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Submitted to the Annals of Applied Statistics

BAYESIAN MODELING OF INTERACTION BETWEEN FEATURES IN
SPARSE MULTIVARIATE COUNT DATA WITH APPLICATION TO

MICROBIOME STUDY

BY SHUANGJIE ZHANG1,*, YUNING SHEN2 IRENE A. CHEN2 AND JUHEE LEE1

1Department of Statistics, University of California Santa Cruz, *szhan209@ucsc.edu; juheelee@soe.ucsc.edu

2Department of Chemical and Biomolecular Engineering, University of California Los Angeles, yshen@chem.ucsb.edu;
ireneachen@ucla.edu

Many statistical methods have been developed for the analysis of mi-
crobial community profiles, but due to the complexity of typical microbiome
measurements, inference of interactions between microbial features remains
challenging. We develop a Bayesian zero-inflated rounded log-normal kernel
method to model interaction between microbial features in a community us-
ing multivariate count data in the presence of covariates and excess zeros. The
model carefully constructs the interaction structure by imposing joint sparsity
on the covariance matrix of the kernel and obtains a reliable estimate of the
structure with a small sample size. The model also includes zero inflation to
account for excess zeros observed in data and infers differential abundance of
microbial features associated with covariates through log-linear regression.
We provide simulation studies and real data analysis examples to demon-
strate the developed model. Comparison of the model to a simpler model and
popular alternatives in simulation studies shows that in addition to an added
and important insight on the feature interaction, it yields superior parameter
estimates and model fit in various settings.

1. Introduction. High-throughput sequencing (HTS) technologies in microbial ecology
generate multivariate count data to characterize and analyze microbial communities from a
variety of habitats such as human body sites, soil and water. Widely used sequencing meth-
ods in microbiome research include 16S ribosomal RNA (rRNA) sequencing and shotgun
metagenomic sequencing (Jovel et al., 2016). 16S rRNA gene sequencing utilizes PCR to
target and amplify some portions of the bacterial 16S rRNA subunit gene for sequencing. The
sequence reads are then clustered based on their similarity into operational taxonomic units
(OTUs), which represent bacteria types. Following some initial preprocessing procedures,
16S rRNA sequencing data is summarized into a large count matrix (referred to as an OTU
table) for downstream analyses, where the columns represent samples, and the rows contain
multivariate count vectors of sequences corresponding to OTUs in the samples. Different
from marker gene-based community profiling, shotgun metagenomic sequencing sequences
a sample’s entire metagenome and offers finer resolution at a higher cost. After some bioin-
formatic preprocessing, it also produces multivariate count table data that has structure and
properties similar to those of an OTU table for downstream analyses. 16S rRNA sequencing
datasets are used for illustrations of the statistical method developed in this work, but it can
be considered for analysis of the data generated by either sequencing technique. We note that
their analysis units are different, and the resulting statistical inferences may have different
biological interpretations. In the human gut microbiome data, one of our real data examples
in § 4.2, 16S rRNA sequencing data was collected to study how the composition of the gut
microbiome is associated with inflammatory bowel disease (IBD) such as Crohn’s disease

Keywords and phrases: Covariance Matrix, Differential Abundance, Factor Model, Joint Sparsity, Multivariate
Count Data, Rounded Kernel Model, Zero Inflation.
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(CD) or ulcerative colitis (UC) (Lloyd-Price et al., 2019). Understanding how the composi-
tion of the human gut microbiome is associated with covariates such as disease status and
age is important to provide insights on its role in human health and disease. Also, detect-
ing and investigating the structure of microbial interactions is critical to better characterize
microbial communities. Accurately accounting for the interactions can further improve the
quantification of covariate effects on microbial abundances.

HTS sequencing data in microbiome study presents various challenges for statistical anal-
ysis due to high dimensionality and some added complexity. Total OTU counts vary in sam-
ples due to experimental artifacts such as the sequencing depth, and raw counts do not re-
flect actual microbial abundances (called compositionality). Consequently, normalization of
OTU counts is needed for meaningful comparison across samples. In addition, the high-
dimensional structure with excess zeros and over-dispersion further complicates the analysis
of an OTU table and calls for flexible statistical models. While various statistical models
have been proposed for microbiome data analysis, most existing methods focus on either in-
ference on the effects of environmental factors (i.e., covariate) on microbial abundances or
their absence/presence or inference on associations between microbes. For studying associ-
ations with covariates, generalized regression models are popular. For example, Poisson or
negative binomial (NB) regression models are one of the common approaches, where covari-
ates are related to expected counts through a log-linear regression framework. Those models
include sample size factors for normalization. Zero-inflated (ZI) Poisson or ZI-NB models
are also utilized to address excess zeros. Under a ZI model, a count is distributed as a mixture,
a component of which is the distribution with a point mass of one at zero. See Li et al. (2017),
Zhang et al. (2017), Jiang et al. (2021), Shuler et al. (2021) among many others, for examples
of using Poisson or NB regression models. Another common regression approach uses multi-
nomial or ZI multinomial models, where a similar log-linear regression framework is used
to relate covariates to (unconstrained) occurrence probability vectors, e.g., Xia et al. (2013),
Wadsworth et al. (2017), Ren et al. (2017), Tang and Chen (2019) and Grantham et al. (2020)
among many others. In particular, Grantham et al. (2020) proposed a Bayesian multinomial
regression model that assumes a mixed effects model for unconstrained occurrence probabil-
ities and uses a latent factor model for the covariance matrix of the prior distribution of the
unconstrained probabilities. However, the implication of the covariance among unconstrained
probabilities for microbial interactions is not clear due to the fixed total count constraint un-
der the assumed multinomial distribution. Approaches of using a Dirichlet-tree multinomial
model were also proposed to exploit the tree structure information via a phylogenetic tree,
e.g., Wang and Zhao (2017), Mao, Chen and Ma (2020) and Wang, Mao and Ma (2021). They
assume potential associations between microbes that have similar sequences but do not at-
tempt to infer microbial interactions. Alternatively, Paulson et al. (2013) assumed a univariate
log-normal distribution for individual counts after adding a pseudo count to observed counts
and used regression to relate covariates to OTU abundances. For inferences on microbial in-
teractions, correlations between pairs of microbes based on some transformed OTU counts
are commonly used as a measure. The task of estimating correlations between microbes is
complicated due to the aforementioned challenges. Centered-log-ratio (clr) transformation
is usually applied to raw counts prior to analysis for compositionality, and small pseudo-
counts are added to avoid numerical issues of excess zeros. To address high dimensionality,
an additional structure such as sparsity through ℓ1 penalty is often imposed on the covari-
ance matrix or precision matrix for reliable inference. For example, SparCC in Friedman
and Alm (2012) normalizes raw counts by sample total counts after adding pseudo counts
and models log-transformed ratios of the normalized counts to infer correlations between
OTUs. CCLasso in Fang et al. (2015) models log-transformed counts and provides a least
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squares estimate of a correlation matrix with ℓ1 penalty under some constraint for composi-
tionality of microbiome data. SPIEC-EASI in Kurtz et al. (2015) builds an undirected graph-
ical model for clr transformed data and yields inference on an association network between
OTUs through a precision matrix. Sparsity is assumed for the underlying association net-
work. Schwager et al. (2017) uses a Bayesian log-normal graphical model for unconstrained
counts. A LASSO prior is used for the precision matrix. Similarly, Prost, Gazut and Brüls
(2021) developed a likelihood-based zero-inflated log-normal graphical model (Zi-LN) that
appropriately accounts for excess zeros in microbiome data. Graphical LASSO (Friedman,
Hastie and Tibshirani, 2008) is used for estimation of the precision matrix. While existing
methods can provide useful insights on microbial communities, methods that jointly infer
associations between microbes and their associations with covariates are still lacking. Fur-
thermore, statistical methods that carefully address excess zeros, compositionality and high
dimensionality are needed for accurate inference on the associations.

To obtain a better understanding of the underlying biological processes, we develop a
Bayesian rounded kernel regression model with zero inflation. The model enables a direct
assessment of interrelationships between OTUs and their associations with covariates. The
developed method directly models raw counts and simultaneously performs model-based
normalization through random sample scale factors for compositionality. Specifically, we
use a multivariate log-normal distribution as the kernel and define multivariate count re-
sponses Y = (Y1, . . . , YJ) of J OTUs in terms of multivariate log-normal latent variables
Y⋆ = (Y ⋆

1 , . . . , Y
⋆
J ) using fixed thresholds. We then relate covariates x to the mean vector

µ of the distribution of Y⋆ through regression and use the covariance matrix Σ to charac-
terize interrelationship among OTUs. µ also includes sample size factors for normalization.
For Σ, we assume joint sparsity to reliably learn a high dimensional covariance structure
with a small sample size. Sparsity assumption is commonly used in the covariance matrix
estimation when p≫ n (e.g., Cai, Ren and Zhou (2016), Pati et al. (2014), Gao and Zhou
(2015), Xie et al. (2018)). Specifically, we develop a joint sparse latent factor model for Σ,
where we let the number of factors much smaller than the number of OTUs (features), and
a majority of OTUs can have factor loadings close to zero, i.e., feature selection. The model
greatly reduces the number of parameters to estimate and provides a simple interpretation of
the interrelationship structure. The representation of the model with independent latent fac-
tors also allows introducing zero inflation in a convenient manner. The model appropriately
accounts for excess zeros due to the absence of an OTU or the undersampling of a rare OTU,
and Σ provides inferences on the interrelationship structure among OTUs present in a sam-
ple. In addition, overdispersion is accommodated through random effects, resulting in further
improvement in the inference.

In the remainder of the paper, we describe the model and its applications. § 2 describes the
zero-inflated multivariate log-normal kernel model (called “ZI-MLN”), and § 3 has results of
simulation studies to evaluate the performance of our method. § 4 has results from the model
applied to two real datasets, and § 5 concludes with some discussion of the results and areas
of future research.

2. Statistical Model.

2.1. Sampling Distribution and Prior Specification. Consider multivariate count data
obtained for J OTUs in a microbiome study. We let Yi = (Yi1, . . . , YiJ) denote a J -
dimensional random count vector of OTU counts of sample i = 1, . . . ,N taken from sub-
ject gi ∈ {1, . . . ,M}, where Yij ∈ N0 is the count of OTU j = 1, . . . , J in sample i. We let
nm be the number of samples taken from subject m and have N =

∑M
m=1 nm. In addition,

data may include a set of P covariates, xi = (xi1, . . . , xiP ). Our skin microbiome dataset in
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§ 4.1 consists of observed counts of 187 OTUs in 20 samples, one sample from each of 20
subjects. The dataset does not have covariates besides the subject factor. Human gut micro-
biome data in § 4.2 includes 67 samples collected from multiple biopsy sites of 37 patients.
107 OTUs are included with covariates such as disease phenotype and age for analysis. The
model simultaneously infers the interaction structure of OTUs and the differential abundance
of OTUs by covariates. It can also be easily simplified if no covariate is available, as we will
show later.

We consider a Bayesian rounded multivariate log-normal kernel model for Yi in Canale
and Dunson (2011). We first introduce continuous latent variables Y⋆

i = (Y ⋆
i1, . . . , Y

⋆
iJ) with

Y ⋆
ij ∈R+, i= 1, . . . , n and j = 1, . . . , J , and assume

Y⋆
i |µi,Σ

indep∼ log-NJ(µi,Σ),(1)

where parameters µi = (µi1, . . . , µiJ)
′ ∈ RJ and Σ > 0. In (1), we have the mean E(Y ⋆

ij |
µi,Σ) = exp(µij +

1
2Σjj), the median Q0.5 = exp(µij) and covariance Cov(Y ⋆

ij , Y
⋆
ij′) =

exp{µij +µij′ + 1
2(Σjj +Σj′j′)}{exp(Σjj′)− 1}= E(Y ⋆

ij)E(Y
⋆
ij′){exp(Σjj′)− 1}. We next

use a threshold function to relate Y ⋆
ij to Yij by letting Yij = yj if yj ≤ Y ⋆

ij < (yj + 1).
The multivariate log-normal density is zero for a vector with negative values, and the ker-
nel defines a valid multivariate distribution for Y. We further let Ỹ⋆

i = (Ỹ ⋆
i1, . . . , Ỹ

⋆
iJ) with

Ỹ ⋆
ij = log(Y ⋆

ij) ∈R and have

P(Yi = yi |µi,Σ) =
∫
A(yi)

fy⋆(y⋆ |µi,Σ)dy⋆

=

∫
Ã(yi)

ϕJ(ỹ
⋆ |µi,Σ)dỹ⋆,

(2)

where fy⋆ represents the density function of the J -dimensional log-normal distribution with
parameters µi and Σ, and ϕJ the density function of a J -dimensional normal distribution.
The regions of integration are A(yi) = {y⋆ | yi1 ≤ y⋆1 < yi1 + 1, . . . , yiJ ≤ y⋆J < yiJ + 1}
and Ã(yi) = {ỹ⋆ | log(yi1) ≤ ỹ⋆1 < log(yi1 + 1), . . . , log(yiJ) ≤ ỹ⋆J < log(yiJ + 1)}. The
properties of the distribution of Yij’s such as their means and covariances can be easily com-
puted from (2). For example, we find E(Yij | µij ,Σjj) =

∑∞
b=0 bP(Yij = b | µij ,Σjj) with

P(Yij = b | µij ,Σjj) = Φ1(log(b+ 1) | µij ,Σjj)−Φ1(log(b) | µij ,Σjj), where Φd(· | a,B)
is the cdf of the d− variate normal distribution with mean a and (co)variance B. A large
value of µij thus implies high abundance of OTU j in sample i. We express µi as a function
of covariates, sample-size factor and OTU-size factor. The factors account for differences
in sample total counts and variability in baseline OTU abundances. We will give a regres-
sion model for µi below. We can also compute variances and covariances of the counts.
In particular, Cov(Yij , Yij′ | µi,Σ) =

∑∞
b=0

∑∞
b′=0 bb

′P(Yij = b,Yij′ = b′ | µi,Σ) − E(Yij |
µij ,Σjj)E(Yij′ | µij′ ,Σj′j′). P(Yij = b,Yij′ = b′ | µi,Σ) can be computed with a bivariate
normal distribution in a way similar to P(Yij = b | µij ,Σjj). Under (2), the counts of OTUs
j and j′ are dependent if Σjj′ ̸= 0. That is, Σ characterizes microbial interactions with a
straightforward interpretation. In addition, overdispersion is known to be common in se-
quencing data and can be properly accommodated through heavy tails of a log-normal distri-
bution.

We next build a prior distribution for Σ. The number of OTUs J is often much greater
than the sample size N in microbiome studies, i.e., J ≫ N . In a high-dimensional setting,
the sample covariance matrix is singular and provides an unstable estimate for Σ. To over-
come the difficulty, it is common that structural assumptions are imposed on Σ (Cai, Ren
and Zhou, 2016). For example, Friedman, Hastie and Tibshirani (2008), Bien and Tibshirani
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(2011) and Cai, Liu and Luo (2011) consider the sparsity assumption that most of the ele-
ments in Σ (or Σ−1) are zero or negligible for marginal independencies between features (or
conditional independencies). In particular, ℓ1 penalty is used to shrink the elements of Σ (or
Σ−1) to zero. Alternatively, a low-rank structure is considered, sometimes jointly with the
sparsity assumption (called joint sparsity). For example, see Cai, Ma and Wu (2015); Bhat-
tacharya et al. (2015) and Xie et al. (2018). The joint sparsity structure allows to achieve
good theoretical properties, such as faster minimax rate of convergence and tighter posterior
contraction rate for estimating a covariance matrix (Cai, Ma and Wu, 2015; Xie et al., 2018).
Taking the latter approach, we first decompose Σ as

(3) Σ=ΛΛ′ + σ2IJ ,

where λj = [λj1, . . . , λjk]
′ and Λ = [λ′

1, . . . ,λ
′
J ]

′ is a J × K factor loading matrix with
K ≪ J . The model assumes most of the covariance structure between OTUs is explained
by a small number of factors to obtain a more accurate and reliable estimate of Σ in
the case of N ≪ J . We assume an isotropic noise and consider a conditionally conju-
gate prior distribution σ2 ∼ inv-Ga(aσ, bσ) with fixed aσ and bσ for easy computation. If
needed, independent idiosyncratic noise can be considered by letting Σ=ΛΛ′+diag(σ2j ) and

σ2j
iid∼ inv-Ga(aσ, bσ). We introduce joint sparsity on Σ by considering a Dirichlet-Laplace

prior in Bhattacharya et al. (2015),

τk | aτ , bτ
iid∼ Ga(aτ , bτ ),

ϕ= (ϕ1, . . . , ϕJ) | aϕ ∼ Dir(aϕ, . . . , aϕ),(4)

λjk | ϕj , τk
indep∼ DE(ϕjτk),

where DE(a) represents the double-exponential (Laplace) distribution with scale parameter
a, and Ga(a, b) is the gamma distribution with shape parameter a and scale parameter b
(so mean a/b). Under the model in (4), a small value of ϕj shrinks λjk toward zero for
all k, and Σjj′ tends to have small values for all j′. That is, ϕj induces joint sparsity for
Σ together with K . OTUs with a small value of ϕj may be those less interacting with other
OTUs. The model provides an easy interpretation of the interrelationships between OTUs and
reliable inference even for cases with N ≪ J . The double-exponential distribution for λjk
has heavier tails and a more pointed center than the normal distribution that is a convenient
choice, and facilitates sparsity in λjk, resulting in sparsity in Σ. Theorem 3.1 of Bhattacharya
et al. (2015) proves that when aϕ is set to be J−(1+b) for any b > 0, the posterior contraction
rate of λjk achieves the minimax rate. However, our simulation studies show that the model
with aϕ = 1/J tends to overshrink λjk even when only a small number of OTUs interact, and
we fix aϕ = 1/2 with soften conditions for the contraction rate. We fix the factor dimension
K at a reasonably large value for computational convenience. If desired, an exponentially
decaying prior such as a Poisson distribution can be placed on K to attain optimal posterior
contraction rate (Pati et al., 2014). Pati et al. (2014) used the Dirichlet-Laplace prior for
vectorized loadings vec(Λ) in a Bayesian factor model for a multivariate normal outcome
vector with mean zero and did not attempt to induce a joint sparsity structure. Xie et al.
(2018) used a spike-and-slab prior for ϕj and developed a matrix spike-and-slab LASSO
prior under the Gaussian sampling distribution assumption. However, placing spike-and-slab
priors for individual matrix elements may cause computational difficulties, especially for
large J . Similar to Bhattacharya and Dunson (2011) and Xie et al. (2018), we do not place
any constraints on Λ such as orthogonality of the columns nor attempt to interpret latent
factors since the primary interest of inference is on Σ.
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We re-write the model in (1) and (3) by introducing a latent normal vector ηi
iid∼ NK(0, IK);

Ỹ ⋆
ij | µij ,λj ,ηi, σ2

indep∼ N1(µij +λ
′
jηi, σ

2).(5)

By integrating over ηi, we obtain the normal distribution with covariance matrix Σ in (3) for
Ỹ⋆
i . The conditional independence between Ỹ ⋆

ij given ηi in (5) greatly facilitates the posterior
computation. Furthermore, it enables easy implementation of a zero-inflated model. Excess
zeros in microbiome data are very common. If excess zeros are not compatible with the
distribution in (2), the resulting inferences can be distorted. For a zero-inflated model, we
introduce binary indicators δij that represent the absence/presence of OTUs, and assume

δij | ϵij
indep∼ Ber(ϵij), where ϵij is the probability of OTU j being absent in sample i. We let

δij = 1 indicate the absence of OTU j in sample i, so Yij = 0. Given δij = 0, we assume, for
y = 0,1,2, . . .,

P(Yij = y | µij ,λj ,ηi, σ2, δij = 0) = Φ1(log(y+ 1) | µij +λ′
jηi, σ

2)

−Φ1(log(y) | µij +λ′
jηi, σ

2).
(6)

Given the presence of an OTU, the model in (6) generates counts, some of which can be zero.
Given δi = (δi1, . . . , δiJ), a vector of Ỹ ⋆

ij with δij = 0 follows a multivariate normal distribu-
tion, and its mean vector and covariance matrix are a subvector of µi omitting the elements
with δij = 1 and a submatrix of Σ omitting the rows and columns with δij = 1, respectively.
That is, µi and Σ provide inferences on the mean abundance and interrelationship structure
even when the zero inflation component is added to the model. We relate covariates xi to the
probability of δij = 1 by using a probit link function,

ϵij =Φ1(κj0 + x′
iκj | 0,1),(7)

where κj0 and κj = (κj1, . . . , κjP )
′ are parameters that quantify the effects of xi on ϵij . We

consider a normal distribution for the prior of κjp, κjp
iid∼ N(κ̄p, u

2
κ), p = 0, . . . , P . With a

high proportion of zero counts, adding subject specific random effects into ϵij may produce
unstable model fitting (Agarwal, Gelfand and Citron-Pousty, 2002). Thus, the model in (7)
does not include subject specific random effects.

Lastly, we relate covariates xi and subject-specific group factors gi to the mean OTU
abundances through µij ;

(8) µij = ri + αj + x′
iβj + sgi,j .

ri and αj are sample size factors and OTU size factors, respectively. The observed OTU
counts are a product of both the library size (total number of reads) and the OTU baseline
abundance. ri’s normalize OTU counts across samples, and αj’s account for variability in
OTU baseline abundances. We let ri and αj random. Thus, the model performs model-based
normalization and addresses compositionality. We will specify priors of ri and αj below. In
(8), regression coefficients βjp quantify the change in the abundance of OTU j from the mean
abundance by xip (so-called a factor effects model in an ANOVA setting). Under the formula-
tion, choosing a reference category for a categorical covariate is not required, and an implicit
assumption of the presence of an OTU under the arbitrarily chosen reference category is
not needed to infer the effects of the other categories. When any covariate is categorical, xi
in (8) is different from that in (7) due to a different parameterization of the covariate. An
example will be illustrated in § 3.2. When no covariate is available as in Simulation 1 in
§ 3.1 and the skin microbiome data in § 4.1, we simply drop the regression terms x′

iκj and
x′
iβj from (7) and (8), respectively, and use the simplified model to infer OTU interaction
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structure. sgi,j’s in (8) are random effects to account for between-subject heterogeneity and
induce dependence among the samples collected from the same subject. We assume normal
priors βjp

iid∼ N(0, u2β) with fixed u2β . In addition, we place a sum-to-zero constraint on the
prior of βjp’s corresponding to the categories of a categorical covariate, and the model en-
sures meaningful inference on βjp. If desired, a joint prior distribution of κj and βj can be

consider. For example, we assume (κ′
j ,β

′
j)

′ iid∼ N(0,V ), and V accommodates potential as-
sociation between covariates’ effects on presence/absence of an OTU and their effects on the
abundance of the OTU. We let sgi,j | u2s

iid∼ N(0, u2s) and u2s ∼ Ga(as, bs). Due to sgi,j , the
marginal covariance matrix of Ỹ⋆

i is Ω = Σ+ u2sIJ , and the marginal correlations between
OTUs j and j′ are ρjj′ = {Σjj′ + u2s1(j = j′)}/

√
(Σjj + u2s)(Σj′j′ + u2s) ∈ (−1,1). While

any of parameters, Σ, Ω and ρjj′ , can be considered as a measure of dependence between
OTUs, we use ρjj′ for easy interpretation in the simulation studies and real data analyses
illustrated later.

Recall that the mean and median of Y ⋆
ij are proportional to exp(ri + αj), implying that ri

and αj are not identifiable. To circumvent potential identifiability issues, we follow Li et al.
(2017) and use the mean-constrained prior with a mixture of mixture of normals on ri and
αj ;

ri |ψr,ωr,ξr
iid∼

Lr∑
l=1

ψrl

{
ωrl N(ξrl , u

2
r) + (1− ωrl )N

(
vr − ωrl ξ

r
l

1− ωrl
, u2r

)}
,

αj |ψα,ωα,ξα
iid∼

Lα∑
l=1

ψαl

{
ωαl N(ξαl , u

2
α) + (1− ωαl )N

(
vα − ωαl ξ

α
l

1− ωαl
, u2α

)}
,

(9)

where vr and vα are prespecified mean constraints for the distributions of ri and αj , respec-
tively. u2r and u2α are fixed. Different from a multinomial model that conditions on sample to-
tal counts, our model assumes E(Y ⋆

ij | µij ,Σ)∝ exp(µij) = exp(ri+αj+x′
iβj+sgi,j) in (8),

and simultaneously performs model-based normalization through random ri’s. It flexibly ac-
counts for compositionality in microbiome data and improves the inference on parameters of
primary interest compared to a model using plug-in empirical estimates for normalizing fac-
tors (Shuler et al., 2021). To specify the value of vr , we obtain sample scale factor estimates
by the cumulative sum scaling (CSS) normalization method in Paulson et al. (2013), and fix
vr at the average of those estimates. Specifically, we let vr = 1

N

∑N
i=1 log(

∑J
j=1|Yij≤qi Yij),

where qi is set as the largest quantile such that the difference in quantiles across samples is
small enough. Then we set vα = 1

NJ

∑N
i=1

∑J
j=1 log(Yij+0.01)−vr . Lee and Sison-Mangus

(2018) and Shuler et al. (2021) showed that overall means ri + αj can be well estimated un-
der the mean-constrained prior and their posterior inference is not sensitive to the choice of
vr and vα. To complete the specification of the mean-constrained prior, we place Dirichlet
priors for ψχ = (ψχ1 , . . . ,ψ

χ
Lχ) and beta priors for ωχl , χ ∈ {r,α}, ψχ ∼ Dir(aχψ, . . . , a

χ
ψ)

and ωχl
iid∼ Be(aχω, b

χ
ω), where the hyperparameters aχψ , aχω and bχω are fixed. Finally, we set

ξχl
iid∼ N(ξ̄χ, v2χ) with fixed ξ̄χ and v2χ. With random mixture weights, ωχl and ψχl , and ran-

dom locations ξχl , the mixture models in (9) flexibly capture various shapes of distributions,
while keeping their means at vχ and provide reasonable estimates of ri + αj .

2.2. Posterior Computation. Let θ = {λjk, ϕj , τk, κjp, δij , ηi, σ2, ri, αj , βjp, sgi,j , u2s, ωαl ,
ψαl , ξ

α
l , ω

r
l ,ψ

r
l , ξ

r
l } be a vector of all random parameters. We use Markov chain Monte Carlo

(MCMC) methods to draw samples from the posterior distribution of θ. We write a Laplace
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distribution in (4) as a normal scale mixture to facilitate the posterior computation, and intro-
duce latent mixture indicators for easy computation in updating ωχl , ψχl and ξχl , χ ∈ {r,α}.
Given the latent variables, all parameters except for ϕj are in standard conjugate forms and
can be easily updated through a data augmented Gibbs step. Details of the posterior computa-
tion are given in Supp. §1 (Shuangjie et al., 2022). We examined the mixing and convergence
of the Markov chains using trace plots and autocorrelation plots and did not find evidence
of poor mixing or bad convergence for both the upcoming simulation examples and the
real data analyses. The open-source code that implements the model is available online at
https://github.com/Zsj950708/ZI-MLN.

3. Simulation Studies.

3.1. Simulation 1. We performed simulation studies and assessed the performance of
the zero-inflated multivariate log-normal kernel model (ZI-MLN). For Simulation 1, we con-
sidered a case where no covariate is included, and each subject has one sample. We fit-
ted a simplified model that has µij = ri + αj + sgi,j and ϵij = Φ1(κj0 | 0,1). The simpli-
fied model is useful in estimating the interactions between OTUs for data without covari-
ates. We let J = 150 OTUs and N = 20 samples, a sample from each of M = 20 sub-
jects. For joint sparsity, we set K tr = 5 and generated ejk

iid∼ Ber(g) with sparsity level

g = 0.8. We then let λtr
jk = 0 if ejk = 1 and otherwise, simulated λtr

jk
iid∼ Unif(−3,3). We let

Σtr = ΛtrΛtr,′ + σ2,trIJ with σ2,tr = 1. We also simulated random effects str
gi,j

iid∼ N(0, u2,trs )

with u2,trs = 1, sample size factors rtr
i
iid∼ Unif(3,7) and OTU size factors αtr

j
iid∼ Unif(0,2).

We then simulated Y⋆,tr
i

indep∼ log-NJ(r
tr
i 1J +αtr + str

i ,Σ
tr). For excess zeros, we generated

κtr
j0
iid∼ Unif(−1,0) and simulated δtr

ij | ϵtrj
indep∼ Ber(ϵtrj ) with ϵtrj =Φ1(κ

tr
j0 | 0,1). We then let

Yij = 0 if δtr
ij = 1 and otherwise, let Yij = ⌊Y ⋆,tr

ij ⌋. It yielded approximately 40% of Yij being
0. The lower left triangle of the heatmap in Fig 1(a) illustrates the true marginal correlation

matrix ρtr
jj′ = {Σtr

jj′ + u2,trs 1(j = j′)}/
√

(Σtr
jj + u2,trs )(Σtr

j′j′ + u2,trs ). Empirical correlation
estimates ρem

jj′ are computed using transformed raw counts and illustrated in Supp. Fig 2(a)
(Shuangjie et al., 2022). It shows that naive correlation estimates are noisy and do not capture
the true interrelationship between OTUs.

To fit the model, we set the fixed hyperparameters as follows; For the mean-constrained
priors of ri and αj , we let Lr = 5,Lα = 10, arψ = aαψ = 1, and arω = brω = aαω = bαω = 5.
The values of the mean constraints vr and vα were specified through the empirical approach
described in § 2.1. We set the prior mean and variance of κj0, κ̄0 = 0 and u2κ = 3. Also, we set
aσ = bσ = 3 and as = bs = 1. Lastly, we set K = 10, aϕ = 1/2, aτ = 1 and bτ = 1/50. We
simulated posterior samples through MCMC described in § 2.2. We discarded the first 15,000
draws for burn-in and kept the next 15,000 draws for posterior inference. It took 25 minutes
for every 5,000 iterations on a M1 Mac. Assessment of MCMC simulation convergence is
discussed in Supp. §2.1 (Shuangjie et al., 2022). We also checked the posterior distributions
of τk to examine if a greater value of K is needed. The posterior distributions of some τk’s
are greatly concentrated close to zero, indicating that K = 10 is sufficiently large for the
dataset. We also performed sensitivity analyses to the specification of aϕ and bτ to examine
the robustness of the model in estimating Σ.

Posterior inference on the marginal correlations ρjj′ is illustrated in Fig 1. The heatmap in
panel (a) compares posterior mean estimates ρ̂jj′ in the upper right triangle to their truth ρtr

jj′

in the lower left triangle. Panel (b) shows a histogram of the differences ρ̂jj′ − ρtr
jj′ , j < j′.

In the histogram, the differences are tightly centered around 0, indicating that the method

https://github.com/Zsj950708/ZI-MLN
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(a) ρtr
jj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtr

jj′

FIG 1. [Simulation 1] The upper right and lower left triangles of the heatmap in panel (a) illustrate posterior
estimates of correlations ρ̂jj′ and their true values ρtr

jj′ , respectively. Panel (b) has a histogram of differences

between ρ̂jj′ and ρtr
jj′ .

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

FIG 2. [Simulation 1: Comparison] The upper right and lower left triangles of each heatmap illustrate estimates
ρ̂jj′ of correlations between OTUs and their true values ρtr

jj′ , respectively. Panels (a)-(d) are for SparCC, SPIEC-
EASI, CCLasso and Zi-LN, respectively.

provides good estimates of the correlations. Our method identifies the truly inactive OTUs
successfully, and the true OTU interrelationship structure is reasonably well captured even
when the sample size is much smaller than the number of OTUs (N = 20 and J = 150),
and excess zeros are present. Supp. Fig 3 (Shuangjie et al., 2022) compares posterior mean
estimates of baseline abundances ri + αj and probabilities ϵij of an OTU being absent to
their truth. In the figure, the absence/presence of OTUs and OTU baseline abundances are
well estimated, which provides a crucial basis for the estimation of the parameters of primary
interest, such as Σ. We performed posterior predictive checking to examine model fit under
ZI-MLN. Fig 4(a) compares posterior predictive median estimates ŷpred

ij of OTU counts to
the observed counts yij and shows that our model provides a good model fit to the data.

For comparison, we applied SparCC (Friedman and Alm, 2012), SPIEC-EASI (Kurtz
et al., 2015), CCLasso (Fang et al., 2015) and Zi-LN (Prost, Gazut and Brüls, 2021) that are
briefly described in § 1. The comparators infer dependence structure between OTUs through
the estimation of covariance or precision matrix under some sparsity assumptions and yield
correlation estimates ρ̂jj′ . The tuning parameter for sparsity in SparCC, SPIEC-EASI and
Zi-LN is chosen by cross-validation. ρ̂jj′ under the comparators are compared to the true
values ρtr

jj′ in Fig 2. Fig 3 illustrates histograms of differences ρ̂jj′ − ρtr
jj′ . Root mean square

error (RMSE) for ρjj′ , j < j′ for the models including ZI-MLN is shown in Tab 1(a). ZI-
MLN outperforms in recovering the dependence structure between OTUs. Poor performance
of the comparators can be because they do not account for overdispersion and/or excess ze-
ros and/or they lack flexible normalization for compositionality. In addition, we compare our
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) ZiLN

FIG 3. [Simulation 1: Comparison] A histogram of differences between ρ̂jj′ under SparCC, SPIEC-EASI,

CCLasso and Zi-LN and ρtr
jj′ , in panels (a)-(d), respectively.

TABLE 1
[Simulation 1: Comparison] RMSEs are computed for correlations ρjj′ , j < j′, binary indicator δij of an OTU

being absent in a sample and mean abundance µij under ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.129

SparCC 0.258

SPIEC-EASI 0.167

CCLasso 0.166

Zi-LN 0.173

Model δij µij
ZI-MLN 0.084 0.449

ZI-MLN without Λ 0.088 0.543

MetagenomeSeq 0.095 1.717

(a) ρjj′ (b) δij and µij

(a) ZI-MLN (b) ZI-MLN without Λ (c) MetagenomeSeq

FIG 4. [Simulation 1] Scatter plots of observed log(yij + 0.01) versus log(ŷpred
ij + 0.01) estimated by ZI-MLN

with Λ and ZI-MLN without Λ are shown in panels (a) and (b), respectively. ŷpred
ij is the median estimate of the

posterior predictive distribution. Panel (c) is the scatter plots of observed log(yij+0.01) versus log(µ̂ij+0.01),
where µ̂ij are mean abundances of OTUs estimated by metagenomeSeq.

method to ZI-MLN without Λ, a simpler version of our ZI-MLN, and metagenomeSeq in
Paulson et al. (2013) for comparison of the estimation of µij and δij . We simplified our ZI-
MLN by letting Σ= σ2IJ and kept the remaining model components including zero-inflation
and subject-specific random effects the same. We call it “ZI-MLN without Λ.” Metagenome-
Seq is a likelihood-based model that uses transformed counts log2(yij + 1) and assumes a
zero-inflated normal mixture model separately for individual OTUs, where the mean has a
regression function of covariates, a sample size factor fixed at estimates by CSS normaliza-
tion method and an OTU size factor similar to ZI-MLN. Under metagenomeSeq, the zero
inflation probabilities of y are common for all OTUs in a sample and regressed on the sample
total counts through a logit link. An EM algorithm is used to estimate unknown parameters.
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The additional comparators do not account for the interrelationships between OTUs and do
not provide any inference on OTU interaction. We compared parameter estimates of µij and
δij under each of the three models, including ZI-MLN, to the truth and computed RMSE for
the parameters, summarized in Tab 1(b). The table shows that our model outperforms the
comparators in the estimation of OTU mean abundances and absence/presence. Especially,
comparison to ZI-MLN without Λ indicates that ignoring the dependence structure among
counts when it is present can deteriorate the inference on the other parameters, including
µij . It is also indicated from posterior predictive checking under ZI-MLN without Λ shown
in Fig 4(b). Comparison of mean abundance estimates µ̂ij by metegenomSeq to observed
counts in Fig 4(c) also shows potential model misfit under metagenomeSeq.

3.2. Simulation 2. We conducted Simulation 2 for a case having covariates. We exam-
ined the estimation of covariate effects on OTU abundances and their presence/absence in
addition to the estimation of Σ. We set the number of OTUs J = 150 and assumed two sam-
ples from each of M = 35 subjects under two experimental conditions. We thus have the
number of samples N = 70 and gi ∈ {1, . . . ,M} with ngi = 2 for all gi. The remaining setup
is similar to that of Simulation 1. We set K tr = 5, σ2,tr = 1 and u2,trs = 1, and simulated λtr

jk,
rtr
i , αtr

j and str
gi,j

, as done in Simulation 1. We included a binary covariate that represents
the experimental conditions using a pair of dummy variables (xi1, xi2) ∈ {(1,0), (0,1)}. The
corresponding coefficients βj1 and βj2 thus quantify changes in mean abundance by a condi-
tion compared to the overall mean abundance rtr

i +α
tr
j . In addition, we included a continuous

covariate, xi3 generated from N(0,1), so we have xi = (xi1, xi2, xi3)
′ with P = 3. For the co-

efficients, we set βtr
jp
iid∼ N(0,1) for p= 1, . . . , P . For ϵij , we let x̃i = (xi2, xi3)

′ with Pκ = 2

using xi1 as a reference category, and simulated κtr
jp

iid∼ Unif(−0.5,0), p= 0, . . . , Pκ. We fi-

nally generated counts Yij as follows; we simulated Y⋆,tr
i

indep∼ log-NJ(r
tr
i 1J +αtr +x′

iβ
tr +

str
i ,Σ

tr), with Σtr =ΛtrΛtr,′+σ2,trIJ and βtr being a J ×P matrix of βtr
jp. We also generated

binary indicators δtr
ij | ϵtrij

indep∼ Ber(ϵtrj ) with ϵtrij =Φ(κtr
j0 + κtr,′

j x̃i | 0,1). We then let Yij = 0

if δtr
ij = 1, and let Yij = ⌊Y ⋆,tr

ij ⌋, otherwise. The simulated dataset has approximately 40%
of counts being zero. Fig 5(a) and Supp. Fig 5(a) (Shuangjie et al., 2022) illustrate the true
marginal correlations ρtr

jj′ and their naive empirical estimates ρem
jj′ using transformed counts

after the normalization, respectively.
We specified the fixed hyperparameter values similar to those in Simulation 1. We set

Lr = 8 due to a larger sample size. We set u2β = 25 for the prior of βjp and placed the sum-
to-zero constraint for βj1 and βj2 for identifiability. We set κ̄p = 0 for all p and u2κ = 3. The
MCMC simulation was run over 30,000 iterations, with the first 15,000 iterations discarded
as burn-in. A discussion on the chain’s convergence and mixing is in Supp. §2.2 (Shuangjie
et al., 2022). It took 0.7 hours on average for every 5,000 iterations on a M1 Mac.

Fig 5 illustrates posterior mean estimates ρ̂jj′ of marginal correlations between OTUs j
and j′, j ̸= j′. The figure shows that the underlying interrelationships between OTUs are
well captured even with small sample size and excess zero counts. The histogram in panel
(b) shows the differences ρ̂jj′ − ρtr

jj′ are close to zero. Figs 6(a)-(b) and Supp. Figs 6(a)-(c)
(Shuangjie et al., 2022) compare regression coefficient estimates, β̂jp and κ̂jp to their true
values. From Figs 6(a)-(b), posterior mean estimates of βj1 − βj2 and βj3 are close to the
true values. Here, βj1 − βj2 quantifies the difference in the mean abundances between two
categories of the binary covariate. Their posterior 95% credible intervals capture the truth
well. Supp. Fig 7 (Shuangjie et al., 2022) shows that posterior estimates r̂i + αj and ϵ̂ij are
also close to their true values. To check the model fit, we compare median estimates ŷpred

ij of



12

(a) ρtr
jj′ versus ρ̂jj′ (b) ρ̂jj′ − ρtr

jj′

FIG 5. [Simulation 2] The upper right and lower left triangles of the heatmap in panel (a) illustrate posterior
estimates of correlations ρ̂jj′ and the true values of the correlations ρtr

jj′ , respectively. Panel (b) has a histogram

of differences between ρ̂jj′ and ρtr
jj′ .

TABLE 2
[Simulation 2: Comparison] RMSEs are computed for ρjj′ , j < j′, δij , µij , βj2 − βj1, βj3 and κjp under

ZI-MLN and comparators.

Model ρjj′

ZI-MLN 0.063

SparCC 0.176

SPIEC-EASI 0.158

CCLasso 0.155

Zi-LN 0.157

Model δij µij βj2 − βj1 βj3 κj0 κj1 κj2
ZI-MLN 0.096 1.084 0.570 0.359 0.214 0.183 0.335

ZI-MLN without Λ 0.123 1.172 0.750 0.426 0.234 0.191 0.361

MetagenomeSeq 0.130 1.962 1.409 0.843 - - -

EdgeR - 2.205 0.902 0.585 - - -

(a) ρjj′ (b) δij , µij , βj2 − βj1, βj3 and κjp

the posterior predictive distributions to the observed counts. Fig 6(c) provides evidence for a
good model fit under ZI-MLN.

For comparison, we applied the four comparators that provide estimates of associa-
tions between OTUs, SparCC, SPIEC-EASI, CCLasso and Zi-LN, to the simulated data.
The heatmaps in Fig 7 and histograms in Fig 8 compare their estimates ρ̂jj′ to the truth
ρtr
jj′ . RMSE for ρjj′ are computed for comparison between the models including ZI-MLN.

Tab 2(a) shows that ZI-MLN outperforms the comparators in estimating the dependencies
between OTUs. Note that the comparators do not account for covariate effects, potentially
resulting in poor performance. Also, we applied three other comparators, ZI-MLN with-
out Λ, metagenomeSeq and edgeR (Robinson, McCarthy and Smyth, 2010) and compared
the abundance and absence/presence related model parameters. EdgeR is a likelihood-based
method that uses a negative binomial generalized linear regression approach for the analysis
of HTS data. It uses the normalization factors estimated by an empirical Bayes strategy and
does not account for excess zeros. Similar to ZI-MLN without Λ and metagenomeSeq, edgeR
does not account for the dependence structure among OTUs and does not provide inferences
on the relationship among OTUs. MetagenomeSeq and edgeR require selecting a category
of a discrete covariate as a reference category, and their βjp’s estimate changes in the mean
abundance relative to that in the reference category. We chose xi1 as the reference for those
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(a) ̂βj1 − βj2 versus βtr
j1 − βtr

j2 (b) β̂j3 versus βtr
j3

(c) ZI-MLN with Λ (d) ZI-MLN without Λ

FIG 6. [Simulation 2] Panels (a) and (b) compare posterior estimates of regression coefficients ̂βj1 − βj2 and
β̂j3 to the truth βtr

j1−βtr
j2 and βtr

j3, respectively, where the vertical lines represent 95% credible intervals. Panels
(c) and (d) compare posterior predictive median count estimates to their observed counts on the logarithm scale,

log(yij +0.01) versus log(ŷpred
ij +0.01). ZI-MLN with Λ and ZI-MLN without Λ are used in panels (c) and (d),

respectively.

(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

FIG 7. [Simulation 2: Comparison] The upper right and lower left triangles of each heatmap illustrate estimates
ρ̂jj′ of correlations between OTUs and their true values ρtr

jj′ , respectively. Panels (a)-(d) are for SparCC, SPIEC-
EASI, CCLasso and Zi-LN, respectively.

methods. Supp. Figs 6(d)-(f) and 8 (Shuangjie et al., 2022) compare estimates of βjp and κjp
under the comparators to the truth. RMSE for each of the four models, including ZI-MLN, is
computed and summarized in Tab 2(b). RMSE of κjp is not computed for metagenomeSeq
since it has a logit regression of ϵij on the total sample count, but not on covariates. The
results show that our model outperforms the comparators in the estimation of the parameters,
δij , µij , βjp and κjp. We also performed posterior predictive checking for ZI-MLN without
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

FIG 8. [Simulation 2: Comparison] A histogram of differences between ρ̂jj′ under SparCC, SPIEC-EASI,

CCLasso and ZiLN and ρtr
jj′ , in panels (a)-(d), respectively.

Λ by comparing ŷpred
ij under the model to the observed counts. As shown in Fig 6(d), ZI-

MLN without Λ provides a poor fit to the data. Their posterior mean estimates of σ2 and
u2s are greatly inflated compared to their true value. Estimates σ̂2 and û2s are 3.86 and 0.77,
respectively, while their true values are σ2,tr = 1 and u2,trs = 1. The comparison of the infer-
ence under ZI-MLN to that under ZI-MLN without Λ shows the necessity of modeling the
dependence structure between OTUs to enhance the inference on the other parameters such
as covariate effects when the interactions between OTUs are present. Estimates of the mean
abundances under metagenomeSeq and edgeR are compared to the observed counts in Supp.
Fig 9 (Shuangjie et al., 2022).

Additional Simulations. We conducted additional simulation studies, Simulations 3-5 to ex-
amine the performance of our model under various settings. In Simulation 3, we first gen-
erated correlated mean vectors µ̃tr

i = (µ̃tr
i1, . . . , µ̃

tr
iJ) from a multivariate normal distribution

and simulated OTU counts from zero-inflated Poisson distributions with means exp(µ̃tr
ij). The

simulation results show that our model provides reasonable estimates of the parameters even
when the simulation truth is different from the assumed model, showing the robustness of the
model. Importantly, the OTU interaction structure is also reasonably well reconstructed even
when the dependency is embedded in the mean abundances, and the sampling distribution
is incorrectly specified. In Simulation 4, we kept the simulation setup the same as in Simu-
lation 2, but let Σtr = σ2,trIJ , i.e., OTU counts are independent given the mean parameters.
Although the simulation truth is closer to the assumption made under ZI-MLN without Λ,
the results show that ZI-MLN performs almost the same as well. For Simulation 5, we used
SparseDOSSA in Ma et al. (2021) to simulate a dataset. SparseDOSSA takes a real micro-
biome dataset as an input, estimates some input parameters of their data-generating model,
and generates a realistic microbiome dataset that has a dependence structure between OTUs
using the estimates. We used the skin microbiome dataset in § 4.1 as an input dataset. An
open-source software, SparseDOSSA2 is provided by the authors. SparseDOSSA estimates
a precision matrix, one of the input parameters, with ℓ1 penalty for sparsity. The sparsity
assumption is similar to that under some of the comparators, SPIEC-EASI and CCLasso. It
simulates count vectors from a multinomial distribution conditioning random total counts.
The dataset in the scenario was thus simulated from a model significantly different from
ZI-MLN. The results greatly demonstrate the robustness of ZI-MLN. The model-based nor-
malization appropriately accounts for differences in total counts. More importantly, the model
does a good job of capturing the dependence between OTUs in the truth and recovers the truly
underlying between-OTU structure reasonably well. In all simulation studies, the results also
show that our model compares very favorably relative to the comparators for estimation of
covariate effects and of dependence structure between OTUs. More details of Simulations
3- 5 are in Supp. §2.3-2.5 (Shuangjie et al., 2022), respectively. In addition, we assumed a
different sparsity level for Λtr by generating ejk

iid∼ Ber(g) with g = 0.5, and reran analy-
ses under the settings of Simulations 1-4. The results show that ZI-MLN recovers the truth
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(a) ρ̂jj′ versus ρem
jj′ (b) ρ̂jj′ for some selected OTUs

FIG 9. [Skin Microbiome Data] Posterior correlation estimates ρ̂jj′ (lower left triangle) and empirical correla-
tion estimates ρem

jj′ (upper right triangle) are shown in panel (a). Panel (b) have the OTUs having |ρ̂j,j′ | ≥ 0.40

for any j′ ̸= j.

well with a lower sparsity level and works better than the comparators under the comparison
metrics.

4. Real Data Analyses.

4.1. Skin Microbiome Data. We applied our ZI-MLN to a subset of the chronic wound
microbiome data in Verbanic et al. (2020). The study was conducted to investigate the ef-
fect of debridement on the wound microbial community. Skin swab samples were collected
under three conditions, healthy skin, pre-debridement, and post-debridement conditions. The
skin microbiome dataset was analyzed Shuler et al. (2021), which showed changes in the
community-level microbial richness and abundance diversity by the experimental conditions.
For an illustration of ZI-MLN without covariates, we used a subset of the data that consists
of N = 20 healthy skin samples collected from M = 20 subjects and investigated the interac-
tion structure between OTUs in the healthy skin samples. We removed OTUs that have zero
counts in more than 50% of the samples, leaving J = 187 OTUs for analysis. The thresh-
old of 50% was chosen so that each OTU has at least 10 nonzero counts, and the model
parameters such as αj can be reliably estimated. Manual inspection of the curated OTU list
indicated that the threshold chosen did not eliminate OTUs of major biological importance.
In addition, we performed sensitivity analysis to the specification of the threshold. We found
that any reasonable choice has little impact on the posterior inference, showing robustness of
our model. Details of the sensitivity analysis are summarized in Supp. §3.1 (Shuangjie et al.,
2022). Fig 9(a) shows empirical correlation estimates ρem

jj′ computed using log(yij + 0.01)
after normalization with CSS sample size factor estimates. To fit ZI-MLN, the values of the
fixed hyperparameter values were set similar to those of Simulation 1 in § 3.1. The MCMC
simulation was run over 30,000 iterations, with the first 15,000 iterations discarded as burn-
in. It took 25 minutes for every 5,000 iterations on a M1 Mac.

Fig 9(a) illustrates posterior mean estimates ρ̂jj′ of the marginal correlations for all OTUs.
From panel (a), correlation estimates are overall small for most of (j, j′), implying weak
interactions between OTUs. Compared to ρem

jj′ , ρ̂jj′ ’s are shrunken toward zero for many
OTUs. The overall weak correlations among OTUs in the skin samples are consistent with
previous analysis. Specifically, Bashan et al. (2016) analyzed data from the Human Micro-
biome Project and the Student Microbiome Project, and compared samples from the gut and
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(a) ZI-MLN (b) ZI-MLN without Λ (c) metagenomeSeq

FIG 10. [Skin Microbiome Data: Comparison] Panels (a) and (b) have scatter plots of observed log(yij +0.01)

versus log(ŷ
pred
ij + 0.01) under ZI-MLN and ZI-MLN without Λ, respectively. Panel (c) is the scatter plots of

observed log(yij + 0.01) versus mean abundance estimates log(µ̂ij + 0.01) by metagenomeSeq.

oral microbiome to those from the skin microbiome. They reported that, while the gut and
mouth microbiome samples appeared to exhibit universal dynamics of inter-species interac-
tions, the extent of such interactions in the skin microbiome samples was relatively low. Fig
9(b) presents ρ̂jj′ for the OTUs that have |ρ̂jj′ | ≥ 0.40 for any j′ ̸= j, where the value of
0.4 is arbitrarily chosen to make the estimates readable. Taxonomic information of the OTUs
in Fig 9(b) is given in Supp. Tab 4 (Shuangjie et al., 2022). From panel (b) and the supp.
table 4 (Shuangjie et al., 2022), OTUs 43 and 88 belonging to genera Porphyromonas and
Peptoniphilus, respectively, are estimated to be positively correlated with ρ̂= 0.39. Interest-
ingly, they were found to co-occur in a large sample of genitourinary microbiome samples
(Qin et al., 2021) as well as vaginal samples (Xiaoming et al., 2021) and were suggested
to be ‘keystone’ species, i.e., strongly interacting species that help define their ecological
system. These species are also found to co-occur in skin samples (Chattopadhyay et al.,
2021), where they are more abundant in patients with diabetic foot ulcers (Park et al., 2019).
OTUs 43 and 48 having correlation estimate ρ̂= 0.42 belong to genera Porphyromonas and
Campylobacter, respectively, that are both potentially pathogenic. Porphyromonas is a known
pathogenic genus in periodontitis and is a risk factor in inflammatory bowel disease, while
Campylobacteri is a known gut and oral pathogen with a role in inflammatory bowel disease.
Their positive correlation estimate may reflect a tendency to co-occur, as both are observed
in inflammatory bowel disease (Cai et al., 2021). From Supp. Tab 4 (Shuangjie et al., 2022),
OTUs that have a large positive value of ρ̂j,j′ tend to be phylogenetically closely related. For
example, OTUs 41 and 42 having ρ̂ = 0.47 belong to the same order Micrococcales. Simi-
larly, OTUs 46 and 47 with ρ̂ = 0.45 having are in family Chitinophagaceae. On the other
hand, some OTUs are estimated to have a positive association with phylogenetically distant
OTUs. For example, the correlation estimates between OTU 153 and OTUs 41 and 42 are
ρ̂= 0.44 and 0.41, respectively, but OTU 153 is not phylogenetically closely related to OTUs
41 and 42. Interestingly, OTU 153 has similar interaction patterns with OTUs 41 and 42 in the
same genus. Fig 10(a) has a scatter plot comparing the posterior predictive median estimates
ŷ

pred
ij to the observed counts. The posterior predictive checking indicates a good model fit by

ZI-MLN.
We also applied the comparators, SparCC, SPIEC-EASI, CCLasso and Zi-LN to the skin

microbiome data for comparison. Their correlation estimates ρ̂jj′ are illustrated in Fig 11
with the naive estimates of the correlations. SPIEC-EASI and CCLasso produce ρ̂jj′ very
close or equal to zero for most OTU pairs, while SparCC has nonzero estimates for a ma-
jority of ρjj′ . In addition, ZI-MLN without Λ and metagenomeSeq are applied for further
comparison. In Fig 10(b), the posterior predictive median estimates ŷpred

ij under ZI-MLN
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

FIG 11. [Skin Microbiome Data: Comparison] Correlation estimates ρ̂jj′ (lower left triangle) and empirical cor-
relation estimates ρem

jj′ (upper right triangle) are shown. The estimates in panel (a)-(d) are obtained by SparCC,
SPIEC-EASI, CCLasso and Zi-LN, respectively.

without Λ are compared to the observed counts. In panel (c), mean abundance estimates un-
der metagenomeSeq are compared to the observed counts. A comparison of those plots to
that in panel (a) indicates that our ZI-MLN provides a better model fit, possibly because our
model accounts for microbial interactions.

4.2. Human Gut Microbiome Data. We analyzed the microbiome dataset available from
the inflammatory bowel disease (IBD) multi-omics database (https://ibdmdb.org/) with our
ZI-MLN. Crohn’s disease (CD) and ulcerative colitis (UC) are the most prevalent forms of
IBD and are characterized by chronic inflammation of the gastrointestinal tract. As part of
the Integrative Human Microbiome Project (iHMP), Lloyd-Price et al. (2019) conducted an
integrated study of multiple molecular features of the gut microbiome to investigate host-
and microbiome-specific taxonomic and molecular features related to IBD and how they
vary over time. In the study, biopsies were taken during the initial screening colonoscopy
from the participants who were recruited from multiple medical centers and sequenced using
16S rRNA gene amplicon sequencing. For an illustration of our statistical model, we used
part of their 16S rRNA sequencing data. In particular, we included the samples obtained
from 37 pediatric participants from two recruitment sites, Cincinnati Children’s Hospital and
Massachusetts General Hospital (MGH) Pediatrics. For some subjects, two samples were
collected from different biopsy locations, resulting in a total of 67 samples. In addition to
biopsy locations, we included one continuous covariate, age and five categorical covariates
such as sex, race, recruitment site and disease phenotype. Disease phenotype is a trinary
covariate taking a value of UC, CD or non-IBD, and the others are binary, resulting in P = 12
after adding dummy variables to indicate the categories of the discrete covariates. Supp. Tab 5
(Shuangjie et al., 2022) lists all covariates with their supports. We removed OTUs having zero
count in more than 80% of the samples or average counts smaller than five. J = 107 OTUs
are left after the preprocessing. With the threshold of 80%, each OTU has approximately
13.4 nonzero counts, similar to that in the skin microbiome data analysis, to ensure reliable
estimates of κjp, βjp and Σ. We specified hyperparameters similar to those in § 3.2. The
MCMC simulation was run over 30,000 iterations, with the first 15,000 iterations discarded
as burn-in. It took 0.75 hours for every 5,000 iterations on a M1 Mac.

Posterior mean estimates ρ̂jj′ of the marginal correlations (lower left triangle) are illus-
trated with naive empirical correlation estimates ρem

jj′ (upper right triangle) in Fig 12(a). The
figure shows relatively rich microbial interactions in the gut microbiome samples as reported
in Bashan et al. (2016). Fig 12(b) reports ρ̂jj′ for the OTUs having |ρ̂jj′ |> 0.5 for any j′ ̸= j,
where the value of 0.5 is chosen to make the estimates in the figure readable. Taxonomic in-
formation of the OTUs in panel (b) is in Supp. Tab 6 (Shuangjie et al., 2022). In panel (b),
a group of OTUs 4, 31, 37, 39, 44, 56, 93 and 96 that are positively correlated with each
other, are taxa that are found to indicate dysbiotic microbiota from gastrointestinal diseases.
For example, OTUs 31 and 39 that belong to family Erysipelotrichaceae are observed to

https://ibdmdb.org/
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(a) ρ̂jj′ versus ρem
jj′ (b) ρ̂jj′ for some selected OTUs

FIG 12. [Human Gut Microbiome Data]: Posterior marginal correlation estimates ρ̂jj′ (lower left triangle) and
empirical correlation estimates ρem

jj′ (upper right triangle) are shown in panel (a). Panel (b) illustrates the OTUs

having |ρ̂jj′ |> 0.5 for any j′ ̸= j.

(a) βage (b) βRectum − βIleum (c) βCD − βnon−IBD
FIG 13. [Human Gut Microbiome Data] Posterior inference of regression coefficients βage, βRectum−βIleum,
and βCD−βnon−IBD , where the posterior mean estimates are denoted by dots, and the 95% credible estimates
with vertical lines. The intervals that do not contain zero are marked.

be related to gastrointestinal inflammatory disorders (Kaakoush, 2015). And some species
in Escherichia (OTU 93) (e.g., E. Coli (Mirsepasi-Lauridsen et al., 2019)) and Clostridium
(OTUs 31 and 96) (e.g., C. difficile (Nitzan et al., 2013)) are known to be related to the
development of IBD. Another group of OTUs that are positively associated with each other
includes genera, Bacteroides (OTU 59), Faecalibacterium (OTU 30), Lachnospiraceae (OTU
84) and Ruminococcaceae (OTU 85). The group of those genera contains species that were
found active in metabolic processes and can produce short-chain fatty acids (Parada Venegas
et al., 2019). These species might interact though exchanging metabolic products; for ex-
ample, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were found metabol-
ically complementary, where the former is an acetate producer, and the latter is acetate con-
sumer and butyrate producer (Wrzosek et al., 2013). Furthermore, such metabolic functions
might be part of a complex interplay between the microbiota and disease states. For example,
butyrate is an anti-inflammation promoter, and the decrease of butyrate producers might also
indicate dysbiotic gut microbiota (Andrade et al., 2020). Interestingly, the OTUs in those
two groups are negatively associated. The correlation patterns between the groups indicate
how gut microbiota may shift from dysbiosis and may suggest further investigation through
experiments. From taxonomic information in Supp. Tab 6 (Shuangjie et al., 2022), the OTUs
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(a) ZI-MLN (b) ZI-MLN without Λ

FIG 14. [Human Gut Microbiome Data: Comparison]: Panels (a) and (b) have scatter plots of observed log(yij+

0.01) versus log(ŷpred
ij + 0.01) under ZI-MLN and ZI-MLN without Λ, respectively.

in the groups belong to different families and orders, indicating that phylogenetically distant
OTUs interact in gut microbiota.

Fig 13 and Supp. Fig 39(a)-(b) (Shuangjie et al., 2022) illustrate posterior mean estimates
β̂jp and κ̂jp of the regression coefficients, respectively, with their 95% credible intervals for
some selected covariates. Dots represent point estimates and vertical lines interval estimates.
In the figures, βjp and κjp that do not contain zero in their 95% credible interval are marked.
In addition, Supp. Tabs 7 and 8 (Shuangjie et al., 2022) provide taxonomic information of
the OTUs whose abundance or presence/absence is statistically associated with change in
covariates. Overall, the covariate effects are statistically significant for a small number of
OTUs. From panel (c), the effect of having condition CD compared to non-IBD βCD −
βnon−IBD is statistically significant for 16 OTUs. The effect estimates are negative for those
except for OTU 84, which implies that their abundance is lower for a subject with CD than
for a subject with non-IBD. Also, among those, 14 OTUs belong to phylum Firmicutes and
order Clostridiales. Significant decrease in abundance of phylum Firmicutes (Clostridium
leptum and Clostridium coccoides groups) in active IBD subjects compared to that in non-
IBD subjects is reported in Sokol et al. (2009), Vester-Andersen et al. (2019) and Alam
et al. (2020). Lloyd-Price et al. (2019) also reported a statistically significant decrease in
abundance of Clostridium leptum in active IBD subjects. We compare posterior predictive
median estimates of OTU counts to the observed data in Fig 14(a) to access the model fit.
The figure shows that the model fits the data well.

For comparison, we applied the comparators, SparCC, SPIEC-EASI, CCLasso and Zi-LN
to the gut microbiome data. Fig 15 illustrates ρ̂jj′ under the comparators. Also, additional
comparators, ZI-MLN without Λ, metagenomeSeq and edgeR were applied. The first set of
the comparators does not account for covariate effects, and the second set does not infer the
dependence structure between OTUs. SPIEC-EASI yields a very sparse estimate, whereas
the other comparators produce very dense estimates. Supp. Figs 39(c)-(d) and 40 (Shuangjie
et al., 2022) illustrate posterior estimates of regression coefficients βjp and κjp obtained by
the second set of the comparators. While ZI-MLN without Λ yields similar estimates, the
estimates under metagenomeSeq and edgeR are greatly different from those under ZI-MLN.
Specifically, under metagenomeSeq, the effects of covariate age are positive and statisti-
cally significant for most OTUs. A similar pattern is also observed from edgeR. For ZI-MLN
without Λ, we further examine posterior predictive distributions of OTU counts (shown in
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(a) SparCC (b) SPIEC-EASI (c) CCLasso (d) Zi-LN

FIG 15. [Human Gut Microbiome Data: Comparison] Correlation estimates ρ̂jj′ by SparCC, SPIEC-EASI,
CCLasso and Zi-LN (lower left triangle) and empirical correlation estimates ρem

jj′ (upper right triangle) are
shown in panel (a)-(d), respectively.

Fig 14(b)). Compared to the fit under ZI-MLN, ZI-MLN without Λ yields a poor fit, es-
pecially for large counts. Supp. Fig 41 (Shuangjie et al., 2022) compares mean abundance
estimates under edgeR and metagenomeSeq to the observed counts and indicates poor model
fit under those models.

5. Discussion. We have presented a Bayesian zero-inflated rounded log-normal kernel
model to analyze multivariate count data with excess zeros. Different from most existing
models, the model directly infers interrelationships between counts and produces reliable
inference on microbial interaction with a small sample size. It offers a straightforward inter-
pretation of microbial dependence structures. Furthermore, the model simultaneously incor-
porates covariates and accounts for excess zeros. The simulations showed that the developed
model compares very favorably in parameter estimation and model fit to a model that ig-
nores between-OTUs’ dependence structure and some popular alternatives that do not model
covariate effects and/or dependence structure.

ZI-MLN can be further extended to accommodate more complex data structures. Specifi-
cally, Lloyd-Price et al. (2019) collected multi-omics data to obtain a comprehensive under-
standing of the IBD microbial ecosystem. Multi-omic measurements from the same subject
may be interrelated, and joint analysis of bacterial sequencing data with other types of se-
quencing data such as viral sequencing data can be useful. In general, latent factor models
provide a convenient way to model complex interrelationship structures in multivariate data
and can be extended to accommodate multiple coupled observation matrices, e.g., a group
factor model (Zhao et al., 2016). In that vein, our ZI-MLN can be extended to jointly analyze
multiple correlated count matrices from a multi-omics study using an approach of a group
factor model. Another possible extension is to incorporate phylogenetic information into the
model. Investigating potential interactions between phylogenetically related microbes is bi-
ologically interesting, e.g., see Faust et al. (2012); Connor, Barberán and Clauset (2017);
Kamneva (2017). Similar to Lo and Marculescu (2018), phylogenetic information can be
utilized in building a prior model of Σ.
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SUPPLEMENTARY MATERIAL

Supplementary FileSupplementary material: Additional Results
The Supplementary Material consists of four sections. In Supp. § 1, we provide details of the
posterior computation. Supp. § 2 has additional results from the simulation studies. Supp. § 3
contains additional results of the real data analyses.
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Supplementary material: ZI-MLN Code
The supplementary source code contains the implementation of the models described in the
paper. It is also available from https://github.com/Zsj950708/ZI-MLN.
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