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Abstract

Data visualizations are powerful tools for communicating
quantitative information. While prior work has focused on how
experts design informative graphs, little is known about the in-
tuitions non-experts have about what makes a graph effective
for communicating a specific message. In the current study,
we asked participants (N=398) which of eight graphs would
be most useful for answering a particular question, where all
graphs were generated from the same dataset but varied in how
the data were arranged. We tested the degree to which partic-
ipants based their decisions on sensitivity to how easily other
participants (N=542) would be able to answer that question
with that graph. Our results suggest that while people were
biased towards graphs that were at least minimally informa-
tive (i.e., contained the relevant variables), their decisions did
not necessarily reflect sensitivity to more graded but systematic
variation in actual graph comprehensibility.
Keywords: data visualization; graph production; graph com-
prehension; communication; pragmatics; design

Introduction
From displays of predicted weather developments, migra-
tions of bird populations, to consumer market trends, data
visualizations are a ubiquitous tool for communicating pat-
terns in quantitative data. Their power to do so arises from
their ability to distill complex information into a format
that can be readily apprehended in visual form (Franconeri,
Padilla, Shah, Zacks, & Hullman, 2021; Tversky, 2001; Card,
1999; Bertin, 1983; Tufte, 1983). Critically, different data
visualizations—even when generated from the same underly-
ing dataset—can be used to highlight different kinds of infor-
mation depending on the communicative context. For exam-
ple, a single bar plot can be used to aggregate many observa-
tions to convey the exact magnitude of their mean. But mul-
tiple bar plots across several panels might be used to convey
variation in this mean across groups within the same dataset.

Our ability to judge which plot to make depending on
what information is most relevant is critical for effective
communication using graphs and is so important that these
judgments continue to motivate the development of practical
guidelines for effective visualization design (Kelleher & Wa-
gener, 2011; Saket et al., 2018; Ajani et al., 2021). These
guidelines are often informed by our empirical understanding
of constraints on human perception and information process-
ing (Kosslyn, 1989; Shah & Hoeffner, 2002; Cleveland &
McGill, 1987; Franconeri et al., 2021; Rensink & Baldridge,
2010; L. M. Padilla, Creem-Regehr, Hegarty, & Stefanucci,

2018), as well as individual differences in visualization liter-
acy (Mansoor & Harrison, 2018; Börner, Bueckle, & Ginda,
2019; Boy, Rensink, Bertini, & Fekete, 2014; Lee, Kwon,
Yang, Lee, & Kim, 2019).

However, while constraints on graph comprehension are
often the target of empirical study, graph production has
rarely been empirically investigated in non-practitioners
(Grammel, Tory, & Storey, 2010). Nonetheless, genuine visu-
alization literacy arguably encompasses both capacities: the
ability to interpret a graph and the ability to produce an in-
terpretable graph. Graph production itself depends on two
further competencies: the ability to generate graphs and the
ability to evaluate the degree to which a graph is informa-
tive. While the former poses some practical barriers—e.g.,
because of the technical requirements of actually creating a
plot of real data—if that requirement is lifted, then it becomes
feasible to investigate the evaluative judgments that are inte-
gral to graph production, and thus also visualization literacy
in the broader population.

Coordinated investigation of both comprehension and pro-
duction has long been a cornerstone of the study of linguistic
communication (Pickering & Garrod, 2013; Clark & Hecht,
1983). Over the past several years, there have been remark-
able advances in our understanding of how communicative
goals and context impact the production and interpretation of
linguistic utterances (Degen, Hawkins, Graf, Kreiss, & Good-
man, 2020; Kao, Wu, Bergen, & Goodman, 2014; Goodman
& Frank, 2016; Franke & Jäger, 2016; Grice, 1975). To-
gether, this work has provided converging evidence that a
core component of natural language use is the ability to de-
ploy mental models of other people to disambiguate mean-
ings (i.e., during comprehension) and to generate expecta-
tions about what will be informative to other people (i.e.,
during production). More recently, these insights have been
successfully extended to explain key aspects of how people
produce informative pictorial representations in real-time vi-
sual communication tasks (Fan, Hawkins, Wu, & Goodman,
2020), suggesting that these principles may generalize be-
yond the domain in which they were originally developed.

The goal of the current paper is twofold: (1) to measure
people’s judgments about the informativeness of a graph for
answering a specific question; and (2) to test the degree to
which these judgments reflect sensitivity to how easily other
people are actually be able to answer that question with that
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Figure 1: (A) Graph selection task. Example question prompt and corresponding graphs. Participants selected 1 of 8 graphs to
help another person answer the prompted question as quickly and accurately as possible. For this example question, best graphs
are predicted to support fast and accurate comprehension. Informative graphs contain the minimal information necessary to
answer, whereas uninformative ones do not. (Graphs are color-coded for illustrative purposes of this figure, but were not color-
coded in the actual task.) (B) Graph comprehension task. Viewers provided numerical answers to the same question using a
corresponding graph.

graph. Towards this end, we conducted a graph selection
task in which people decided which of eight graphs would
be most useful for answering a particular question (e.g., “On
average, how much higher are ratings of Drama movies com-
pared to Comedy movies?”), where all graphs were gener-
ated from the same dataset but varied in how the data were
arranged (Fig. 1A). Next, we conducted a graph comprehen-
sion task to obtain estimates of how well people could ac-
tually answer questions about those data visualizations. We
then asked to what degree the graphs that best supported
graph comprehension were also those that participants in the
graph selection experiment were most likely to choose, and
vice versa. We also included two heuristic baselines: first,
one in which participants in the graph selection experiment
chose graphs that were minimally informative (i.e., contained
the relevant variables that were mentioned in the question)
with equal probability; and second, one in which participants’
choices reflected indifference between the graph options pro-
vided (Fig. 1B).

Hypotheses
Our aim was to evaluate how communicative goals guide how
people think about what makes data visualizations informa-
tive to others. To achieve this goal, we tested three specific
hypotheses:

Hypothesis 1: Audience-sensitivity If a person’s judg-
ments about data visualization design are sensitive to what
naı̈ve viewers may need to answer specific questions, we pre-
dicted that people would have strong preferences for data vi-
sualizations based on a presented question that they are tasked
to help someone else answer (Fig. 2A, left). More concretely,
we hypothesized that they would prioritize two goals: first, to
identify graphs containing the minimal information necessary

to answer a presented question (e.g., although a graph may be
generated from an appropriate dataset, it may not contain all
the information necessary to answer a specific question about
it if a specific variable is not plotted); and second, among
those “informative” graphs, to selectively prioritize those that
would help viewers quickly and accurately interpret them.

With respect to this second hypothesis, we predicted that
people would prioritize graphs that would help reduce the
cognitive effort needed to extract information from them. For
example, even if an informative graph may present all the
information necessary to answer a specific question, it may
present that information spread across multiple panels. Here,
we hypothesized that this presentation style would be more
cognitively taxing to a viewer, who must perform additional
mental aggregation if asked to compare information across
panels. Additionally, we hypothesized that graphs present-
ing unorganized information would be more cognitively chal-
lenging to extract highest and lowest values, relative to those
that were organized by ascending numerical values. We for-
malized this hypothesis by developing a computational model
of the graph designer that is more likely to select graphs that
will lead to better comprehension by a naı̈ve viewer.

Hypothesis 2: Minimal informativity to audiences On
the other hand, if people are not sensitive to the degree of cog-
nitive effort required by a viewer to comprehend a graph, but
instead only consider whether a graph contains the minimum
information needed by naı̈ve viewers to answer specific ques-
tions about a graph (first goal of Hypothesis 1), we predicted
that people would largely ignore “uninformative” graphs that
omit relevant variables but would have uniform preferences
among the remaining “informative” graphs (Fig. 2A, middle
and left).
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Figure 2: (A) Schematic comparison of judgments predicted by each hypothesis. (B) Example question for each question type.

Hypothesis 3: Indifference to audiences However, if peo-
ple’s judgments are indifferent to any communicative goals
so long as a graph is generated from an appropriate dataset,
we predicted that they would randomly and uniformly select
from all presented graphs (Fig. 2A, right, middle, and left).

Methods

To systematically measure people’s preferences for different
data visualizations depending on their goal, we developed
a graph selection task to measure the range of preferences
that people have when trying to communicate specific infor-
mation to viewers in graph form. Next, to generate behav-
ioral predictions of our audience-sensitive model, we used a
graph comprehension task to assess how well naı̈ve viewers
could quickly and accurately answer questions about those
same graphs. To reduce potential unfamiliarity with differ-
ent types of data visualizations, we focused on bar graphs,
which are one of the most common data visualizations used
in education, STEM fields, and journalistic reporting. Ad-
ditionally, because prior research has suggested that focus-
ing learning on graphing software can lead to student errors
(Leonard & Patterson, 2004), we used an alternative-force
choice paradigm in our graph selection task in which partici-
pants were presented with pre-generated data visualizations.

Participants 398 participants (191 male; Mage = 39.6
years) completed a web-based graph selection task. We ex-
cluded data sessions from 3 participants who did not complete
the test trials and 7 participants who experienced technical
difficulties. Another 542 participants (275 male; Mage = 38.4
years) completed a web-based graph comprehension task. We
excluded data sessions from 6 participants who experienced
technical difficulties. All participants were recruited from
Prolific and provided informed consent in accordance with
our institution’s IRB.

Stimuli In order to generate a diverse stimuli set of bar
graphs, we selected 8 popular datasets from the MASS package

(Venables & Ripley, 2002). Each dataset contained both nu-
merical and categorical data and were preprocessed to consist
of two to four categories, so that the generated graphs would
be matched in approximate visual complexity. From each
dataset, we generated 8 bar graphs representing means by ma-
nipulating three commonly used parameters: (1) grouping in
one or multiple separate panels (i.e., faceting), (2) x-axis vari-
able, and (3) organization by ascending ordering of numerical
x-axis variables or by alphabetical ordering. Our total test set
thus consisted of 64 unique graphs. To avoid participants’
requiring more advanced statistical knowledge about error as
well as graph conventions in statistics, we did not include er-
ror bars. All bar graphs were gray-scaled to avoid irrelevant
aesthetic preferences introduced by colors. Eight additional
bar graphs were generated from the iris dataset for practice
trials.

For each dataset, we generated 6 corresponding questions
targeting different kinds of information (Fig. 2B). Half of the
questions could only be answered if a graph was faceted with
the correct variable on the x-axis, while the other half could
be answered if it was faceted, but was more effective ag-
gregated across facets, conditioned on it containing the cor-
rect variable on the x-axis. Additionally, we generated three
question types asking participants to: retrieve mean values
of a single category; make comparisons between the means
of multiple categories; and determine the range between the
highest and lowest means of categories. The syntax of each
question type was standardized across datasets as much as
possible.

Graph selection task Participants were presented with a
random sequence of 8 trials, each corresponding to a unique
dataset. On each trial, they read a description of a dataset and
then were presented with the corresponding question about
the dataset and a 4 × 2 gallery of 8 graphs (Fig. 1A). To en-
sure that participants viewed each graph, they were instructed
to use their cursor to hover over each graph, which would then
acquire a green border to help participants track which graphs
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they had “viewed”. After viewing each graph, they were in-
structed to click the one that would best help someone else
answer the question as quickly and accurately as possible.
Graphs were presented in random order in the gallery, and
participants could not select a graph until they had viewed
all 8 graphs. The order of presented datasets, as well as the
question type corresponding to each dataset, was randomized
across participants. Participants also completed one practice
trial to ensure that they were familiar with the web interface.

Graph comprehension task In each trial, participants were
presented with a dataset description and corresponding ques-
tion and provided a numeric answer using a presented graph
(Fig. 1B). Participants were instructed to answer the question
as quickly and accurately as they could, even if they had to
guess. In addition to completing one practice trial prior to
test trials, participants completed a random sequence of 8 test
trials each corresponding to a unique dataset and were not
told which graphs were informative or uninformative for a
question prompt.

Results

Comprehension performance varies across data visualiza-
tions To validate our choice of graph stimuli, we first estab-
lished that people produced more accurate question responses
to informative graphs than uninformative ones. To test this,
we fit a mixed effect linear regression model to predict viewer
absolute error with random effects for participant and dataset.
We found that viewers of the graph comprehension task pro-
duced more error in responses when presented with unin-
formative graphs compared to informative ones (t = 10.31,
p < 0.001), confirming that informative graphs were more
effective with helping viewers than uninformative ones. Fur-
thermore, we applied a likelihood ratio test to a nested model
comparison and found that the graph itself explained addi-
tional variation in responses (χ2(7) = 37.96, p< 0.001). This
analysis provides additional evidence that graphs have gra-
dient and variable utility for answering the same question,
beyond just whether a graph was informative or not. These
results provide validation that our stimuli set was diverse
enough to capture response variation.

Communicative goals impact graph selection behavior
Our main goal was to evaluate how communicative goals
guide preferences that people have about data visualizations
that convey different information. To accomplish this, our
first step was to examine whether people select graphs in
a non-uniform manner. Using a chi-square goodness-of-fit
test, we found that graph selections were non-uniform to dif-
ferent data visualizations (χ2(7) = 527.13, p < 0.001) and
were dependent on the presented question (χ2(35) = 1590,
p < 0.001; Fig. 3A). These results suggest that participants
were sensitive to how graphs vary in informativity for differ-
ent question prompts.

To further explore these results, we then evaluated partic-
ipants’ selection behavior against the uniform selection dis-

tribution predicted by the indifferent hypothesis, which pro-
poses that each graph has the same probability (12.5%) of be-
ing chosen. To quantify just how different people’s strategies
are from these proposed hypotheses, we applied a Jensen-
Shannon divergence (JSD) metric. Here, if two distribu-
tions perfectly aligned, they would have a JSD of 0. We
found that participants’ graph selection distribution was sig-
nificantly different from the indifferent hypothesis (JSD =
0.51; bootstrapped 95% CI = [0.48, 0.58]; Fig. 3B), providing
evidence that people use a richer strategy when deciding how
to communicate with graphs.

People prefer to select informative graphs rather than un-
informative ones We next assessed how strongly partic-
ipants might have been guided by communicative goals to
help viewers accurately answer questions. We fit a logis-
tic regression predicting the graph type (i.e., informative vs.
uninformative) selected with random effects for participant
and dataset. Consistent with our minimally informative hy-
pothesis, we found that participants systematically chose in-
formative graphs that contained at least the minimal amount
of information needed to answer a corresponding question
prompt, relative to uninformative ones (z = 15.4, p < 0.001).

To further explore the selection behavior predicted by our
minimally informative hypothesis, we formalized a coarse-
grain strategy of choosing minimally informative graphs as
a softmax decision rule that prioritized informative graphs
(U = 1) and discarded uninformative ones (U = 0). The soft-
max temperature was treated as a free parameter for each
question. Although this model also fell short of perfectly
matching the participants’ selection behavior (JSD = 0.12;
bootstrapped 95% CI = [0.11, 0.17]; Fig. 3B), it was signifi-
cantly better matched to the selection behavior demonstrated
by participants than the selection distribution predicted by the
indifferent hypothesis (β̂ = −0.06, t = −9.57, p < 0.001).
These results suggest that participants are motivated to prior-
itize informative graphs over uninformative ones in order to
help viewers accurately answer questions.

Selection behavior explained equally well by heuristic
strategy and audience sensitivity in these data Our anal-
yses so far reveal that participants prioritize graphs that are
informative enough to help viewers answer questions about
them. Our main goal, however, was to investigate whether
people’s selection behavior can be explained by a sensitivity
in preferences for graph that would support efficient graph
comprehension by viewers. Concretely, we hypothesized that
if participants were motivated help reduce the cognitive ef-
fort needed by viewers to answer questions by choosing an
effective data visualization, we predicted that their selection
behavior would more closely match the rich gradient varia-
tion in graph comprehension demonstrated by our validation
results.

To compute predictions for an audience-sensitive model,
we calculated the error of viewers’ numerical responses from
our graph comprehension task, relative to the ground truth
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answer for each dataset and question type. Aggregating over
all viewers who received the same graph-question pairing, we
then computed the root-mean-square-error (RMSE) wherein
larger error associated with a graph demonstrates that it did
not effectively help answer a specific corresponding question.
RMSEs were re-scaled between 0 and 1 to normalize across
the different data sets. These re-scaled RMSEs were then
averaged across datasets and input into a softmax decision
rule as utility values. Negative softmax temperature free pa-
rameters indicated that participants selected graphs inversely
related to the amount of error that was elicited by viewers.

Next, to evaluate how well audience-sensitive selection be-
havior might predict viewers’ ability to efficiently use a graph
to answer a corresponding question, we compared this er-
ror gradient in viewer responses to the participants’ selec-
tion behavior in which the JSD was found to be 0.15 (boot-
strapped 95% CI = [0.14, 0.20]; Fig. 3B). Critically, while
our audience-sensitive model more closely matched partici-
pants’ selection behavior compared to an indifferent model
(β̂ = −0.06, t = −5.80, p < 0.001), we did not find signif-
icant improvement in this ability to predict selection behav-
ior compared to a minimally informative model (β̂ = 0.005,
t = 0.51, p = 0.62). In sum, these results suggest that people
are sensitive to different degrees of informativity when choos-
ing between informative and uninformative graphs, but are
not necessarily sensitive to more subtle difference between
how different graphs plotting the same data could better sup-
port faster and accurate comprehension by viewers.

Discussion
Data visualization, among other tools for making sense of
large volumes of data, have become increasingly important
in recent decades (Holst, 2021). Here we investigated the

intuitions that ordinary people have about what makes data
visualizations informative for answering specific questions.
Concretely, we evaluated the extent to which people may
be sensitive to how communicative goals to convey different
kinds of information should shift data visualization design.
We hypothesized that non-experts’ intuitions about effective
data visualization design could be: (1) audience-sensitive to
what viewers may need to accurately and efficiently interpret
graphs; (2) minimally informative to audiences; or (3) indif-
ferent to any graph, so long as it is generated from the dataset
that a viewer is asked about.

To test our hypotheses, we evaluated non-experts’ intu-
itions about data visualization efficacy using two novel tasks:
First, we used a forced-choice graph selection task to re-
move skill-based barriers associated with graph construction
(e.g., manipulating data using programming languages) and
to measure participants’ preferences about graphs intended to
communicate different kinds of information. Next, to model
audience sensitivity, we developed a graph comprehension
task to evaluate a separate group of naı̈ve viewers’ ability to
accurately answer questions about those same graphs. We
found that people prioritized graphs containing the minimal
information needed to answer prompted questions, but were
not necessarily sensitive to more subtle differences between
how different graphs plotting the same data could better sup-
port fast and accurate comprehension by others. Overall,
our findings contribute quantitative evidence that even non-
experts’ intuitions about data visualization design are guided
by goals to generate informative messages for others, despite
lacking design expertise typically investigated by prior re-
search. By leveraging viewers’ downstream interpretations of
the same graphs, our results additionally provide critical in-
sights about how their design preferences have a direct down-
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stream impact on viewers’ ability to accurately extract infor-
mation from graphs.

A key contribution of this work is that we establish the fea-
sibility of systematically investigating non-experts’ intuitions
about data visualization design. How might their intuitions
differ from those of experts? While our findings demonstrate
that our participants were systematically biased to select in-
formative graphs over uninformative ones, their selection be-
havior is consistent with a relatively coarse understanding
of what makes a data visualization easy for someone else
to understand. Whereas people are exposed to other forms
of pragmatic communication like gestures and drawings and
become adult-like experts in processing them from a young
age (Goldin-Meadow, 2009; Huey & Long, 2022), experi-
ence with graphs typically occurs later in development and is
taught in formal educational settings. Thus, a coarse under-
standing may develop into more fine-grained tuning as peo-
ple gain more domain-specific experience with data visualiza-
tions or more broadly, mathematics. This prediction resonates
with previous studies suggesting that graph reading perfor-
mance can be predicted by learners’ basic numerical abilities
(Ludewig, Lambert, Dackermann, Scheiter, & Möller, 2020;
M. J. Padilla et al., 1986; Berg & Smith, 1994), spatial reason-
ing about mental number lines (Booth & Siegler, 2008), and
comprehension of non-symbolic and symbolic number mag-
nitudes (Dehaene, Piazza, Pinel, & Cohen, 2003) and arith-
metical processes (Gillan, 2009).

As an initial step to explore the relationship between exper-
tise and data visualization design, we conducted exploratory
analyses using post-test surveys in which participants’ self-
reported how frequently they make and interpret graphs on a
weekly basis. We found that self-reports did not significantly
predict participants’ performance in our graph selection task
(make: p = 0.349; interpret: p = 0.328) or graph comprehen-
sion task (make: p = 0.383; interpret: p = 0.8002). While
our self-report results lacked variation across experience lev-
els, real-world data or controlled interventions may be better
suited to causally deduce a relation between domain-specific
expertise and how people think about visual communication
and statistical patterns. For example, as people gain more
experience with data visualizations, they may gain greater vi-
sual acuity with discerning such statistical patterns (Ratwani
& Gregory Trafton, 2008; Ali & Peebles, 2013) that go be-
yond ingrained Gestalt Principles.

One critical question raised by the current studies concerns
how specific beliefs about data visualization efficacy may
constrain people’s design goals. In our graph selection task,
we operationalized efficacy as accuracy under time pressures
and instructed participants to choose graphs that would help
other people answer prompted questions as quickly and accu-
rately as possible. We hypothesized that because graphs have
a number of unique communicative characteristics that ex-
plicitly support large-scale quantitative information compres-
sion (e.g., bar graphs represent means), participants would
select graphs that could most easily and directly help others

answer a prompted question. However, it is possible that peo-
ple not only prioritize speed-accuracy tradeoffs when making
judgments about data visualization efficacy concerning a sin-
gle question but also may prioritize data visualizations that
are able to answer multiple questions. Indeed, while data
visualizations in journalistic reports may often contain less
variables in order to be more comprehensible to a general au-
dience, it may be the case that people associate more complex
data visualizations as more “accurate”, effective, and even
scientific legitimate if more information is possible to be ex-
tracted from it. If this bias underlies people’s beliefs about
data visualization efficacy, this could explain why partici-
pants of the current study did not systematically select graphs
that could support faster and more accurate comprehension
by others. To disentangle these potential beliefs, additional
work in our lab is exploring whether people are biased to
select graphs with more plotted variables than the minimal
variables needed to answer prompted questions.

In conclusion, our paper contributes new insights about
how people transform their knowledge about the world into
data visualizations that others can learn from. Indeed, re-
search of this nature investigating graphs and their presen-
tation of statistical patterns is critical to deepening founda-
tional understanding of communication modalities that in-
volve symbolic reasoning, but also to the scientific commu-
nity that utilizes data visualizations as a primary tool to share
findings with other scientists and with the general public. Ul-
timately, data visualization studies guided by cognitive the-
ories of communication may help advance the development
of novel data visualization tools, as well as identify potential
opportunities for graph literacy interventions in STEM edu-
cation and design.
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Franke, M., & Jäger, G. (2016). Probabilistic pragmatics,
or why bayes’ rule is probably important for pragmatics.
Zeitschrift für Sprachwissenschaft, 35(1), 3–44.

Gillan, D. J. (2009). A componential model of human inter-
action with graphs: Vii. a review of the mixed arithmetic-
perceptual model. In Proceedings of the human factors and
ergonomics society annual meeting (Vol. 53, pp. 829–833).

Goldin-Meadow, S. (2009). How gesture promotes learning
throughout childhood. Child Development Perspectives,
3(2), 106–111.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic lan-
guage interpretation as probabilistic inference. Trends in
Cognitive Sciences, 20(11), 818-829.

Grammel, L., Tory, M., & Storey, M.-A. (2010). How
information visualization novices construct visualizations.
IEEE Transactions on Visualization and Computer Graph-

ics, 16(6), 943-952. doi: 10.1109/TVCG.2010.164
Grice, H. P. (1975). Logic and conversation. In P. Cole &

J. L. Morgan (Eds.), Syntax and Semantics Vol. 3: Speech
Acts (pp. 64–75). New York: Academic Press.

Holst, A. (2021). Volume of data/information created,
captured, copied, and consumed worldwide from 2010 to
2025. Statista, June.

Huey, H., & Long, B. (2022). Developmental changes in the
semantic part structure of drawn objects. In Proceedings of
the 44th annual meeting of the cognitive science society.

Kao, J. T., Wu, J. Y., Bergen, L., & Goodman, N. D. (2014).
Nonliteral understanding of number words. Proceedings of
the National Academy of Sciences, 111(33), 12002–12007.

Kelleher, C., & Wagener, T. (2011). Ten guidelines for effec-
tive data visualization in scientific publications. Environ-
mental Modelling & Software, 26(6), 822–827.

Kosslyn, S. M. (1989). Understanding charts and graphs.
Applied Cognitive Psychology, 3(3), 185–225.

Lee, S., Kwon, B. C., Yang, J., Lee, B. C., & Kim, S.-H.
(2019). The correlation between users’ cognitive charac-
teristics and visualization literacy. Applied Sciences, 9(3),
488.

Leonard, J. G., & Patterson, T. F. (2004). Simple computer
graphing assignment becomes a lesson in critical thinking.
NACTA Journal, 17–21.

Ludewig, U., Lambert, K., Dackermann, T., Scheiter, K., &
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