.822 ± 0.0129

DContained(proposed) 0.883 ± 0.0178 0.767 ± 0.0412 0.849 ± 0.0221 0.726 ± 0.0505 0.843 ± 0.0504 0.849 ± 0.0849

DGrid(proposed) 0.873 ± 0.0313 0.723 ± 0.0245 0.787 ± 0.0531 0.757 ± 0.0701 0.855 ± 0.0428 0.802 ± 0.0669

DStain(proposed) 0.864 ± 0.0362 0.766 ± 0.0355 0.815 ± 0.0558 0.768 ± 0.0716 0.890 ± 0.0140 0.900 ± 0.0515 

DEnsemble(proposed) 0.903 ± 0.0150 0.786 ± 0.0144 0.856 ± 0.0244 0.822 ± 0.0483 0.876 ± 0.0264 0.864 ± 0.0251
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