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Cancer metastases are driven by complex interactions among tumor cells, immune cells, 

and other cell types. Dissecting the roles of these cells is complicated by the inherent heterogeneity 

of the tumor environment. Currently we lack the models needed to profile cancer metastasis and 

monitor disease progression. Improved cancer models can be used in conjunction with noninvasive 

imaging probes to further visualize specific cell types and cellular interactions that are important 

to cancer progression in vivo. Bioluminescence is well suited for sensitive, noninvasive imaging 

in disease models. Bioluminescence relies on enzymes (luciferases) that generate light via the 

chemical oxidation of small molecule substrates (luciferins). No external excitation source is 

required, and enough tissue-penetrant light is released, enabling sensitive detection of cells and 

other biological features. Despite its broad applicability, bioluminescence has historically been 

limited to monitoring one cell population at a time and lacks the spatial resolution necessary to 

“see” cellular interactions relevant to cancer progression. This dissertation bridges the need for 

better methods to study metastatic progression by developing platforms that (1) enable 

multicomponent bioluminescence imaging in vivo, (2) recapitulate disease progression with new 

metastatic cancer models, (3) profile comprehensive transcriptome analyses of metastatic disease, 

and (4) facilitate tumor-immune cell monitoring through engineered imaging probes. Collectively, 
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the imaging methods and models developed in this dissertation enable a more detailed examination 

of tumor heterogeneity and metastatic disease progression in vivo. 
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CHAPTER 1: Unraveling the complexities of metastatic cancer progression  

with optical imaging tools 

 

I. Introduction 

Cancer metastasis is a dynamic, multi-cellular process that is difficult to study and treat 

with targeted therapies [1, 2]. During metastatic progression, malignant cells undergo dynamic 

cellular changes, avoiding immune system detection to colonize new metastatic sites [4]. The 

precise details remain unknown due, in part, to a lack of methods to monitor the inherently diverse 

and complex biology that drives metastatic disease. Thus, the most deadly and elusive processes 

in cancer metastasis such as tumor latency, organ tropism, and cancer stem cells remain poorly 

understood. 

Optical imaging is one of the most popular modalities to monitor disease progression in 

preclinical studies. In particular, optical techniques enable noninvasive visualization and 

characterization of cancer-related events at the cellular and molecular level in various preclinical 

cancer models [5]. Recent advances in optical imaging technologies have been used to gain deeper 

insight into some of the most difficult and lingering areas of metastatic progression. Optical 

imaging tools have also guided downstream analysis of metastatic disease, enabling targeted 

investigation through flow cytometry, microscopy and sequencing analysis.  

In this introductory chapter, I present different optical imaging tools and discuss their 

impact in understanding cancer progression. Specifically, I focus on two of the most popular 

optical techniques used for molecular imaging: fluorescence and bioluminescence. I outline the 

general mechanisms, in addition to comparing and contrasting the techniques in the context of 
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preclinical research. I describe recent applications of optical imaging techniques in cancer biology 

and evaluate their contributions to understanding a select category of the most complex and elusive 

areas of metastatic disease. These focus areas (Fig. 1.1) include metastatic disease progression, 

tumor heterogeneity, and the different impacts of the surrounding microenvironment on cancer 

spread. I further highlight downstream applications that optical imaging has enabled, including 

flow cytometry, FACS cell sorting, RNA-sequencing, and microscopy.  

 

II. Overview of optical imaging techniques  

Optical imaging techniques enable the noninvasive visualization and categorization of 

biological processes at the cellular and molecular level. Bioluminescence and fluorescence are the 

two most widely used optical imaging modalities. Both imaging techniques rely on the detection 

of photons emitted from excited state molecules. In bioluminescence (Fig. 1.2A), enzymes 

Figure 1.1. Overview of areas relevant to metastatic disease. The selected categories represent 
some of the most complex and poorly understood areas in the field of cancer metastasis. 
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(luciferases) oxidize substrates (luciferins), 

releasing photons of light as one of the products. 

Fluorescence (Fig. 1.2B) relies on an external 

light source to excite fluorophores that emit 

photons as they come down to the ground state. 

Both imaging techniques are easy to use and 

relatively inexpensive, making them a staple in 

various preclinical research and diagnostic 

applications [6]. In preclinical research, optical 

imaging techniques are commonly used to 

monitor cell proliferation, and as reporters of 

gene expression in various cancer-associated 

cells [7-9]. Target cell populations can be 

exogenously labeled with fluorescent imaging 

probes to enable facile detection with limited off-

target labeling [10]. Cells of interest can also be 

modified to express fluorescent and 

bioluminescent imaging probes.  Visualization of 

these cells enables the study of cellular function within local environments and distal tissues [11]. 

Additionally, bioluminescent imaging probes can also be injected into an animal to produce a 

detectable and targeted signal  [12]. 

Whole animal-imaging systems used to capture the emitted signal are sensitive enough to 

detect light-emitting probes at concentrations in the picomolar and femtomolar range [13]. Despite 

A

B

high energy
excitation light

ground state fluorophore

excited state fluorophore

lower energy
light emission

Luciferase

Luciferin

+ O2, cofactors

Light

Figure 1.2. Optical techniques for 
molecular imaging. (A) Bioluminescence 
imaging involves enzymes (luciferases) that 
oxidize substrates, producing photons of light 
as products. (B) For fluorescence imaging, 
external light sources are used to excite 
fluorophores. Photons are emitted as the 
fluorophores relax to the ground state. 
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the sensitivity of imaging systems, successful detection of optical imaging probes depends on 

various biological environments. Visualization of target cells can be obstructed by different 

cellular and molecular properties. The different environments in which imaging probes are used 

affect the quantity of signal that ultimately passes through biological barriers and is collected by 

the detector [6]. For example,  thick tissue, increased fat deposits, and blood vessels readily scatter 

light and decrease resolution.  

Optical imaging probes can also facilitate additional downstream analysis (Fig. 1.3) of 

target cells (commonly with flow cytometry, microscopy, sequencing). Optical techniques that 

show promise in preclinical applications are often fast-tracked for clinical approval. Thus, the 

translatability of optical probes remains highly desirable. For example, several fluorescent probes 

are commonly used as contrast agents and stains to label cancerous tissues. Clinical applications 

of optical imaging tools also aid in monitoring response to therapies, patient diagnosis, and during 

surgeries [14, 15]. 
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Imaging tool requirements to monitor cancer metastatic progression  

Imaging tools exhibit an array of different sensitivities; the right choice depends on the 

biological application. Thus, proper probe selection will vary between the constraints needed to 

capture the specific event and the complexities in the metastatic process [4].  There are different 

requirements that specific imaging tools must meet in order to effectively probe metastatic 

progression. For example, intratumoral heterogeneity and the tumor microenvironment (TME) are 

both areas in cancer research that consist of many different cell types and complex cellular profiles. 

The multicellular composition is an inherent property of intratumoral heterogeneity and TME that 

A B C

D E F

Figure 1.3. Downstream applications of imaging tools used to study cancer metastasis. 
Target cells labeled with fluorescence-based imaging probes enable further examination with 
(A) confocal microscopy imaging. (B) Fluorescence-activated cell sorting (FACS) and (B) 
flow cytometry enable the precise stratification and characterization of labeled cells. Selected 
cells can be subjected to (D) single cell-sequencing analysis to identify (E) specific expression 
profiles. (F) Gene expression profiles are used to cluster or segregated samples based on cell-
specific identification markers. 
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must be examined holistically. This requires the use of many different probes to discriminate and 

label various cell types. Additionally, the probes must be compatible with one another to allow 

multicomponent imaging of the various cell populations [16]. Achieving this degree of 

simultaneous, multi-cellular imaging remains challenging.  

The ability to track tumor cell proliferation from the primary tumor to the growth of micro-

metastasis is critical. Thus, for some applications, optical probes must facilitate non-invasive, 

longitudinal imaging of the model system while simultaneously providing information about the 

possible cellular evolution that occurs during cancer progression [17]. Tracking micro-metastasis 

requires high resolution imaging probes, preferably for detection at the single cell level, and 

through tissues in whole animals. No matter the cancer-specific application, all imaging probes 

must emit photons (either from external excitation or internal chemical oxidation) that can pass 

through any surrounding tissue for detection and measurement. As previously mentioned, 

fluorescence relies on an external light source to excite a fluorescent molecule resulting in the 

emission of a lower energy wavelength of light. Excitation of fluorescent probes by external light 

sources becomes increasingly difficult in whole animals.  Thick tissues result in increased light 

scatter and reduced light penetration [40]. Imaging probes that emit sufficiently tissue penetrant 

photons face additional hurdles that can prevent successful detection. These hurdles include 

endogenous molecules in the surrounding microenvironment, such as heme and melanin, that 

readily absorb visible light and decrease imaging resolution in deep tissue (Fig. 1.4A-B). 
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Fluorescence based optical imaging tools 

As noted earlier, fluorescence relies on an external light source to excite a fluorescent 

molecule. Upon relaxation from the excited state to the ground state, the fluorophore emits a 

longer-wavelength of light that is captured by an array of detectors used for visualization of the 

Figure 1.4. Spectrum and penetration of light wavelengths through the different layers of 
human skin. (A) Spectrum of visible light starting with near-ultraviolet light (short 
wavelengths) to near-infrared light (long wavelengths). (B) The differences in depth penetration 
for various wavelengths of visible light [3] are shown above. The different layers of the skin 
are listed on the left with the corresponding depth (mm) on the right. The more red-shifted light 
(ideally >650 nm) passes more readily  through the different tissues. (Adapted from Ash C, et 
al. (2017) Lasers Med Sci. 32, 8) 

longer wavelengthshorter wavelength

Ultraviolet Infrared

visible light

A

B
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tagged sample.  Fluorescent tools enable versatile applications and are commonly used in imaging. 

The wide panel of colored fluorescent probes enables multifaceted monitoring of dynamic cellular 

and gene expression changes during disease progression [21, 22]. Fluorescent probes used in 

cancer imaging can be roughly divided into two categories: exogenous dyes (also used on 

conjugated antibodies and other biomolecules) and genetically encoded probes.  

 

A vast array of fluorescence molecules exist for internal cellular tagging and cell surface 

labeling  [23]. Bright dyes are generally advantageous for most applications as they are easier to 

detect. The signal brightness is dependent on the fluorescence quantum yields of the dyes. Some 

examples of bright dyes are cyanine, squaraine, and porphyrin [24]. In particular, cyanine dyes 

(Fig. 1.5) (Cy3, Cy3.5, etc.) are commonly used in the field of cancer biology. Applications include 

Figure 1.5. Spectral profile of commonly used cyanine-based dyes. Absorbance spectra 
(dotted lines) and emission spectra (solid lines) are shown for each dye. (Adapted from Altman, 
R. B., et al., (2012). Nature Methods. 9,5) 
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visualization of cellular proliferation, staining specific cellular compartments, and flow cytometry 

analysis. In addition, dyes and quantum dots, are commonly used as biological labels [23] for 

measuring apoptosis, and other cancer-relevant applications [11]. These and other fluorescent 

probes can label anything from small molecules to peptides. Koch and Ntziachristos also described 

the expansion of exogenous fluorescent probes to identify healthy versus diseased tissues through 

targeted antigen labeling [6]. Exogenous dyes have transitioned into the clinic where they provide 

surgical oncologists real-time feedback during procedures to ensure the accurate removal of micro-

metastatic lesions [15]. Clinical imaging systems are also being optimized to enable exogenous 

dye-based diagnostics and early cancer detection methods [14].  

The second major class of fluorescent probes consists of genetically encodable proteins. 

These probes are extremely useful to track cancer cell populations or monitor specific promoter-

driven gene expression [25]. Figure 1.6 shows the 

most well-known genetically encoded reporter, 

the green fluorescent protein (GFP). First isolated 

by Osamu Shimomura from the jellyfish 

Aequorea victoria [26], excitation of the GFP 

chromophore by blue light (395 nm) results in an 

emission of green colored light (~509 nm). GFP 

is commonly encoded and used as a reporter gene for different applications in cancer biology. In 

these systems, the transcription of the reporter mirrors the transcription of the gene of interest. 

Such encodable probes facilitate non-invasive imaging in cancer models. Encodable probes are 

expanding quickly to monitor other cell types in the TME such as cancerous stromal cells [27]. 

Recent work from Regad et al., expanded the use of GFP reporter, developing a new approach to 

Figure 1.6. GFP fluorescent protein  and  
chromophore chemical structure. 
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identify the rare and elusive cancer stem cell populations in prostate cancer [28]. Prostate cancer 

specific stem cell reporters were created by driving the expression of GFP under the stem cell 

promoter, NANOG. Due to their rarity, stem cells are notoriously difficult to isolate from the 

surrounding environment. By using the NANOG promoter-driven GFP cells, cancer stem cell 

isolation was possible. Fluorescent driven reporter systems have also been used in breast cancer 

metastasis models. In one example, the relative contribution of basal versus luminal cells to disease 

progression was measured by driving fluorescent protein expression under either keratin-14 (K14) 

or keratin-8 (K8) promoters [29].   

 

A

Figure 1.7. Regulatory T cells (Tregs) have immunomodulatory functions. Tregs exert 
suppression of other immune cells (i.e. dendritic cells and effector CD8+ T cells) through cell 
surface mediated interactions and other mechanisms such as secreted factors, nutrition 
completion and metabolism. Their ability to suppress effector T cells aids in the progression of 
metastatic disease. 
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Fluorescent protein 

reporters have also been 

incredibly useful for tracking 

gene expression of cancer-

associated immune cells in 

vivo that would otherwise be 

difficult to study in cell 

culture. Regulatory T cells 

(Tregs) are one such class of 

immune cells that have been 

the focus of many preclinical 

and translational studies due 

to their immunomodulatory 

abilities to suppress other 

immune cells (Fig. 1.7) [30]. 

The mechanisms that Tregs 

use to suppress their microenvironments have been difficult to study in vitro due to the sheer 

number of cells that they control. To better study and monitor the suppressive capabilities of Tregs, 

Lin and colleagues created cell lineage specific reporters by targeting the Treg specific 

transcription factor, FoxP3 [31]. eGFP expression was driven by the endogenous promoter in the 

reporter mice (Fig. 1.8A). The expression of eGFP allowed easy ex vivo identification of Tregs 

from other surrounding tissues with immunofluorescence or FACS sorting (Fig. 1.8B). With Tregs 

and other immune cells coming to the forefront of research, the FoxP3-eGFP reporter mice have 

A

B

Figure 1.8. Regulatory T cell reporter system. (A) eGFP 
expression is driven via Treg transcription factor and master 
regulatory FoxP3 expression. (B) In vivo expression of FoxP3-
eGFP cells in mice. Ex vivo analysis of GFP expressing Tregs 
allows for microscopy imaging or FACS sorting of Tregs 
followed by single cell analysis of gene expression.  
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been used extensively to study different facets of Treg biology including cell proliferation, 

localization, and functionality [32-35].  

 

Mutations to GFP can shift its original excitation and emission spectrum [36]. These 

engineered GFP derivatives have unique spectral profiles that can be used for multi-component 

imaging (Fig. 1.9A) [37]. Additional genetically encodable fluorescent proteins increases the 

number of cellular processes in metastatic disease that can be multiplexed and measured. Reporters 

that have different excitation and emission spectra (Table 1.1) such as eGFP and DsRed are 

frequently used in tandem (Fig. 1.9B). For example, the red-emitting DsRed and green-emitting 

A

B

Figure 1.9. Engineered GFP mutants have expanding the number of encodable proteins. 
(A) An array of different colored encodable proteins enables multicomponent labeling (Shaner, 
N et al. Nature Biotech, 2004). (B) Excitation and emission spectrum of two popular fluorescent 
proteins. The relative fluorescence intensities of eGFP (in green) and DsRed (in red) are shown 
across wavelengths of light [3]. The black dotted line at the 650 nm wavelength denotes the in 
vivo optical emission window that is optimal for imaging (>650 nm). 
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eGFP have recently been used as dual fluorescent imaging reporters to study changes in histone 

methylation and acetylation during cancer progression. In this dual system, DsRed resided in the 

cytoplasm while eGFP was linked to histone H2B. Nuclear expression of H2B has provided 

promising results as a possible biomarker to monitor prostate cancer progression [38]. Using this 

dual-colored system, Yang et al was able to detect early apoptotic responses to different 

chemotherapy agents in prostate cancer. 

 

As previously mentioned, mutant fluorescent probes can exhibit red-shifted emission 

spectra (>650 nm) making them well suited for deep tissue imaging [18]. Unlike their blue or green 

counterparts, red-shifted probes are able to bypass absorption by the blood and be used in deep 

tissue settings. However, the longer-wavelengths that are associated with red-shifting probes are 

weaker compared to the high intensity wavelengths of the blue counterparts (Fig. 1.4A). Thus, red-

shifted probes usually require large quantum yields [16]. To this end, work from Firnberg’s group 

focused on increasing the quantum yield of dim-emitting infrared fluorescent protein (iRFP) [19]. 

NIR imaging probes (Fig. 1.4B), like iRFP, tend to emit light between 650 nm to 950 nm. Firnberg 

Fluorescent Protein Excitation
(nm)

Emission
(nm)

Quantum
Yield

Rel.
Brightness

EBFP 383 445 0.31 27
GFP 395/45 509 0.77 48
EGFP 484 507 0.6 100
RCFP 439 476 0.4 39
EYFP 514 527 0.61 151
mOrange 548 562 0.69 146
dTomato 554 581 0.69 142
DsRed 558 583 0.79 176
mRuby 558 605 0.35 117

 

Table 1.1. Optical properties of fluorescent proteins that are frequently used as 
dual reporters. (Adapted from Dmitriy M. et al., (2010). Physiological Reviews. 90,3) 
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addressed the poor emission power of NIR by developing two new versions of the protein, 

mRhubarb719 and mRhubarb720, that exhibited improved red-shifted spectra as well as increased 

quantum yields [19]. Other near infrared FPs are ideal for in vivo use as protein tags and gene 

reporters [6], but also lack brightness [20]. The need for brighter NIR FPs prompted Matlashov et 

al. to create further engineered version of the probes [20]. With miRFP720’s wavelength peak 

emission of 720 nm, this genetically encodable probe is also the brightest NIR FP reported to date 

[20]. Matlashov showcased the power of the NIR probe to track cancer cells in vivo, successfully 

detecting ~105 labeled cells. The collection of these new red-shifted and NIR FPs have huge 

potential for multiplexed imaging to monitor cancer metastasis in vivo.  

Multispectral fluorescent reporters have been adapted to monitor the complexities that arise 

with oncogenic clonal expansion in vivo. Snyder’s group developed a new system to monitor 

changes in oncogenic clonal mutations and expansions. Dubbed Cancer Rainbow (Crainbow), this 

model fluorescently barcodes somatic mutations and enables the direct visualization of  the spread 

of oncogenes during clonal expansion [39]. Crainbow uses cell type-specific Cre recombinase 

along with orthogonal lox sites to insert transgenes. This system is able to barcode each genetic 

state in the cells and is read out using fluorescence imaging. Crainbow was applied to colorectal 

cancer to demonstrate its viability. The modeling system analyzed different tumors and was able 

to identify the molecular mechanism driving intratumoral heterogeneity.   
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Despite the range of multispectral probes available, fluorescence based imaging techniques 

can be limited by the power capacity of the instrumentation and its effects on the fluorescent signal 

(Fig. 1.10). Fluorescent probes must be excited with an external light source in order to function 

[40]. Prolonged excitation of 

fluorescent probes can destroy the 

chromophore and cause 

photobleaching. To quantify the 

intensity of fluorescent light emitted 

by the variety of imaging probes 

previously stated in this review, the 

instrumentation requires a range of 

different detectors. These 

limitations can be improved by 

upgrading the optical filters, 

dichroic mirrors, and filter cubes 

with respect to the required 

excitation source and the capability 

of the detector (Fig. 1.10). One of 

the main challenges for fluorescent 

based optical imaging probes and 

instrumentation is improving signal loss and scattering. These issues are particularly important to 

address for imaging probes and detectors translating into clinical applications  [41].  

 

Figure 1.10. Standard layout of fluorescence 
instrumentation. Sets of filter and mirrors are used to 
focus in the external light sources to excite the fluorescent 
labeled sample and deliver the emitted light to a detector. 
The process results in the acquisition of fluorescently 
labeled samples. 
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Bioluminescent based optical imaging tools 

Bioluminescence is a natural process that relies on enzymes (luciferases) that generate light 

via the chemical oxidation of small molecule substrates (luciferins) [48]  (previously noted in Fig. 

1.2A). Unlike fluorescence imaging, bioluminescence requires no excitation source, minimizing 

background emission and providing extremely high signal-to-noise ratios [49]. Mammalian cells 

inherently do not express luciferases which also improves background signal. Thus, 

bioluminescence imaging can be advantageous in heterogeneous environments, including rodents 

and other preclinical organisms. The emitted light can penetrate tissues and be detected using 

sensitive cameras. No external excitation source is required, and enough tissue-penetrant light is 

released, enabling sensitive detection of cells and other biological features. 

 

marine luciferases

CTZ

ATP ATPO2

insect luciferases Akaluc luciferase

wavelength (nm)
400 500 600 700

DLUC

O2

AkaLumine

O2

Figure 1.11. Common emission spectra of luciferase-luciferin pairs used for 
bioluminescence imaging. Luciferase-luciferin pairs commonly used for in vivo imaging. The 
corresponding wavelength of light emission is shown beneath each pair. Marine luciferases use 
coelenterazine (CTZ) in addition to oxygen to catalyze the reaction and produce a byproduct of 
light. Terrestrial (insect) luciferases use D-luciferin (D-luc) as their substrate along with oxygen 
and ATP.  Akaluc, a firefly luciferase mutant, uses its synthetic luciferin (AkaLumine) along 
with oxygen and ATP to produce light. Adapted from Nasu Y, Campbell RE. (2018) Science. 
23, 359) 
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Luciferases have been routinely introduced into cells and tissues and used as biological 

tags to track processes over time [44, 50] (Fig. 1.11). Cells are genetically engineered to express a 

bioluminescent reporter enzyme (e.g., firefly luciferase) and are subsequently treated with the 

enzyme’s substrate (e.g., luciferin), which results in the release of photons upon catalysis (Table 

1.2). The simplicity of the imaging method, high throughput capability, and the high detection 

sensitivity and specificity make this approach attractive for drug development, monitoring 

treatment response, and molecular interactions in animal models of human diseases. 

Table 1.2. Common luciferase enzymes with their origin, required substrates and cofactors, 
molecular weight, and maximum emission wavelength. (Adapted from Zambito, G., et al.,  
(2021). Current Opinion in Chemical Biology, 63) 

Luciferase Organism Substrate Cofactor(s) Size 
(kDa) 

Emission 
wavelength (nm) 

North American 
Firefly (Fluc) 

Photinus pyralis D-luciferin ATP and Mg 61 560 

Click Beetle Pyrophorus 
plagiophthalamus 

D-luciferin ATP and Mg 64 ~600 

Renilla (Rluc) Renilla reniformis Coelenterazine N/A 36 480 

Renilla Mutant 
(RLuc8) 

Renilla reniformis Coelenterazine N/A 36 535 

Gaussia (Gluc) Gaussia princeps Coelenterazine N/A 20 470 

OLuc Oplophorus 
gracilirostris 

Coelenterazine N/A 19 460 

NanoLuc (NLuc) Oplophorus 
gracilirostris 

Furimazine N/A 19 460 

 

Firefly luciferase (Fluc) and its substrate, D-luciferin (D-luc), are easy to obtain and are the 

most popular bioluminescent pair for preclinical research [51]. Other marine luciferase-luciferin 

pairs such as NanoLuc (NLuc)-furimazine and Renilla luciferase (Rluc)-coelenterazine are also 

used to monitor cancer progression. However, in vivo bioluminescence imaging has traditionally 

been dominated by Fluc and D-luc, whose 560 nm emission provides more tissue-penetrant 
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photons than the marine luciferase-luciferin counterparts. Additionally, substrate bioavailability 

has also been a key determinant in favoring the use of terrestrial luciferase-luciferin pairs in vivo. 

Improving the bioavailability and stability of marine luciferin substrates is an active area of 

research [55, 56]. Other luciferase-luciferin pairs have been further evolved for in vivo use. To 

optimize Fluc for deep tissue imaging, a red-shifted version of the enzyme (Akaluc) has been 

developed [52].  Akaluc along with its substrate (AkaLumine) emit one of the highest percentages 

of red (>650 nm) photons of any bioluminescent tool to date [53]. The palette of red-emitting 

luciferase-luciferin probes has further expanded with recent work from Promega Corporation and 

Mezzanotte's group [54]. Their engineering efforts resulted in novel click beetle mutant luciferase-

luciferin pairs for in vivo imaging [54]. When paired with a naphthylamino luciferin analog, click 

beetle mutant luciferases (CBG2 and CBR2) emit red-shifted light at wavelengths of 660 nm and 

730 nm, respectively. This dual-colored luciferase imaging system enabled the simultaneous 

monitoring of two different target cells in vivo. 

Table 1.3. Chart comparing bioluminescence and fluorescence imaging properties. 
(Information from Tung, J., et al., (2016). Neurophotonics, 3,2. and Brovko, L. (2010). In 
Bioluminescence and Fluorescence for in vivo Imaging, 1,149.) 

 Bioluminescence Fluorescence 

Signal-to-noise ratio High Lower 
Image acquisition Minutes Seconds 
Phototoxicity None Possible 
Substrate Luciferin None 
Imaging depth 1-2 cm 1 cm 
Molecular sensitivity Picomolar Picomolar 

Multicomponent 
imaging 

Usually 1-2 targets  Many targets 

Noninvasive imaging Yes Yes 

Spatial resolution Organ (cm) to cellular 
(100um)  

Tissue (mm) to subcellular 
(0.1um) 
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While bioluminescence is a powerful platform for long-term and noninvasive imaging, it 

has historically been limited to visualizing only one cell type or biological feature at a time (Table 

1.3). Optimal luciferases require the same luciferin substrate, precluding facile multi-component 

imaging. Recent work in expanding the bioluminescent toolbox as well as advances in imaging 

protocols and signal acquisition are enabling rapid multicomponent bioluminescence imaging 

[44]. 

Substrate availability and administration routes can affect photon emission, particularly for 

in vivo applications. Berger and colleagues [63] found that the substrate from marine luciferase-

luciferin pairs exhibited a more homogeneous distribution among tissues when administered 

intravenously compared to intraperitoneal administration. Differences in luciferase kinetics have 

been shown to also affect the protocol and acquisition time for optimal detection. This 

differentiation of enzyme properties is most relevant with in vivo applications. Luciferases with 

glow-type reaction kinetics, such as Fluc, require an incubation step following intraperitoneal (IP) 

administration when used in vivo to achieve adequate distribution throughout tissues [63]. On the 

other hand, luciferases such as Gluc, Rluc, and NLuc exhibit flash type kinetics. These luciferases 

should be imaged immediately after intravenous administration of their substrates. Additionally, 

intracellular and extracellular conditions can affect the activity of luciferases. Factors such as pH, 

temperature, and H2O2 concentrations can greatly affect the proper synthesis, folding and secretion 

of luciferase enzymes [64].  

 

 

 



 

20 

 

Fluorescence and bioluminescence are often used together  

Noninvasive monitoring of cancer cell populations with bioluminescence imaging is 

frequently coupled with ex vivo flow cytometry or microscopy analyses enabled by fluorescence 

imaging (Table 1.3). Bioluminescence imaging tools have the advantage of being useful for 

longitudinal non-invasive imaging and do not require the user to known the exact location of the 

target cells. Such exploratory imaging of unknown cell locations is readily achieved with 

bioluminescence imaging. The combination of the two modalities enables imaging across multiple 

scales [65]. 

Color shifting can also be achieved via bioluminescence resonance energy transfer 

(BRET). BRET probes consist of both fluorescent and bioluminescent components that are linked 

together (Fig. 1.12A,B). These constructs use a luciferase enzyme to donate the light source and a 

neighboring fluorescent protein(s) that acts as an acceptor, shifting the wavelength of emission 

A B C

> distance < distance

No BRET BRET

Figure 1.12. Bioluminescence resonance energy transfer (BRET). BRET probes contain 
both fluorescent (energy acceptor) and bioluminescent (energy donator) components that are 
linked together. NLuc emits blue wavelengths of light (480 nm) in the presence of its substrate, 
furimazine. (A) When the distance between NLuc/furimazine and the acceptor fluorophore 
(YFP) is great, BRET does not occur. The light emitted stays at 480 nm. (B) When the proximity 
of NLuc/furimazine and YFP is closer, BRET can occur. The original 480 nm light donated by 
NLuc is transmitted to YFP. The acceptor fluorophores shifts the light, emitting it at 527 nm. 
(Background information adapted from Promega). 
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[57] (Fig. 1.12B). Addition of a luciferin analog triggers light emission from the paired luciferase. 

BRET systems harness the power of luciferases to excite fluorescent proteins internally instead of 

using an external light source (Table 1.3). This improves the use of the probes in animal models 

and deep tissue applications. The addition of fluorescent proteins with specific excitation/emission 

profiles can be used to red-shift the light emitted by most luciferase enzymes for in vivo 

applications [58]. 

One of the most useful classes of BRET reporters combines the brightness of blue-emitting 

luciferases with different fluorescent proteins to shift the original emission spectrum while 

retaining brightness. Brightly emitting BRET based Nano-lantern probes are effective in shifting 

NLuc’s blue-emitted light based on the properties of the different colored fluorescent proteins [59, 

60]. The wide array of BRET probes have different emission spectra and can be multiplexed to 

image various cellular properties. BRET probes have also been engineered to function as sensors 

for cancer metabolic applications and enzymatic driven processes [61]. Recent work by Kuchimaru 

et al. [62], detailed the design of a novel BRET-based imaging tool for the detection of ubiquitin 

proteasome regulated hypoxia-inducible factor (HIF) activity in vivo. The BRET reporter was 

expressed in cancer cells that exhibited various degrees of HIF expression. The increase of cellular 

HIF triggered the confirmational change of the BRET probe and resulted in signal production. This 

reporter was designed by placing the luciferase proximal to the HIF recognition domain, thus 

ensuring BRET only in HIF-overexpressing cells. 

Additional BRET probes have been developed as powerful reporter genes. Work from the 

Amelio group has produced a suite of “LumiFluors” fusions that exhibit bright BRET emission 

profiles using enhanced fluorescence acceptors [66]. By utilizing the improved stability of the 
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NanoLuc system, LumiFluor reporters were better suited for visualizing tumorigenesis in vivo. 

BRET probes also enable facile analysis of the targeted tumor cells ex vivo by flow cytometry. 

 

III. Focus areas in cancer metastasis and the application of optical imaging tools  

Metastatic initiation and progression remain poorly understood due, in part, to the difficulty 

of monitoring and capturing the differences in cellular kinetics. Optical imaging tools have enabled 

new insight into several of the most elusive areas of metastatic disease progression. Here we 

highlight some of the recent applications of optical imaging techniques and describe their 

contribution to understanding the specific categories of metastatic disease. We focus on (A) 

examining the origins of cancer initiation and metastatic progression, (B) cellular proliferation and 

apoptosis (C) organ specific metastasis, (D) tumor latency, (E)  multi-component imaging of the 

tumor microenvironment, (F) miRNA targeted imaging, and discuss the use of optically guided 

imaging tools in studying (G) gene expression during metastatic progression. 

 

Examining the origins of cancer initiation and metastatic progression 

Metastases are the leading cause of all cancer related deaths; however, the mechanisms that 

drive metastatic progression are not fully understood. Complex steps and stages for different 

cancers and different subtypes of the same cancer expands this unknown (Fig. 1.13). It is very 

important to study these processes in animal models where circulation systems and organs are 

intact. Extracellular matrix remodeling is one of the initial steps in the metastatic cascade that 

allows cancerous cells to invade their surrounding environments. Bochner et al., examined the 

initial process of extracellular matrix remodeling in mouse models of ovarian cancer with 
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bioluminescence imaging [67]. They were able to identify stromal biomarkers in metastatic 

ovarian cancer and quantity the increase in fibrosis during disease progression. 

The critical role of circulating tumor cells in enabling metastatic progression and 

colonization of distal organs has been illuminated by optical imaging tools. Work from Aceto et 

al., and Kim et al., used luciferase-expressing cells to identify that circulating tumor cell (CTC) 

clusters play a central role in breast cancer metastasis [68]. Kim et al., continued applying these 

reporters to study specific cytokine profiles from CTC cells and breast tumors [69]. Experiments 

using these reporters showed that tumor-derived cytokines (IL-6 and IL-8) acted as CTC attractants 

whereas MMP1 and the actin cytoskeleton component fascin-1 were mediators of CTC infiltration 

into mammary tumors [69]. To successfully achieve metastatic colonization (Figure 1.13), 

malignant cells must also prompt migration and metastatic invasion as they evade the immune 

system. Using bioluminescence imaging to monitor lung colonization in melanoma and breast 

cancer cells, Tello-Lafoz et al., discovered that enhanced expression of myocardin related 

Figure 1.13. Overview of metastatic cascade. Different cell types involved in the process are 
noted in the legend. Tumor cells grow and start to remodel the surround matrix to allow for (1) 
invasion to surrounding tissues. Once the disseminated cells have reached a blood source, they 
go through (2) intravasation to enter the blood vessel and enter the (3) blood circulation. 
Disseminated cells undergo (4) extravasation in a new site of metastasis and develop their 
metastatic niche. Metastatic lesion are able to (5) colonize the new tissue and continue growth. 
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transcription factors (MRTFs) promoted migration and metastatic invasion [70]. Paradoxically, 

MRTFs were identified to compromise lung colonization in an immune-mediated manner [70]. 

The use of optical imaging tools enabled Tello-Lafoz et al., to identify elevated expression of 

MRTF in cancer cells as a novel biomarker for sensitization to immune checkpoint blockade 

therapies. 

Metastatic initiation and cancer stem cells are thought to play a big role in treatment 

resistant disease [71]. Although cancer stem cell (CSC) identification and characterization in 

metastatic progression is focus of much research, it remains very controversial [72, 73]. Normal 

stem cells have often been a benchmark of comparison for CSC populations. Bioluminescence 

imaging has aided the comparison of these two different cell populations by allowing facile 

monitoring of differentiation states and cellular vitality in vivo [74, 75]. By comparing the cellular 

and genomic similarities between stem cells and CSC, these studies aimed to identify possible 

targets that could be leveraged for treatment. Work from Choi et al [76] and Dong et al [77] both 

used bioluminescence imaging to track possible glioblastoma cancer stem cell markers, identifying 

histone deacetylase inhibitors and inositol 145-triphosphate receptor dependent calcium signaling, 

respectively. These CSC-specific markers could be used for targeted glioblastoma therapies. 

Optical imaging tools were similarly used to investigate the ability to suppress breast cancer stem 

cells [78]. These studies identified that downregulation of the β-catenin/Notch1/Akt signaling 

pathway after antrocin treatment resulted in the suppression of stemness properties [78]. Optical 

imaging tools have also been used to study pathway activation upon CSC outgrowth. Aguirre-

Ghiso et al., used fluorescent protein tagged CSCs to identify pathway activation that occurs during 

primary and metastatic growth through extracellular signal-regulated kinase and p38 pathways 

[79]. 
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Cellular proliferation and apoptosis 

Growth of the primary tumor and the impact of the speed in which metastatic progression 

follows is important in solidifying the timeline and aggressiveness of different cancers in 

preclinical and clinical scenarios. 

Visualizing this process in preclinical 

cancer animal models enables the 

identification of metastatic progression, 

tumor-specific aggressiveness, and 

measurement of tumor burden over time. 

Non-invasive optical imaging tools are 

especially useful for monitoring and 

quantifying tumor growth longitudinally 

without sacrificing the animal. Pioneering 

work by Contag showcased the use of 

bioluminescence imaging to assay tumor 

proliferation in animal models [80]. Further 

examples from Scheffold and colleagues used bioluminescence imaging to evaluate the anti-tumor 

properties of lead drug candidates in preclinical HER2 positive xenograft models [81]. The most 

impressive example demonstrated that modified CD8+ natural killer T (NKT) cells could be 

successfully redirected to target luciferase-expressing tumor cells in vivo. Engineered luciferase-

expressing tumor cells have also been used to measure apoptosis in vivo (Fig. 1.14). Work by 

Scabini and colleagues using a novel caspase 3/7-luciferin substrate, Z-DEVD-aminoluciferin, to 

Figure 1.14. Schematic outlining caspase 3/7 
mediated cellular apoptosis. 
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track cell death in vivo [82]. This approach enabled monitoring of cell death through caspase-3 

following treatment in colorectal and glioblastoma cancers. 

Organ specific metastasis 

The propensity of metastatic cells to colonize specific organs remains unknown, but the 

clinical ramifications of creating targeted drugs to prevent metastatic lesions could increase cancer 

patient survival (Fig. 1.15). Imaging tools allow real-time and longitudinal monitoring of micro-

metastasis lesions to answer these questions and the gene expression patterns that are related to 

specific organ colonization in pre-clinical models. 

 

Bioluminescent imaging tools have been critical in enabling the identification of metastatic 

progression in specific organs. Using luciferase expressing MDA-MB-231 breast cancer cells, 

Jenkins et al were able to achieve sensitive detection of both primary and secondary tumor sites in 

Figure 1.15. Organotrophic metastasis of distal organs in breast cancer. Breast cancer 
progresses from invasive ductal carcinoma into metastatic disease. Disseminated breast cancer 
cells spread to other parts of the body by way of  the blood stream or lymphatic system. Breast 
cancer cells home to specific secondary tissues and exhibit organ-specific metastatic 
colonization of the brain, lungs, liver, and bone marrow.  
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vivo that were clinically relevant [83]. Work from Massague further examined organ-specific 

patterns of metastasis using luciferase-expressing breast cancer cells. This work identified specific 

tissue microenvironment gene expression patterns that mediated the reporter cell’s ability to 

colonize specific organs [84, 85]. 

Optical imaging technologies have expanded the ability to study organ-tropism in dense 

metastatic tissues, like the bone and brain, that have traditionally been difficult to access. For 

example, bioluminescence imaging enabled the monitoring of bone metastasis and their response 

to hypoxia-inducing therapies [86]. Further investigation into the cellular and mechanistic origins 

of metastatic organ-tropism identified a specific subset of stromal cells as key mediators of disease 

progression [87]. These primary breast tumor-derived stromal cells produced CXCL12 and IGF1 

that selected primary breast cancer cells to metastasize to the bone marrow by mimicking the 

microenvironment of the bone marrow. Thus, the production of CXCL12 and IGF1 from the 

stromal cells primed the pre-malignant breast cancer cells for bone marrow metastasis [87]. Optical 

imaging has subsequently enabled the development of brain-specific metastatic cancer models 

[88]. Additional use of fluorescent-based optical probes allowed Kienast et al to use multiphoton 

laser-scanning microscopy to track in real-time the fate of individual metastasizing cancer cells in 

the brain [89]. 

Tumor latency 

Tumor latency causes many patient relapses after decades of being in remission and has 

been a central focus in metastatic cancer research. However, these rare cell populations have been 

difficult to identify and the signaling pathways mediating latency are heavily disputed. Optical 

imaging tools have been the central method of identifying latent cells in vivo and facilitating further 

downstream gene expression analysis. Early work from Morris et al., labeled metastatic cell 
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populations with fluorescent based nanospheres to track cell division and enable the identification 

of dormant cell clusters [90]. Cameron and coworkers coupled this nanosphere optical imaging 

tool with fluorescent microspheres to further monitor cell survival of solitary dormant cancer cells 

in different lung microenvironments [91]. Work from Massague used GFP and luciferase reporters 

for in vivo monitoring of dormant cancer cells [92]. This rare dormant cell population was isolated 

and enriched for subsequent in vitro analyses. Notably, these optical imaging reporters facilitated 

gene expression analyses that identified enrichment of SOX transcription factor and natural killer-

cell mediated immune evasion as key signatures of dormant cancer cells [92].  

Multi-component imaging of the tumor microenvironment   

The tumor microenvironment has been shown to be important in modulating cancer 

proliferation and metastatic progression. This multicellular process involves a dynamic range of 

different signaling pathways. Therefore, multicomponent optical imaging tools are essential to 

capture the heterogenous environment. Calon et al investigated TGF-β signaling from stromal cells 

and their impact on colorectal metastases. Using dual Fluc/Rluc luciferase reporters, TGF-β 

signaling from the stroma was shown to increase the efficiency of organ colonization in colorectal 

cancer [93]. 

Immune cells in the surrounding microenvironment have been identified as playing an 

important role in cancer prevention and progression. Methods to target immune cells as treatment 

for metastatic disease recently came to the forefront of cancer research [94]. Although there have 

been encouraging success stories of immunotherapies, the majority of cancer patients do not 

respond to current checkpoint inhibitors and cell based immunotherapies. Optical imaging tools 

are a staple in monitoring gene expression profiles. Zhang et al., used bioluminescence imaging to 
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monitor changes in metastatic breast cancer as subjects were treated with modified immune cells 

that mediated antitumor responses through TIPE2 gene therapy [95]. 

Cancer immune responses involve a wide array of different immune cell types. In order to 

capture this heterogeneity, multicomponent imaging tools that enable high resolution visualization 

of the relevantly small sized immune cells compared to tumor cells are needed. Fluorescent based 

imaging tools offer a wide array of probes to target such heterogenous environments. However, 

the requirement of an external light source limits applicability in deep tissues without an additional 

tissue clearing step. Lee et al., reported a streamlined and three-dimensional approach to achieve 

high-resolution maps of the tumor-immune microenvironment and tumor heterogeneity [96]. The 

developed transparent tissue tomography (T3) tool enabled easy multiplexed immunofluorescent 

tumor imaging. 

miRNA targeted imaging 

Once overlooked, recent studies have emphasized the vast impact and roles that mRNA 

and miRNA play in modulating metastatic cancer (Fig. 1.16). The inherent instability and 

sensitivity of RNA has made studying its function difficult. However, bioluminescence imaging 

Figure 1.16. Non-coding RNA effects on cancer progression. Long-non-coding RNAs 
(lncRNAs) can regulate polymerase functionality, affecting transcription. Micro-RNAs 
(miRNA) can have inhibitory effects on nascent RNA and mRNA. lncRNAs can also affect 
mRNA stability and translation. 
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technologies have been demonstrated to be well suited for studying RNA and assessing its 

efficiency as a cancer therapy [97]. 

Bioluminescence imaging reporters are also used to study miRNA activity in cells. In 

particular, the significance of miRNA expression has been examined in mediating breast cancer 

metastasis. Using bioluminescence imaging reporter assays, Taipaleenmaki and colleagues 

identified that in vivo metastatic breast cancer models exhibited an upregulation of miR-218-5p 

expression in secondary metastatic lesions specific to the bone marrow [3]. Similarly using 

bioluminescence imaging tools, Kim et al., revealed that posttranslational modification of the 

human microRNA-335 locus resulted in genetic deletion and epigenetic promoter 

hypermethylation across a panel of patient derived malignant breast cancer samples [98]. 

Interestingly, miR-335 was identified as having robust anti-tumor initiation and metastasis 

suppressive properties. Liu and colleagues engineered a novel reporter gene, 

Luc2/tdT_miR200c_3TS, to investigate the impact that miR-200 exhibited on metastatic 

progression and chemotherapy resistance [99]. Both in vitro and in vivo studies determined that 

high levels of miRNA expression were associated with low levels of metastases. Thus, the use of 

optical imaging tools aided in the identification miR-200 as a marker of therapeutic efficacy for 

drug targeting breast cancer stem cells [99]. 

Optically guided studies of gene expression 

As mentioned before, optical imaging tools can guide downstream analysis of specific cell 

populations that can further be profiled for differential gene expression. After genes of interest 

have been identified, optical imaging tools can be leveraged again to non-invasively visualize real-

time gene expression changes in vitro and in vivo. Gene reporters are common tools for providing 

fluorescent or bioluminescent signals that track with specific genes of interest during cancer 
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progression (Fig. 1.17A). Recent research from Wu et al., utilized optical imaging reporters to 

measure tumor hypoxia by driving luciferase expression with a hypoxia-relevant HRE promoter 

[100]. Bhang and colleagues used bioluminescence imaging to monitor tumor specific progression 

factors in vivo [101]. By using a progression elevated gene-3 (PEG-3) promoter to drive the 

expression of Fluc, they verified that high PEG-promoter activity was observed with melanoma 

and breast cancer [101]. Tissue-specific promoters can also drive the expression of fluorescent 

proteins that can bridge in vivo and in vitro use (Fig. 1.17B-C). 

 

 

Dual fluorescent and bioluminescent gene reporters are powerful tools to measure 

metastatic progression. Understanding the complex role of TGF-β in cancer progression and bone 

metastasis is an example of cancer biology where dual gene reporters have historically been used 

both in vitro and in vivo [103-105]. Work from Massague examined other TGF-β related pathways 

that influenced breast cancer bone metastasis by monitoring Smad signaling with fluorescent and 

bioluminescent reporters [106]. In addition, substrate resolved Rluc and Fluc allow the expression 

patterns of two genes to be monitored simultaneously. Work from Winslow et al., used this dual 

A B C

Figure 1.17. Use and function of reporters in vivo. (A) Endogenous promoters drive 
expression of fluorescent or bioluminescent based reporters. (B) Reporters can be delivered into 
cancer cells with lentiviruses or other methods in vitro. (C) Reporter cells can be injected into 
animals and their expression can be monitored across different organs (shown in green). 
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bioluminescent gene reporter system to monitor HMGA2 and thymidine-kinase promoter activity 

in relation to their ability to suppress lung adenocarcinoma progression [107]. Furthermore, 

fluorescent and bioluminescent dual reporters can also be designed to read out specific protein-

protein interactions. In these systems, proteins of interest are tethered to two luciferase fragments.  

Protein interactions are measured by light emission that results from the complementation of the 

two luciferase fragments upon close interaction of the desired proteins [108]. 

 

IV. Limitations of current imaging tools 

Current imaging tools have limitations that are problematic when applying them to 

studying cancer animal models. There are also some limitations to using the imaging tools to 

monitor cancer disease progression. A lack of multicomponent imaging probes has precluded 

orthogonal imaging of multiple cell populations. Current imaging probes prevent monitoring and 

identification of cellular interactions precluding the ability to measure immune-cancer interactions 

that are important for disease progression. Many popular probes emit blue wavelengths of light 

that makes them difficult to use for deep tissue and whole animal applications. Imaging with 

existing bioluminescent probes also usually requires multiple days to allow for clearance of the 

first substrate before a second one can be imaged, thus precluding the ability to acquire rapid 

images and read out of the target cell populations. This thesis works to address these limitations 

and improve our understanding of metastatic disease in cancer models. 
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CHAPTER 2: Rapid multicomponent bioluminescence imaging via substrate 

unmixing * 

 

I. Introduction 

Bioluminescence imaging (BLI) is a popular technique for tracing cells and other 

biological features in heterogeneous environments, including whole animals.1-2 BLI applications 

rely on genetically encoded luciferase enzymes and luciferin substrates for photon production. 

Because mammalian tissues do not normally glow, BLI enables sensitive imaging in vivo.3-5 As 

few as 1-10 cells can be reliably detected using optimized probes in subcutaneous models.6 For 

these reasons, BLI has long been a go-to technique for monitoring physiological processes in 

rodents.7-9 More recent advances are further enabling studies in deeper tissues and larger 

organisms,10-13 including non-human primates.10,14 

  While ubiquitous, BLI applications in vivo typically track only one cell type or feature at a 

time.15 A spectrum of bioluminescent probes exists, and some pairs can be color-resolved in rodent 

models.16-22 Discriminating larger collections is challenging, though, due to the broad emission 

spectra of bioluminescent reporters and complications from tissue absorption.8 Historically, many 

applications featuring two BLI reporters combined firefly luciferase (Fluc) and Renilla luciferase 

(Rluc), two enzymes that use different substrates.23-24 Recent examples have featured Akaluc and 

 
* Author’s Note: The following chapter is a completed manuscript that has been accepted for 
publication in ACS Chemical Biology. I share co-first authorship with Colin M. Rathbun, and Zi 
Yao and we have contributed equally to this publication. I contributed to designing experiments 
and procedures, data analysis and interpretation, and writing. The co-authors include Krysten A. 
Jones, William B. Porterfield, and last author Jennifer A. Prescher.  
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Antares or CBG2, additional enzymes that use distinct luciferins.16,25 Multicomponent imaging 

with these pairs in vivo, though, can require multiple hours, if not days. The bioluminescent 

substrates are typically administered at saturating doses to maximize photon output,26 and the first 

probe must clear prior to administering the second. In principle, dozens of other naturally occurring 

(and orthogonal) luciferases and luciferins could be employed for multiplexed BLI.27-29 In practice, 

though, most of these enzymes and substrates are not easily applied in vivo owing to suboptimal 

stabilities, bioavailability, or other parameters.  

We aimed to address the need for better probes and practical imaging protocols for 

multicomponent BLI. Our approach builds on the expanding toolbox of orthogonal bioluminescent 

reagents.8,15 These probes comprise genetically modified luciferases that are responsive to 

chemically unique luciferins.12,14,25,30-34 Some of the orthogonal enzymes can be readily 

discriminated in cells and mouse models based on selective substrate use.17,25,30-32,35-37 Many of 

these probes are not completely specific (i.e., the luciferins are processed preferentially by one 

enzyme, but can be turned over to some extent by other enzymes). However, perfect selectivity is 

not required. The patterns of substrate use (“fingerprints”) can be used to discriminate 

combinations of luciferases. Indeed, such “fingerprint” analyses are commonly used to 

differentiate engineered GPCRs and signaling pathways.38-40 Like the examples above, though, 

traditional applications of the engineered luciferases require long periods of time (hours-to-days) 

for complete image acquisition.25,31 Dynamic changes in gene expression and cell growth cannot 

be captured under such conditions. Consequently, bioluminescence has historically been limited 

to monitoring bulk changes in biological samples. Here we report a method to more rapidly resolve 

orthogonal bioluminescent probes. The approach is broadly applicable and scalable to multiple 
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reporters, enabling facile multiplexed bioluminescence imaging. We also showcase its utility for 

monitoring dynamic changes on the minutes time scale.  

 

 

Figure 2.1 Multicomponent bioluminescence imaging via serial substrate addition and 
unmixing. (a) Sequential application of orthogonal luciferins (shapes) to illuminate multiple 
luciferase reporters in vivo. Linear unmixing algorithms can deconvolute substrate signatures, 
enabling rapid and dynamic readouts of biological processes. (b) Bioluminescent probes must 
be orthogonal and exhibit differential emission intensities for successful unmixing. When both 
probes are equally “bright” (top), no resolution is possible. Probes of varying intensity (bottom) 
can be distinguished when the dimmest probe is administered first. (c) A sample orthogonal 
bioluminescent pair. Samples expressing mutant 51 or 37 can be resolved using 4'-BrLuc (100 
μM) or D-luc (100 μM). Error bars represent the standard error of the mean for n = 3 
experiments. 
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II. Results and Discussion  

Identifying Optimal Luciferases 

We hypothesized that rapid BLI could be achieved via sequential substrate administration 

and serial image acquisition. Light outputs would build over time, with each luciferin application 

resulting in stronger signal. A final processing step41 would unmix the images (Figure 2.1a). 

Similar “layering” approaches have vastly expanded fluorescence detection of gene transcripts42 

and other cellular features21,43 in recent years. The technique also differs from conventional optical 

imaging platforms, in that wavelength, lifetime, and other traditional parameters are not factored 

into the analysis.  The probes must simply be substrate resolved (i.e., exhibit some degree of 

orthogonality) and intensity resolved (Figure 2.1b). Substrate resolution minimizes cross talk 

between the probes to provide unique fingerprints. Intensity resolution ensures that signal can be 

“layered in”: as successively brighter probes are imaged, residual signal from dimmer, earlier 

images becomes part of the background. If the bioluminescent probes are not intensity resolved, 

the targets are indistinguishable. The key takeaway from the design is that no time is required for 

substrate clearance, which is an important consideration for capturing rapid, dynamic events.   



 

44 

 

 

 

To identify suitable probes for rapid BLI, we focused on two previously reported 

orthogonal luciferins: 4'-BrLuc and D-luciferin (D-luc, Figure 2.1c).31,44 These substrates are 

bright, bioavailable, and accessible in large quantities.45-46  We also previously identified mutant 

luciferases that could differentiate the analogs.31,47 While orthogonal, these pairs were engineered 

for maximum brightness and not built with intensity resolution in mind. To identify orthogonal 

luciferases that exhibited a range of photon outputs, we screened a small panel of mutants known 

to process C4'-modified analogs (Figure 2.2a). Screens were performed both in vitro and in vivo 

Figure 2.2  Identifying intensity resolved orthogonal pairs. (a) Mutants considered for rapid 
BLI with 4'-BrLuc and D-luc. Mutants 50, 51 (Pecan), 53, and 54 prefer 4'-BrLuc, while 37 
(Cashew), 85, 86, 87, and 93 prefer D-luc.11 (b) Verifying orthogonality and substrate resolution 
in vivo. DB7 cells expressing different mutant luciferases were implanted into the backs of mice. 
Sequential application of 4'-BrLuc and D-luc enabled identification of optimal mutant luciferase 
combinations for multicomponent imaging. Photon flux values from images were quantified and 
plotted. Mutant luciferases 51 and 37 were identified as optimal candidates for rapid 
multicomponent BLI. 
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(Figure 2.3, Figure 2.2b). In the latter case, DB7 cells stably expressing mutant luciferases were 

implanted in mice. 4'-BrLuc and D-luc were administered sequentially. The most orthogonal and 

intensity resolved pair comprised mutants 51 and 37 (Figure 2.2b), which we subsequently named 

Pecan and Cashew, respectively. Bioluminescent signal from 4'-BrLuc/Pecan is lower than that of 

D-luc/Cashew, meaning that the two pairs are intensity resolved and amenable to rapid sequential 

imaging (Figure 2.1c, Figure 2.3). 4'-BrLuc can be administered first (to illuminate Pecan), 

followed immediately by D-luc (to illuminate Cashew). Since Cashew signal is brighter than 

Pecan, the images can be readily unmixed.  It is also important to note that while 4'-BrLuc/Pecan 

signal is reduced relative to D-luc/Fluc, it is still sufficiently intense for applications in vivo.  

 

Figure 2.3. Identifying intensity-resolved orthogonal mutant luciferase-luciferin pairs. 
Candidate luciferases were expressed in bacteria and screened with 100 μM 4'-BrLuc or D-
luc. Mutants exhibited orthogonal substrate use, with >10-fold substrate preference observed 
in most cases.  The “winning combination” – mutants 51 and 37 – were also intensity 
resolved.  Error bars represent the standard error of the mean for n = 3 experiments.   
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Resolving Orthogonal Probes via Intensity Resolution and Linear Unmixing 

 

To evaluate the reporters for rapid multicomponent BLI, we performed a series of in vitro 

experiments. Pecan and Cashew-expressing cells were lysed and distributed across black-well 

plates. 4'-BrLuc was initially administered to each well, and an image of the plate was acquired 

(Figure 2.4a). D-Luc was then immediately added to the same wells, and a second image was 

acquired. Because light output from Cashew is brighter, the Pecan signal fell entirely within the 

noise of the second image. False colors were assigned to each reporter. The images were then 

overlaid and a linear unmixing algorithm was employed to determine the relative quantities of each 
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Figure 2.4 Rapid BLI in vitro. (a) Pecan and Cashew were plated in a gradient fashion (as 
shown). The samples were treated with 4'-BrLuc (100 µM), followed by D-luc (100 µM). Raw 
images were acquired after each substrate addition. The substrate-specific signals were 
unmixed, assigned false colors and overlaid. (b) Quantification of the images from (a), fit via 
linear regression. In channel 1, R2 values for the Pecan control and co-culture wells are 0.993 
and 0.994, respectively. In channel 2, R2 values for Cashew control and co-culture are 0.998 
and 0.993, respectively. Error bars represent the standard error of the mean for n = 3 
experiments.  
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mutant. The measured signal correlated linearly with probe concentration (Figure 2.4b). Signal 

outputs from mixed lysate samples were also co-linear with samples comprising a single luciferase, 

indicating minimal signal crosstalk. Rapid imaging required the dimmest reporter to be visualized 

first (Figure 2.5). The unmixing algorithm is not necessary when the second target is more 

abundant than the first.42 When the second target (associated with the “brightest” luciferase) is in 

low abundance, though, the algorithm is crucial for proper image interpretation. Unmixing ensures 

that residual signal from the first image is eliminated and doesn’t interfere with the subsequent 

image (Figure 2.6). Since the relative abundance of multiple targets is unknown in a given 

experiment, the algorithm would be employed in all cases by the end user. 
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Figure 2.5. Substrate unmixing requires probes that are intensity resolved. (a) An 
orthogonal pair comprising mutant 81/4'-Morpho luciferin and mutant 104/7'-Morpip luciferin 
is not intensity resolved,1-2 and thus not amenable to rapid BLI. Gradients of the mutants 
(expressed in bacterial lysate) were plated in a 4x4 matrix.  4'-Morpho luciferin (the preferred 
substrate for mutant 81) was then administered, followed by 7'-Morpip luciferin (the preferred 
substrate for mutant 104). Final luciferin concentrations were 100	µM. Substrate unmixing 
was not successful. Strong residual signal (from 4'-Mopho luciferin) in the 7'-Morpip luciferin 
image can be observed.  The presence of white pixels in the merged image (arrows) is not 
consistent with the composition of the well (since only one luciferase was present).  (b) 
Gradients of Cashew and Pecan were plated in a 4x4 square. When the dimmer analog (4'-
BrLuc) was added prior to the brighter one (D-luc), the signals can be readily unmixed (top).  
When D-luc was added first, though, the signals cannot be distinguished (bottom). Final 
luciferin concentrations were 100 µM in each case.  
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Figure 2.6. Residual signals are removed by substrate unmixing. Gradients of mutant 
luciferases in bacterial lysate were plated in a 4x4 matrix. The corresponding luciferins (100 
µM) were added sequentially. Pixels containing residual signal are highlighted by the white 
arrows. These signals are removed upon imaging processing. 
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Figure 2.7. Multiple orthogonal engineered pairs can be rapidly unmixed. Luciferases 
examined include mutant 81 (and its corresponding substrate 4'-MorphoLuc), Cashew (and its 
corresponding substrate 7'-DMAMeLuc), and mutant 53 (and its corresponding substrate 4'-
BrLuc).1-2 Gradients of engineered luciferases were plated as shown. The corresponding 
substrates (100 µM) were administered, beginning with the dimmest luciferin. Images were 
acquired after each addition. The raw data were stacked and unmixed.  
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These results underscore the notion that perfect substrate selectivity is not required for 

differentiating multiple probes, broadening the potential impact of the approach. Many dual-

component imaging experiments rely on completely different classes of enzymes and substrates 

that exhibit different bioavailability and administration routes.23,25,36 Substrates that are more 

structurally similar can be easier to work with, but typically exhibit imperfect 

orthogonality.31,32,45,48-49 The substrate unmixing algorithm takes advantage of these imperfections 

(in the form of diagnostic fingerprints) and should be able to interface with the dozens of luciferin 

analogs reported to date. Indeed, the “layering in” approach successfully resolved combinations of 

D-luciferin analogs and their associated enzymes via rapid luciferin administration (Figure 2.7). 

Mixtures of Fluc and other commercially available reporters (e.g., NanoLuc and Gaussia 

luciferase) were readily unmixed following sequential addition of the corresponding substrates 

(Figure 2.8). Moreover, combinations of mammalian cells could be visualized in a single imaging 

session (Figure 2.9). These examples suggest that the unmixing approach is generalizable to 

multiple luciferase reporters that use unique substrates and exhibit a range of intensities. 

Additionally, the unmixing approach is applicable to not only well-differentiated bioluminescent 

tools (e.g., orthogonal insect and marine luciferins), but also structurally similar probes (e.g., D-

luciferin analogs). This feature greatly expands the number of luciferase-luciferin pairs that can be 

imaged in a single experiment, as perfectly orthogonal pairs are not required. 
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Figure 2.8 Multiple orthogonal pairs can be rapidly unmixed. Established reporters 
examined include firefly luciferase (Fluc), NanoLuc (Nluc), and Gaussia luciferase (Gluc). The 
corresponding luciferins for each reporter are shown. Gradients of the luciferases were plated 
as shown. The corresponding substrates ([D-luc] = 100 uM, [FRZ] = 1:40 of commercial stock, 
[CTZ] = 100 µM) were administered, beginning with the dimmest luciferin. Images were 
acquired after each addition. The raw data were stacked, unmixed, and false colored.  

Figure 2.9. Sequential substrate administration enables multicomponent bioluminescence 
imaging in cellulo. DB7 cells expressing Cashew, Pecan, or no luciferase (media) were plated 
(1 x 105 cells/well). Some wells contained a 1:1 mixture Cashew- or Pecan-expressing cells (5 
x 104 of each cell type per well).  All samples were first treated with 4'-BrLuc, followed by D-
luc. Images were acquired after each substrate addition.  Raw photon values are shown, along 
with the merged image following substrate unmixing.  
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 To showcase the utility of rapid unmixing, we performed a head-to-head comparison with 

conventional bioluminescence imaging. The latter approach entails waiting for signal to clear from 

one substrate, prior to administering the second. Since saturating doses of luciferins are typically 

used, the clearance period can be several hours to days. Our approach via sequential substrate 

application and signal unmixing can dramatically shorten this time frame, enabling improved 

temporal resolution. As an initial demonstration, mixtures of Pecan- and Cashew-expressing 

mammalian cells were cultured in varying ratios (Figure 2.10a). Conventional bioluminescence 
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Figure 2.10 Rapid two-component BLI via substrate unmixing. (a) Cells expressing Pecan 
or Cashew, were plated in a 96-well plate as shown. Sequential substrate administration (4'-
BrLuc, followed by D-luc, top row) and unmixing enabled two-component imaging in only 20 
min. Conventional bioluminescence imaging required >24 h to complete (bottom row). Data are 
representative of n = 3 replicates. (b) Quantified photon outputs for the images in (a), fit via 
linear regression. In channel 1, R2 values for the Pecan control and co-culture wells are 0.98 and 
0.99, respectively. In channel 2, R2 values for the Cashew control and co-culture wells are 0.95 
and 0.97, respectively. Error bars represent the standard error of the mean for n = 3 experiments. 
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imaging was performed by adding one luciferin substrate (4'-BrLuc) to illuminate the Pecan-

expressing cells. Images were acquired until signal returned to background levels (24 h, bottom 

row of Figure 2.10a). The second luciferin (D-luc) was then applied to the cultures to capture 

Cashew-dependent signal. In total, the two-component imaging study was complete in just over 

24 h. By contrast, sequential substrate addition followed by unmixing enabled two-component 

imaging in only 20 minutes (top row, Figure 2.10a).  

We surmised that the unmixing algorithm would also enable rapid imaging in vivo. As an 

initial demonstration, Pecan- and Cashew-expressing cells were mixed in varying ratios and 

implanted in mice (106 cells per site, Figure 2.11a). Upon injection of 4'-BrLuc, Pecan-expressing 

cells were readily visualized (Figure 2.11b). Prior to substrate clearance, the brighter luciferin (D-

luc) was injected. Signal was then observed from Cashew-expressing cells. Substrate unmixing 

revealed the expected distributions of Cashew- and Pecan-expressing cells (Figure 2.11b and  

Figure 2.12). Notably, the two-component imaging session was complete in ~1 h, a significant 

improvement from the 6-24 h imaging window common to other substrate-resolved probes.31 The 

bioavailabilities of the luciferins featured in this experiment are similar, although this is not a 

requirement for unmixing. While the relative composition of the cell masses can be readily 

visualized, the unmixing algorithm cannot provide absolute quantification of bioluminescent 

signals in animals. Rather, the relative amounts of signal are easily discerned and tracked. Samples 

with a large amount of Pecan will appear “more green than red” in the unmixed images. As the 

reporter ratios change over time, so too will the unmixed images. These measures are often 

paramount in optical imaging in vivo, and imaging relative differences is standard practice in most 

bioluminescent applications.50-52 Similar intensiometric measures are routinely used in imaging 

with fluorescent sensors.53-55   
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Quantifying the number of cells (or other features) from bioluminescent images is possible, 

but requires multiple standard curves and external validation.  The relevant standard curves are 

readily generated for in vitro and in cellulo experiments (e.g., see Figures 2.4 and 2.10, where 

bioluminescent outputs correlated with cell number and/or enzyme amount over a broad range.) 

Such curves are rarely generated for in vivo experiments, though, owing to the complexities 

involved in standardizing optical signals within heterogeneous tissue.56-57 Thus, applications of 

bioluminescence imaging in vivo typically involve monitoring relative changes in samples over 

time. The important takeaway is that the substrate unmixing platform can be immediately 

employed in conventional applications of bioluminescent probes, where detecting changes over 

time is often most important.   

Figure 2.11 Rapid BLI in vivo. (a) Ratios of Cashew-and Pecan-expressing cells implanted in 
mice. Orthogonal substrates (65 mM) were administered sequentially via i.p. injection (100 µL). 
Images were acquired 35 min after each injection. (b) Unmixed channels for each mouse 
replicate are shown. Color bars indicate normalized luminescence values.   
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Generalization of Rapid BLI to Three Probes and Monitoring Cell Function 

Having demonstrated the ability to rapidly deconvolute mixtures of two bioluminescent 

probes, we examined whether the algorithm could be applied to larger collections of luciferase 

reporters. Triple-component bioluminescence imaging has been historically difficult to achieve, 

owing to a lack of protocols and methods to distinguish the probes.31,58-59 In one of the only in vivo 

examples reported, multiple days were required to generate a composite image.35 Signal from one 

substrate had to clear before another could be administered. We hypothesized that the “layering 

in” approach could dramatically speed the imaging time, enabling more early events relevant to 

cell growth to be visualized.   

As a model triple component set, we used Cashew and Pecan in combination with Antares, 

a recently reported marine luciferase variant.60-61 Cashew and Pecan derive from the insect 

luciferase family, and are thus immediately orthogonal to luciferases (like Antares) that use vastly 

distinct luciferins (in this case, furimazine).10 Antares also exhibits markedly faster substrate 

turnover than Cashew, rendering it brighter and intensity resolved from the other two reporters.36 

Figure 2.12. Multicomponent BLI in mouse models. Images used to generate the false colored 
pictures in Figure 2.11 are shown. Sequential application of 4'-BrLuc and D-luc enabled 
different ratios of Pecan- and Cashew-expressing cells to be visualized.  
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We thus reasoned that the three orthogonal luciferases could be rapidly differentiated by first 

applying 4'-BrLuc, followed by D-luc, then furimazine to layer in signal from Pecan, Cashew, and 

Antares, respectively. When the cells were combined and imaged together, the three reporters 

could be rapidly visualized (<15 min) following sequential substrate addition (Figure 2.13). Triplet 

imaging was also readily achieved using other combinations of engineered and native luciferases 

(Figures 2.14 – 2.15).  

 

 

Figure 2.13. Rapid BLI with three luciferases and luciferins. (a) Cells expressing Pecan, 
Cashew, Antares, or no luciferase (control) were plated in a 96-well plate. Sequential substrate 
administration (4'-BrLuc, followed by D-luc, then furimazine) and unmixing enabled three-
component imaging. Data are representative of n = 3 replicates. (b) Quantified photon outputs 
for the images in (a). Error bars represent the standard error of the mean for n = 3 experiments.   
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Figure 2.14. Three orthogonal probes can be distinguished in bacterial lysate and 
mammalian cells. (a) Gradients of luciferases in bacterial lysate were plated in a 96-well plate. 
7'-DMAMeLuc luciferin1-2 (250 μM), 4'-Morpho luciferin1-2 (250 μM), furimazine (1:100 
dilution of commercial stock) were added in sequence. Images were acquired after each 
addition, and the raw data were stacked and unmixed. (b-e) Gradients of cells expressing 
luciferase mutants 51 and 86, or Gaussia luciferase were plated in a triangle, with 60,000 cells 
per well. 4'-BrLuc (500 μM), D-luc (500 μM), and coelenterazine (40 μM) were added in 
sequence. (b) Quantification of each channel from (c) fit via linear regression. The shaded area 
represents the 95% confidence interval of the fit. (c) Overlay of raw signal from mixed images. 
(d) Quantification of each channel from the unmixed image in (e) fit via linear regression. The 
shaded area represents the 95% confidence interval of the fit. (e) Overlay of the unmixed 
channels 
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III. Conclusions and future directions 

In conclusion, we developed a strategy for rapid multicomponent bioluminescence imaging 

based on substrate unmixing. This method takes advantage of both substrate and intensity 

resolution to resolve mixtures of reporters. In this scenario, probe differentiation is less impacted 

by tissue location, a parameter that has historically hindered efforts to resolve colors in large 
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Figure 2.15. Rapid BLI with three insect-derived luciferases and luciferins. (a) Cells 
expressing Pecan, Cashew, or Akaluc were seeded in a 96-well plate. Sequential substrate 
administration (4'-BrLuc, followed by D-luc, then AkaLumine all at 100 μM), and unmixing 
enabled three-component imaging. Raw images were acquired after each substrate addition. 
The substrate-specific signals were unmixed, assigned false colors and overlaid. Data are 
representative of n = 3 replicates. (b) Quantified photon outputs for the images in (a).  Error 
bars represent the standard error of the mean for n = 3 experiments. 
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organisms. We validated the unmixing approach in bacterial lysate, live cells, and mouse models. 

A variety of bioluminescent reporters were readily resolved, and bioluminescent outputs correlated 

with cell number and/or enzyme amount over a broad range of concentrations in vitro. The 

unmixing algorithm further enabled multiple luciferases to be discriminated in vivo using 

conventional BLI instrumentation.  

While the rapid unmixing approach is immediately applicable to experiments with widely 

available bioluminescent probes, additional questions remain to be addressed. For example, just 

how much intensity resolution is required for successful unmixing remains unknown. The majority 

of probe sets tested exhibit >10-fold selectivity between matched enzymes and substrates. It is 

likely that even less selective probes can be integrated into the approach, though, and expand the 

number of features that can be imaged in a single setting. “Crosstalk” between more enzyme-

substrate pairs could potentially improve the unmixing process, as the molecular signatures 

become more diagnostic. We also have not yet established the dynamic imaging range that can be 

achieved with different combinations of reporters. For example, it might not be possible to “see” 

a particular reporter if it is in low abundance compared to another reporter. The kinetics of light 

emission and compound transport into tissues must also be fully examined. These parameters could 

offer additional mechanisms by which to discriminate orthogonal pairs.36,62  

The limits of detection will be influenced not only by the inherent photon output (and thus 

sensitivity) of each luciferase, but also the quantity of each reporter present and its tissue location. 

The data presented in this manuscript demonstrate that ten-fold changes in relative abundance can 

be easily discerned. Further theoretical work and experimental data are necessary to provide more 

definitive thresholds for different tissue types. Additional work is also necessary to streamline the 

quantification of luciferase reporters in biological samples. We have shown that the substrate 
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unmixing platform can easily monitor relative changes in luciferase levels.  Tracking such 

information is standard practice, as traditional bioluminescence applications rely simply on 

detecting changes in signal over time.  Identifying the absolute quantities of the reporters in 

unknown mixtures requires external calibration curves. Whether or not such curves must be 

generated for every independent experiment remains to be determined. 

We anticipate that the rapid imaging approach reported here will enable a range of 

applications, including monitoring multiple cell types and gene expression profiles in vivo. The 

development of additional intensiometric probes will also increase the number of bioluminescent 

reporters that can be rapidly imaged in tandem, and work along these lines is ongoing. An 

expanded toolkit for BLI will enable longstanding questions regarding multicellular interactions 

to be addressed. 
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MATERIALS AND METHODS 

Reagents 

All reagents purchased from commercial suppliers were of analytical grade and used without 

further purification.  4'-BrLuc, 4'-MorphoLuc, 7'-MorPipLuc, and 7'-DMAMeLuc were prepared 

and used as previously described.1-3 

General bioluminescence imaging 

Assays were performed in black 96-well plates (Greiner Bio One). Plates were imaged in a light-

proof chamber (IVIS Lumina, Xenogen) equipped with a CCD camera (chilled to –90 °C). The 

stage was kept at 37 °C during imaging experiments, and the camera was controlled using standard 

Living Image software. Exposure times ranged from 1 s to 5 min, and data binning levels were set 

to small or medium. Post-acquisition, regions of interest were selected for quantification. Total 

flux and radiance values were analyzed using Living Image software or ImageJ (NIH). 

Bacterial lysate analysis of luciferase mutants 

Bacterial cell stocks (stored in glycerol) expressing the mutants of interest were streaked on agar 

plates containing kanamycin. After overnight growth, colonies were picked and expanded 

overnight. Portions of the cultures (100 μL) were added to 5 mL of LB (kan) and luciferase 

expression was induced as described previously in Jones, et al.1  For experiments involving 

gradients of bacterial lysate, luciferase-expressing bacteria was pelleted and ruptured with 600 μL 

of lysis buffer (50 mM Tris•HCl, 500 mM NaCl, 0.5% v/v Tween, 5 mM MgCl2, pH = 7.4).  In 

some cases, samples were diluted prior to plating to remain in the linear range of detection. 
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Substrate unmixing 

Substrate unmixing experiments were designed such that a “positive” sample for each enzyme was 

present in the image to be acquired. For in vitro experiments, “positive” wells comprised pure 

enzyme. In mouse experiments, “positive” cells were also included as a reference.  Images were 

acquired as a series following each substrate addition. Thus, an image was generated for each 

enzyme/substrate pair.  Linear unmixing was conducted using ImageJ (installed under the FIJI 

package).  Luminescence images containing the raw CCD counts (as TIFF files) were loaded into 

FIJI and subjected to a 2-pixel median filter to remove any cosmic noise. Next, the signal at each 

pixel was min-max scaled to lie between 0 and 65535 (the maximum value that can be stored in a 

16-bit image). As a result, the brightest pixel in each image had a value of 65535, and the dimmest 

had a value of 0. Images were then stacked, and an additional image containing the maximum 

value of each of the stacked images was computed (as a Z projection). This new image was added 

to the stack, and signals were unmixed using the ImageJ plugin developed by Gammon, et al.4  In 

the plugin, regions of interest (ROIs) for each luciferase were drawn around the “pure” areas of 

the image described above. Each ROI was drawn individually and added to the list by clicking 

“add.” Once all enzymes were added, “Unmix” was used to unmix the images. Pseudocolors were 

assigned in FIJI through the “Merge Channels” tool. 

Mammalian plasmid construction 

Luciferase-expressing DB7 cells were prepared via CRISPR gene insertion. The relevant 

luciferase genes (luciferase-G4SX2-FP-T2A-Puro) were amplified and inserted into CRISPR 

AAVS1 donor plasmids (courtesy of Drs. Theresa Loveless and Chang Liu, UCI).  Cashew and 

Pecan inserts were amplified from pET vectors using the following primers: 
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5’ – TGGCTAGCGCTACCGGTCGCCACCTCTAGAATGGAAGACGCCAAAAACATAAA 

GAAAGG -3’ and 

5’- GCGGAAAGATCGCCGTGGGCGGAGGCGGGTCTGGGGGCGGAGGCTCT -3’ 

Antares inserts were amplified with the following primers: 

5’- GCTAGCGCTACCGGTCGCCACCTCTAGAATGCGGGGTTCTCATCATCATCATC -3’ 

and  

5’- TGCCTCTGCCCTCGCCGCTGCCCTCGAGCTTGTACAGCTCGTCCATGCCTCCG -3 

Akaluc inserts were amplified with the following primers: 

5’- ATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGC -3’ and 

5’- CACGGCGATCTTGCCGTCCTTCTTGGCCTTAGTGA -3’ 

Linearized vectors were generated via digestion with restriction enzymes XbaI and XhoI (New 

England BioLabs). The linearized vectors were combined with the appropriate luciferase insert by 

Gibson assembly. A portion of the reactions (3.0 μL) was directly transformed into XL1 competent 

E. coli cells. Sequencing analysis confirmed successful plasmid generation. 

Mammalian cell culture and imaging 

DB7 cells (courtesy of the Contag laboratory, Stanford) were cultured in DMEM (Corning) 

supplemented with 10% (vol/vol) fetal bovine serum (FBS, Life Technologies), penicillin (100 

U/mL), and streptomycin (100 µg/mL). Cells were maintained in a 5% CO2 water-saturated 

incubator at 37 °C. To create stable lines expressing mutant luciferases, DB7 cells were transfected 

with the AAVS1 mutant luciferase donor plasmid, Cas9 (Addgene #41815), and AAVS1 sgRNA 
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(Addgene #53370) using lipofectamine. The mutant luciferases were integrated into the first locus 

of AAVS1 through homologous recombination. Transfected cells were then treated with 

puromycin (2 μg/mL) and FACS sorted at the Institute for Immunology Flow Cytometry Core 

(UCI). 

DB7 cells stably expressing luciferases were added to black 96-well plates (1 x 105 cells per well). 

Stock solutions of 4'-BrLuc, D-luc, and AkaLumine (10 mM in PBS) were added to each well 

(100-500 μM final concentration). A solution of furimazine (1:40-1:100 dilution of the commercial 

stock, Promega) was then added. Sequential imaging was performed as described in the General 

bioluminescence imaging section (above).   

In vivo imaging of orthogonal luciferase-luciferin pairs 

Mouse experiments were approved by the UC Irvine Animal Care and Use Committee.  FVB/NJ 

mice (The Jackson Laboratory) received subcutaneous dorsal injections of 1x106 DB7 mutant 

luciferase expressing cells. After 24 h, animals were anesthetized (1-2% isoflurane) and placed on 

a warmed (37 °C) stage for imaging.  Each mouse received an i.p. injection of luciferin (65 mM, 

100 μL per mouse). Images were acquired with 5 min exposure times for 35 min using the General 

bioluminescence procedure. For sequential imaging, mice were immediately injected with the 

second substrate and imaged for an additional 35 min. Bioluminescent output was quantified as 

above. 
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CHAPTER 3: Transcriptome analysis of heterogeneity in mouse models of 

metastatic breast cancer * 

 

I. Introduction 

Despite recent advances in treatment and diagnosis, metastatic breast cancer remains a 

leading cause of death for women worldwide [1]. Cancer metastasis is a complex process involving 

the spread of malignant cells from a primary tumor to distal organs [2][3]. Premalignant cells 

undergo dynamic cellular changes (i.e., epithelial to mesenchymal transition, EMT) to escape the 

primary tumor [3,4]. These same cells undergo the reverse process (i.e., mesenchymal to epithelial 

transition, MET) to colonize metastatic sites [5]. Expression and fluctuations of cell surface 

markers (e.g., CD44) have long been associated with metastatic progression in breast cancer [4]. 

However, exactly which cells within a given primary tumor ultimately metastasize—and their final 

destinations—remains unclear [4-6]. 

Transcriptome profiling of the dynamic cellular changes during tumorigenesis has the 

potential to improve our understanding of metastatic disease. Such analyses can reveal biomarkers 

associated with malignant progression. In one example, bulk RNA-sequencing (RNA-seq) 

revealed novel molecular pathways and differentially expressed genes (DEGs) associated with 

distinct stages of breast cancer progression [7]. However, traditional profiling studies are 

complicated by the underlying heterogeneity of cancer progression. The contribution of distinct 
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author Jennifer A. Prescher 
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cell populations cannot be discerned using bulk RNA-seq alone [8].  Single-cell RNA-seq (scRNA-

seq) technology captures the complexity of cellular heterogeneity by mapping transcripts to 

individual cells [9]. This increase in cellular resolution facilitates the identification of additional 

molecular pathways and cell specific biomarkers [10, 11]. 

Examining breast cancer remains challenging owing to a lack of models that capture 

cellular heterogeneity [12]. The surrounding microenvironment, cancer stem cells (CSC), tumor 

dormancy, all contribute to disease progression beyond isolated changes to the malignant cells 

themselves. These features are difficult to replicate outside of living organisms. Suitable models 

must take into account the different tissue microenvironments that support cancer niches and 

resident cancer stem cells during metastatic progression [13-16]. The MMTV-PyMT mouse 

model, in particular, is a well-established platform to study human breast cancer [17, 18]. 

However, the variability in different metastatic niches and the contribution of different cancer cell 

types to disease progression remains unclear. Subclones across breast tumors are frequently 

identified and monitored using the expression of the cell surface marker CD44 [4-6]. However, 

this marker is associated with both pro- and anti-tumorigenic outcomes, meaning that CD44 

expression alone cannot be used to predict metastatic propensity or other cell behaviors [67-69,76]. 

Transcriptome profiling of the MMTV-PyMT cancer model could thus provide more insight into 

the mechanisms underlying dynamic changes in tumor progression [19]. 

We aimed to understand the transcriptome changes of organ-derived cancer cell isolates 

from MMTV-PyMT mice. Although metastatic progression from primary tumors to lung tissue is 

well studied in the MMTV-PyMT model, metastases to other distal organs and the significance of 

intratumor heterogeneity remain unclear [20]. To gain insight, we established an array of 

metastatic cell lines harvested from MMTV-PyMT mice. Differential expression analyses were 
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performed and used to examine the effects of cell heterogeneity on metastases and organ tropism. 

Correlations were found between CD44 expression and cellular growth markers across all 

metastatic cells.  Data from scRNA-seq analyses further revealed tissue-specific gene expression 

patterns that mirror clinical data. Overall, the suite of clonal isolates provided a detailed depiction 

of cancer progression. The cell lines also establish a platform for future studies examining 

heterogeneity during metastatic disease and elucidating transcriptomic changes relevant to 

malignancy.  

 

II. Results 

Generation of breast cancer cell lines to examine tumor heterogeneity and metastatic disease  

To gain insight into breast cancer heterogeneity, we derived a suite of tissue-specific 

metastatic cell lines from MMTV-PyMT mouse tumors (Fig. 3.1A).  Tumors were harvested from 

the mammary fat pad (MFP) and tissues harboring distal metastases, including lymph nodes (LN), 

bone marrow (BM), and lungs (L). Samples were processed into single cell suspensions and further 

expanded. The organ-derived cultures were subjected to conditions that favored cancer cell 

outgrowth in vitro. Cells were ultimately sorted based on CD44 and EpCAM expression [23] to 

remove fibroblasts from the samples.  CD44 is routinely used as a marker of aggressive metastatic 

breast cancer [29]. FACS sorting provided two populations: CD44low/EpCAMhigh and 

CD44high/EpCAMhigh (Fig. 3.2A-B). PCR was also used to confirm the presence of the PyMT 

viral antigen in the cell isolates (Fig. 3.2C).  For the sorting and PCR assays, an established 

MMTV-PyMT cancer cell line (VO) and a common fibroblast cell line (3T3) were used as positive 

and negative controls, respectively.  The tumorigenicity and metastatic propensity of the sorted 

MFP cell line was validated in vivo by injecting cultured cells into wild type female FVB mice 
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(Fig. 3.1B). The presence of metastatic tumors was confirmed by harvesting LN, BM, and lung 

tissue from the re-injected mice.  Single cell suspensions were formed and flow cytometry analysis 

confirmed the presence of CD44low/EpCAMhigh and CD44high/EpCAMhigh cells in the harvested 

tissues.  

 

Figure 3.1. Clonal isolates from MMTV-PyMT breast cancer model exhibit distinct gene 
expression patterns. (A) Overview of cell isolation procedures and gene expression 
analyses. Tumors were harvested from mice and single cell suspensions were prepared. Cells 
were sorted based on CD44 and EpCAM expression. RNA was extracted for transcriptome 
profiling. Select samples were further analyzed via single-cell RNA-seq. (B) Heatmap of DEGs 
from tissue-specific metastatic cell lines and primary tumor sample. Expression levels for 5509 
unique genes are shown. Values were normalized by row, and hierarchical clustering was used 
to sort the transcripts. Columns were clustered based on the tissue origin and CD44 expression 
level for each sample. Eight distinct gene clusters were observed, with clusters of interest 
annotated A-E. (C) GO-term enrichment analysis of clusters A-E from (B). GO terms were used 
to identify ontologies and biological processes relevant to cancer metastasis. Terms were also 
analyzed for signatures specific to the tissue of origin. The heat maps indicate the relative 
enrichment of the pathways across each cluster (columns). (D) Bulk RNA analysis revealed 
distinct gene expression patterns relevant to organ tropism. A panel of markers associated with 
tissue-tropic breast cancer metastases was examined across samples. Clusters were assigned 
based on based on the tissue origin and CD44 expression level. 
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Cancer cell lines exhibit distinct gene expression changes relative to metastatic progression 

We used the tissue-derived cell lines to investigate transcriptional changes that occur 

during breast cancer metastasis. RNA was extracted from all cell samples and transcripts for 
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Figure 3.2. Metastatic cell line derivation and validation. (A) Representative flow 
cytometry plot for metastatic tissue-derived isolates prior to sorting. The desired 
CD44low/EpCAMhigh and CD44high/EpCAMhigh cell populations and associated gates are 
highlighted. These cells were sorted and for transcriptomic analysis. (B) Clonal isolates from 
(A) recapitulate metastatic disease in vivo. Sorted cells were reimplanted into disease-free 
FVB mice. Once tumors formed, distal organs were collected and examined for metastatic 
lesions. A representative FACS plot for metastatic cells harvested from lymph node tissue 
upon tumor reimplantation in FVB mice. The expected CD44low/EpCAMhigh and 
CD44high/EpCAMhigh populations are highlighted. (C) PCR was used to confirm the presence 
of PyMT viral antigen using gDNA extract from cell lines and controls. Samples with 
amplified 500bp and 200bp bands are positive for PyMT antigen expression.  
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established breast cancer genes were identified (Fig. 3.3) [30-32]. Hierarchical clustering was 

performed on 5,509 DEGs. Eight distinct gene clusters (A-E; i-iii) were observed, as shown in Fig 

3.1B. The transcripts were organized based on CD44 expression (CD44high/EpCAMhigh or 

CD44low/EpCAMhigh) and tissue-origin (primary tumor, lymph node, lung or bone marrow). We 

focused on the five most prominent gene clusters (A-E) relevant to cancer progression for further 

analysis.  Compared to the primary MFP tumor, the tissue-derived samples exhibited distinct 

upregulated and downregulated genes.  Highly upregulated genes in MFP cells localized to cluster 

B. Lung-derived samples (CD44low and CD44high) shared some similar transcriptomic changes 

(clusters D, E), but they also showed DEGs unique to their CD44 identity (clusters A, C). LN and 

BM samples trended similarly with MFP tumor cells, showing moderate expression of genes in 

cluster C.   
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Figure 3.3. Established breast cancer transcripts identified in MMTV-PyMT cell lines.  
Bulk RNA sequencing analysis of bone marrow, lung, and lymph node-derived cell lines was 
performed and transcript levels for a panel of breast cancer markers were measured. For (A-H), 
expression of gene transcripts (TPM, transcript per million) for CD44 high expressing cells 
(yellow), CD44 low expressing cells (purple), and MFP CD44 expressing cells (blue) are shown. 
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To understand the biological relevance of the DEGs relevant to each cluster, we performed 

pathway enrichment analysis. Heat maps of the top 100 significant pathways revealed a multitude 

of cellular and molecular processes associated with cancer (Fig. 3.4). Pathways specifically 

relevant to cancer metastasis are shown in Fig. 3.1C, along with the corresponding enrichment 

score for each cluster.  The upregulated genes for CD44low/EpCAMhigh lung-derived cells in cluster 

C correlated with embryonic morphogenesis and hypoxia response pathways.  Both of these 

pathways are critical to cancer cell growth in hostile environments [33, 34]. Some of the specific 

transcripts observed included those from the well-established cancer survival genes ALDH1A1, 

SURVIVIN, XIAP, HSPG2, BCL9, and SOX4 [35, 36]. Interestingly, these same genes were 

downregulated in CD44high/EpCAMhigh lung-derived cells. Cluster A was enriched in regulatory 

pathways associated with cell adhesion, correlating with the expression of DDR1, HOXA7, MMP2, 

THBS1, TNFRSF14,  and TGFB2 [37, 38]. Cluster A was also enriched in pathways associated 

with cellular locomotion, corroborated by the expression of SERPINE1, PDGFA, ITGAV, and 

ITGB1BP1 [39, 40]. Both sets of upregulated genes were observed in CD44high/EpCAMhigh lung-

derived cells, but not MFP-derived or CD44low/EpCAMhigh lung-derived cells. 

CD44high/EpCAMhigh lung-derived cells also exhibited upregulated carbohydrate metabolism 

genes, pathways enriched in clusters A and E.  Cluster E also correlated with other upregulated 

metabolic genes (PFKFB3, SDC3, and GPC3) in both lung-derived cell lines. These same genes 

were downregulated in the MFP cells [41, 42]. 



 

79 

 

 

X_LogP_A7

X_LogP_B8

X_LogP_C4

X_LogP_D5

X_LogP_E1

X_LogP_F3

X_LogP_G
6

X_LogP_H2

cell cycle, mitotic
RHO GTPase effectors
Neutrophil degranulation
myeloid leukocyte activation
regulation of cell adhesion
cytokine production
regulation of response to external stimulus
leukocyte migration
mitotic cell cycle process
viral carcinogenesis
negative regulation of cellular component organization
cytokine signaling in immune system
programmed cell death
positive regulation of locomotion
extracellular structure organization
cell−substrate adhesion
response to wounding
reactive oxygen species metabolic process
extracellular matrix organization
ossification
positive regulation of cell death
negative regulation of cell proliferation
MAPK cascade
cellular component disassembly
response to organic cyclic compound
sprouting angiogenesis
regulation of binding
Proteoglycans in cancer
AGE−RAGE signaling pathway in diabetic complications
negative regulation of cell differentiation
epithelial cell differentiation
regulation of small molecule metabolic process
response to hypoxia
TNF signaling pathway
reproductive structure development
maintenance of location
regulation of DNA−binding transcription factor activity
embryonic morphogenesis
urogenital system development
Pathways in cancer
protein localization to membrane
regulation of cellular protein localization
extrinsic apoptotic signaling pathway
response to inorganic substance
respiratory tube development
transmembrane receptor protein tyrosine kinase signaling pathway
apoptotic signaling pathway
regulation of cellular catabolic process
positive regulation of hydrolase activity
neuron death
protein kinase B signaling
response to oxidative stress
skeletal system development
heart development
muscle structure development
response to growth factor
developmental growth
mesenchymal cell differentiation
muscle cell proliferation
collagen metabolic process
negative regulation of cellular component movement
actin filament−based process
tissue morphogenesis
regulation of proteolysis
regulation of cellular response to stress
negative regulation of intracellular signal transduction
cell surface interactions at the vascular wall
regulation of innate immune response
cytokine−mediated signaling pathway
negative regulation of immune system process
hemostasis
circulatory system process
tissue remodeling
epithelial cell proliferation
regulation of tumor necrosis factor superfamily cytokine production
regulation of vesicle−mediated transport
negative regulation of transport
pertussis
regulation of hemopoiesis
toll−like receptor cascades
regeneration
interleukin−1 production
negative regulation of response to external stimulus
regulation of ion transport
small molecule biosynthetic process
metabolism of carbohydrates
carbohydrate metabolic process
signaling by receptor tyrosine kinases
amide biosynthetic process
regulation of peptidyl−tyrosine phosphorylation
muscle cell migration
fluid shear stress and atherosclerosis
cell adhesion mediated by integrin
lysosome
homeostasis of number of cells
membrane organization
regulation of immune effector process
rheumatoid arthritis
response to molecule of bacterial origin
regulation of multi−organism process

−30

−25

−20

−15

−10

−5

0

X_LogP_A7

X_LogP_B8

X_LogP_C4

X_LogP_D5

X_LogP_E1

X_LogP_F3

X_LogP_G
6

X_LogP_H2

Neutrophil degranulation
myeloid leukocyte activation
regulation of cell adhesion
cytokine production
regulation of response to external stimulus
leukocyte migration
mitotic cell cycle process
viral carcinogenesis
negative regulation of cellular component organization
cytokine signaling in immune system
programmed cell death
positive regulation of locomotion
extracellular structure organization
cell−substrate adhesion
response to wounding
reactive oxygen species metabolic process
extracellular matrix organization
ossification
positive regulation of cell death
negative regulation of cell proliferation
MAPK cascade
cellular component disassembly
response to organic cyclic compound
sprouting angiogenesis
regulation of binding
Proteoglycans in cancer
AGE−RAGE signaling pathway in diabetic complications
negative regulation of cell differentiation
epithelial cell differentiation
regulation of small molecule metabolic process
response to hypoxia
TNF signaling pathway
reproductive structure development
maintenance of location
regulation of DNA−binding transcription factor activity
embryonic morphogenesis
urogenital system development
Pathways in cancer
protein localization to membrane
regulation of cellular protein localization
extrinsic apoptotic signaling pathway
response to inorganic substance
respiratory tube development
transmembrane receptor protein tyrosine kinase signaling pathway
apoptotic signaling pathway
regulation of cellular catabolic process
positive regulation of hydrolase activity
neuron death
protein kinase B signaling
response to oxidative stress
skeletal system development
heart development
muscle structure development
response to growth factor
developmental growth
mesenchymal cell differentiation
muscle cell proliferation
collagen metabolic process
negative regulation of cellular component movement
actin filament−based process
tissue morphogenesis
regulation of proteolysis
regulation of cellular response to stress
negative regulation of intracellular signal transduction
cell surface interactions at the vascular wall
regulation of innate immune response
cytokine−mediated signaling pathway
negative regulation of immune system process
hemostasis
circulatory system process
tissue remodeling
epithelial cell proliferation
regulation of tumor necrosis factor superfamily cytokine production
regulation of vesicle−mediated transport
negative regulation of transport
pertussis
regulation of hemopoiesis
toll−like receptor cascades
regeneration
interleukin−1 production
negative regulation of response to external stimulus
regulation of ion transport
small molecule biosynthetic process
metabolism of carbohydrates
carbohydrate metabolic process
signaling by receptor tyrosine kinases
amide biosynthetic process
regulation of peptidyl−tyrosine phosphorylation
muscle cell migration
fluid shear stress and atherosclerosis
cell adhesion mediated by integrin
lysosome
homeostasis of number of cells
membrane organization
regulation of immune effector process
rheumatoid arthritis
response to molecule of bacterial origin
regulation of multi−organism process

−30

−25

−20

−15

−10

−5enrichment score

clusterA i ii iii B C D E

-log10(p)

Figure 3.4. Complete list of enriched GO-terms and pathway analysis from Figure 
3.1D. Heat map shows the enrichment scores of the pathways for each cluster (A-E; i-iii).  
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Metastatic breast cancer cells are known to preferentially colonize specific organs, a 

process known as organotropism [43]. The cross talk between metastatic cells and the distal 

microenvironment leads to the formation of the pre-metastatic niche, which can influence cancer 

cell homing [44, 45]. We examined whether the clonal isolates recapitulated features of organo-

tropic metastases to lymph nodes, lung, and bone (Fig. 3.1D). Gratifyingly, we identified gene 

expression patterns that differed among the metastatic cell types based on their tissues of origin. 

LN-derived cells lines expressed genes relevant to metastatic lymphatic niches (e.g., IRF5, 

YWHAH, PTGS2, Fig. 3.1D) [46-51]. MFP-associated genes CDH1 and IGFBP3 [46-51] were 

also observed in the LN-derived lines, albeit to a lesser extent.  In the case of the lung-derived 

cells, lung-tropic genes (e.g., SPARC, MMP2, LTBP1, ID1, and CD151) associated with high 

metastatic propensities [46-51] were upregulated. EREG, a marker expressed by cells in the 

mammary gland, [46-51] was downregulated in the lung-derived cells. BM-derived cells expressed 

genes associated with BM metastases, including CEACAM1 and LCN2 [46-51]. Expression of 

CCL2, ADAMST1 and CXCR4 were also observed in BM-derived cells albeit to a lesser extent.  

The expression of a select set of markers was further confirmed by Western blot analysis (Fig. 

3.5). Collectively, these transcriptome changes could contribute to sub-clonal evolution during 

cancer progression across the different metastatic niches.   
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We also compared the gene expression changes among the metastatic cells and to those 

from the primary tumor. Overall, we observed that samples derived from organs further away from 

the primary tumors had greater numbers of DEGs, regardless of the CD44 designation. Lung-

derived samples exhibited the most DEGs (4,411 genes in total) compared to cells derived from 

the lymph node (1753 genes in total) or bone marrow (2,985 genes in total, Fig. 3.6). Volcano 

plots of DEGs from each tissue-derived metastatic cell line (CD44high/low/EpCAMhigh) compared to 

the primary tumor sample revealed genes involved in metastatic progression (Fig. 3.7).  

Interestingly, some of the greatest differential expressions observed involved organotropism-

associated genes (MMP2 and EREG) identified in Fig. 3.1D. 

 

Figure 3.5. Western blot analysis of markers identified from RNA-seq analysis. Select 
tissue-tropic markers were selected from among the DEGs shown in Fig 1D. The following 
proteins were examined: Id2 (predicted to be highly expressed in lymph node-derived cells lines) 
and CEACAM1 (predicted to be highly expressed in bone marrow-derived cell lines).  Actin 
was used as a loading control.  
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Figure 3.6. Box and whisker plot comparing the number of upregulated genes in 
CD44high/EpCAMhigh (top plot) and CD44low/EpCAMhigh (bottom plot) expressing cells 
from the different metastatic tissues of origin. Distinct gene expression signatures are 
shown with single black dots corresponding to a specific tissue-derived clonal isolate. Genes 
that are shared between different metastatic sites (purple bars) are represented by black lines 
that connect the specific samples. The total number of upregulated genes are denoted above 
each bar on the graph.  
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Figure 3.7. Volcano plots of DEGs from tissue-derived metastatic cell lines. (A-C) Volcano 
plots of DEGs from tissue-derived metastatic cell lines with CD44high/EpCAMhigh expression 
compared to primary tumor samples. (A) Upregulated genes in bone marrow-derived (BM) 
isolates with CD44high/EpCAMhigh  expression are shown in red (1,400 genes), while 808 genes 
(blue) were upregulated in the primary tumor. (B) Upregulated genes in lung-derived isolates 
with CD44high/EpCAMhigh  expression are shown in red (1,524 genes), while 1,775 genes (blue) 
were upregulated in the primary tumor. (C) Upregulated genes in lymph node-derived (LN) 
isolates with CD44high/EpCAMhigh expression are shown in red (985 genes), while 785 genes 
(blue) were upregulated in the primary tumor. (D-F) Volcano plots of differentially expressed 
genes from tissue-derived metastatic cell lines with CD44low/EpCAMhigh expression when 
compared to primary tumor samples. (D) Upregulated genes in bone marrow-derived (BM) 
isolates with CD44low/EpCAMhigh  expression are shown in red (1,600 genes), while 776 genes 
(blue) were upregulated in the primary tumor. (E) Upregulated genes in lung-derived isolates 
with CD44low/EpCAMhigh  expression are shown in red (2,907 genes), while 1666 genes (blue) 
were upregulated in the primary tumor. (F) Upregulated genes in lymph node-derived (LN) 
isolates with CD44low/EpCAMhigh  expression are shown in red (778 genes), while 645 genes 
(blue) were upregulated in the primary tumor. The fewer differentially expressed genes amongst 
the tissue-derived isolates compared to the primary tumor is suggestive of the order in the 
metastatic cascade with LN-derived isolates bring the first metastatic site.  
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We aimed to further characterize the metastatic cell lines via GO-term enrichment analysis. 

To this end, we examined gene expression changes relevant to metastatic progression, epithelial-

to-mesenchymal transition (EMT), cellular proliferation and cell cycle control (Fig. 3.8).  In the 

case of metastatic progression, we observed that MFP samples expressed high levels of classical 

markers associated with pre-metastatic lesions (e.g., EREG, KRT14, CLDN7, KRT8, EMP1, and 

CLDN3, Fig. 3.8A) [44, 45]. These markers were decreased in cells from distal metastatic sites 

(e.g., LN- and lung-derived cells). LN- and lung-derived cells, by contrast, exhibited upregulated 

levels of mesenchymal markers (e.g., CCN5, ZEB1, VIM, SPARC and TGFB3) [13, 52-55]. 

Figure 3.8. Cancer cell lines exhibit distinct gene expression patterns relative to metastatic 
disease progression. Bulk RNA analysis revealed differential gene expression patterns relevant 
to (A) metastatic progression, (B) epithelial-mesenchymal transition (EMT), (C) cellular 
proliferation, and (D) cell cycle control among the tissue-derived isolates and primary tumor.  
Columns were clustered based on CD44 expression and tissue origin as indicated.  Select genes 
relevant to metastatic progression are displayed in the heat map. 
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Expression levels were highest in CD44high/EpCAMhigh lung-derived cells. Lung-derived cell lines 

also showed increased expression of well-established EMT markers (SNAI1/2 and CD63) [52] and 

markers associated with poor prognosis in patients (FOXC1, AEBP1, SDC4, and IDH1, Fig. 3.8B) 

[48, 56]. Interestingly, SNAI1/2 and CD63 expression were highest in CD44low/EpCAMhigh lung-

derived cells, while the poor prognosis indicators listed were higher in CD44high/EpCAMhigh lung-

derived cells. The upregulation of mesenchymal markers and downregulation of epithelial markers 

in lung-derived cells is indicative of cellular de-differentiation[48, 56], suggesting that the lung-

derived cells recapitulate EMT [57, 58]. 

EMT typically correlates with changes in cell proliferation and dysregulation of cell cycle 

control during cancer progression. These trends were apparent in the gene expression profiles for 

both CD44high and CD44low cells (Fig. 3.8C-D). As expected, the highly proliferative lung-derived 

CD44high cells expressed low levels of growth arrest genes CDKN1A and CDKN2A (Fig 3.8D) [33, 

34]. Interestingly, we observed a stark difference in gene expression for lung-derived CD44low 

cells. Although these cells expressed genes relevant to cellular proliferation and angiogenesis, they 

exhibited upregulated levels of the growth arrest genes (Fig. 3.8D).  Growth arrest signals could 

dampen the expression of other genes that are master regulators of downstream cell function. One 

such gene, mTOR, was expressed in the lung-derived CD44low cells. The levels of mTOR were 

comparable to expression in CD44high cells. From these results we postulate that lung CD44low 

cells, albeit capable of cell division, are not dividing as rapidly as their CD44high counterpart. 

Analyses of common biological pathways reveals intratumor heterogeneity  

MMTV-PyMT has recently been used as a model to study the impacts of CD44 on 

metastases [51]. Ex vivo analysis of tumors from a single micro-metastatic site revealed two 

subgroups of cells with differential CD44 expression. CD44 expression correlated with altered 
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gene expression relevant to EMT and MET and differential growth rates [48, 56]. Post-metastatic 

colonization, CD44 expression levels did not remain constant and were frequently switched 

between the subgroups. The fluid transition from EMT to MET phenotypes demonstrates how 

complex and context-dependent breast cancer can be. The morphological changes induced by 

CD44 expression also affected the tumor-initiating capabilities of the tumor cells. However, the 

critical regenerative CSC populations were found in both CD44-expressing groups, warranting 

further characterization. Similar spectrums of behavior have been documented in other studies [19] 

[51] [55]. 

  

 

Figure 3.9. CD44 expression correlates with different transcriptome patterns in organ-
derived cell lines.  Differentially expressed genes for (A) CD44high (red) and CD44low (blue) 
EpCAMhigh cells (across all samples) were used to generate GO terms.  CD44low cells exhibited 
high levels of expression for genes relevant to tumor microenvironment remodeling and tumor 
dormancy markers. CD44high cells exhibited higher levels of gene expression associated with 
GO terms related to cellular proliferation, tumor aggression, and EMT.  Differentially 
expressed genes and associated GO terms for CD44high/low EpCAMhigh cells from (B) lymph 
nodes and (C) lungs are also shown.  
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To more closely examine the impacts of CD44 expression in our organ-derived cells, we 

analyzed DEGs based on CD44 levels. We identified upregulated genes for CD44low/EpCAMhigh 

(374 genes) and CD44high/EpCAMhigh (276 genes) signatures across the suite of cells.  Some genes 

were shared across the tissue types. We also examined the GO terms and pathways associated with 

the DEGs from CD44low/EpCAMhigh and CD44high/EpCAMhigh samples. Clear differences were 

observed between the two CD44 signatures across the tissue-derived samples (Fig. 3.9A). Cells 

with CD44high signatures exhibited an increase in GO terms and associated genes related to cellular 

proliferation, tumor aggression, and EMT. Indeed, CD44high cells from lung and lymph node 

samples were experimentally observed to exhibit increased proliferation rates compared to 

CD44low cells (Fig. 3.10). DEG analysis further revealed that CD44low cells exhibited higher gene 

expression levels relevant to tumor microenvironment remodeling and stem cell markers. 

Interestingly, CD44low signatures also correlated with signaling pathways known to be important 

for stem cell maintenance and Wnt-activated receptor activity. CD44low signatures were further 

negatively correlated with cell differentiation pathways, supporting the idea of retained cellular 

dedifferentiation. The thrombospondin complex pathway, key in the maintenance of cancer stem 

cell dormancy in breast cancer, was also present in the CD44low signature [16, 57, 59]. 
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We further examined the intratumor heterogeneity of CD44high versus CD44low expression 

within single tumors. Volcano plots revealed DEGs in CD44high/EpCAMhigh versus 

CD44low/EpCAMhigh from lymph node-derived, lung-derived, and bone marrow-derived metastatic 

clonal isolates (Fig. 3.11A-C). The DEGs for these samples were also subjected to pathway 

enrichment analysis (Fig. 3.9B-C). DEGs upregulated in lymph node-derived 

CD44high/EpCAMhigh cells correlated with cellular metabolism and pH regulation (Fig. 3.9B) 

observed in aggressive cancer phenotypes. Similar pathways were not observed in the 

corresponding CD44low/EpCAMhigh lymph node-derived cells.  The DEGs for these cells, by 

contrast, were enriched in pathways regulating stem cell differentiation, cellular migration and 

cell-matrix adhesion (Fig. 3.9B).  For the lung-derived samples, the CD44high/EpCAMhigh cells 

exhibited upregulated DEGS relevant to cancer metabolism, cellular proliferation and 
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Figure 3.10. Cellular proliferation analysis. MMTV-PyMT cell growth was measured over 
24 hours using a crystal violet assay.  Relative proliferation values for lymph node (LN) and 
lung-derived cells (compared to MFP-derived cells) are shown.  Error bars represent the 
standard deviation of the mean for n=3 replicates. ** p < 0.01; * p < 0.05 
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angiogenesis (Fig. 3.9C). The DEGs for the corresponding CD44low/ EpCAMhigh lung-derived cells 

were also enriched for pathways relevant to cancer progression and cellular metabolism, in 

addition to the thrombospondin complex and extracellular communication (Fig. 3.9C). Similar 

analyses were performed with bone marrow-derived cells to reveal unique GO terms and 

transcriptomic changes (Fig. 3.11D-E). Upregulated DEGs for BM-derived CD44low/ EpCAMhigh 

cells were mainly associated with immune and cytokine activity. 
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Figure 3.11. Analysis of DEGs from metastatic isolates based on CD44 expression. (A) 
Volcano plots showing DEGs in CD44high/EpCAMhigh (red) versus CD44low/EpCAMhigh (blue) 
from (A) lymph node-derived, (B) lung-derived, and (C) bone marrow-derived metastatic cells. 
(D) GO terms and relevant genes upregulated in CD44high/EpCAMhigh bone marrow-derived 
cells. (E) GO terms and relevant genes upregulated in CD44low/EpCAMhigh bone marrow-
derived cells. 
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Based on our DEG analyses, we examined additional known markers of breast cancer 

metabolism and extracellular remodeling across the entire set of organ-derived cell lines [60, 61]. 

We observed increased levels of cellular metabolism markers (e.g., PLCB4, IGFBP7, IGFBP4, 

SHC2, PGRAMC1, MTHFD2) specific to lung-derived CD44low cells (Fig. 3.12A). Lung-derived 

CD44high cells exhibited higher levels of MPC1, MPC2, POGLUT1, and LARGE1 expression. 

Interestingly, we did not observe upregulation of other cancer-related drivers of energy 

consumption in either of the lung-derived cell lines compared to MFP-derived samples [62]. 

Extracellular remodeling has been shown to improve cancer colonization and perpetuate 
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Figure 3.12. Intratumoral heterogeneity observed across organ-derived cell lines. Bulk RNA 
analysis of the organ-derived cell lines revealed distinct expression patterns relevant to (A) 
cellular metabolism, (B) extracellular remodeling of the microenvironment, (C) stem cell 
signatures, and (D) cellular dormancy among the cell lines. Clusters were assigned based on 
CD44 expression and the metastatic origin of each cell line as shown in the lower right. 
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dedifferentiated stem-like cellular states [57, 58]. We identified markers relevant to extracellular 

remodeling known to promote the survival of metastatic lesions (CD36, CD274, FOXC1) in the 

lung-derived metastatic cells (Fig. 3.12B).  The expression levels were noticeably enhanced in 

these samples compared to the MFP tumor. Lung-derived CD44low cells also exhibited upregulated 

levels of genes associated with mesenchymal cells and more dedifferentiated phenotypes in 

advanced cancers (e.g., FN1 and POFUT2) [13]. 

 

CD44low cell lines exhibit classic signatures of stem cells  

As noted earlier, the lung-derived CD44low cells exhibited reduced levels of some markers 

of cellular proliferation and division (Fig 3.8C,D).  These cells also expressed genes known to be 

important for CSC survival and function (Fig. 3.12B) [63]. Changes in gene expression relevant 

to matrix remodeling have been known to sustain CSCs in a functional, but dormant non-dividing 

state. To further examine whether the lung-derived CD44low cells harbored CSC properties, we 

evaluated a panel of known breast cancer stem cell markers across our suite of metastatic isolates. 

Comparisons were made to the known cellular differentiation marker CD24 [64, 65]. As shown in 

Fig. 3.12C, lung-derived CD44low/EpCAMhigh cells exhibited an increase in the stem cell-

associated markers and a decrease in CD24 expression.  Furthermore, expression of ALDH1A1, a 

breast cancer-specific stem cell marker associated with resistance to some chemotherapies, was 

elevated [64, 65]. CSCs can endure some drug treatments and survive in metastatic environments 

due, in part, to their ability to modulate their metabolism and compensate for oxidative stress [63, 

64]. The lung-derived CD44low cells exhibited gene expression profiles consistent with these 

phenotypes, including  the  upregulation of retinoic acid (RA) pathway (RARA/B/G, RXRA/B, 

RARRES1/2) essential for cell survival.  Opposite trends were observed for lung-derived CD44high 
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cells. These cells expressed higher levels of genes associated with cell growth and aggressive 

metastases. 

We further examined the entire suite of cells lines, for markers of breast cancer dormancy 

(Fig. 3.12D).  The lung-derived CD44low cells expressed higher levels of genes associated with the 

thrombospondin complex, a well-known dormancy marker in breast cancer [16, 66]. Additional 

markers, including MAPK14, DDR1/2, and MYLK were also observed among this cell population.  

Collectively, these data suggest that lung-derived CD44low cells express CSC-relevant genes that 

can maintain cells in a dormant or low proliferative state. CSC identification remains challenging, 

though, owing to difficulties in isolation [67-69]. 

 

Single cell RNA-seq reveals distinct clusters relevant to metastatic progression and intratumor 

heterogeneity 

 To further validate that our isolated cell lines capture the intratumoral heterogeneity 

observed during de novo disease progression, we performed scRNA-seq on a subset of metastatic 

samples. Based on the amount of differential gene expression observed in bulk RNA-seq, we chose 

lung-derived CD44low (lungL), lung-derived CD44high (lungH), and LN-derived CD44high 

(lymphH) cells for the analyses. In all, 4124 cells were used in the clustering analyses: lungL (334 

cells), lungH (1085 cells), lymphH (1694 cells). Clusters were visualized using UMAP (Fig. 

3.13A).  Clusters for each of the three cell types—lungL (green), lungH (pink), and lymphH 

(blue)—were identified.  
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We further examined the heterogeneity of the samples using hierarchical clustering (Fig. 

3.14). The UMAP plot depicted 13 distinct cell clusters from the three respective cell samples (Fig. 

3.13B). LymphH cells had the largest number of subclusters (7), with clusters 1-5 being very 

similar in composition (Fig. 3.14). Clusters 6 and 7 (lymphH6 and lymphH7) exhibited higher 

levels of pro-survival/cell cycle regulation genes (BIRC5, TOP2A, CENPF) associated with 

metabolically active cancer pathways. We observed the lung CD44high (lungH) cells divided into 

Figure 3.13. Single-cell RNA-seq revealed tissue-specific clusters and heterogeneity 
during metastatic disease progression. (A) Clustering of 4,124 cells that passed filtering. 
Tissue-specific clustering was observed for lungH, lungL, and lymphH cells. (B) Thirteen 
clusters were recovered based on a combination of tissue origin and CD44 signature. (C, D) 
Gene expression profiles for select cancer relevant genes (columns) relevant to (C) EMT and 
(D) cell proliferation among the thirteen clusters (rows). The size of each dot represents the 
percentage a specific gene is expressed compared to all other transcripts. The color gradient of 
the dot indicates the average expression of the gene. (E) Monocle2 pseudo-time analysis was  
performed and the metastatic trajectory of distinct cell clusters are shown. The color gradient 
indicates pseudo-time progression. (F) Cell tissues of origin indicated on the pseudo-time map 
(as in A). Changes in EMT-relevant genes from C were probed across pseudo-time and tissue 
of origin. (G) The expression of VIM, an EMT marker, increased over lymph node populations 
with maximum expression in lung high populations. This analysis was repeated for (F) CTSB, 
a marker of invasion, where the low expression across lymph node populations increased in 
expression across lung high and lung low populations. 
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three different clusters. The majority were localized to cluster lungH1 and expressed lower levels 

of metastatic cancer cell markers (ALDH3A1, VIM, TCEAL9). Similar metastatic cancer markers 

were upregulated in cluster lungH2. This subpopulation further displayed upregulated markers 

associated with the microenvironment and EMT (AEBP1, ITGB5, FN1). 

 

 

 

EMT and proliferation markers show distinct tissue-specific gene expression  

We identified transcriptomic changes relevant to cancer metastasis that drove the 

designation of each cluster. Guided by the bulk RNA-seq results, we examined the expression of 

EMT and metastatic progression markers (Fig. 3.13C). We used dot plots to visualize the average 

expression of each gene and the percentage it was expressed in the sample set. As expected for 

Figure 3.14. Hierarchical clustering analysis from single cell sequencing analyses. Single 
cell sequencing heat map showing 13 tissue-specific clusters. 
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progressive disease, we observed genes associated with primary tumors and low metastatic lesions 

(CLDN3, KRT8, CDH1, CDH2) primarily in the lymphH populations. Expression of these genes 

diminished at more distal sites (lung-derived samples). Conversely we observed genes associated 

with aggressive metastatic disease and EMT (VIM, SPARC, ZEB1, SNAI2, CTSB) upregulated in 

lung populations compared to lymph nodes. Changes in the expression of breast cancer marker 

CD63 were also observed during disease progression. Interestingly we observed similar gene 

expression changes for EMT in clusters lymphH6, lymphH7, and lungH3.  

To further examine the changes in gene expression, we performed pseudo-time analysis of 

the single cells using Monocle2. The metastatic trajectory of the cells showed distinct clusters 

across the pseudo-time (Fig. 3.13E). We identified the composition of the cells by coloring the 

pseudo-time map with the tissue of origins (Fig. 3.13F). We observed that the majority of cells at 

the beginning of the pseudo-time (0) are lymphH-derived with a few lungL cells. Lung-derived 

cells became prominent further on the graph around pseudo-time 8. Interestingly, we observed 

lungL cells present across pseudo-time that cluster heavily towards the end of the graph (pseudo-

time 12-16). We probed for changes in VIM and other EMT-relevant genes across pseudo-time 

and tissue of origin. As we previously observed in Fig. 3.13A, VIM expression increases over 

lymph node populations (Fig. 3.13G). VIM expression is highest in lung high populations and 

drops down in lung low populations. CTSB, a marker of invasion, showed relatively low expression 

across lymph nodes populations (Fig. 3.13H), but higher expression along pseudo-time in lungH 

and lungL populations.  

Cellular proliferation markers were also analyzed via scRNA-seq (Fig. 3.13D). Increases 

in proliferative markers (AURKA, MKI67) were observed for clusters lymphH6 and lymphH7, with 

the greatest expression in lungH3. We also observed many similarities between clusters lymphH7 
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and lungH3 with regard to EMT- and proliferation-associated gene expression.  These correlations 

could potentially signify the metastatic progression of the disease from the lymph node (lymphH7) 

to lung (lungH3). LungL clusters, by contrast, expressed lower levels of genes involved in 

proliferation. These clusters expressed higher levels of genes involved in cell cycle control and 

growth inhibition (CDKN1A, CDKN1b, CCND3). We further probed for changes in a panel of 

proliferation-associated genes across pseudo-time and tissue of origin using Monocle2 (Fig. 3.15).  

 

 

 

 

 

 

Figure 3.15. Monocle2 pseudo-time analysis of single cells. The metastatic trajectory of 
distinct cells clusters is shown. The composition of the cells was identified by coloring the 
pseudo-time map with the tissue of origins (as in Fig. 3.13A). Expression of cellular proliferation 
markers (A, B), metabolism markers (C, D), extracellular remodeling markers (E, F), stem cell 
signatures (G, H), and cancer dormancy markers (I, J) of single cells across pseudo-time. Trend 
line on graphs tracks the statistical significance of gene expression as it changes across pseudo-
time. 
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Cellular metabolism and extracellular remodeling markers show distinct tissue-specific changes  

We identified gene expression markers relevant to cellular metabolism and extracellular 

remodeling that drove the formation of each cluster. For example, lungH3 cells expressed 

upregulated levels of genes associated with cell cycle and intracellular metabolism (TOP2A, 

CENPF, HTRA1, STMN1) (Fig. 3.14). These data suggested that cells within the lungH3 cluster 

exhibit the highest metastatic propensity of the lung subsets. We further observed an increase in 

insulin-like growth factors (IGBFP4, IGBFP7) across different lung-derived clusters, specifically 

in the lungL2 cluster (Fig. 3.16A). Interestingly, the expression of PDHA1, a critical component 

for pyruvate to acetyl-CoA conversion, was primarily upregulated in lungL2, lymphH7, lymphH6.  

We probed for changes in these metabolism-related genes across pseudo-time and tissue of origin 

using Monocle2. As we previously observed in Fig. 3.16A, IGBFP7 expression was significantly 

upregulated in lungL single cell populations as pseudo-time progressed (Fig. 3.16B).  

Guided by bulk RNA-seq results, we further examined extracellular remodeling markers 

using scRNA-seq (Fig. 3.16C and Fig. 3.14). We observed the most dynamic expression of 

extracellular remodeling-associated genes in the three lungL clusters. The lungL1 cluster had 

distinct differences in gene expression relevant to extracellular matrix interactions (MGP, BGN, 

CCN2, FN1, ITGB1).  LungL2 cells expressed similar genes, along with upregulated genes 

associated with immunosuppressive proteins (SLPI) and embryonic glandular hormone (PRL2C3). 

However, cells in the lungL3 cluster lacked significant expression of extracellular remodeling 

genes that were present in lungL1 and lungL2. We investigated changes in extracellular 

remodeling-relevant genes (FN1, ITGB1) across pseudo-time and tissue of origin using Monocle2 

(Fig. 3.16D). FN1 had relatively low expression across lymph nodes populations, but increased 

expression was observed in lungH and lungL cells populations starting at pseudo-time 10. ITGB1 
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was prominently expressed across most lungH, lungL, and some lymphH cell clusters (Fig. 3.16C). 

However, pseudo-time analysis of the single cells only attributed a significant upregulation of 

ITGB1 expression in lungL cells at the end of the pseudo-time (Fig. 3.16D).  

 

 

CD44low lung-derived cell lines harbor markers related to cancer stem cells and tumor dormancy 

Although CD44 expression has traditionally been used as a marker of metastatic disease, 

recent publications have demonstrated that cellular expression of CD44 fluctuates during cancer 

Figure 3.16. Single cell profiling revealed tissue-specific changes. (A) Dot plot analysis of (A) 
cancer metabolic markers relevant to cancer progression for select clusters guided by the bulk 
RNA seq data. (B) Heat maps of differentially expressed genes relevant to cancer metabolism 
were identified across the pseudo-time using Monocle2. The color gradient indicates the average 
expression across the pseudo-time, trending from dark blue to red. Similar dot plot analyses and 
pseudo-time heat maps are shown for markers relevant to (C-D) tumor microenvironment 
remodeling, (E-F) stem cell signatures, and (G-H) cell dormancy. 
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progression [51]. This has prompted other markers to be used in parallel with CD44 when 

examining metastatic potency and cancer-initiation capability of cells. Toward this end, we used 

scRNA-seq to probe for markers of CSC and tumor-initiation in the breast cancer model (Fig. 

3.16E). We observed an increase in stem cell associated genes (ALDH1A1, ECM1, ME1, ABCG2, 

and SNAI2) with a subsequent decrease in differentiation marker, CD24A, in lungL1 and lungL2 

clusters. Interestingly, lungL2 had the greatest upregulation in HIF1A, a known marker of hypoxia 

and poor prognosis in breast cancer. We previously observed that cells in lungL3 cluster separate 

from the other two lungL clusters (Fig. 3.13B). These cells have unique changes in gene expression 

relevant to embryonic and cancer stem cells (KDEL1, PRL2C3, EBP1) (Fig. 3.14). Similar to 

clusters lungL2 and lungL3, stem cell genes ALDH1A1, ABCG2, and SNAI2 were upregulated in 

lungL3 cells. However, other stem cell associated genes (ME1, HIF1A) were downregulated. 

Additionally lungL3 displayed an increase in CD24A, a marker of cellular proliferation and 

decreased stemness. Similar to the bulk RNA sequencing data, we saw an increase in ALDH1A1 

expression and stem cell survival metabolomic markers from the RA family in lungL2 and lungL3 

clusters that were not present in lungL1 cells. In contrast, CD44high clusters lungH3, lungH2, 

lymphH6, and lymphH7 exhibited an increase in genes regulating growth and invasion (ECM1, 

CD24, FUT8). While these CD44high clusters showed a downregulation in stem cell markers 

ALDH1A1 and ABCG2, they did show an increase in ALDH2, a stem cell marker less common in 

breast cancer.  

We examined the changes in genes associated with cellular differentiation and stem cell 

capabilities (CD24A, ALDH2) using Monocle2 (Fig. 3.16F). CD24A expression was upregulated 

in lymph node populations, then downregulated as pseudo-time moved into the lung populations. 
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Upregulation of stem cell marker ALDH2 was observed across a select amount of cells for all cell 

types across pseudo-time (Fig. 3.15) 

Cancer dormancy is a formidable obstacle in breast cancer research and treatment [70]. 

Previous work has shown that some dormant breast cancer cells have similar genomic profiles as 

CSC [29, 71]. We examined whether our cell lines expressed markers of cancer dormancy and 

cancer stem cell-associated markers. Similarly to the bulk RNA-seq analyses, we saw an increase 

in genes regulating cell proliferation and increasing tumor dormancy in the lungL2, and in lungL1 

to a lesser extent (Fig. 3.16G). This pattern was not sustained in the lungL3 subcluster. Instead, 

lungL3 showed a decrease in dormancy-associated genes FN1, CD47, and THBS1. Interestingly 

lungL3, lungL2 and lungH3 showed increased expression of breast cancer dormancy cell-

associated maker SDC1 [72, 73]. Master regulator of morphogenesis, SOX9 [74], was upregulated 

in lungL3, lymphH7, and lymphH6 subclusters. We further probed the changes in cancer 

dormancy-relevant genes CTSD, THBS1 across pseudo-time and tissue of origin using Monocle2. 

CTSD expression fluctuated across lymph node populations (Fig. 3.16H). The expression of CTSD 

was upregulated through lungH populations and plateaued in the lungL populations across pseudo-

time. THBS1 exponentially upregulated expression at pseudo-time 10 in lung high and lung low 

populations (Fig. 3.15).  

 

III. Discussion 

Breast cancer comprises cancer cell subpopulations that are genetically and biologically 

different [75]. Although such intratumoral heterogeneity is critical to understanding the disease, 

traditional cancer cell lines models have difficulties recapitulating the complexity [19, 76]. In this 

study, we established a novel suite of organ-derived metastatic cell lines and subsequently 
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performed a comprehensive transcriptome analysis of cancer progression in relation to CD44 

levels.  Key pathways relevant to metastatic disease were found to be upregulated in the various 

cell types, and the main takeaways are diagrammed in Fig. 3.17.  

 

 

CD44 expression has been extensively shown to impact breast cancer progression, 

controlling cellular biology and correlating with certain clinical outcomes [4-6,17]. However, the 

exact roles of CD44 remain unclear in breast cancer as both high and low levels of the marker are 

correlated with tumor-promoting and tumor-suppressing outcomes [67-69,76]. In this study, we 

used metastatic organ-derived cell lines to investigate the effects CD44 expression on cancer 

progression across different metastatic niches. As previously shown in 4T1 cell lines [77], models 

of metastatic breast cancer are invaluable for the advancement of the field. The MMTV-PyMT 

mouse model of breast cancer is the most popular transgenic preclinical system to study mammary 

tumor progression and metastatic disease translatable to patients [78, 79]. Here, we successfully 

Figure 3.17. Summary of key findings from transcriptomic analysis of MMTV-PyMT-
derived cell lines. 
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isolated primary cell lines from four different organ-derived tissues. The cell lines were isolated 

based on their expression of CD44low/EpCAMhigh or CD44high/EpCAMhigh to examine the role of 

CD44 in breast cancer across the various metastatic niches (Fig. 3.17).  The cells were expanded 

to use as a reproducible resource for experiments in this study and beyond. It is possible, though, 

that the culturing conditions altered some genomic pathways and/or skewed the levels of CD44low 

or CD44high cells in the samples.  

The suite of MMTV-PyMT derived cell lines was subjected to comprehensive 

transcriptome analysis using bulk RNA-seq and scRNA-seq. Although there were shared GO terms 

across all cell lines belonging to either CD44 signature, we identified numerous changes in gene 

expression that were organ-specific and promoted metastatic homing [48]. Changes in gene 

expression related to EMT and the metastatic cascade were also identified with similar expression 

across both transcriptome pathways. As expected distal metastatic-derived tissues such as the lung 

and BM had more differential genes expressed than lymph node-derived cell lines compared to the 

primary tumor.  

Using scRNA-seq on select organ-derived metastatic cell lines, we found that the cell lines 

exhibited a range of intratumoral heterogeneity. Although most MMTV-PyMT publications have 

focused on metastasis from the primary tumor to the lungs, we identified additional distal 

metastatic cells in the BM. The BM-derived cell lines were characterized and showed an increase 

in previously published markers such as RANKL, OPN (SPP1), and IL2 [4]. Further studies are 

necessary to better characterize these cells and increase the number of validated BM-derived DEGs 

(Fig. 3.11C). Specifically, it would be prudent to examine the differential gene expression of this 

model compared to other well-established bone-marrow metastatic models of tumor latency and 
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cancer dormancy [4]. Collectively, these transcriptome changes could contribute to sub-clonal 

evolution during cancer progression across the different metastatic niches. 

Although CD44 has traditionally been used to monitor cancer metastasis, recent studies 

from Gao and coworkers showed that its expression fluctuates during metastatic progression [51]. 

We observed similar changes in CD44 expression from initial isolates compared to cells used in 

subsequent transcriptome analysis. Furthermore, recent studies with MDA-MB-231 breast cancer 

models showed that CD44low cells possessed stem cell like properties that CD44high lacked [13, 

55]. CD44low populations could regenerate both more CD44low and CD44high cell clusters, where 

CD44high could only replicate themselves. We observed a similar increase in stem cell markers in 

CD44low but not CD44high cells. These contradictory results suggest that more research is needed 

to better understand and characterize CD44 expression in breast cancer. 

Although CD44 has been correlated to metastatic progression and CSC, the fluctuating 

expression levels of this marker complicates its use as a sole classifier of cellular phenotypes.  

There are thus many combinations of markers currently used to isolate CSC, with no one set being 

universally accepted [13, 53-55]. We examined a handful of CSC markers commonly associated 

with breast cancer (ALDH1A1, ABCG2, PGP, FUT4). CSC associated markers were found in the 

both bulk RNA-seq and scRNA-seq data. The expression of the CSC-associated markers was 

highest in lung-derived CD44low cells compared to CD44high cells. Upregulation of other CSC-

associated markers, including the stem cell survival signaling member WNT, was also observed 

in the CD44low cells, corroborating our hypothesis that these cells possess stem-like properties 

[17]. scRNA-seq further revealed three distinct clusters for lung-derived CD44low cells on the 

UMAP. Unlike the lung-derived CD44high groups, lungL1 and lungL2 retained populations of stem 

cells but dramatically increased their expression of mesenchymal-like signaling pathways involved 
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in cancer cell maintenance and dormancy (TSP, TNC, BMP) [6, 14, 16]. Interestingly, lungL3 was 

a much smaller, separate cluster that lacked the dormancy markers and instead expressed high 

levels of stem cell markers. The diversity of CD44low clusters could be explained by heterogeneity 

within the different stages of metastatic progression and along the EMT spectrum. Another 

possibility is that lungL1 and lungL2 clusters might be cancer associated fibroblasts while the 

lungL3 might be a distinct cluster of CSC cells. 

Breast cancer progression relies on CSC, to initiate tumor cell growth during metastatic 

dissemination and colonization of new organs. Previous work from Weinberg has shown that 

tumor initiating cells (TICs) originating in the luminal cell layer of the mammary gland rely on 

EMT initiating transcription factors (TFs) for cellular dedifferentiation [52]. These factors activate 

signaling pathways distinct from TICs originating from the basal mammary gland.  Bulk RNA-seq 

data allowed us to further characterize the lung-derived cell lines based on expression of EMT-

TFs known to induce TICs. For example, increased expression of the EMT-TF Snail was observed 

in lung CD44low cells compared to CD44high cells. Although both CD44 signatures of lung-derived 

cells expressed the EMT-TF binding promoter and TIC master regulator ZEB1, lung-derived 

CD44low cells also showed a greater increase in the basal cell associated EMT-TF Slug as 

compared to CD44high cells. Weinberg and others have shown that Slug and Snail both bind and 

regulate ZEB1 expression [52];however, the expression of SLUG is associated breast cancers that 

arise from cells containing normal mammary epithelial stem cells in the basal compartment SLUG 

expression is also associated with highly dedifferentiated breast cancer cells found in the advanced 

and final stages of metastatic disease. Here, we harvested MMTV-PyMT mice well after the time 

period sampled by Weinberg. The most striking result from the lung-derived cells was that the 
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stem cell associated features of tumor-initiating cells were observed most in CD44low opposed to 

CD44high expressing cells that have previously been correlated to CSC.  

Further work examining the effects of the microenvironment as a key regulator of cellular 

plasticity adds to the theory that “dedifferentiated” non-CSCs can undergo processes that endow 

them with CSCs-like properties [13, 33]. These complex studies highlight the need for further 

investigation into the possible origins of CSCs in relations to the surrounding microenvironment. 

Modification of cellular metabolism along with remodeling of the tumor microenvironment can 

be achieved through the collective change of different groups of genes. The modulation of certain 

genes have been shown to subsequently facilitate cancer stem cells phenotypes such as TIC that 

lead to metastatic colonization. Based on the gene expression changes dictating cellular 

metabolism and matrix remodeling, we hypothesized that lung low cells could harbor some cancer 

stem cell properties. Expression of some cancer stem cell markers did identify expression of 

relevant genes in this set of cells. 

To better understand the origins of the CD44 signatures, we examined the scRNA-seq 

results as they projected over pseudo-time using Monocole2. From the three different cell lines, 

we identified that lymph node-derived CD44high cells were projected to give rise to lung-derived 

cells of both signatures. Based on the metastatic cascade of organ tropism, the proximal location 

of the lymph nodes to the primary tumor is well documented to be the initial site of metastatic 

lesions before advancing to the more distal lungs. Future studies would benefit from expanding 

the analysis to include lymph node-derived CD44low cell lines to determine how the signature 

affects the projection of the tumor initiating cell population. 
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IV. Conclusions 

Collectively, we established organ-derived cancer cell lines from different metastatic 

niches.  Comprehensive transcriptomic analysis was performed and revealed the impacts of 

heterogeneity on cancer progression. Bulk sequencing analyses uncovered tissue-specific genes 

across the different metastatic and primary tumor samples. We further investigated intratumoral 

heterogeneity by performing single-cell RNA-seq. These data will improve our understanding of 

the metastatic cascade and tumor heterogeneity in breast cancer will dramatically improve targets 

for therapies. 
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MATERIALS AND METHODS 

Mammalian cell culture  

Unless otherwise stated, cell lines were cultured in DMEM (Corning) supplemented with 10% 

(vol/vol) fetal bovine serum (FBS, Life Technologies), penicillin (100 U/mL), and streptomycin 

(100 µg/mL). Cells were maintained in a 5% CO2 water-saturated incubator at 37 °C. 

 

MMTV-PyMT metastatic cell lines as models of breast cancer   

Mouse experiments were approved by the UC Irvine Animal Care and Use Committee. Tumor 

bearing organs were harvested from 10-12 week females FVB/NJ MMTV-PyMT mice (courtesy 

of the Kessenbrock laboratory, UCI). Samples were processed mechanically and chemically to 

dissociate tissues into single cell suspensions as previously published [21]. Primary single cell 

suspensions were enriched for cancer cells over the course of 1 month in vitro incubation by 

exploiting differences in cellular nutrient requirements and growth differentials. During this time 

course, primary single cell suspensions were enriched for cancer cells by culturing cell lines in 5% 

FBS. Cultures were selected for immortalized cancer cells in vitro by passaging the flasks 3 times 

a week.  Differences in cellular adhesion properties between fibroblasts and epithelial cancer cells 

were also exploited in vitro through 3 mins versus 7 mins incubations with trypsin [80]. The month 

long process resulted in the enrichment of cancer cell lines in the surviving in vitro cultures prior 

to FACS sorting. 

Primary cell lines were processed for FACS sorting (Institute for Immunology Flow Cytometry 

Core, UCI) as previously reported [21] [22]. Cancer cells were isolated by EpCAM (BioLegend 

118213) and CD44 (BioLegend 103027) cell surface expression levels [23]; isolated cancer cells 
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expressed either CD44low/EpCAMhigh or CD44high/EpCAMhigh cell surface markers. Antibody 

labeling was performed using manufacture’s protocols (BioLegend, USA). Previously sorted 

MMTV-PyMT MFP-eGFP cell lines (VO), (courtesy of the Kessenbrock laboratory and Lawson 

laboratory, UCI) were used as positive controls. Fibroblast cell lines (3T3 and MMTV-PyMT-

derived fibroblasts, isolated during culturing process above) were used as negative controls during 

sorting. 

 

Primary cell line metastatic propensity validation in vivo 

MFP-derived cells (100,000 cells/injection) were injected bilaterally under the fourth gland of 

disease free, 4-week old FVB/NJ female mice. Control VO-eGFP luciferase-expressing cells were 

injected as a control to monitor the estimated tumor growth. Palpable primary tumors were 

detected in all mice within 3-4 weeks post injection. All animals developed primary tumors. 

Metastatic cell populations were identified by harvesting and processing the organs as described 

above via FACS analysis. Cancer cells were isolated using cell surface expression of CD44 and 

EpCAM. The experiment was performed over 4 different biological replicates.  

 

PCR analysis 

gDNA was isolated from all MMTV-PyMT cell lines and control samples using Zymo (California, 

USA) quick-DNA miniprep kit (Cat #: 11-317AC). Ear clippings from PyMT positive male and 

female mice (courtesy of the Kessenbrock laboratory, UCI) were used as positive controls. gDNA 

samples isolated from 4T1 (ATCC CRL-2539) cell lines were used as negative controls. PCR 



 

109 

 

amplification conditions and PyMT antigen detection were  completed using the standard Jackson 

Labs genotyping protocol [24]. 

 

Crystal violet proliferation assay 

MMTV-PyMT cell lines were plated (5,000 cells/100 mL) in 96-well plates and incubated for 24 

h. Cells were fixed in ice-cold methanol for 30 min. Cells were stained with a solution of 0.05% 

crystal violet in PBS for 30 min.  The samples were then washed three times with PBS to remove 

excess dye, and allowed to dry for 16–24 h. Crystal violet was recovered from cells via treatment 

with methanol, and the absorbance of the solutions at 595 nm was measured using a Gen5 

microplate reader. 

 

Immunoblotting  

Cells were lysed in RIPA buffer containing protease (Thermo Fisher Scientific, Cat #88265) and 

phosphatase inhibitors (Sigma, Cat #4906845001). Protein concentrations were measured using a 

BCA protein assay (Thermo Scientific, Cat #23223). Samples were prepared in 2X SDS-PAGE 

loading buffer (containing 4% βME) and heated at 95 °C for 10 min. Samples were then separated 

on 4–20% polyacrylamide gels (BioRad), and transferred to nitrocellulose membrane (0.2 µm, 

BioRad). Membranes were incubated with blocking buffer (5% BSA in TBS containing 0.1% 

Tween-20®, TBST) for 1 h at room temperature. Blots were incubated in primary antibodies (Cell 

Signaling; 1:1000 dilution in blocking buffer) overnight at 4 °C. Blots were washed three times 

with TBST (TBS with 0.1% Tween 20), then incubated with IRDye-conjugated secondary 

antibodies (LI-COR Biosciences; 1:10,000 dilution in blocking buffer) for 1 h at room temperature. 
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Membranes were washed three times with TBST and imaged using a LI-COR Odyssey CLx 

imaging system.  

 

Bulk-RNA-seq 

For each tissue derived cell line, total RNA was extracted using the QIAGEN RNeasy kit with 2 

replicates per sample. Sample replicates were distinct clonal isolates harvested from different 

MMTV-PyMT tumor-bearing mice. A modified SMART-seq2 protocol was used to generate 

cDNA and Nextera XT DNA Sample Prep Kit to build Illumina libraries. Samples were sequenced 

on a NextSeq500 with a min depth of 10 M reads. Raw reads were aligned to the mm10 genome 

with STAR [25] and quantification was performed using the GENCODE v21 annotation of the 

mouse genome using RSEM [26]. Count matrices for differential expression analysis were used as 

input for EdgeR [27]. An Exact test was used for calling differential expressed genes with logFC 

> 2 and a p value < 0.05. EnrichR and metascape were used for Gene ontology analysis. 

 

Single-cell RNA-seq methods 

As with bulk RNA-seq analysis, scRNA-seq was performed on select tissue-derived cell lines with 

two replicates per sample. Replicates were distinct clonal isolates harvested from different 

MMTV-PyMT tumor-bearing mice. Cell lines that originated from Lung with CD44high/low 

signatures were identified as the samples with most transcriptional changes and were selected for 

single-cell analysis, along with a Lymph node high sample. Single-cell suspensions from these 

tissues were used as input for the ddSeq platform and cDNA synthesis as well as library prep was 

done following the SureCell™ Whole Transcriptome Analysis 3' Library Prep Kit. The 
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bioinformatic pipeline included Ddseeker [27], a custom demultiplexing script to generate 

individual fastq, while kallisto [28] was used to quantify the transcripts in our sample using the 

mm10 and annotation GENCODE v21. Single-cell analysis was done using Seurat v3.2.3 [28]. 

Cells with more than 250 genes and less than 10% mitochondrial reads were used for the analysis. 

Monocle2 [28] was used to infer pseudotime progression. Min. read depth 34 M. 

 

Data availability  

Fastq files for bulk and single-cell datasets as well as their corresponding processed matrices are 

available in GEO (Accession number: GSE165393)       
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CHAPTER 4: Evolving multicomponent bioluminescent imaging platforms to 

investigate metastatic disease progression in vivo * 

 

I. Introduction 

Biological processes are comprised of heterogeneous and dynamic cellular states that are 

intrinsically difficult to study. Methods to noninvasively visualize specific cellular processes 

would greatly improve our understanding of various biological systems in vivo. Bioluminescence 

(BL) is among the most popular techniques for longitudinal imaging of cellular functions in whole 

animals.  Bioluminescence imaging (BLI) relies on genetically encoded enzymes (luciferases) that 

generate a photon of light via the chemical oxidation of small molecule substrates (luciferins) [1]. 

Because mammalian tissues do not emit substantial numbers of photons, bioluminescence enables 

sensitive imaging in vivo. Firefly luciferase (Fluc) and its substrate, D-luciferin (Dluc), are the 

most popular bioluminescent pair (Figure 4.1A). Luciferase-labeled cells are routinely used for 

long-term non-invasive monitoring in a variety of preclinical models.  

 
* Author’s Note: Figure 1 and the unmixing algorithm, SubstrateUnmixing, in this chapter is part 
of a manuscript that is in preparation. I share authorship on that manuscript with Carly K. 
Brennan, Zi Yao, Colin Rathbun, Buvan Sathishkumar, and last author Jennifer A. Prescher. I 
contributed to the experimental design, procedures, data analyses, and writing. I spearheaded the 
remaining work in this chapter. I created the experimental designs, performed the data analyses, 
and completed the writing. I derived all of the cell lines and cancer models. I also performed all 
of the animal and cell work in this chapter. 
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Figure 4.1. Rapid, multiplexed bioluminescence imaging via sequential substrate 
administration and serial acquisition. (a) Optical imaging with bioluminescent probes. A 
photon of light is produced when D-luciferin (D-luc) is oxidized by firefly luciferase (Fluc). (b) 
Traditional approach for resolving multiple bioluminescent reporters. Signal from one luciferin 
must clear before addition of the next luciferin. The required imaging time scales with the 
number of probes, and can be impractical when more than three targets are involved. (c) Imaging 
times can be shortened by consecutive substrate application. The resulting images comprise 
multiple layers of photon output, and require an unmixing step to deconvolute the signal source. 
(Figure images were produced with permission from Carly Brennan, Zi Yao, Anastasia Ionkina 
et al.,) 
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While versatile, bioluminescence has largely been limited to visualizing only one 

biological feature at a time. This is in part due to the lack of distinguishable luciferase-luciferin 

pairs suitable for in vivo use. In contrast to the diversity of fluorescence imaging tools, the majority 

of natural luciferases that are suitable for in vivo imaging are all derived from the insect family, 

and thus, all use the same luciferin substrate. To address this void, luciferases have been engineered 

to emit different spectral wavelength of light with D-luc [1, 2]. In many cases, though, the observed 

emission spectra were not suitable for in vivo applications [3]. An alternative to spectral 

discrimination, dual component BLI has been achieved instead with substrate resolution. This 

approach requires mutually orthogonal luciferase-luciferin pairs that produce light together but do 

not react with other probes. One of the most extensively used dual component BLI pairs, firefly 

luciferase (Fluc) and Renilla luciferase (Rluc), employ chemically unique substrates (D-luciferin 

and coelenterazine, respectively) that enable tandem use in vivo [4, 5]. However, inherent 

limitations with the stability and bioavailability of coelenterazine can complicate in vivo 

applications. 

Despite the great precedence to develop a rapid BLI method with expanded orthogonal 

luciferase-luciferin pairs, methods suited for in vivo use have not been achieved [1]. A rapid multi-

component BLI platform could be applied across broad areas of biology, advancing our 

understanding of complex cellular systems that could not be properly examined with the current 

technologies. Clinically important biological processes such as intratumoral heterogeneity and 

multi-organ metastatic progression are notoriously difficult to study due to the multicellular nature 

of these processes and the profound impact that surrounding microenvironments have on 

biological outcomes [3]. The best way to maintain rigorous examination of the context dependent 

cellular mechanisms and discover unknown variables during disease progression is to minimize 
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perturbation to the model systems with noninvasive monitoring. Currently, the majority of imaging 

tools are designed for ex vivo use and require invasive sectioning of specimens. 

Although dozens of natural and engineered luciferases-luciferins pairs could be employed 

for multicomponent BLI, most are ill suited for in vivo use [3]. These engineered luciferases have 

enabled multicomponent imaging in bacterial lysate but require high concentrations of the 

enzymes and probes. Thus, the applicability of these multicomponent imaging reporters for 

cellular use is unknown. These uncertainties in applicability and functional use are further 

amplified with in vivo systems. Whole animal imaging presents additional complexities and 

challenges that cannot be accounted for with in vitro or bacterial systems. These unknowns include 

the biodistribution of different luciferins, the tissue penetrant signal of the probes, and an 

established imaging protocol. Previous in vivo imaging attempts using multicomponent substrate 

resolved luciferases have been difficult to reproduce [9] and require 24 hours to ensure substrate 

clearance prior to imaging the second probe (Figure 4.1B). The lengthy imaging time is not ideal 

to monitor dynamic biological processes, and thus there remains an unmet need for a rapid 

multicomponent BLI platform that is well suited for in vivo imaging [6]. 

To shorten the time required between substrate administration, we have developed a new 

approach (in Chapter 2) that enables imaging of orthogonal luciferase-luciferin pairs in rapid 

succession [7]. This approach enabled the rapid imaging of orthogonal probes by sequential 

substrate administration and serial image acquisition (Figure 4.1C). The substrates are 

administered by increasing order of brightness, visualizing the dimmest reporter first followed by 

the immediate imaging of the second brightest reporter.  By layering-in the signal intensities there 

is no need to wait for substrate clearance, achieving dual component imaging in less than an hour 

[8]. Furthermore, substrate preference allows deconvolution of the signals and enables false 
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coloring of the mixed cells. To remove any cross talk between the probes, we employ a linear 

unmixing algorithm to ensure that residual signal from the first image does not interfere with the 

second image. Although Chapter 2 demonstrates a notable improvement in rapid multicomponent 

BLI, we aimed to expand in vivo imaging capabilities beyond the dual bioluminescent platform. 

Here we report a significant advance in the capability of noninvasive imaging tools by 

developing a rapid triple component BLI method that is specifically engineered for multicellular 

in vivo applications. This imaging platform expands upon our previously successful dual 

component orthogonal luciferase-luciferin approach (Figure 4.1C). We hypothesized that rapid 

triple component BLI could be achieved by identifying novel orthogonal luciferase-luciferin pairs 

that are substrate and/or intensity resolved from our existing pairs. In chapter 2, we presented DB7 

cells expressing three different luciferase-fluorescent protein fusions (Pecan-eGFP, Cashew- 

mNeptune, and Antares-CyOFP) [10]. In hopes of translating this triple for in vivo use, I attempted 

to subject these cell line reporters to our sequential substate imaging platform and unmixing. I 

continued the in vivo imaging experiments by benchmarking the bioluminescent signal to the 

fluorescence readout through ex vivo FACS analysis of the tumors. 

Chapter 2 examined the problems of using Antares for multicomponent imaging in vitro. 

To mitigate against these issues, I identified a new engineered firefly luciferase-luciferin pair, 

Akaluc/AkaLumine, to replace the Antares/furimazine pair as the third orthogonal probe. I also 

confirmed that Akaluc along with its substate AkaLumine are well suited for in vitro and in vivo 

use. Rapid triple component BLI was achieved by developing a protocol that enabled sequential 

substate administration and serial imaging of cell mixtures expressing the three different 

orthogonal luciferases. The order of sequential substrate administration and imaging parameters 

were validated in mixed cell populations in vitro. The imaging parameters were also examined in 
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vivo. Finally, I translated our platform to study cancer heterogeneity and metastatic progression 

using a new derivation of the MMTV-PyMT cell lines outlined in Chapter 3. I outline my efforts 

creating MMTV-PyMT cell lines for different organ-derived metastatic sites that express our triple 

luciferase-luciferin pairs. In addition, I have created other cancer-relevant cell line models that 

could also be used with our imaging system, showcasing its strengths over conventional imaging 

platforms [19]. Collectively, I present my efforts generating and applying cancer-relevant 

luciferase expressing models to expand the use of our multicomponent bioluminescent imaging 

platform in vitro and in vivo. This work sets the stage for future studies of cancer metastases. 

 

 

 

 

 

 

 

 

 

 

 

 



 

124 

 

II. Results and Discussion 

 

Expanding rapid BLI to three probes with Antares in vitro 

 

 

Triple component BLI was achieved in Chapter 2 with Pecan, Cashew and Antares 

luciferases. To ensure the bioluminescent images were reliably reporting on cell number, the 

bioluminescence signals from the three orthogonal luciferase-luciferin pairs must be benchmarked 

against established reporters (ie fluorescence). Each orthogonal luciferase was fused to a unique 

genetically encodable fluorescent protein (Figure 4.2a), thus providing a direct  correlation 

between luminescence and fluorescence expression within the cell.  Since CyOFP, the fluorescent 

protein fused in Antares [10], has similar excitation and emission profiles as the other two 

fluorophores (eGFP and mNeptune), extra care was taken to ensure proper delineation of the 

colors. Gating was performed on DB7 cell lines first before translating this to ex vivo analysis of 

resected tumors (Figure 4.2b).   
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Figure 4.2. Luciferase probes for multicomponent imaging. (A) CRISPR DNA constructs 
for tri-component imaging comprise luciferases tethered to fluorescent proteins through a linker 
region. (B) Cells stably expressing one of the luciferase constructs from (A). FACS plots 
confirm that the fluorescent proteins are spectrally resolved in the three different cell 
populations. 
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Translating orthogonal triple for rapid, multicomponent BLI in vivo 

As a model triple component set, we used Cashew and Pecan in combination with Antares, 

a recently reported marine luciferase variant [10, 11]. Cashew and Pecan are derived from the 

terrestrial  luciferase family, and are thus immediately orthogonal to luciferases (like Antares) that 

use vastly distinct luciferins (in this case, furimazine) [12]. Antares also exhibits markedly faster 

substrate turnover than Cashew, rendering it brighter and intensity resolved from the other two 

reporters [13]. Thus, we reasoned that the three orthogonal luciferases could be rapidly 

differentiated by first applying 4'-BrLuc, followed by D-luc, then furimazine to layer in signal 

from Pecan, Cashew, and Antares, respectively. When the cells were combined and imaged 

together, the three reporters could be rapidly visualized (<15 min) following sequential substrate 

addition (Figure 2.13). Triplet imaging was also readily achieved using other combinations of 

engineered and native luciferases (Figures 2.14 – 2.15).  
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Figure 4.3. Rapid BLI using Pecan, Cashew, Antares triples for mice 1-3 in vivo. (a) 
Ratios of Cashew-, Pecan-, and Antares-expressing cells implanted in the mice as well as 
single luciferase-expressing cells that served as positive controls. Ratios of mixed cells are 
noted. (b) Orthogonal substrates (65 mM) and furimazine (100 µL) were administered 
sequentially via i.p. injection. Raw images were acquired for 35 min after each injection. (b) 
Unmixed channels for each mouse are shown. Colors go as followed for each luciferase-
luciferin pair: Pecan = magenta, Cashew = green, Antares = cyan. 
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We demonstrated in Chapter 2 that the unmixing algorithm would enable rapid dual 

component imaging in vivo (Figure 2.11). Next, we aimed to expand our imaging platform by 

facilitating rapid triple-component BLI in vivo. Pecan-, Cashew-, and Antares-expressing cells 

Figure 4.4. Rapid BLI using Pecan, Cashew, Antares triples for mice 4-6 in vivo. (a) 
Ratios of Cashew-, Pecan-, and Antares-expressing cells implanted in the mice as well as 
single luciferase-expressing cells that served as positive controls. Ratios of mixed cells are 
noted. (b) Orthogonal substrates (65 mM) and furimazine (100 µL) were administered 
sequentially via i.p. injection. Raw images were acquired for 35 min after each injection. (b) 
Unmixed channels for each mouse are shown. Colors go as followed for each luciferase-
luciferin pair: Pecan = magenta, Cashew = green, Antares = cyan. 
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were mixed in varying ratios and implanted (106 cells per site) in a total of 6 mice (mice 1-3 Figure 

4.3a) (mice 4-6 Figure 4.4a).  Tumor volumes for each mouse were recorded before imaging in 

Table 4.1. I employed our previous “layering in” approach where substrates were sequentially 

administered to achieve rapid BLI. I administered the luciferins from dimmest to brightest in the 

following order: 4'-BrLuc, followed by D-luc, and lastly furimazine. Raw images for the mice 

(Figure 4.3b and 4.4b) were subjected to our unmixing algorithm and false colored based on the 

luciferin (Figure 4.3c and 4.4c). The unmixed and false colored images were overlayed creating a 

merged image of the three luciferin channels for each of the 6 mice (Figure 4.5 and 4.6). Overall, 

we observed consistent BL signal from Pecan and Cashew expressing cells. However, Antares-

expressing cells exhibited inconsistences in signal intensity after administration of furimazine. 

Issues with bioavailability and stability of furimazine, compared to firefly luciferin analogs, have 

been reported by others [14]. I believe that these issues impacted the results of the in vivo 

experiments. There also were notable differences in tumor volumes with Antares-expressing cells 

compared to Pecan- or Cashew-expressing tumors (Table 4.1). The tumor growth differential 

seemed directly caused by the integration of Antares into the cell’s genomes. This likely interfered 

with cellular proliferation. Cells expressing Pecan and Cashew (firefly-derived luciferases) did not 

exhibit this growth inhibition (Table 4.1). These results further show that Antares is not ideal for 

our in vivo BLI platform and underlines the need to identify a better luciferase-luciferin pair.  

To ensure the images were reporting on cell number and to provide a point of comparison, 

the bioluminescence images must be benchmarked against fluorescence signals (Figure 4.7). The 

initial design of the BLI reporters (Figure 4.2) had a spectrally resolved fluorescent protein fused 

to each one of the luciferases. As diagrammed in Figure 4.7, rapid BLI results were validated with 
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ex vivo analysis. Tumors consisting of different ratios of luciferase-expressing cells were 

processed and subjected to flow cytometry analysis.  

The initial hypothesis was that the ratios of luminescent signal observed in vivo would be 

comparable to the ratios of cells revealed by fluorescence ex vivo. Although some of the ratios 

were similar (Figures 4.5 and 4.6), there were clear discrepancies between the images and the flow 

cytometry data. There are several plausible reasons for these inconsistent results. The small tumor 

volumes (Table 4.1) across the animals clearly limited the amount of tissues that were available 

Figure 4.5. Rapid BLI in vivo and benchmarking BLI to fluorescent proteins for mice 1-3.  
Ratios of Cashew, Pecan, and Antares expressing DB7 cells injected for (a) mouse 1, (b) mouse 
2, and (c) mouse 3. Bioluminescence images were benchmarked against the spectrally resoled 
fluorescent protein fused to each luciferase. After imaging, tumors with mixed cell populations 
were resected, processed into single cell suspensions and analyzed via flow cytometry. Results 
from the ex vivo analyses are shown as percentages. The lower bars show the expected 
percentage of fluorescent signal directly corresponding to the ratio of injected cells. The top bars 
show the relative percentage of the reporters from flow cytometry analysis of the resected 
tumors. Merged images of the unmixed and false colored mice are show at the bottom for (a) 
mouse 1, (b) mouse 2, and (c) mouse 3. 
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for flow cytometry processing. Future experiments would benefit by allowing the tumors to reach 

larger starting volumes, thus increasing the material available for analysis. Additionally, 

processing and running ex vivo analyses for such a large amount of samples was extremely labor 

intensive and difficult for a single person to perform alone. Future renditions of this ex vivo 

analysis would dramatically benefit from having additional assistance to ensure success and 

reproducible results. 

 

Figure 4.6. Rapid BLI in vivo and benchmarking BLI to fluorescent proteins for mice 4-6.  
Ratios of Cashew, Pecan, and Antares expressing DB7 cells injected for (a) mouse 4, (b) mouse 
5, and (c) mouse 6. Bioluminescence images were benchmarked against the spectrally resoled 
fluorescent protein fused to each luciferase. After imaging, tumors with mixed cell populations 
were resected, processed into single cell suspensions and analyzed via flow cytometry. Results 
from the ex vivo analyses are shown as percentages. The lower bars show the expected 
percentage of fluorescent signal directly corresponding to the ratio of injected cells. The top bars 
show the relative percentage of the reporters from flow cytometry analysis of the resected tumors. 
Merged images of the unmixed and false colored mice are show at the bottom for (a) mouse 4, 
(b) mouse 5, and (c) mouse 6. 
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Mouse Number Tumor Number Tumor Cell Types Tumor Volume (mm3)
1 Cashew (positive control) 156.12
2 Antares (positive control) 85.49
3 Exp1 (Cashew:Pecan) 115.20
4 Pecan (positive control) 102.44
5 Pecan:Cashew:Antares (1:1:1 ratio) 138.39
6 Exp2 (Cashew:Anatres) 137.82
1 Cashew (positive control) 172.46
2 Antares (positive control) 76.21
3 Exp3 (Pecan:Antares) 108.29
4 Pecan (positive control) 167.82
5 Pecan:Cashew:Antares (1:1:1 ratio) 90.67
6 Exp1 (Cashre:Pecan) 136.81
1 Cashew (positive control) 100.33
2 Antares (positive control) 41.26
3 Exp2 (Cashew:Antares) 106.88
4 Pecan (positive control) 63.23
5 Pecan:Cashew:Antares (1:1:1 ratio) 99.03
6 Exp3 (Pecan:Antares) 198.14
1 Cashew (positive control) 129.64
2 Antares (positive control) 111.21
3 Exp1 (Cashew:Pecan) 111.02
4 Pecan (positive control) 88.50
5 Pecan:Cashew:Antares (1:1:1 ratio) 112.77
6 Exp2 (Cashew:Anatres) 132.86
1 Cashew (positive control) 116.03
2 Antares (positive control) 125.46
3 Exp3 (Pecan:Antares) 115.99
4 Pecan (positive control) 137.13
5 Pecan:Cashew:Antares (1:1:1 ratio) 107.27
6 Exp1 (Cashre:Pecan) 128.79
1 Cashew (positive control) 129.19
2 Antares (positive control) 95.81
3 Exp2 (Cashew:Antares) 156.58
4 Pecan (positive control) 118.89
5 Pecan:Cashew:Antares (1:1:1 ratio) 145.01
6 Exp3 (Pecan:Antares) 130.69

1

2

3

4

5

6

Table 4.1. Tumor volumes for mice 1-6 prior to sequential substrate administration and 
imaging (Figure 4.3 and 4.4) 
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Akaluc/ AkaLumine is well suited for the third orthogonal pair for rapid BLI in vitro  

Akaluc along with its luciferin 

analog, AkaLumine, are appropriate 

alternatives to Antares/furimazine for 

substrate unmixing and in vivo imaging 

[15]. Exhibiting high substrate 

preference, Akaluc was engineered 

from firefly luciferase to selectively 

emit light with its synthetic luciferin analog, AkaLumine [16]. This substrate preference fits well 

luciferase-expressing
cancer cell lines

6 mice injected
6 tumors per mouse

cell line injections tumor formation

tumor resection

tumor processing

single cell suspensionsbenchmarking BL signal to FL protein

rapid BLI via sequential
substrate administration

flow cytometry

P
E
-C
y5

PE-Texas Red

18 tumors for ex vivo analysis

Figure 4.7. Schematic of rapid multicomponent BLI in vivo experiment and ex vivo 
analysis.  Luciferase expressing cancer cells are injected into mice at different ratios. Rapid 
BLI via sequential substrate unmixing is performed after tumors are palpable. Select tumors are 
resected and processed for flow cytometry analysis to benchmark images against fluorescence 
signal. 
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Figure 4.8. Luciferase probes for multicomponent 
imaging. CRISPR DNA constructs for tri-component 
imaging comprise luciferases tethered to fluorescent 
proteins through a linker region.  
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with the requirements of our unmixing platform. Similar to the other firefly-derived probes 

(Pecan/4'-BrLuc and Cashew/D-luc), AkaLumine [17] (Figure 4.8) exhibits more substrate 

stability and bioavailability than the marine-derived Antares/furimazine pair.  In addition, the 650 

nm red-shifted light emission of 

Akaluc-AkaLumine (Figure 4.9) is 

advantageous for in vivo imaging, as 

red-light passes more readily through 

blood and tissues [18]. Collectively, I 

hypothesized that the Akaluc/ 

AkaLumine luciferase-luciferin pair 

would be well suited for triple 

component imaging.  

An important requirement for 

the proper utilization of our substrate 

unmixing platform is that the first 

luciferase emission must reach a stable plateau before adding the next substate. This signal plateau 

ensures that any increase in light emission from sequential substrate administration is solely due 

to newly added luciferin. We previously have shown that 30 min is best for Pecan and Cashew [7]. 

However, the use of new mutant luciferase-luciferin pairs will exhibit changes in kinetics and 

substrate turn over that must be taken into account [3]. For example, Akaluc/AkaLumine was 

engineered for improved brightness and turnover [15]. Thus, the acquisition time required to 

capture photon output had to be adjusted and the length at which the signal plateaus had to be 

measured.  To apply the three probes for multicomponent imaging, we ranked the order of the 
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Figure 4.9. Red-shifted light emission of Akaluc/ 
AkaLumine pair. Cells stably expressing Akaluc 
were imaged after addition of the AkaLumine 
substrate. Luminescence data is show with open filter 
(i.e. all light) and using a filter that only allows red-
shifted light greater than 690 nm to pass. Compared 
to the total emission, 11% of Akaluc- AkaLumine 
emitted light was greater than 690 nm (ideal for in 
vivo imaging). This is compared to only 1.3% of light 
>690 nm that is emitted by Fluc/D-luc.  
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luciferase-luciferin probes to achieve maximal resolution: Pecan/4ʹ-BrLuc, then Cashew/D-luc, 

and finally Akaluc/AkaLumine. This second viable triplet set was identified and stably expressed 

into DB7 cell lines in Chapter 2. I sought to test its applicability for mixture analysis in vitro and 

for in vivo applications 

 

Rapid triple component BLI revealed expected distribution of Pecan-, Cashew- and Akaluc-

expressing DB7 cell mixtures in vitro 

We aimed to investigate whether the relative composition of wells containing different 

ratios of luciferase-expressing cells could be deconvoluted. The three luciferase expressing cells 

were plated in gradients across a 96 well plate with positive control wells containing 100% of each 

cell population for the unmixing algorithm. The false colored image showed roughly the expected 

mixture of luciferase-expressing cells per specific well (Figure 4.10). Complex mixtures of cell 

populations were able to be unmixed and identified. Total flux of the control wells were measured 

with sequential addition (Figure 4.11). Additionally, we discovered important ranges in the fold 

change of signal required for the unmixing algorithm to achieve resolution. In order for the 

algorithm to deconvolute based on signal intensities, there is a minimal range that the signal must 

increase between sequential substrate administration. We have identified that a 10-fold increase in 

total photon emission is required between luciferase-luciferin pairs (meta data analysis not shown). 
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Figure 4.10. Rapid BLI with three orthogonal luciferase-luciferin pairs in vitro. DB7 cells 
expressing Pecan, Cashew, or Akaluc were plated in at 96-well plate. Raw bioluminescence 
signal from sequential substrate addition of 4’-BrLuc (250 μM), followed by D-luc (250 μM), 
then AkaLumine (250 μM) acquired after the addition of each substrate. The substrate-specific 
signals were unmixed, assigned false colors and overlaid. Data is representative of n = 3 
replicates.  

Figure 4.11. Rapid BLI with three orthogonal luciferase-luciferin pairs in vitro 
quantification. Photon flux from the 100% positive control wells from Figure 4.10 were 
quantified. Error bars represent the standard error of the mean for n = 3 experiments. 
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Rapid triple component BLI revealed expected distribution of Pecan-, Cashew- and Akaluc-

expressing DB7 cells in vivo 

To showcase the improved performance of Akaluc/AkaLumine, I sought to examine the 

triplet to achieve rapid multicomponent imaging in vivo. DB7 Pecan-, Cashew-, and Akaluc-

expressing cells were implanted using 100% positive controls and 1:1:1 mixed ratio populations 

in two mice for a pilot experiment (Figure 4.12a). Mice were subjected to sequential substate 

administration and image acquisition as previously outlined. Raw images for the mice (Figure 

4.12b) were subjected to our unmixing algorithm and false coloring. Although this triplet (Pecan, 

Cashew, Akaluc) performed better than the original triplet with Antares, the method needs 

improvement in order to achieve triple-component imaging in vivo. We observed a loss of signal 

that was not mitigated with the unmixing algorithm. Notably there was a loss of Cashew substrate 

preference upon the addition of D-luc. Sequencing of the Cashew plasmids identified a random 

mutation that had appeared and affected Cashew’s substrate preference. Secondly, the mixed cell 

population tumors (1:1:1 ratios) for both mice did not represent all three of the cell lines – instead 

the tumor was dominated by Akaluc signals in the false colored merged images. The lack of a 

homogenized signal is likely do to the need for identification of signal threshold and improving 

the unmixing algorithm so that dimmer luciferase signals are not lost with brighter probes.  
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Rapid triple-component imaging of metastatic MMTV-PYMT cell lines 

The multicomponent imaging platform is primed to answer complex questions such as 

cancer heterogeneity and metastatic progression. To achieve this, I aimed to investigate metastatic 

progression by creating organ-derived metastatic cell lines that expressed different luciferase 

reporters (Figure 4.13a). To this end, I used the MMTV-PyMT primary cell lines (MFP, LN, and 

lung) that I isolated and characterized in Chapter 3. To simplify some of the variables in this 

experiment, I combind both CD44low/EpCAMhigh and CD44high/ EpCAMhigh expressing cells from 

each organ-derived site. MMTV-PyMT MFP, LN, and Lung cells were engineered to express  

Pecan-eGFP, Cashew-mNeptune, or Akaluc-BFP, respectively, via CRISPR-mediated gene 

insertion (Figure 4.13b). Plasmids contained luciferases fused to spectrally resolved fluorescence 

proteins for use with FACS (Figure 4.8a). 

Pecan
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Cashew
mNeptune

Akaluc
BFP

1 : 1 : 1

Pecan
eGFP

Cashew
mNeptune

Akaluc
BFP

1 : 1 : 1

mouse 1 mouse 2

a b

Figure 4.12. Rapid BLI using DB7-expressing Pecan, Cashew, Akaluc triples in vivo. (a) 
Ratios of 1:1:1 Cashew-, Pecan-, and Akaluc-expressing cells implanted in the mice as well as 
single luciferase-expressing tumors that served as positive controls. (b) Orthogonal substrates 
(65 mM) and AkaLumine (30 mM) were administered sequentially via i.p. injection. Raw 
images were acquired 35 min after each injection. Unmixed and false colored channels for each 
mouse are shown on the bottom panel. Colors are as followed for each luciferase-luciferin pair: 
Pecan = green, Cashew = magenta, Akaluc = blue. Channels were merged showing a composite 
image on the right.  

AkaLumine 
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Validating substrate preference and intensity resolution of orthogonal pairs in MMTV-

PyMT cancer cell lines in vitro 

As discussed above, MMTV-PyMT luciferase-expressing cell lines were established and 

characterized (Figure 4.13). Substrate preference and intensity resolution in the new MMTV-

PyMT luciferase expressing cell lines were validated in vitro. Sequential addition (4'-BrLuc, 

followed by D-luc, then AkaLumine) and image acquisition were performed. Cell lines were plated 

in 96 wells and included 100% positive controls and mixed cell populations (1:1:1 ratios) in 

triplicate. Signal intensity (total flux) upon sequential substate administration was measured right 

after plating on day 0 (Figure 4.14a) and 24 hours after plating on day 1 (Figure 4.14b). As 
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mousemodel
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dissociated
tissues

transfected
withluciferases
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tumor

bone metastatic clonal isolates
express different luciferases

identifiedmetastatic clonal
isolatesvia FACS

primary tumor-derived
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lymph node-derived
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tumor heterogeneity and metastasis progression
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Cashew

Akaluc
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MMTV-PyMTin vitro in vivo
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Figure 4.13. Examining cancer metastasis by expressing orthogonal luciferase pairs in 
organ-derived metastatic cell lines from the MMTV-PyMT mouse model. (a) As detailed 
in chapter 3, MMTV-PyMT mice were used to isolate metastatic cell lines. Orthogonal 
luciferases were  expressed in the metastatic clonal isolates to track cancer progression. (b) 
MMTV-PyMT cell lines mammary fat pad (MFP), lymph node, and lung-derived cell lines 
were transfected with Pecan-eGFP, Cashew-mNeptune, and Akaluc-BFP CRISPR Cas9 
constructs. Cell lines can be used to study areas relevant to metastatic progression both in vitro 
and in vivo. 
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expected, the total flux for day 1 cells was higher than at day 0. This increase in signal is most 

likely due to the additional 24 hours of cellular growth between the two experiments. 

With the sequential addition and substrate resolution of the MMTV-PyMT cell lines 

confirmed, we sought to determine if images containing mixtures of the three cell populations 

could successfully be deconvoluted and visualized using our unmixing algorithm, 

SubstrateUnmixing (Figure 4.15). Control wells of MMTV-PyMT MFP-Pecan-eGFP, LN 

Cashew-mNeptune, and Lung Akaluc-BFP cells were plated in 96 wells with 100% controls and 

1:1:1 mixed ratio wells (Figure 4.15a). Sequential substrate administration enabled rapid imaging 

acquisition of only 30 mins. Raw images were acquired and subjected to unmixing using 
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Figure 4.14: Rapid, three-component BLI of metastatic breast cancer model over 24 
hours. (a) MMTV-PyMT organ-derived breast cancer cell lines expressing each luciferase were 
plated as shown (MFP-Pecan; LN-Cashew; Lung-Akaluc). The corresponding substrates ([4ʹ-
BrLuc] = [D-luc] = [AkaLumine] = 100 µM) were administered, beginning with the dimmest 
luciferin. Images were acquired after each addition. Image acquisition was completed within 
30 minutes. Raw data in total photon flux is shown for (a) day 0 and 24 hrs later at day 1 (b). 
An increase in total flux was observed in (b) day 1 due to cell growth and was expected. 
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SubstrateUnmixing (Figure 4.15a). Successful signal attribution within the mixed wells was 

confirmed (Figure 4.15b).   

 

 

Measuring changes in signal intensity for MMTV-PyMT cell lines using multicomponent 

imaging platform and linear regression 

The ability to monitor signal change in response to cellular growth during cancer 

progression would be a powerful tool to assess biological changes. To this end, we investigated 

the ability of our unmixing algorithm to identify changes in signal intensity from the triple MMTV-

PyMT cell lines. We simulated changes in signal output by varying the amount of one luciferase-

expressing cell line while keeping the remaining two constant. The varying cell mixtures were 

Figure 4.15: Rapid, three-component BLI of metastatic breast cancer model 
via SubstrateUnmixing. (a) MMTV-PyMT organ-derived breast cancer cell lines expressing 
each luciferase were plated as shown (MFP-Pecan; LN-Cashew; Lung-Akaluc). The 
corresponding substrates ([4ʹ-BrLuc] = [D-luc] = [AkaLumine] = 100 µM) were administered, 
beginning with the dimmest luciferin. Images were acquired after each addition. Image 
acquisition was completed within 30 minutes. (b) The raw data from (a) were unmixed 
using SubstrateUnmixing and false colored. 

0.1 2.0 6.5
x 106 pixel

values
A

ka
Lu

m
in

e
0.1 2.0 6.5

x 106

D
-lu

ci
fe

rin

0.1 2.0 6.5
x 104

4'
B

r-
Lu

c

individual channels

reference wells
100% population

1:1:1 mixture

Pecan

Cashew

Akaluc

model layouta

b merge

A
ka

Lu
m

in
e

0.02 0.5 1.8
x 108 p/s

D
-lu

ci
fe

rin

0.3 1.5 3.2
x 107

4'
B

r-
Lu

c

0.2 6.3 7.8
x 106

sequential imaging, total experiment time ~ 30 min



 

141 

 

plated in 96 wells and subjected to sequential substrate administration and image acquisition. 

Unmixed images were false colored and merged for each well. The false colored signal from the 

Pecan-expressing cells increased in signal as the amount of cells increased (Figure 4.16a), 

following the predicted trend (Figure 4.16d). The change in signal was further validated through 

linear regression analysis between the unmixed signals and the number of luciferase-expressing 

cells plated. Both samples exhibited similar trends and were highly correlated. Similar correlations 

were observed for LN Cashew-mNeptune (Figure 4.16b) and Lung Akaluc-BFP (Figure 4.16c) 

cell lines. The consistent linear trends showed that changes in luciferase-signal (Figure 4.16e, f) 

could be successfully deconvoluted.  
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Figure 4.16: Unmixing varying concentrations of heterogeneous breast cancer cell lines. 
Metastatic organ-derived MMTV-PyMT cells lines stably expressed the 3 luciferase constructs 
(MFP-Pecan; LN-Cashew; Lung-Akaluc). Cell mixtures were plated as shown. Increasing 
concentrations of (a) MFP-Pecan, (b) LN-Cashew, and (c) Lung-Akaluc cells were plated in a 
gradient fashion (from 0 cell to 1x105 cells per well) while the concentrations of the other two 
remaining cell lines were kept constant. The corresponding substrates ([4ʹ-BrLuc] = [D-luc] = 
[AkaLumine] = 100 µM) were administered, beginning with the dimmest luciferin. Images 
were acquired after each addition. Image acquisition was completed within 30 minutes. Images 
were unmixed using SubstrateUnmixing and false colored. Images of each individual luciferase 
expressing cell line and the merged images were shown.  

Linear regression analyses were performed on channels for the controls and gradient wells for 
(d) MFP-Pecan, (e) LN-Cashew, and (f) Lung-Akaluc. R2 values of the linear regression 
analyses and values of the slope were calculated for each control and co-culture gradients.  

(d) MFP-Pecan: R2 Pecan control = 0.99; R2 co-culture = 0.99; R2 Cashew control = 0.93; R2 

Akaluc control = 0.93; mCashew control  = 0.02 ± 0.03; mAkaluc control  = -0.03 ± 0.02.  

(e) LN-Cashew: R2 Cashew control = 0.99; R2 co-culture = 0.99; R2 Pecan control = 0.88; R2 

Akaluc control = 0.8662; mPecan control  = 0.34 ± 0.09; mAkaluc control  =  1.01 ± 0.29.  

(f) Lung-Akaluc: R2 Akaluc control = 0.99; R2 co-culture = 0.99; R2 Pecan control = 0.98; R2 

Cashew control = 0.91; mPecan control  = -0.07 ± 0.004; mCashew control  =  -0.17 ± 0.02. 
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Rapid, multicomponent BLI imaging using MMTV-PyMT cell lines in vivo 

The MMTV-PyMT organ-derived cell lines are an invaluable tool to study cancer 

progression and organ-tropic metastatic. Previously, I demonstrated that MMTV-PyMT MFP-

derived cells are capable of recapitulating metastatic progression in disease free mice [20]. In order 

to use the MTMV-PyMT cell line models for future studies, it is critical to validate the ability of 

the organ-derived cell lines to recapitulate metastatic disease and re-colonize their organ-tropic 

tissues. To validate the organotrophic properties of the metastatic MMTV-PyMT-luciferase 

expressing cell lines, I investigated whether LN-derived Cashew-mNeptune (Figure 4.17a) and 

lung-derived Akaluc-BFP (Figure 4.17b) cells could colonize their respective tissues in two 

separate disease-free FVB mice. To assess tumor growth, I injected 100,000 lung-Akaluc BFP or 

LN cashew-mNeptune cells bilaterally under the fourth mammary fat pad in separate four-week 

old mice Based on the timeline from similar in vivo tumor growth studies that I performed (data 

not shown), I allowed tumors to grow for ~5 weeks before imaging. Upon completion of animal 

imaging, lungs and lymph-node tissues for both animals were resected. Tissues were imaged again 

ex vivo with the appropriate luciferins to confirm signal localization (Figure 4.17c). Upon ex vivo 

analysis, luciferase signal was observed in both mice and was localized to the correct organs. After 

AkaLumine substrate addition, Akaluc signal was observed in the lung tissue of mouse 2 

(originally injected with lung-derived Akaluc-BFP cells) but was absent in the lung tissue of mouse 

1 (originally injected with LN-derived Cashew-mNeptune cells). The reverse trend was observed 

upon D-luc administration to the lymph node tissue samples. Thus, ex vivo analysis confirmed that 

the signal was derived specifically from the organ-tropic metastatic tissue (Figure 4.17c). From 

these results we concluded that the cells lines emitted light properly in vivo and metastasized to 

the expected organs. 
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Figure 4.17. Examining lymph node and lung metastases using organ-derived luciferase-
expressing metastatic clonal isolates. Lymph node- and lung-derived orthogonal luciferase 
expressing cells recapitulate metastatic disease. Luciferase-expressing cells were prepared via 
CRISPR gene insertion. The cells were implanted bilaterally into the mammary fat pad. 
Tumors were allowed to form over the course of 5 weeks.  Mice were imaged upon luciferin 
injection with D-luc (65 mM) and/or AkaLumine (30 mM). (c) Lymph node and lung tissues 
from the recipient mice were extracted and imaged ex vivo. 
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AkaLumine has solubility issues when dissolving it at the high concentrations required for 

in vivo use. Additionally, luciferins, like AkaLumine, can be administrated via different routes into 

the animal (ie IP vs IV administration) [15]. Differences in the mode of luciferin administration is  

known to impact the bioavailability of the substrate and the brightness of the luciferase signal [13, 

15]. To achieve the maximal light emission, I aimed to identify the optimal vehicle to resuspend 

the luciferins and the best route of administration in vivo (Figure 4.18a). Two mice were injected 

with lung-derived Akaluc-BFP cells and LN-derived Cashew-mNeptune cells. Luciferins were 

dissolved in Ringer’s solution (D-luc) or dH20 (AkaLumine). For mouse 1, both luciferins were 

administered via IP injection. For mouse 2, D-luc was administered IP while AkaLumine was 

administered IV. As previously reported [15], signal from Akaluc-expressing cells was observed 

in both mice (Figure 4.18b). However, AkaLumine signal was brighter when administered IP 

instead of IV. Thus, the best route of AkaLumine administration for these and future experiments 

is via IP injection. Additionally, this experiment tested the few different clonal isolates (denoted 

by #1, #2, etc.) for both LN and lung cells. The goal here being to identify the brightest clone and 

continue with that cell line for all future studies. After IP administration of D-luc, LN Cashew 

expressing cells from clone #1 exhibited the brightest light emission. Both lung Akaluc expressing 

cells had relevantly the same light emission. Future experiments will continue using these 

luciferase clones and injection methods for in vivo imaging.  
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III.  Conclusion 

In this chapter I demonstrated that rapid, triple component BLI was achieved based on 

substrate unmixing. Sequential substrate administration was achieved by layering in the signal 

from dimmest to brightest. This work was the first example of rapid BLI using all engineered 

luciferases. In addition, I provided different examples of multicomponent bioluminescent imaging 

with terrestrial luciferin/luciferase pairs in tandem with marine pairs. Marine luciferins are known 

to have a higher rate of auto-oxidation in vivo which can provide additional variables. The 

autoxidation and lack of stability of marine luciferins frequently requires the need for IV instead 

of IP administration [13].  Compared to the ease of administering IP injections, IV administration 

a

Dluc (65 mM in Ringer's solution)
Mouse 1: IP Mouse 2: IP

Akalumine (30 mM in dH2O)
Mouse 1: IP Mouse 2: IV

8 x 107

0
radiance

(p/sec/cm2/sr)

6 x 105

0
radiance

(p/sec/cm2/sr)

b

Figure 4.18. Piloting luciferin administration for optimal signal in vivo. (a) Schematic of 
the tumors injected and the differences in luciferin administration that was tested for LN-
derived Cashew (M37) mNeptune and Lung-derived Akaluc (Aka) BFP MTTV-PyMT cell 
lines. D-luc (65 mM in Ringer’s solution) was administered IP for both mice. AkaLumine (30 
mM in water) was administered IP for mouse 1 and IV for mouse 2. Different clones for cell 
lines LN-derived Cashew (M37) mNeptune and Lung-derived Akaluc (Aka) BFP are noted 
on the diagram by the numbers. (b) Raw images (shown in radiance) were acquired with 
sequential luciferin administration. Cashew and Akaluc signals were unmixed and false 
colored in the panels below. Side panel shows the merged image.  
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requires additional technical skills and is a less “user-friendly” method for delivering substances 

in vivo [15].  Our imaging platform mitigates against the variability in substrate delivery and 

bioavailability by utilizing only firefly luciferase derived mutants and administering their D-

luciferin analogs by IP injections.   

Future work should address the issues of benchmarking BLI output to fluorescence signals 

and cell count. Completing this experiment is important to demonstrate that our tool is a reliable 

and robust method for monitor biological processes. Overall, this technology has vast ranges of 

applications and showcases its power in the imaging community. Further expanding the 

bioluminescent tool box for multicomponent imaging will only increase the diverse biological 

questions this technology can address. 
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MATERIALS AND METHODS 

 

Reagents 

All reagents purchased from commercial supplies were of analytical grade and used without further 

purification. 4'-BrLuc was prepared and used as described previously described in Ionkina, et al. 

[7] Pecan-eGFP-AAVS1, Cashew-mNeptune-AAVS1, and Anatres-AAVS1, and Akaluc-

TagBFP-AAVS1 were used as described in Ionkina, et al. [7]  

 

General bioluminescence imaging 

All assays were performed in black 96-well plates (Grenier Bio One). Plates containing 

luminescent reagents were imaged in a light-proof chamber with an IVIS Lumina (Xenogen) CCD 

camera chilled to –90 °C. The stage was kept at 37 °C during the imaging session, and the camera 

was controlled using Living Image software. For all assays, exposure times were set to 1–180 s, 

and data binning levels were set to medium. Total flux values for regions of interest were analyzed 

using Living Image software. Integrated pixel values were analyzed using ImageJ (Installed under 

the FIJI package, NIH). The data were analyzed using GraphPad Prism (version 9.0 for Macintosh, 

GraphPad Software).  

 

Mammalian cell culture 

DB7 cells stably expressing Pecan-eGFP, Cashew-mNeptune, or Akaluc-BFP were derived via 

CRISPR-mediated gene insertion as previously described [7]. MMTV-PyMT primary cell lines 
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(mammary fat pad (MFP), lymph node (LN), and lung) cells were derived from tumor bearing 

mice. For these experiments, organ-derived cell lines that were previously segregated by 

CD44low/EpCAMhigh and CD44high/ EpCAMhigh cell surface expression were mixed together. The 

combined CD44/EpCAM expressing organ-derived cell lines were allowed to grown until 

confluent. MMTV-PyMT (MFP, LN, and lung) cell lines stably expressing Pecan-eGFP, Cashew-

mNeptune, or Akaluc-BFP, respectively, were derived via CRISRP-mediated gene insertion. The 

relevant luciferase genes (luciferase-G4SX2-FP-T2A-Puro) were amplified and inserted into 

CRISPR AAVS1-safe harbor donor plasmids.   

Cashew and Pecan inserts were amplified using the following primers following primers:  

5’- TGGCTAGCGCTACCGGTCGCCACCTCTAGAATGGAAGACGCCAAAAACATAAAGAAAGG 

-3’ and 5’- GCGGAAAGATCGCCGTGGGCGGAGGCGGGTCTGGGGGCGGAGGCTCT -3. 

 

Akaluc inserts were amplified with the following primers: 

5’- ATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGC -3’ and  

5’- CACGGCGATCTTGCCGTCCTTCTTGGCCTTAGTGA -3’ 

 

MMTV-PyMT  cells lines  were transfected  with  the  AAVS1  mutant  luciferase  donor  plasmid,  

Cas9  (Addgene  #41815),  and AAVS1 sgRNA (Addgene #53370) using lipofectamine. The 

mutant luciferases were integrated into the first locus of AAVS1 through homologous 

recombination. Transfected cells were then treated  with  puromycin  (2  μg/mL)  and FACS sorted  

at  the  Institute  for  Immunology  Flow Cytometry Core (UCI). All cells were cultured in DMEM 

(Corning) supplemented with 10% (v/v) fetal bovine serum (FBS, Life Technologies), penicillin 
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(100 U/mL), and streptomycin (100 µg/mL). Stably expressing luciferase cells were maintained 

under puromycin selection (2 µg/mL) to ensure gene incorporation was preserved. Cells were 

maintained in a 5% CO2 water-saturated incubator at 37 °C. Cells were serially passaged using 

trypsin-EDTA (0.25% in HBSS, Gibco). 

 

Mammalian cell culture 

MMTV-PyMT primary cell lines (MFP, LN, and lung) were isolated and sorted based on CD44 

and EpCAM expression as previously described in Ionkina et al. [20] and chapter 3. Both 

CD44low/EpCAMhigh and CD44high/ EpCAMhigh cells were used for imaging.  These cells or DB7 

cells were engineered to express Pecan-eGFP, Cashew-mNeptune, or Akaluc-BFP via CRISPR-

mediated gene insertion as previously described [7]. All cells were cultured in DMEM (Corning) 

supplemented with 10% (v/v) fetal bovine serum (FBS, Life Technologies), penicillin (100 U/mL), 

and streptomycin (100 µg/mL).  Cells expressing luciferases were further cultured with puromycin 

(2 µg/mL) to ensure gene integration. All cells were maintained in a 5% CO2 water-saturated 

incubator at 37 °C. Cells were serially passaged using trypsin-EDTA (0.25% in HBSS, Gibco). 

 

Substrate unmixing analysis  

Substrate unmixing experiments were designed as previously described [7].  Substrate unmixing 

was conducted with MATLAB R2020a (See Supplementary Discussion).  Luminescence images 

containing the raw CCD counts (as TIFF files) were loaded into MATLAB. Images were subjected 

to a 2-pixel median filter (using the medfilt2 function with a 5x5 neighborhood around the 

corresponding pixel). Next, the signal at each pixel was normalized to lie between 0 and 65536 
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(the maximum value that can be stored in a 16-bit image). As a result, the brightest pixel in each 

image had a value of 65536, and the dimmest had a value of 0. Regions of interest (ROIs) were 

generated by identifying the image coordinate of the reference well and input dimensions. Once 

assigned, the MATLAB algorithm was run to perform the unmixing. After unmixing, text images 

were imported into ImageJ (installed under the FIJI package). Integrated pixel values for regions 

of interest were analyzed using the “Measure” tool. Pseudo colors were assigned with the “Merge 

Channels” tool.  

 

Mammalian cell analysis of luciferase mutants  

DB7 or MMTV-PyMT cells stably expressing luciferases were added to black 96-well plates. Cells 

were treated with a luciferin solution (10 µL, of 100 µM or 250 uM for D-luc, 4ʹ-BrLuc, and 

AkaLumine). Plates were imaged and analyzed as described above.   
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CHAPTER 5: Examining immune cell function and cellular interactions 

during metastatic progression with multicomponent imaging tools * 

 

I. Introduction 

This chapter presents my efforts and preliminary work developing split versions of red-

emitting luciferases to monitor cell-to-cell contact. Additionally, I highlight my work generating 

cell specific promoter driven luciferase gene reporters. These probes facilitate imaging of tumor-

immune and other cellular interactions in deep tissue. Both of these research topics are areas of 

on-going work in the laboratory and are the future directions of my dissertation work – with the 

ultimate goal of deploying these probes in transgenic models. 

 

II. Monitoring cellular interactions and immunological reporters using rapid 

bioluminescent imaging platforms 

Rapid, multicomponent bioluminescence imaging is a powerful tool that can have broad 

applicability in cancer biology. As mentioned in Chapter 1, immune cells in the surrounding 

microenvironment have been identified as key players in cancer progression [1,2]. Cancer-immune 

responses in particular involve a wide array of different immune cell types [3]. In order to capture 

this heterogeneity, multicomponent imaging tools that enable the visualization of the different 

immune cell subtypes and polarization states are needed. Toward, this end I have been creating 

 
* Author’s Note: This chapter has unpublished ideas and preliminary data that I have spearheaded. 
I contributed to the experimental design, procedures, data analyses, and writing. This is an 
ongoing area of research by members of the Prescher laboratory. 
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two different types of luciferase driven reporters (split luciferase reporters and luciferase driven 

gene expression reporters) that will be discussed in more detail below. The initial application of 

these bioluminescent reporters will be for in vitro use and validation. However, the facile use of 

the rapid bioluminescent imaging platform outlined previously shows great promise that these 

gene expression reporters can be translated for in vivo use. 
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III. Visualize cellular interactions using with engineered bioluminescent probes 

 

 

LgBit(NNluc)-CyOFP

LgBit(NNluc)
-CyOFP

SmBit(CNluc)
-CyOFP

(2 x 105 cells/100 µL) (cells/100 µL)
SmBit(CNluc)-CyOFP

Figure 5.1. Visualizing cell-cell contact through engineered luciferases. (A) Schematic of 
general strategy to visualize cellular interaction. Luciferase expressing cells emit light when in 
close proximity. (B) Visualizing cell-cell contact through CD40 receptor mediated reassembly 
of split luciferase. In close proximity, cells expressing either a membrane bound (CD40 
receptor) or secreted split construct reassemble, forming a functional luciferase capable of 
producing light. (C) Schematic of Antares BRET split construct. (D) The ability of split Antares 
to complement and emit light was tested. Control wells of either SmBit(CNluc)-CyOFP or 
LgBit(NNluc)-CyOFP fragments were plated. HEK-293T cells were then co-transfected with 
both SmBit(CNluc)-CyOFP and LgBit(NNluc)-CyOFP splits. Furimazine was added and emission 
was measured. Co-transfected cells were platted at the increasing cell concentrations. Total flux 
and red-shifted light >694 nm was measured using a filter. Total flux was measured in radiance. 
Corresponding images of the wells are shown above each measured cell concentration. 
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Cell-to-cell contact mediates numerous biological processes, including cellular growth and 

differentiation, motility, and immune function [3]. Breakdowns in these networks can also 

potentiate disease, including cancer progression [1]. Our ability to understand and ultimately 

control cellular interactions would benefit from methods to visualize cells in their native 

environments. While advances have been made in vitro [9], few tools exist for long-term, sensitive 

imaging in whole animals. This void has precluded studies of dynamic cellular interactions that 

play crucial roles in tumorigenesis, tumor-immune cell interactions, metastasis, and other 

processes. 

One way that immune-cancer cell interactions can be monitored is through split luciferase 

reporters. Proximal cells expressing the split constructs drive complementation, producing a 

functional luciferase and light emission (Figure 5.1A). Although previous split versions of blue-

emitting luciferases have been successfully developed to monitor cell contact, they cannot be 

easily translated in vivo [4]. These probes do not emit sufficient levels of red photons for deep 

tissue imaging. Initially I sought to address the need for more red-shifted light by creating a split 

Antares probes (Figure 5.1C,B) [5]. Antares is a luciferase constructs that harness bioluminescence 

resonance energy transfer (BRET) to red-shift the light emission and improve the sensitivity of 

deep tissue imaging. Antares consists of a central Nluc with two CyOFP fluorescent proteins that 

red-shift the original blue light emitted by Nluc in the presence of its substrate [5] (Figure 5.1C 

top panel). The Antares construct enables BRET and results in the 460 nm wavelength of light 

emitted by Nluc to red-shift, emitting light at 584 nm, making Antares an attractive option for deep 

tissue imaging [5].  

My initial approach involved developing split Antares constructs that when held in close 

proximity, the split fragments can recombine to form a functional enzyme (Figure 5.1B). By 
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creating split Antares constructs tethered to membrane receptor-ligand pairs, I aimed to track 

cellular interactions in deep tissues. I first split Antares through Nluc with CyOFP proteins on 

either side of the fragments. The smaller portion of the split Nluc was denoted as SmBit(CNluc)-

CyOFP and the larger portion of the split Nluc LgBit(NNluc)-CyOFP. Complementation of the two 

split Antares components through the split SmBit and LgBit would produce the red-shifted light 

[5]. I used GIBSON assembly and standard PCR protocols to create the split Antares reporters 

(Figure 5.1C) and the split Antares – tethered reporters. I used CRISPR-Cas9 editing technology 

to transfect the various split Antares fragments into cell lines. Interactions of the two split-

expressing cells would facilitate the production of red light upon cell contact, and thus enable 

sensitive imaging of cellular interactions. I hypothesized that the BRET-based technology in split 

reporter constructs utilizing Antares would enable improved, macroscopic imaging of cell-cell 

interactions. Close cellular contact of the split reporter was thought to produce a functional enzyme 

capable of BRET, resulting in red-shifted light emission which increases imaging sensitivity and 

tissue penetrance. 

Split Antares reporters were successfully created and shown to produce sufficient signal in 

HEK-293T cells upon complementation (Figure 5.1D). HEK-293T cells expressing either 

SmBit(CNluc)-CyOFP or LgBit(NNluc)-CyOFP fragments were used as controls. To identify 

maxiumal light emission with the split Antares system, HEK-293T were then co-transfected with 

both SmBit(CNluc)-CyOFP and LgBit(NNluc)-CyOFP splits and plated in 96-well plates at 

increasing cell concentrations. Total flux (open filter) and red-shifted light >694 nm were 

measured in radiance after furimazine addition to each well. Gratifyingly, increasing the number 
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of co-transfected SmBit(CNlu)-CyOFP and LgBit(NNlu)-CyOFP-expressing cells resulted in an 

increase in light emission.  

Having verified 

complementation, I next 

investigated membrane-bound 

and secreted variants for 

monitoring cell contact [4]. To 

enable in vivo monitoring of cell 

interactions, I developed 

tethered-versions of the split 

Antares reporters using 

GIBSON assembly and standard 

PCR protocols (Figure 5.1B). I 

used CRISPR-Cas9 editing 

technology to transfect the 

various CD40 receptor or CD40 

ligand split Antares fragments 

into HEK-293T cell lines. Early 

in my efforts, I identified that 

split Antares tethered to CD40 

ligands had difficultly secreting 

from the cells (data not shown). 
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Figure 5.2. CD40 receptor linked to SmBit(CNluc)-CyOFP 
could be secreted to the membrane cell surface. (A) HEK-
293T stably expressing CD40 receptor linked SmBit(CNluc)-
CyOFP imaged with stably expressing LgBit(NNluc) (CD8LS 
secreted) cells emitted light. Light emission was observed 
upon addition of exogenous SmBit(CNluc) to stably expressing 
HEK-293T cells secreting LgBit (CD8LS). Light emission 
was observed upon co-culturing CD40 receptor linked 
SmBit(CNluc)-CyOFP cells with cells secreted LgBit(NNluc) 
and was brighter than the addition of exogenous SmBit(CNluc) 
to LgBit(NNluc) expressing cells. Light emission was observed 
after media transfer from HEK-293T cells secreting 
LgBit(NNluc) to HEK-293T cells expressing CD40 receptor 
linked SmBit(CNluc)-CyOFP. (B) Confocal images of CD40 
receptor bound SmBit(CNluc)-CyOFP cells (imaged with 
membrane stain and CD40 receptor antibody) showed co-
imaging on cell surface. Addition of exogenous LgBit(NNluc) 
produced light.  
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Split Antares reporters without CD40-ligands were created simultaneously to mitigate this issue. 

 

The split Antares probes linked to CD40 receptor were identified as being fully and 

functionally expressed on the cell surface (Figure 5.2, 5.3, and 5.4). Contact was assessed through 

luciferase light emission using the IVIS imaging system. Cell localization and secretion of the split 
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Figure 5.3. HEK-293T cells stably expressing CD40 receptor linked to SmBit(CNluc)-
CyOFP imaged with LgBit-CyOFP (secreted) cells did not have a significant increase in 
light emission. (A) Exogenous LgBit(NNluc) added to CD40 receptor linked to SmBit(CNluc)-
CyOFP emitted light. Exogenous SmBit added to LgBit-CyOFP (secreted) cells did not emit 
light. Media transfer from LgBit(NNluc)-CyOFP (secreted) cells to CD40 receptor linked 
SmBit(CNluc)-CyOFP cells showed no light emission showed no light emission. Co-culturing 
CD40 receptor linked SmBit(CNluc)-CyOFP cells and LgBit(NNluc)-CyOFP (secreted) cells 
showed no light emission. Co-transfecting HEK-293T cells with CD40 receptor linked 
SmBit(CNluc)-CyOFP and LgBit(NNluc)-CyOFP (secreted) constructs produced light emission. 
(B) Confocal microscopy also concluded that LgBit(NNluc)-CyOFP could not be secreted by 
cells. 
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constructs were assessed through confocal microscopy imaging and co-localization with cell 

membrane stains, internal transport vesicles, or CD40-flourescently labeled conjugated antibodies 

(Figure 5.2B, 5.3B, 5.4B). 
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Figure 5.4. CD40 receptor linked to LgBit(NNluc)-CyOFP could not be secreted out of cell. 
(A) Light emission was tested for HEK-293T cells stably expressing CD40 receptor- 
LgBit(NNluc)-CyOFP bound to the membrane with HEK-293T stably expressing secreted 
SmBit(CNluc)-CyOFP cells. No significant light emission observed when CD40 receptor- 
LgBit(NNluc)-CyOFP membrane bound cells were co-cultured with SmBit(CNluc)-CyOFP 
secreting cells. No significant light emission observed upon media transfer of SmBit(CNluc)-
CyOFP secreting cells to CD40 receptor-LgBit(NNluc)-CyOFP membrane bound cells. No 
significant increase in light emission observed with addition of exogenous SmBit(CNluc) added 
to CD40 receptor linked LgBit(NNluc)-CyOFP cells. Light observed for exogenously added 
LgBit(NNluc) to SmBit(CNluc)-CyOFP secreting cells. Light observed in HEK-293T cells co-
transfected HEK-293T cells with CD40 receptor-LgBit(NNluc)-CyOFP bound to the membrane 
and SmBit(CNluc)-CyOFP secreted constructs. (B) Confocal images of CD40 receptor bound 
LgBit(NNluc)-CyOFP cells (co-imaged with  membrane stain, CD40 receptor antibody) did not 
show co-localization of LgBit(NNluc)-CyOFP to the membrane. Instead LgBit(NNluc)-CyOFP 
CD40 receptor was observed to be inside of cell, possibly in secretory compartments of the cell.   
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Although the split Antares constructs were successful at detecting cellular interactions in 

vitro, the percentage of red-shifted photon output that was achieved was not sufficient for in vivo 

applications. To improve the applicability of the split luciferase technology to study cellular 

interactions, we sought alternative red-shifted luciferases that were better suited for in vivo use. I 

selected a red-shifted mutant of firefly luciferase (Akaluc) recently reported to give off >650 nm 

light [6]. Akaluc is among the most sensitive bioluminescent probes reported to date, and has been 

successfully applied for imaging nerve cells in live marmosets. I aimed to create a split version of 

Akaluc that is capable of reconstituting in the extracellular environment to visualize cellular 

contacts relevant to cancer biology (Figure 5.5A).  
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Figure 5.5. Development of novel split luciferase to image cellular interactions in deep 
tissue. (A) Akaluc is an evolved variant of Fluc (orange structure). Split versions of Akaluc 
were created based on a model of Fluc. (B) DNA constructs for Akaluc (amino acids 1-550), 
along with initially targeted split proteins (split A and split B). Amino acids 436 lies in flexible 
linker regions between the 2 termini, as assigned with comparison to Fluc. 

Akaluc (full length) 
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Constructs comprising the Akaluc fragments were then generated via overlap PCR and 

confirmed via sequencing (Figure 5.5B). Split fragments were tethered to either a CD40 receptor 

or ligand to drive complementation (Figure 5.6). Successful complementation of split Akaluc 

fragments resulted in the production of light upon substrate administration. This light was 

measured and used to evaluate the split fragment sites. No crystal structure of Akaluc was available 

to assist in identifying feasible split sites. Since Akaluc is a mutant of Fluc [6], the Fluc crystal 

structure and known successful split Fluc reporters were used to guide the selection of targets [7, 

8]. Based on this previous data [9], I hypothesized that Akaluc fragments that overlapped would 

produce increased light emission compared to non-overlapping fragments. It is likely that the 

overlapping regions promote stabilization and complementation of the assembled protein. Thus, 

the designed split fragments incorporated varying degrees of overlap to identify the ideal 

combination (Figure 5.5B).  

 

Light output from full length Akaluc-expressing cells was used as a benchmark to assess 

the various split Akaluc fragments. All Akaluc plasmids were designed with a direct fusion to a 

fluorescent protein for future ex vivo analysis. Total flux (photons/second) from HEK-293T cells 

co-transfected with both fragments was measured along with the full length protein after 

AkaLumine addition (Figure 5.7). As mentioned in Chapter 1, terrestrial luciferase-luciferin pairs 

A

B

Cell 2
CD40
receptor

Cell 1CD40
ligand

+ Akalumine

Figure 5.6. DNA plasmid design of CD40 receptor-ligand split Akaluc fragments. DNA 
constructs for imaging cellular interactions comprise Akaluc splits tethered to CD40 receptor or 
ligand, a linker region, and a cellular secretion CD8 leader sequence (CD8LS). 
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require ATP for proper light emission (Figure 5.7 light blue bars). The possible effect that 

additional ATP could have on the light production of Akaluc splits was tested by adding two 1 

mM boluses of ATP (2 mM total) (Figure 5.7 dark blue bars). Preliminary results suggest that 

combinations of the split fragments can restore in bioluminescent signal, suggesting the feasibility 

of this approach (Figure 5.7). Split 8 produced the brightest total flux emission of 4.5x104 

photons/second compared to the dimmest splits (splits 4 and 5) producing 1x103 photons/second.   
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Figure 5.7. Light emission from CD40 receptor-ligand driven re-complementation of 
tethered split Akaluc fragments. Akaluc splits (A and B) for constructs 4 – 12 were co-
transfected into HEK-293T cells. Light emission upon AkaLumine and ATP (1x  = 1 mM total 
concentration) addition was measure for each split combination after 24 hours. Additional ATP 
(2x = 2 mM total concentration) was added and changes in light emission were measured and 
compared to the single dose of ATP. Split 8 was highlighted due to its high light emission 
(4.5x104 photons/second). Split 11 was highlighted due to its elevated light emission upon a 
second dose of ATP (7x103 photons/second). The construct design and overlap regions for both 
splits are noted below.  
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 Other interacting domains consisting of tightly binding proteins have been shown to 

promote complementation and light output of tethered split fragments [8]. For example, coiled 

coils are commonly used to facilitate connections (Figure 5.8) [4], in addition to the extracellular 

CD40 receptor/ligand pair. To investigate this possibility, I created a suite of plasmids that drive 

Akaluc complementation via coiled-coil interactions (Figure 5.8A). These splits are currently 

being examined in HEK-293T cells  (Figure 5.8B). The full characterization and functionality of 

these splits is an area of on going work. 

A

B

Figure 5.8. Coiled-coil drives re-complementation of split Akaluc fragments. (A) 
Schematic of split Akaluc A tethered to an APA coil and split Akaluc B tethered to a P3 
coil. (B) Graphical representation of cell secreting split A tethered to APA coils (cell 1) and 
split B tethered to P3 coils (cell 2). In close proximity, recombination of split Akaluc is 
facilitated and light emission is observed upon AkaLumine addition.  
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IV. Multicomponent BL imaging reporters to monitor changes in  immune cells during 

metastatic disease progression 

As explained in chapter 1, genetically encodable bioluminescent and fluorescent proteins 

can be used to monitor gene expression when driven under cell specific promoter [10]. These 

reporters provide a readout on gene expression through light emission in the targeted cell 

populations. Fluorescent-based versions of gene reporters have been incredibly useful for tracking 

gene expression of cancer-associated immune cells in vivo, particularly in regulatory T cells 

(Tregs) (Figure. 1.7) [11]. In order to better understand cancer-immune interactions, I have 

leveraged the multicomponent bioluminescent imaging platform to create immune-cell specific 

luciferase reporters. The work I outline below has become an on-going area of research in the 

laboratory.   

 

 

Figure 5.9. Monocytes are polarized into M1 (inflammatory) or M2 (anti-inflammatory)  
cells that have different effects on tumor growth or tumor suppression. 
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Previously described in 

Chapter 1, there are many different 

immune cells that can affect 

metastatic progression. 

Macrophages have been identified 

as key in promoting breast cancer 

progression [12]. In particular the 

MMTV-PyMT mouse model that 

has been used throughout this 

work is also an ideal model to 

study macrophage interaction 

during breast cancer metastasis 

[13]. Macrophage function is 

diverse and relies on cell surface 

expression in order to exert the 

proper effects to their surrounding 

environments. Macrophages have 

broad and complex functions in 

mediating response to metastatic disease progression [14]. Recent work has shown that 

macrophages function on a spectrum that still is not fully elucidated [15]. Currently, the 

standardized way to access macrophage function has been simplified to examining the two polar 

extremes of the immune cell’s polarization via M1 and M2 phenotypes (Figure 5.9) [16]. M1 

polarized macrophages exert a pro-inflammatory response generally thought to be beneficial for 

A B

Figure 5.10. Macrophage M1 and M2 polarization 
signatures. (A) M1 macrophages are known to be pro-
inflammatory, expressing NF-KB and NOS2. They effect 
their local environment through the section of cytokines, 
such as IL6. (B) M2 macrophages are known to be 
immunoregulatory (anti-inflammatory), expressing 
ARG1 and STAT6. They affect their local environments 
through the sections of cytokines, such as IL-4.  



 

168 

 

attacking and clearance of pathogenic targets (Figure 5.10A). They have traditionally been 

associated with NF-KB and NOS2 signaling. M2 polarized macrophages exert an anti-

inflammatory response [16]. These are the second wave of macrophages generally after pathogens 

are cleared to enable tissue healing (Figure 5.10B). They have traditionally been associated with 

Arg1 and STAT6 signaling.  

Prolonged inflammatory signals are damaging to tissues. Normally M2 macrophages are 

recruited or polarized to alleviate inflammation and initiate the appropriate angiogenesis, nutrient 

transfer, and tissue regeneration [15]. In the context of metastatic disease progression, tumor cells 

that are not initially cleared by the immune system can manipulate the macrophages to promote 

metastatic growth [14].  In this situation, growing tumor cells can exert a pronounced and 

prolonged inflammatory signal that falsely triggers M2 macrophages that end up assisting tumor 

growth and suppressing anti-tumor immune cells (Figure 5.9).   

Therefore, I focused the initial immune reporter designs to study M1 and M2 polarization 

of macrophages by constructing gene reporters using well vetted and commercially available 

plasmids (Figure 5.11A).  NF-KB and NOS2 gene reporters were selected to monitor M1. Arg1 

and STAT6 were selected to monitor M2 polarization. Promoters drive expression of different  
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luciferases fused to different fluorescent proteins that allow easy FACS and ex vivo analysis  

(Figure 5.11A). The initial design of the gene reporters using the CRISPR backbone did not 

produce enough light emission from preliminary in vitro experiments. To improve photon output, 

I changed the design of the reporters to be inserted instead via lenti-viral transduction. The designs 

of these plasmids have been completed. Translating these constructs to test in vitro and continue 

in vivo is an ongoing area of research in the lab (Figure 5.11B). We plan to continue my work 

A

B

Arg1

NOS2

M2 macrophage

M1 macrophage

pLenti backbone
Enhancer Promoter

Cell Specific

Luciferase linker Fluorescent Protein

Target Gene

Cashew Linker mNeptune

Pecan Linker eGFP

Akaluc Linker BFP

light emitted from
orthogonal lucs

Figure 5.11. Schematic of macrophage specific promoter design. (A) Arg1 (M2 macrophage) 
and NOS2 (M1 macrophage) promoters drive the expression of orthogonal luciferases linked 
with spectrally distinct fluorescent proteins. (B) Graphic diagram of lentiviral transfection of 
reporters to transduce monocytes or RAW cell lines. M2 and M1 macrophages are derived after 
stimulation. Cell specific promoters are identified through the light emitted from orthogonal 
luciferases. 
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studying immune cell function in metastatic disease by imaging changes in cellular phenotypes 

using bone marrow derived macrophages.  

 

I aimed to expand on the ability to monitor immune cells by creating novel promoter driven 

plasmids that monitor T cell function.  As stated in Chapter 1, T cells are another area of interest 

in cancer biology [17]. Creating luciferase driven gene reporters to investigate CD8+ T cell and 

regulatory T cell (Tregs) function is an ongoing area of research that will continue on with the 

work I laid out in my thesis. To this end I have created reporters with sequences from T cell 

populations (Figure 5.12). These constructs are exciting because they are first ever created to 

monitor T cell exhaustion and Tregs. Using bone marrow flushing I extracted the gDNA to use as 

a template for these plasmids. These constructs are the first ever to be made specifically with FVB 

mouse background codon optimized DNA. Currently, most commercially available plasmids are 

limited to compatibility with DNA from Black 6 mice. Black 6 mice are not ideal for imaging. 

Instead, white mice such as FVB backgrounds have been traditionally used for imaging purposes 

and serve as the background for the MMTV-PyMT mouse model (outlined in Chapters 2, 3, and 

FoxP3

CD8

regulatory T cell

CD8+ T cell

pLenti backbone
Enhancer Promoter

Cell Specific

Luciferase linker Fluorescent Protein 

Target Gene

Cashew Linker mNeptune

Pecan Linker eGFP

Akaluc Linker BFPTOXexhausted CD8+ T cell 

Figure 5.12. Schematic of T cell specific promoter driven reporters. FoxP3 (regulatory T 
cells), CD8 (CD8+ T cells), TOX (exhausted CD8+ T cell) promoter and enhancers were 
designed to drive the expression of different orthogonal luciferases fused to fluorescent proteins 
to monitor cell populations. 
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4). By creating the initial sequences from the other immune cell reporters using FVB mouse-

derived DNA, this allows for easy translation of the reporters into the MMTV-PyMT mouse 

models and existing multicomponent imaging cell lines that were described in Chapter 4. The 

combined MMTV-PyMT luciferase-expressing cancer cell line and immune reporter animal 

models could be achieved by using monocyte transfer or bone marrow transplantations. The 

creation of a transgenic MMTV-PyMT metastatic model (outlined in Chapters 3-4) in combination 

with the split luciferase reporters and the orthogonal immune driven reporters outlined here could 

be a powerful tool to monitor tumor-associated immune cell changes during cancer progression 

(Figure 5.13). Such a transgenic mouse would significantly impact on our understanding of disease 

progression by providing a comprehensive platform to track changes in immune cell behavior in 

the tumor microenvironment and in different metastatic tissue-environments (Figure 5.13).  

 

 

 

Figure 5.13: Overview of future possible transgenic mouse to monitor immune cells 
and cancer progression 
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V. Conclusions 

In this chapter I presented my efforts developing new imaging probes to track cell-to-cell 

contact and cell-specific gene reporters. Cell contacts can be visualized using split luciferase 

reporters that recombine in close proximity to emit light. Split luciferase fragments were tethered 

to the cell surface or with coil-coils to facilitate recombination. The split luciferase reporters were 

able to read out on cellular interaction in vitro. However, additional work is needed to improve 

signal output for in vivo use.  I also showed my preliminary work creating cell specific promoter 

driven luciferase gene reporters. These reporters could allow monitoring of immune cell changes 

during disease progression. This is an ongoing area of research in the laboratory. The combination 

of these probes could be used to create a transgenic cancer mouse model that leverages our 

multicomponent bioluminescent imaging platform.  
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MATERIALS AND METHODS 

 

Reagents 

All reagents purchased from commercial supplies were of analytical grade and used without further 

purification. 4'-BrLuc was prepared and used as described previously described in Ionkina, et al. 

Rapid Multicomponent Bioluminescence Imaging via Substrate Unmixing. ACS Chem Biol, 2021. 

16(4): p. 682-690. Pecan-eGFP-AAVS1, Cashew-mNeptune-AAVS1, and Anatres-AAVS1, and 

Akaluc-TagBFP-AAVS1 were used as described in Ionkina, et al. Rapid Multicomponent 

Bioluminescence Imaging via Substrate Unmixing. ACS Chem Biol, 2021. 16(4): p. 682-690. 

 

General bioluminescence imaging 

All assays were performed in black 96-well plates (Grenier Bio One). Plates containing 

luminescent reagents were imaged in a light-proof chamber with an IVIS Lumina (Xenogen) CCD 

camera chilled to –90 °C. The stage was kept at 37 °C during the imaging session, and the camera 

was controlled using Living Image software. For all assays, exposure times were set to 1–180 s, 

and data binning levels were set to medium. Total flux values for regions of interest were analyzed 

using Living Image software. Integrated pixel values were analyzed using ImageJ (Installed under 

the FIJI package, NIH). The data were analyzed using GraphPad Prism (version 9.0 for Macintosh, 

GraphPad Software).  

 

Cloning 

Plasmids were cloning and GIBSON assembly were previously noted in Ionkina, et al. Rapid 

Multicomponent Bioluminescence Imaging via Substrate Unmixing. ACS Chem Biol, 2021. 16(4): 
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p. 682-690. Immune cell specific enhancer/promoter plasmids were purchased from Addgene. 

Primers design specifications were created using Addgene sequencies.  

mouse ARG1 promoter/enhancer (addgene plasmid 34571) 

human IL2 Promoter (addgene plasmid 10959) 

pGL2-NOS2Promoter-Luciferase (addgene plasmid #19296) 

pGL3-E-cadherin promoter (addgene plasmid #61798) 

 

Mammalian cell culture 

HEK-293T and DB7 cells stably expressing Pecan-eGFP, Cashew-mNeptune, or Akaluc-BFP 

were derived via CRISPR-mediated gene insertion as previously described [7].  Split Antares 

constructs were designed using previous described cloning methods [4]. Split Antares reporters 

were transfected into cells via CRISPR-mediate gene insertion.  Conflocal in images were obtained 

using previously detailed methods [4] and (Ionkina et al., (2017) Frontiers in Oncology. 7,94).  

Transfected cells were then treated  with  puromycin  (2  μg/mL)  and FACS sorted  at  the  Institute  

for  Immunology  Flow Cytometry Core (UCI). All cells were cultured in DMEM (Corning) 

supplemented with 10% (v/v) fetal bovine serum (FBS, Life Technologies), penicillin (100 U/mL), 

and streptomycin (100 µg/mL). Stably expressing luciferase cells were maintained under 

puromycin selection (2 µg/mL) to ensure gene incorporation was preserved. Cells were maintained 

in a 5% CO2 water-saturated incubator at 37 °C. Cells were serially passaged using trypsin-EDTA 

(0.25% in HBSS, Gibco). 
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Substrate unmixing analysis  

Substrate unmixing experiments were designed as previously described in Ionkina, et al. Rapid 

Multicomponent Bioluminescence Imaging via Substrate Unmixing. ACS Chem Biol, 2021. 16(4): 

p. 682-690.  Substrate unmixing was conducted with MATLAB R2020a (See Supplementary 

Discussion).  Luminescence images containing the raw CCD counts (as TIFF files) were loaded 

into MATLAB. Images were subjected to a 2-pixel median filter (using the medfilt2 function with 

a 5x5 neighborhood around the corresponding pixel). Next, the signal at each pixel was normalized 

to lie between 0 and 65536 (the maximum value that can be stored in a 16-bit image). As a result, 

the brightest pixel in each image had a value of 65536, and the dimmest had a value of 0. Regions 

of interest (ROIs) were generated by identifying the image coordinate of the reference well and 

input dimensions. Once assigned, the MATLAB algorithm was run to perform the unmixing. After 

unmixing, text images were imported into ImageJ (installed under the FIJI package). Integrated 

pixel values for regions of interest were analyzed using the “Measure” tool. Pseudo colors were 

assigned with the “Merge Channels” tool.  

 

Mammalian cell analysis of luciferase mutants  

DB7 or HEK-293T cells stably expressing luciferases were added to black 96-well plates. Cells 

were treated with a luciferin solution (10 µL, of 100 µM or 250 uM for D-luc, 4ʹ-BrLuc, furimazine 

and AkaLumine). Plates were imaged and analyzed as described above.   
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CHAPTER 6: Conclusions and Future Directions 

 

Cancer metastases are driven by complex interactions among tumor cells, immune cells, 

and other cell types [1]. Cancer models and novel imaging methods to noninvasively visualize 

specific cell types and cellular interactions could improve our ability to monitor disease 

progression in vivo [2]. In this dissertation, I have developed imaging probes and cancer models 

to enable a more detailed examination of tumor heterogeneity and metastatic disease.  

In Chapter 2, I generated new methods to enable multicomponent bioluminescence 

imaging in vivo. This platform is built on engineered luciferases that use modified small molecule 

luciferins. Using CRISPR-Cas9 technology, I created an array of cancer cell lines expressing the 

requisite luciferases. The gene editing platform has since been used to create multiple engineered 

cell lines for multiplexed bioluminescence imaging. I used the cell lines to demonstrate rapid 

multicomponent bioluminescent imaging via sequential substrate administration in vitro and in 

vivo. By administering luciferins from dimmest to brightest, we were able to “layer on” the signal 

in rapid succession. The compiled snapshots were unmixed and false colored to produce a 

composite image.  Using this method, we were able to achieve dual component bioluminescence 

imaging with a total acquisition time of 30 min, compared to the >24 h needed with traditional 

imaging protocols. 

Building on the initial results, I aimed expand the number of probes that could be imaged. 

I specifically focused on developing a platform for unmixing three discrete luciferase-luciferin 

pairs. I achieved rapid triple-component in vitro imaging using both Antares (with its luciferin, 

furimazine) [3] and Akaluc (with its luciferin, AkaLumine) [4]. This is an ongoing area of research 
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in our lab, with initial screenings performed in bacterial lysate and mammalian cells. Although 

results from these in vitro experiments were promising, the initial conditions did not translate in 

vivo. I believe that the success of expanding our imaging platform in future animal experiments 

will require careful planning of additional parameters. These parameters include using more red-

shifted tissue penetrant probes that are enhanced for brightness. In addition, future experiments 

should address luciferin solubility issues to ensure compatibility with the biological conditions 

required for animal imaging. Substrate bioavailability and stability in vivo should also be 

considered. 

Throughout the multi-component imaging experiments, there were problems with the 

stability of the firefly luciferase mutants, Pecan and Cashew, in various cell lines. Mutations arose 

that resulted in diminished substrate preference among the luciferases, complicating the imaging 

readout. Functional luciferase-expressing cells were re-derived using CRISPR plasmids, and 

sequencing of gDNA from the cells confirmed proper transgene integration. However, sporadic 

mutations continued to arise. For future studies, it will be critical to monitor the stability of these 

luciferases closely by frequently sequencing the cell lines and the plasmid stocks. More assistance 

on such labor intensive in vivo experiments would help catch these issues.  

In Chapter 3, I established an array of organ-derived metastatic cell lines harvested from 

the MMTV-PyMT mouse model. Transcriptomic analyses were performed to examine the effects 

of cell heterogeneity on metastases and organ tropism. Overall, the suite of clonal isolates provided 

a detailed depiction of cancer progression. Although we performed a detailed analysis of the 

metastatic cells lines, more could be learned with single cell sequencing. Such analyses were 

performed on three cell populations (lung low, lung high, and lymph node high). It would be 

worthwhile to expand these analyses to include MFP and lymph node low cell populations. By 
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obtaining single cell data from these additional cell lines, I believe we could expand the pseudo-

time projections (Figure 3.13) to learn more about intratumoral heterogeneity and metastatic 

progression (Figure 3.14 - 3.15). The additional data recovered from these cell lines could further 

provide more information on cancer stem cell populations (Figure 3.16). Monitoring cancer stem 

cell populations throughout metastatic progression would be especially interesting and could 

bolster the stem cell hypothesis outlined in Chapter 3.  

The sequencing analyses featured in Chapter 3 provide a treasure chest of gene expression 

data that could be used for further experiments. As I have outlined in Chapter 5, the expression 

data can guide the creation of metastases-specific gene reporters, that in combination with our 

multicomponent imaging platform, would allow the monitoring of disease progression with 

unrivaled specificity. These reporter constructs would be primed to use in conjunction with the 

MTMV-PyMT mouse model for in vivo imaging. Such reporters would also be useful for creating 

a transgenic mouse model to enable a comprehensive investigation of cancer disease progression 

in vivo.  

In Chapter 4, I used the suite of MMTV-PyMT metastatic cancer cells in conjunction with 

the imaging probes in Chapter 2 to create a multicomponent bioluminescence imaging platform to 

study cancer progression. I validated that these cells are capable of recapitulating disease 

progression in mice and are a valuable resource for future imaging studies. My work also was 

essential for creating an improved algorithm to unmix multi-component bioluminescent signals 

using substrate preference. With the cell lines, I aimed to expand the imaging platform for triple 

component imaging. First, I used Antares along with its substrate, furimazine [3]. Antares is a 

BRET construct with two fluorescent proteins flanking NanoLuc. The MMTV-PyMT cells 

expressing Antares exhibited a difference in growth rate compared to other firefly derived 
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luciferase-expressing cells. This decrease in cellular growth of Antares-expressing cells became 

exponentially evident when the cells were injected in vivo. Tumors expressing Antares formed far 

slower and grew much smaller in volume compared to the other mutant luciferase-expressing 

tumors. In addition, the corresponding luciferin substrate, furimazine, had bioavailability issues 

and auto-oxidation problems when translated in vivo [11, 12].  

A key experiment that I performed (Figure 4.6) was to benchmark the bioluminescent 

signals and cellular ratios injected in vivo to the fluorescence readout for tumor containing Antares-

CyOFP, Pecan-eGFP, and Cashew-mNeptune cells. Tumors were extracted and processed into 

single cell suspensions for flow cytometry analysis. I processed the 18 tumors by hand. Future 

renditions of this experiment would benefit from using a homogenizer machine to retain more of 

the tumor cells and limit the loss of the sample during manual processing. In addition, I performed 

the entire experiment and processing of the 18 tumors alone. Therefore future benchmark studies 

would benefit from additional help and assistance. As mentioned before, tumor volumes and cell 

growth differed between the type of luciferase expressed in the cell lines (Table 4.1). This 

variability made processing the small tumors very difficult. Therefore, it would be prudent to allow 

the tumors to grow to larger volumes before starting the experiments. This would improve the 

processing of the tumors by providing more material to use for the downstream ex vivo analyses. 

Nevertheless, the benchmarking results and flow cytometry analysis performed in Chapter 4 

showed promise. This experiment should be repeated in the future and should take into account 

the amendments that I have outlined.  

From the results in this dissertation, it is clear that Antares is not ideal for multiplexing 

with our engineered insect luciferases in mice. I identified Akaluc and its substrate, AkaLumine, 

as a better alternative for orthogonal imaging in vivo [4]. Conditions to best dissolve and administer 
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AkaLumine for multi-component experiments were identified (Figure 4.18), in line with previous 

observations [4]. 

As we expand the scope of in vivo multicomponent experiments, I anticipate that 

luciferase-expressing cells will be imaged at different depths and through tissues. The current 

experiments were all performed at relatively shallow depths with subcutaneous injections. If future 

experiments aim to monitor cellular division or migration throughout the course of cancer 

progression, tissue thickness will become an added variable. In these instances, light emitted from 

luciferase-expressing cells could be lost due to the lack of bioluminescent light penetration. This 

could make it difficult to correlate the light emission back to the number of cells injected, as 

obscured light emission would result in artificially low counts for light-emitting cells. Further 

experiments could address this issue by using additional red-shifted probes that enable more 

photons to escape thick tissues. Newer and more sensitive imaging equipment could also improve 

detection thresholds. Some imaging machines allow animals to be visualized from all angles versus 

just the one-dimensional acquisition of our current set up. Finally, improvements to our unmixing 

algorithm that take into account cellular growth kinetics and light scattering properties of different 

tissues (such as fats, blood, bone, etc.) would be beneficial. An ideal unmixing algorithm could 

predict these variables and normalize the final image. 

In Chapter 5, I discussed my preliminary efforts creating imaging probes to visualize cell 

contact and track changes in cell profiles. Although split luciferase reporters were able to monitor 

cell contact in vitro (Figure 5.1 -5.4) [5], I do not believe the current reporters are suited for in vivo 

use owing to low photon outputs. Future work in this area should aim to improve photon 

production from the recombined splits (Figure 5.7) [6]. I also outlined the ideas and methods to 

generate cell specific gene reporters capable of monitoring changes in cell profiles (Figure 5.11 



 

182 

 

and 5.12). These probes could be very useful in the context of monitoring immune cell changes, 

such as macrophage polarization and T cell states [7, 8]. I believe that the biggest obstacle for 

future implementation of this technology will be selecting the correct promoters that will provide 

specific signal [9, 10]. Achieving bright signal to distinguish between different cellular states will 

also be a challenge. Increasing the copy number of the gene reporter along with using bright-red-

shifted luciferases could help address this problem.  
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