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Abstract

Essays in Applied Spatial Economics

by

Daniel J. Cullen

This dissertation consists of three works which consider estimation of economic

variables when a spatial component exists. Each essay utilizes different techniques

and methodology for working with data that can be grouped into spatial clusters.

In the first essay, I estimate the impact of air pollution events caused by wild-

fire smoke on respiratory and circulatory health outcomes. Utilizing a combination

of California health data and NOAA wildfire smoke data I can estimate the impact

of exposure to wildfire smoke on health outcomes for all individuals in California.

Using inpatient data I am able to construct a measure of exposure to wildfire smoke

prior to the hospital visit, this allows for the identification of the impact of wildfire

smoke exposure on different health outcomes. I find that an additional day of smoke

exposure in a month leads to on average 11.38 additional hospital admissions for res-

piratory diagnoses and an additional 3 hospital admissions for circulatory diagnoses.

This translates to an annual cost of wildfire smoke exposure in California due to res-

piratory and circulatory hospital admissions of $192,316,498.

The second essay, joint with Travis Cyronek, asks the question: How does the

sharing economy affect traditional lodging markets? The advent of platforms such

as Airbnb in 2008 has introduced a new channel of market interaction between those

with space and those who seek it. This allows for transactions of lodging services

that might otherwise be underutilized. This paper develops a framework to help

think about how peer-to-peer transactions interact with traditional rental markets,
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and what this means for property managers and tenants. Specifically, we examine

how the introduction of sharing platforms (e.g. Airbnb) affect the listing decisions of

vacant property managers and the lodging choices of dwelling seekers. The model

features landlords who choose where to list vacant properties and renters who search

for lodging. Renters can be either short or long-term, referencing how long they wish

to occupy the property. Sharing platforms give landlords the option of accessing these

short-term renters whom would otherwise occupy hotels, affecting traditional, long-

term renters. We find that Airbnbs decrease hotel prices by about $24 while they

increase average rents by $39 per month.

In the third essay, joint with Douglas G. Steigerwald, we study the behavior of

cluster-robust test statistics in models with instrumental variables when cluster het-

erogeneity is present. Inference in a large number of papers using two-stage least

squares regressions published in American Economics Association journals are driven

by the presence of one or two influential clusters. We link a measure of cluster het-

erogeneity, the feasible effective number of clusters, to measures of influence. Using

simulations, we demonstrate that high levels of cluster heterogeneity lead to coverage

of less than 95% for 95% confidence intervals when using instrumental variables with

panel data or with data that can be grouped into clusters. Using data from papers with

two-stage least squares regressions published in American Economic Association jour-

nals, we show that the feasible effective number of clusters can be used as a pre-test

to the sensitivity of two-stage least squares inference to influential clusters. We fur-

ther show that when the feasible effective number of clusters is small, even when the

number of clusters is large, the distribution of the test statistic in non-normal. When

this severe cluster heterogeneity is present, the restricted wild cluster bootstrap can

be used to return coverage to the appropriate level.
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Chapter 1

The Health Cost of Wildfire Smoke

1.1 Introduction

The annual area burned by wildfires in the western United States has increased

substantially in recent decades due to the increased frequency and size of wildfires

(Westerling (2016)). In addition to the direct damages of wildfires, they also produce

large amounts of smoke that can spread over thousands of miles and persists for days

or weeks. The smoke plumes produced by wildfires contain large amounts of par-

ticulate matter (PM) and other toxic gases. The increase in wildfire smoke may be a

contributing factor in the recent increase in the levels of air pollution in the United

States. Clay and Muller (2019) find that wildfires may account for some of the ob-

served increase in PM2.5
1 from 2016 to 2018. The increase in air pollution exposure,

specifically PM2.5, increases mortality in vulnerable populations such as infants and

the elderly (Chay and Greenstone (2003); Currie and Neidell (2005); Deryugina et al.

(2019)) and increases hospitalization costs for respiratory and heart-related admis-

1PM2.5 refers to fine atmospheric particles that have a diameter of less than 2.5 micrometers. The
Environmental Protection Agency (EPA) sets and reviews national air quality standards for PM as part
of the Clean Air Act.
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The Health Cost of Wildfire Smoke Chapter 1

sions (Schlenker and Walker (2016)).

Wildfire smoke not only releases PM2.5, but also a wide range of pollutants includ-

ing greenhouse gases, photochemically reactive compounds, and coarse particulate

matter (Urbanski et al. (2008)). Past research on the impact of wildfire smoke has

mainly focused on individual wildfire events and the communities nearby these fires,

such as Haikerwal et al. (2015) who look at the 2006 wildfire in Victoria, Australia.

Haikerwal et al. (2015) finds that PM2.5 exposure was associated with increased risk

of out-of-hospital cardiac arrests and coronary heart disease (CHD). Their results sug-

gest that increased levels of PM2.5 as a result of wildfires may act as a triggering factor

for acute coronary events. Miller et al. (2017) were the first nationwide study of the

impact of wildfire smoke on health. Using Medicare data and data on wildfire smoke

plumes, Miller et al. (2017) found that exposure to wildfire smoke significantly in-

creases mortality risk in the elderly.

In this paper, I utilize data from California’s Office of Statewide Health Planning

and Development (OSHPD) to look at the impact of wildfire smoke exposure on hos-

pital admittance for respiratory and circulatory illnesses. Unlike previous studies that

have utilized Medicare data, these data allow for the study of health outcomes for a

broader demographic group. In addition, looking at hospital visits, not just mortal-

ity, allows for a more complete view of the impacts of wildfire smoke on health. This

paper also utilizes data through 2018 which includes three of the largest fires in Cal-

ifornia history: the Mendocino Complex fire (2018), the Thomas fire (2017), and the

Carr fire (2018).

To study the relationship between wildfire smoke exposure and hospital admis-

sions, I link the hospital admittance data with satellite imagery data produced by The

National Oceanic and Atmospheric Administration’s (NOAA) Hazard Mapping Sys-

tem. These data track the location and movement of all wildfire smoke plumes in the

2



The Health Cost of Wildfire Smoke Chapter 1

United States. I use this to derive the daily wildfire smoke exposure of every county

in California from 2012 through 2018. Similar to the identification strategy in Miller,

Molitor, and Zou (2017), I am able to utilize the quasi-random variation in exposure

to wildfire smoke due to the nature of the drift in the wildfire smoke plumes. Using

this year to year variation in whether a specific area was exposed to wildfire smoke at

a specific point in time, I am able to identify the causal impact of wildfire smoke ex-

posure. I estimate that each additional day of smoke exposure in a month leads to on

average 5.56 additional hospital admissions that month for respiratory diagnoses and

an additional 1.84 hospital admissions for circulatory diagnoses. In addition, each

additional day of smoke exposure in the previous month leads to on average 3.78 ad-

ditional hospital admissions for respiratory diagnoses and an additional 1.19 hospital

admissions for circulatory diagnoses in that county. The total cumulative effect of an

additional day of smoke exposure in a month leads to on average 11.38 additional

hospital admissions for respiratory diagnoses which equates to a 2.78% increase in

the average month. The cumulative effect on circulatory diagnoses is 3 hospital ad-

missions which equates to a 0.41% increase in the average month in that county.

This paper also contributes to the literature on the costs of climate change. Under

climate change scenarios it is predicted that wildfires will increase in area burned and

fire intensity (Flannigan et al. (2000)). Not only will these fires have direct impacts on

the surrounding communities, the smoke plumes produced by these fires will affect

individuals far from the wildfire. Using estimates of the cost of illness (COI) for a

hospital admission for respiratory or cardiovascular illness produced by The United

States Environmental Protection Agency (EPA) I calculate that an additional day of

wildfire smoke exposure leads to about $188,767 additional medical expenditures for

respiratory and circulatory hospital admissions. This equates to a total annual cost

of wildfire smoke exposure in California due to respiratory and circulatory hospital

3



The Health Cost of Wildfire Smoke Chapter 1

admissions of $193,903,107, or approximately 0.066% of California’s annual health

care spending.2

Section 1.2 provides background on wildfire smoke and the impacts of wildfire

smoke and air pollution on health and productivity. Section 1.3 describes the data

used and other potential data sources. Section 1.4 explains my empirical strategy

and main results. Section 1.5 estimates the economics costs of wildfire smoke due to

hospital admissions. Section 1.6 concludes.

1.2 Background

1.2.1 Wildfire Smoke

Wildfires can release large amounts of particulate matter (PM) and toxic gases

including carbon monoxide (CO), nitrogen oxides (NOx) and non-methane organic

compounds (NMOC) into the atmosphere. These compounds can then spread over

hundreds of miles and persist for days or weeks in smoke plumes(Reisen et al. (2015)).

Figure 1.1 shows an example of this spread during the Thomas Fire, a fire that began

in Ventura County, California on December 4, 2017. This fire spread into neighbor-

ing Santa Barbara County and burned approximately 280,000 acres before being fully

contained on January 12, 2018. The grey shaded regions shows the extent of wild-

fire smoke on December 9, 2017 during the first week of the fire. I produce these

representations using the data produced the National Oceanic and Atmospheric Ad-

ministration’s (NOAA) Hazard Mapping System (HMS) data set. The shading of the

plumes represents the relative density of the plume in the atmosphere, but does not

reflect the concentration at ground level. The counties shaded red are the areas that

2California annual health care spending comes from the U.S. Centers for Medicare & Medicaid Ser-
vices.
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The Health Cost of Wildfire Smoke Chapter 1

are exposed to any wildfire smoke on that day. In addition to the counties along the

Pacific Coast exposed to the Thomas Fire smoke plume, we can also see smaller wild-

fire events in other areas of the U.S. on the same day. The smoke plume off the West

Coast of the United States shows the large extent a single wildfire event can have.

However, this wildfire event is one of the largest wildfires in U.S. history and most

wildfire events are not on this scale. The majority of wildfires are more similar to the

other wildfires seen around the U.S. in the Figure 1.1, only burning around 100 acres

on average3.

Figure 1.1: Map of smoke plume for December 9, 2017 during the Thomas Fire with
smoke affected counties colored in red. The fire burned approximately 280,000 acres
before being fully contained over a month later.

3Source: National Interagency Fire Center (NIFC)
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The Health Cost of Wildfire Smoke Chapter 1

While the location of wildfires is not exogenous to health outcomes, the spread of

the smoke plume is mainly driven by the direction of the wind. Figure 1.2 also ex-

emplifies the nature of the spread of wildfire smoke plumes. Exposure to the smoke

is driven by shifts in wind patterns not on distance to the fire. Comparing the panels

in Figure 1.2 we can see that exposure to wildfire smoke from one fire can vary on a

day to day basis and that the distance to a fire is not the only important factor. This

characteristic, the combination of fire ignition location and day to day wind patterns,

creates exogenous variation in smoke exposure. It also addresses concerns about se-

lection as predicting the location of wildfires and the direction of the spread of the

smoke plume in advance seems unlikely.

The existing literature has found mixed results when looking at the relationship

between wildfire smoke and morbidity. Liu et al. (2015) review fourteen studies that

investigate the link between wildfire smoke and cardiovascular morbidity. Of those

fourteen, only six reported a positive relationship. The strongest evidence for the

negative effects of wildfire smoke on health come from Miller et al. (2017). Their

nationwide study using Medicare administrative data shows that wildfire smoke sig-

nificantly increases the mortality risk of the elderly.

6
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Figure 1.2: The spread of wildfire smoke during the first 6 days of the Thomas fire
which began on December 4, 2017 in Ventura County, California and lasted until
January 12, 2018.

(a) December 4, 2017 (b) December 5, 2017

(c) December 6, 2017 (d) December 7, 2017

(e) December 8, 2017 (f) December 9, 2017
7



The Health Cost of Wildfire Smoke Chapter 1

1.2.2 Impact of Air Pollution on Health

While the number of studies investigating the impact of wildfire smoke exposure

on health is relatively few, the relationship between air pollution and health continues

to be a highly studied and debated topic. The impact of pollution on health is difficult

to identify because pollution is not randomly assigned. The health of individuals who

live in areas of high pollution may be different for reasons unrelated to pollution such

as a preference for healthy activities. Many studies have looked at the impact of air

pollution on infant health (Chay and Greenstone (2003);Currie and Neidell (2005)).

Deryugina et al. (2019) were the first to conduct a large-scale, quasi-experimental

investigation of the effects of short-term PM2.5 exposure on elderly mortality, health

care use, and medical costs. Schlenker and Walker (2016) develop a framework for

estimating the contemporaneous effect of air pollution on health using variation in

local air pollution driven by airport runway congestion. They find that an increase in

the daily level of pollution leads to an increase in hospitalization costs for respiratory

and heart-related admissions.

Lelieveld et al. (2020) estimate that global air pollution caused an additional 8.8

million premature deaths in 2015. These deaths represent an average shortening of

life expectancy of nearly three years for all persons worldwide.

1.2.3 Impact of Air Pollution on Labor Productivity

In addition to the health effects, the impact of air pollution on productivity has

been well documented. For example, Hanna and Oliva (2015) show the reduction in

hours worked due to changes in air pollution in Mexico City. Chang et al. (2016) study

the negative effect of PM2.5 on productivity of pear packers.
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The Health Cost of Wildfire Smoke Chapter 1

Borgschulte et al. (2018) estimate the labor market impacts of ambient air pollu-

tion due to wildfire smoke exposure. They find that smoke exposure reduces earnings

in the year of exposure and the following year, lowers labor force participation, and

increases Social Security payments.

1.2.4 Identification

Identification in papers looking at the impact of air pollution on health utilize the

variation created from ‘’natural experiments” to determine the impact of air pollution

on health outcomes. Chay and Greenstone (2003) use the variation created by the im-

plementation of the Clean Air Act of 1970. The Clean Air Act set limits to maximum

allowable concentration of total suspended particulates (TSPs) that every county was

required to meet4. The Clean Air Act led to larger reduction in TSPs in some counties

than others, creating variation in the change in air pollution. This variation arose be-

cause industrial emitters of TSPs in counties that were above the legislated maximum

were subject to stricter regulations.

Chay and Greenstone show that TSPs did decline in the early 1970s and the de-

cline was entirely in nonattainment counties. They then use nonattainment status as

an instrumental variable for changes in TSPs in 1971 to 1972 to identify the impact

of TSPs on infant mortality. Nonattainment status may be a valid instrument because

it is unlikely that a federal limit on emissions would impact county level infant mor-

tality rates except through its impact on air pollution. They find that a one percent

reduction in TSPs leads to a 0.5 percent decline in the infant mortality rate, with most

of the reduction in the first month after birth.
4Total suspended particulates were defined by the EPA to include all particles with diameters less

than or equal to 100 micrometers. Federal regulations that focused on PM10 and PM2.5 were not estab-
lished until 1987 and 1997, respectively.
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Currie and Neidell (2005) use individual level data linked to weekly ZIP Code

level pollution measures to identify the impact of air pollution on infant health in Cal-

ifornia in the 1990s. This detailed individual level data allows the authors to control

for both postnatal and prenatal pollution exposure, the age of the child, observable

characteristics of the mother and child. The authors also include month, year, and zip

code fixed effects so the impacts of pollution are identified using variation within zip

code, month, year level cells. They find that reductions in carbon monoxide during

the 1990s saved the lives of approximately 1,000 infants in California.

Deryugina et al. (2019) use administrative data on Medicare beneficiaries com-

bined with daily pollution data to evaluate the impact of PM2.5 on health by utilizing

variation in pollution due to changes in daily wind direction. The assumption that

the authors make is that, after controlling for fixed effects and climate variables, vari-

ation in a county’s daily wind direction does not affect a county’s mortality or health

care use except through a change in the level of air pollution. They estimate that an

increase in exposure to PM2.5 by 1 microgram per cubic meter leads to 0.69 additional

deaths per million elderly individuals the three days following the increase.

Looking more specifically to studies evaluating the effects of wildfire smoke, a

recent paper utilized a difference-in-differences model to study the impact of wildfire

smoke exposure on birthweight and the probability of low birthweight in Colorado.

Mccoy and Zhao (2020) use this approach to compare birthweights of infants born to

mothers inside an area exposed to wildfire smoke plumes during pregnancy to infants

located outside of the smoke plume. The authors estimate that infants exposed to

wildfire smoke have a 0.034 increase in the probability of low birthweight.

Similar to Deryugina et al. (2019), Miller et al. (2017) utilize Medicare beneficia-

ries data but similar to this paper investigate the impact of exposure to wildfire smoke

on health outcomes. The authors utilize variation in air quality as a results of drifting

10
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smoke plumes, specifically using year-to-year variation in smoke coverage of a partic-

ular area at a specific time of year. The authors include ZIP Code and week of year

fixed effects to ensure the comparison is done within each ZIP Code in the same week

across years with different levels of smoke exposure. The authors also include day

of week indicator variables to account for differences in hospital admissions between

weekends and weekdays. They estimate that the mortality rate increases by 0.522

deaths per million Medicare beneficiaries on the day of exposure and 1.204 deaths

per million in a three day period following the exposure.

Similar to Miller et al. (2017), I utilize variation in year-to-year exposure to wild-

fire smoke plumes in a particular area. However, using Medicare data Miller et al.

(2017) can only look at mortality rate of the elderly while I utilize data for all hospital

admissions in California. The available admissions data is aggregated to the monthly

level, so including day of week fixed effects is not necessary but month fixed effects

are utilized to control for seasonality of both wildfire smoke and health outcomes. I

also include county level fixed effects so that the wildfire smoke exposure is being

compared in the same area across years. In addition to fixed effects, I include yearly

level county demographic controls that impact healthcare utilization such as the un-

employment rate, the percent of the population in poverty, and the percent of the

population with health insurance. These controls capture similar information as year

by County fixed effects5.

5Including year by County fixed effects do not change the estimated coefficients in Section 4.

11
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1.3 Data Sources

1.3.1 Patient Discharge Data

Patient discharge data come from California’s Office of Statewide Health Planning

and Development (OSHPD). These data provide the number of cases for several ma-

jor diagnostic categories, Circulatory System, Respiratory System, Infections, Injuries

and Poisonings, and All Other6 at the monthly level. These data are aggregated to

the county level for larger counties and grouped into multiple county units within

an air basin7 for smaller counties due to privacy restrictions8. The groupings are dis-

played in Figure 1.4. Including controls for seasonality will be important, Figure 1.3

demonstrates that respiratory system cases tend to peak in the winter months.

1.3.2 Hazard Mapping System Fire and Smoke Product

The smoke coverage data comes from the National Oceanic and Atmospheric Ad-

ministration’s (NOAA) Hazard Mapping System (HMS). These data are created using

a combination of satellite imagery data and smoke analysts to determine the size,

shape, and concentration of significant smoke plumes over the United States. Using

these data, I am able to construct a measure of the exposure of each county to wildfire

smoke at the daily level. For each day if a smoke plume intersects with any area of the

county, then the county is counted as having a day of wildfire smoke exposure. It is

important to note that this is an upper bound on the number of days an individual is

exposed to wildfire smoke as a county unit is counted as exposed to wildfire smoke if

6Categorizations based on the Major Diagnostic Category ICD-9/ICD-10 coding system. Details can
be found in Appendix Table A.1

7Air basin data comes from The California Air Resources Board
https://ww3.arb.ca.gov/ei/maps/2017statemap/abmap.htm

8Even with these counties being combined there are still some observations that are masked due to
the number of monthly admissions for a category is less than 11.

12
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Figure 1.3: Monthly Totals of Hospital Admissions for Respiratory Illnesses

any of the county intersects a wildfire smoke plume on a given day. I then aggregate

this daily county data to county units and to the monthly level to match the unit of

observation in the healthcare data.

Figure 1.5 displays the distribution of the monthly number of smoke days9, while

Figure 1.6 shows a map of the average monthly number of smoke days across all

months. The most frequent value Smoke Days takes is zero and the majority of months

have less than three Smoke Days. Looking at the map in Figure 1.6 we can see the me-

dian number of Smoke Days in each county.

Similar to respiratory hospital admissions, the number of Smoke Days also follows

seasonal trends. However, unlike respiratory hospital admissions which peak in the

winter months, the number of Smoke Days tends to peak in the late summer months

as can be seen in Figure 1.7.

9A boxplot representing the distribution of Smoke Days for every county can be found in Appendix
Figure A.1
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Figure 1.4: Units of analysis are outlined in black, divisions of counties within a unit
of analysis are outlined with a dashed white line. All units of observation are dis-
played below the map.

Alameda Alpine—Inyo—Mono Amador
Butte Calaveras Colusa—Glenn
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Figure 1.5: Distribution of the number of Smoke Days 2012 – 2018
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Figure 1.6: Monthly Median Number of Smoke Days 2012 – 2018
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Figure 1.7: Monthly Average Smoke Days
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1.4 Empirical Strategy and Results

1.4.1 Hospital Admissions

While the impact of PM2.5 on health has been well documented, wildfire smoke

consists of more harmful substances in addition to PM2.5. To evaluate the impact of

exposure to wildfire smoke on health, I look at California hospital admissions data

specifically for diseases and disorders of the respiratory and circulatory systems. This

data is available at the monthly level so I utilize variation in the monthly number

of wildfire smoke days at the county level to identify the impact of smoke exposure.

Using monthly data from OSHPD, I construct a monthly level measure of smoke expo-

sure Smokect, by aggregating the number of smoke days for each month at the county

level. I then use the following regression model:

Yct =
M∑
m=0

βmSmokec(t−m) +Xctα + γct + ηt + τt + εct (1.1)

where Yct is a health outcome of interest in month t in county c.10 I include M

number of lags to account for previous smoke exposure, using M equal to 3 in the

main results.11 To control for differences at the county level, I include county by year

fixed effects γct. Xct includes time-varying county level demographic controls, such as

unemployment rate, poverty rate, health insurance coverage rate, population,12 and

weather controls, temperature and precipitation.13 ηt is a year fixed effect to account

for year to year differences that impact all counties, such as a year with a bad flu sea-

son. τt is a month by year fixed effect to account for seasonality in health outcomes.

10Counts are used rather than admission rates per capita because the counts are small for some
counties and the variance of the outcome is very large.

11The results including up to 9 lags are presented in the Appendix.
12This data comes from the American Community Survey (ACS) 5 year estimates.
13Derived from NOAA’s Climate Divisional Database (nCLIMDIV)
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β0, β1, . . . , βm are the coefficients of interest, they can be interpreted as the effect of

one additional day of wildfire smoke this month, last month, . . . , m months ago on

the number hospital admissions for a given category.

Table 1.1 shows the impact of an additional smoke day on hospital admissions for

respiratory and circulatory diagnoses. Comparing columns 1 and 2, we can see the

sign of the coefficient flip once the seasonality of smoke days and respiratory admis-

sions is controlled for using weather variable controls and month fixed effects. As

can be seen in column 4, an additional day of smoke exposure in a month leads to

on average 5.56 additional hospital admissions that month and 3.78 additional hospi-

tal admissions the following month for respiratory diagnoses. Column 8 presents the

results for circulatory admissions, an additional day of smoke exposure in a month

leads to an additional 1.84 hospital admissions for circulatory diagnoses on average

and about 1.19 additional admissions the following month.

Looking to the lagged impacts in columns 4 and 8, the positive coefficients for

both respiratory admissions and circulatory admissions shows that the results are not

just picking up a shift in timing. That is to say, the results are not being driven by

wildfire smoke exposure causing admissions that would have occurred at a later date

(a negative coefficient would be consistent with that effect). These results also match

the mortality patterns found by Miller, Molitor, and Zou (2017). They found that

the mortality effects tended to increase as the post wildfire exposure time period in-

creases. This could be suggestive evidence that prolonged exposure has an even larger

effect on hospital admissions.
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Table 1.1: Impact of number of smoke days on hospital admissions in California.

Respiratory Admissions Circulatory Admissions
(1) (2) (3) (4) (5) (6) (7) (8)

Cumulative Effect −7.36∗∗∗ 4.41 11.72∗ 11.38∗ −0.30 −9.26∗∗ 2.91∗∗ 3.00∗∗

(2.19) (3.29) (6.38) (6.09) (0.68) (4.60) (1.37) (1.45)

Smoke Days −4.74∗∗∗ 4.06∗∗ 5.61∗ 5.56∗∗ −0.31 −1.73 1.97∗∗ 1.84∗∗

(1.29) (1.96) (2.84) (2.66) (0.32) (1.60) (0.93) (0.81)

Smoke Days −0.79∗∗∗ 2.63∗ 3.68∗∗ 3.78∗∗ −0.06 −1.22 0.98∗∗∗ 1.19∗∗

1 Month Previous (0.29) (1.50) (1.70) (1.88) (0.15) (0.85) (0.33) (0.46)

Smoke Days −3.50∗∗∗ 1.08 2.51∗∗ 2.25∗∗ −1.18∗∗∗ −1.44∗ 0.67∗∗ 0.69∗

2 Months Previous (1.06) (0.67) (1.24) (1.01) (0.39) (0.84) (0.28) (0.37)

Smoke Days 1.66∗∗∗ −3.36∗∗ −0.08 −0.21 1.24∗∗∗ −4.88∗∗∗ −0.71 −0.72
3 Months Previous (0.43) (1.35) (1.40) (1.42) (0.34) (1.56) (0.51) (0.48)

Weather Controls X X X X X X
Month FE X X X X X X
County-by-Year FE X X X X
Year FE X X
Num. obs. 4,059 4,059 4,059 4,059 4,054 4,054 4,054 4,054
Num. clusters 49 49 49 49 49 49 49 49
FENC 43.67 36.08 35.47 36.44 43.62 36.15 35.85 35.6
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
The feasible effective number of clusters is reported for the Smoke Days regressor.

Tables A.2 and A.3 in the Appendix present the results of the full fixed effects spec-

ifications in column 4 and 8 of Table 1.1 with an increasing number of lags. Figure 1.8

shows the robustness of the estimated coefficients for the contemporaneous effect and

one and two month lagged effects of the number of Smoke Days on Respiratory Ad-

missions. We can see that adding additional lags slightly changes the estimated coeffi-

cients, but the 95% confidence intervals for all of the regression specifications overlap

all of the estimated coefficients. Figure 1.9 similarly shows the robustness of the es-

timated coefficients for the contemporaneous effect and one and two month lagged

effects of the number of Smoke Days on Circulatory Admissions. The results are very

similar for Circulatory Admissions as for Respiratory Admissions, although the dif-

ference in estimated coefficients is even smaller between models.
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Figure 1.8: Coefficient Plot for the impact of number of smoke days on respiratory
hospital admissions.
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Figure 1.9: Coefficient Plot for the impact of number of smoke days on circulatory
hospital admissions.
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Table 1.2 presents the results for admissions for infections and injuries and poi-

sonings, two admissions diagnoses that would not be expected to be impacted by ex-

posure to wildfire smoke. Columns 4 and 8 show that there is no contemporaneous

effect of additional smoke days on admissions for those two categories and even a

slight decrease in the number of hospital admissions for infections. These results sug-

gest that there is not some other factor increasing the number of hospital admissions

when there is increased exposure to wildfire smoke.

Table 1.2: Impact of number of smoke days on hospital admissions in California.

Infections Admissions Injuries & Poisonings Admissions
(1) (2) (3) (4) (5) (6) (7) (8)

Smoke Days −0.53 −2.71 0.10 0.14 1.25∗∗∗ −3.58∗∗ −0.92∗∗ −0.91∗∗

(0.39) (1.87) (0.26) (0.23) (0.34) (1.52) (0.45) (0.45)

Smoke Days 0.35 −1.34 0.58 0.49 0.04 −2.17∗∗∗ −0.63∗∗∗ −0.68∗∗∗

1 Month Previous (0.23) (1.06) (0.40) (0.38) (0.10) (0.76) (0.20) (0.23)

Smoke Days −1.28∗∗∗ −1.48 0.52∗∗ 0.46∗∗ 0.42∗∗∗ −1.58∗∗ −0.23 −0.22
2 Months Previous (0.44) (0.90) (0.21) (0.20) (0.13) (0.62) (0.19) (0.19)

Smoke Days 1.59∗∗∗ −4.15∗∗ −0.12 −0.17 0.21 −2.69∗∗ −0.20 −0.19
3 Months Previous (0.46) (1.79) (0.33) (0.32) (0.19) (1.09) (0.19) (0.20)

Weather Controls X X X X X X
Month FE X X X X X X
County-by-Year FE X X X X
Year FE X X
Num. obs. 3,962 3,962 3,962 3,962 4,057 4,057 4,057 4,057
Num. clusters 49 49 49 49 49 49 49 49
FENC 42.28 34.6 33.35 34.03 43.81 36.38 35.31 36.06
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
The feasible effective number of clusters is reported for the Smoke Days regressor.

1.4.2 Nonlinear Effect

To investigate whether the impact of the number of smoke days has a nonlinear

impact on health, I create indicator variables for bins of the number of smoke days.

It has been seen in the literature that the impact of temperature on health has a U-
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shaped relationship. Creating these binned variables will allow me to investigate if

this relationship also exists for wildfire smoke exposure. I create SmokeBinbct, a set of

B indicator variables that are equal to 1 if a county’s number of wildfire smoke days

is within that range and 0 otherwise. I also create lags of the binned variable for 1 and

2 months. Table 1.3 displays the binned categories and the frequency of each bin by

month. The bins for the largest number of smoke days occurs mostly in the summer

months while the lowest bin is most prominent in the winter and spring. Using bins

of 5 days allows for a flexible design while still providing fairly precise estimates,

decreasing the bin size would allow for more flexibility at the expense of precision

of the estimates. Section A.5 presents an alternative binning strategy constructing

the bins using quantiles to ensure that the bins contain roughly equal numbers of

observations. However, the quantile approach is not able to capture the nonlinearities

for the larger number of Smoke Days due to the fewer number of months with these

larger numbers.

Table 1.3: Total number of observations in each category by month 2012 – 2018

Month <5 6 – 10 11 – 15 16 – 20 21 – 25 >25

January 329 12 2 0 0 0
February 320 18 5 0 0 0

March 338 5 0 0 0 0
April 324 19 0 0 0 0
May 325 17 1 0 0 0
June 213 88 34 8 0 0
July 76 97 102 41 23 4

August 53 49 49 55 58 79
September 80 90 102 48 18 5

October 219 55 45 22 2 0
November 273 26 36 7 1 0
December 321 19 1 2 0 0

To estimate the nonlinear effects of wildfire smoke exposure on health, I use the
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following regression model:

Yct =
M∑
m=0

B∑
b=1

βmbSmokeBinbc(t−m) +Xctα + γct + ηt + τt + εct (1.2)

where Yct is a health outcome of interest in month t in county c. I include M num-

ber of lags to account for previous smoke exposure and bin smoke exposure into B

bins. The results of the regression with the binned variables can be seen in Tables

1.4, 1.5, and 1.6. Table 1.4 shows the cumulative contemporaneous and lagged effect

of wildfire smoke exposure on circulatory and respiratory hospital admissions. For

both respiratory and circulatory admissions the largest impact is seen in months with

greater than 15 days of wildfire smoke exposure.

Looking at the full results for respiratory admissions in Table 1.5 column 4, the

impacts of exposure to wildfire smoke seem to only occur when the number of smoke

days is high. The impacts are concentrated in the coefficients for 16 to 20 Smoke Days,

21 to 25 Smoke Days, and Over 25 Smoke Days. The 16 to 20 Smoke Days coefficient

represents an increase of about 200 hospital admissions for respiratory illnesses com-

pared to if the county experienced 5 or less smoke days.

Now looking to the results for circulatory admissions in Table 1.6 column 4, simi-

lar to the results for respiratory admissions the bins of wildfire smoke exposure with

larger number of days lead to a significant increase in the number of hospital admis-

sions for circulatory illnesses compared to the base case of below 5 smoke days. Three

categories 16 to 20, 21 to 25, and over 25 all have large significant estimated coeffi-

cients, which means, for example, a month with between 21 and 25 smoke days leads

to over 100 additional hospital admissions for circulatory diagnoses compared to if

there were less than 5 days of wildfire smoke exposure.
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Table 1.4: Cumulative impact of number of smoke days on hospital admissions in
California.

Respiratory Admissions Circulatory Admissions
Cumulative Effect (1) (2) (3) (4) (5) (6) (7) (8)

6 to 10 Smoke Days −194.82∗∗∗ −33.51 −8.11 −19.66 −75.85∗∗∗ −64.93 −1.02 −0.99
(70.90) (25.31) (29.20) (32.24) (26.69) (44.06) (6.80) (7.95)

11 to 15 Smoke Days −145.18∗∗∗ 92.15 122.19 117.64 3.60 −26.77 38.16 38.37
(32.84) (72.87) (97.78) (89.39) (10.73) (40.97) (23.32) (24.94)

16 to 20 Smoke Days −108.48∗∗∗ 123.05∗∗ 217.29∗∗ 213.15∗∗ −5.32 −96.03 64.86∗∗∗ 66.28∗∗∗

(39.95) (60.57) (104.17) (96.14) (24.80) (58.48) (24.74) (25.42)

21 to 25 Smoke Days −54.28∗ 196.58 303.81∗ 305.04∗ −3.12 −129.76 105.14∗∗ 108.83∗∗

(30.08) (122.25) (167.27) (164.41) (24.81) (93.34) (45.61) (48.10)

Over 25 Smoke Days −33.89 210.05∗ 299.62∗ 296.90∗ 13.18 −142.06∗ 82.69∗∗ 85.28∗

(24.20) (117.56) (159.99) (158.70) (22.85) (80.91) (41.47) (45.54)

Weather Controls X X X X X X
Month FE X X X X X X
County-by-Year FE X X X X
Year FE X X
Num. obs. 4,059 4,059 4,059 4,059 4,054 4,054 4,054 4,054
Num. clusters 49 49 49 49 49 49 49 49
FENC 33.26 37.38 21.37 24.11 32.55 36.89 2.13 0
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
The feasible effective number of clusters is reported for the 21 to 25 regressor.
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Table 1.5: Impact of number of smoke days on hospital admissions in California.

Respiratory Admissions
(1) (2) (3) (4)

6 to 10 Smoke Days −86.52∗∗∗ −2.10 6.64 3.07
(26.59) (7.94) (9.52) (9.43)

11 to 15 Smoke Days −77.74∗∗∗ 40.93 43.37 48.27
(18.21) (24.91) (29.76) (32.25)

16 to 20 Smoke Days −64.30∗∗∗ 60.36∗∗ 81.25∗∗ 82.58∗∗

(19.84) (26.03) (35.30) (33.70)

21 to 25 Smoke Days −45.99∗∗∗ 93.14∗ 125.84∗ 125.48∗

(14.34) (51.11) (70.63) (66.87)

Over 25 Smoke Days −46.39∗∗∗ 110.43∗ 139.03∗ 133.39∗

(13.61) (56.94) (82.08) (74.35)

6 to 10 Smoke Days −62.51∗∗ −10.94 −5.51 −7.88
1 Month Previous (23.89) (8.95) (12.24) (12.84)

11 to 15 Smoke Days −36.09∗∗∗ 37.30 41.45 38.26
1 Month Previous (10.54) (33.53) (38.15) (33.98)

16 to 20 Smoke Days −20.57∗∗ 43.19∗ 66.23∗∗ 63.20∗∗

1 Month Previous (8.54) (24.22) (31.96) (29.53)

21 to 25 Smoke Days 1.43 61.81 86.54∗ 86.91∗

1 Month Previous (14.39) (42.19) (47.90) (47.94)

Over 25 Smoke Days 11.94 60.14 72.82∗∗ 75.48∗

1 Month Previous (11.48) (37.25) (35.93) (41.27)

6 to 10 Smoke Days −45.79∗∗ −20.46 −9.23 −14.85
2 Months Previous (21.32) (12.34) (11.65) (13.75)

11 to 15 Smoke Days −31.35∗∗∗ 13.92 37.37 31.11
2 Months Previous (9.57) (16.50) (31.75) (25.18)

16 to 20 Smoke Days −23.61∗ 19.51 69.81∗ 67.37∗

2 Months Previous (14.08) (14.23) (39.54) (35.93)

21 to 25 Smoke Days −9.72 41.62 91.43∗ 92.65∗

2 Months Previous (7.75) (31.03) (51.36) (52.22)

Over 25 Smoke Days 0.56 39.48 87.77∗ 88.03∗

2 Months Previous (9.03) (26.64) (45.90) (46.72)

Weather Controls X X X
Month FE X X X
County-by-Year FE X X
Year FE X
Num. obs. 4,059 4,059 4,059 4,059
Num. clusters 49 49 49 49
FENC 33.26 37.38 21.37 24.11
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
The feasible effective number of clusters is reported for the 21 to 25 regressor.
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Table 1.6: Impact of number of smoke days on hospital admissions in California.

Circulatory Admissions
(1) (2) (3) (4)

6 to 10 Smoke Days −27.66∗∗∗ −13.29 8.61∗∗ 8.29∗∗

(9.21) (15.02) (3.70) (3.60)

11 to 15 Smoke Days 2.09 1.30 26.25∗ 24.36∗∗

(3.77) (17.69) (13.61) (11.98)

16 to 20 Smoke Days −2.58 −27.42 31.60∗∗ 31.28∗∗∗

(10.12) (24.85) (12.05) (11.03)

21 to 25 Smoke Days 2.45 −40.01 47.40∗∗ 45.75∗∗

(9.55) (36.80) (21.08) (18.72)

Over 25 Smoke Days 12.79 −51.19 38.25∗ 36.22∗∗

(8.95) (35.49) (19.37) (17.40)

6 to 10 Smoke Days −26.89∗∗∗ −25.26∗ −7.40∗ −7.39
1 Month Previous (9.72) (14.75) (4.01) (4.81)

11 to 15 Smoke Days 0.02 −9.09 1.39 2.84
1 Month Previous (5.67) (12.66) (6.87) (7.45)

16 to 20 Smoke Days −5.26 −23.57 14.63∗∗ 18.07∗

1 Month Previous (7.11) (14.77) (6.83) (9.33)

21 to 25 Smoke Days −10.58 −31.19 28.22∗∗ 32.55∗

1 Month Previous (7.82) (26.19) (13.63) (16.96)

Over 25 Smoke Days −10.15 −16.61 28.53∗ 32.93
1 Month Previous (6.65) (20.71) (15.05) (20.16)

6 to 10 Smoke Days −21.29∗∗ −26.38∗ −2.22 −1.89
2 Months Previous (8.54) (15.56) (4.20) (4.43)

11 to 15 Smoke Days 1.49 −18.97 10.52∗ 11.17
2 Months Previous (3.85) (13.42) (5.94) (8.08)

16 to 20 Smoke Days 2.52 −45.04∗∗ 18.63∗∗ 16.93∗∗

2 Months Previous (9.07) (20.87) (8.11) (7.63)

21 to 25 Smoke Days 5.00 −58.56∗ 29.52∗∗ 30.53∗∗

2 Months Previous (9.07) (32.45) (12.58) (14.45)

Over 25 Smoke Days 10.54 −74.26∗∗ 15.92 16.13
2 Months Previous (9.47) (29.89) (9.97) (11.27)

Weather Controls X X X
Month FE X X X
County-by-Year FE X X
Year FE X
Num. obs. 4,054 4,054 4,054 4,054
Num. clusters 49 49 49 49
FENC 32.55 2.13 0 0
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
The feasible effective number of clusters is reported for the 21 to 25 regressor.
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Looking to a graph of the coefficients in Figure 1.10 we can see that these bins

corresponding to larger numbers of smoke exposure have larger standard errors. The

large estimated standard errors for these bins are not unexpected. Looking back to

Table 1.3 the number of observations for these bins is much lower than the number of

observations in other bins. In addition many months have 0 observations in the bins

for 16 to 20, 21 to 25, and over 25 Smoke Days. We can also see that the results for

Circulatory Admissions are more precisely estimated than the results for Respiratory

Admissions.
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Figure 1.10: Coefficient Plot for the impact of number of smoke days on hospital
admissions.
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1.5 Economic Cost

Much of the research evaluating the economic cost of pollution looks at mortality

as the outcome of interest. To evaluate the economic cost of mortality two methods

are commonly used, multiplying the estimated number of lost lives by the value of

a statistical life or estimate life-years lost and then multiple this by the value of a

statistical life-year. However, when working with other health outcomes the economic

valuation can be thought of as the amount that an individual is willing to pay to avoid

the illness.

The United States Environmental Protection Agency (EPA) produced estimates of

the cost of illness (COI) for a hospital admission for respiratory or cardiovascular

illness as part of a series of reports on the benefits and costs of the Clean Air Act

(1999). For this valuation, the EPA calculate the avoided medical costs and use this as

an estimate of the value of avoiding the health effects causing the admission. The EPA

estimates respiratory hospital admissions have a mean cost of $6,900 per case (1990

dollars) and cardiovascular hospital admissions have a mean cost of $9,500 per case

(1990 dollars). These estimates can be thought of as a lower bound for the mean as

they do not take into account all costs of illness only the medical costs.

To calculate the cost of an additional day of wildfire smoke exposure, I convert the

EPA estimates to 2020 dollars using the Consumer Price Index (CPI) produced by the

Bureau of Labor Statistics. I then multiply these per case values by the coefficients for

exposure to wildfire smoke estimated in columns 4 and 8 of Table 1.1 and column 4

in Tables 1.6 and 1.5.
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1.5.1 Economic Cost With Linear Effects

The regression specification in equation 1.1 produces coefficients that can be used

to produce marginal effects. This allows for the interpretation as the impact of an ad-

dition day of wildfire smoke exposure. The cost of an additional day of wildfire smoke

exposure can be calculated using the estimated values from the EPA. These calcula-

tions are displayed in Table 1.7. Each additional day of wildfire smoke exposure leads

to about $188,767 of additional medical expenditures on average.

Table 1.7: Estimated Average Cost per Additional Smoke Day

Contemporaneous Costs

Cases × Cost per case

Respiratory Admission 5.56× $13, 971.74 = $77,678.98
Circulatory Admissions 1.84× $19, 236.46 = $35,417.03

Total contemporaneous cost = $113,096.01

Lagged Costs

Cases × Cost per case

Respiratory Admission 3.78× $13, 971.74 = $52,764.06
Circulatory Admissions 1.19× $19, 236.46 = $22,907.35

Total lagged cost = $75,671.41

Total cost = $188,767.42
Dollar values reported in 2020 dollars.

The total cost of wildfire smoke exposure for both respiratory admissions and cir-

culatory admissions during the study period is presented in Table 1.8. From 2012 to

2018, there were a total of 20,574 days of wildfire smoke exposure in California coun-

ties. This leads to a total cost of wildfire smoke exposure in California due to respira-

tory and circulatory hospital admissions from 2012 to 2018 equal to $2,326,837,289.
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Table 1.8: Estimated Yearly Cost of Wildfire Smoke in California Due to Respiratory
and Circulatory Hospital Admissions

Year Smoke Days Respiratory Admissions Circulatory Admissions Total

2012 1,944 $151,007,943 $68,850,698 $219,858,641
2013 2,956 $229,619,074 $104,692,728 $334,311,803
2014 1,973 $153,260,634 $69,877,792 $223,138,426
2015 2,543 $197,537,654 $90,065,497 $287,603,151
2016 2,967 $230,473,543 $105,082,316 $335,555,859
2017 3,713 $288,422,064 $131,503,417 $419,925,481
2018 4,478 $347,846,486 $158,597,442 $506,443,928

1.5.2 Economic Cost With Nonlinear Effects

The cost calculations using the linear model implicitly assume that the cost of each

additional day of wildfire smoke exposure is constant. As we saw in Tables 1.5 and

1.6 the effect appears to be nonlinear, with larger effects when the number of Smoke

Days is higher.

Table 1.9 presents similar cost calculations to Table 1.8, however the interpretation

of these results are different. Using the estimated coefficients from the regression in

equation 1.2 implicitly assumes a baseline month has between 0 and 5 days of wildfire

smoke exposure while using the estimated coefficients from the regression in equation

1.1 implicitly assumes a linear effect of an addition smoke day. Comparing the average

annual cost of wildfire smoke exposure using the results in Table 1.8 which gives

$332,405,327 the results using the bin coefficient estimates give $192,316,498. The

results from the binned regression give results approximately two-thirds the size of

the linear regression results. However, the two estimated cost values are not found to

be statistically different. Looking at the economic costs using either calculation we can

see that the largest costs were in 2017 and 2018. These two years included the two

largest wildfires in California history – the Thomas Fire (2017) and the Mendocino
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Complex Fire (2018).

Table 1.9: Estimated Yearly Cost of Wildfire Smoke in California Due to Respiratory
and Circulatory Hospital Admissions

Year 6 to 10 11 to 15 16 to 20 21 - 25 Over 25 Respiratory Circulatory Total

2012 49 36 11 1 6 $52,006,044 $36,361,563 $88,367,607
2013 98 57 22 10 7 $98,603,634 $69,250,232 $167,853,866
2014 66 29 10 9 2 $53,431,388 $39,443,199 $92,874,587
2015 110 33 17 12 4 $75,078,822 $56,577,385 $131,656,207
2016 45 63 36 18 14 $143,602,620 $83,952,559 $227,555,179
2017 63 68 47 26 19 $183,782,126 $106,307,112 $290,089,237
2018 64 91 40 26 36 $222,941,215 $124,877,587 $347,818,802

1.6 Conclusion

This paper provides estimates of the relationship between wildfire smoke exposure

and respiratory and circulatory health. By combining data on hospital admissions and

wildfire smoke plumes in California from 2012 to 2018, I am able to estimate the im-

pact of increased wildfire smoke exposure on hospital admissions. I find that wildfire

smoke exposure increases hospital admissions for respiratory and circulatory illnesses

in the month of smoke exposure as well as in the following month. In addition, I find

that increases in respiratory admissions mainly occur when the number of monthly

wildfire smoke days per month is above 16 days. While a significant increase in cir-

culatory admissions occurs for any level compared to five or less days with larger

impacts occurring above 16 days.

While the absolute number of cases is not a large number compared to the to-

tal number of hospital admissions, each hospital admission does carry a large cost. I

further estimate that the average annual cost of wildfire smoke exposure due to res-

piratory and circulatory health in California to be around $192,300,000 and the total

cost during the study period to be around $1,346,200,000.
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Chapter 2

The Sharing Economy and Rental

Markets

with Travis Cyronek

2.1 Introduction

The peer-to-peer rental market has seen rapid growth since the introduction of

Airbnb in 2008 and Uber in 2009. These platforms allow individuals to share and

use goods and services that might have otherwise been underutilized. In the Airbnb

example, entire apartments, houses, or individual rooms can be rented on a short-

term basis. This increasingly prominent way to interact in the economy has led to

regulatory battles throughout the United States as housing affordability has become

a major political issue. Much of the discussion on how to regulate the short-term

rental market has centered specifically on Airbnb. Before regulations are implemented

it is important to understand the effects these markets have on rental and housing

markets, as well as the impact on local residents. Proponents of these peer-to-peer
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markets argue that users of these services will see many benefits, including additional

income, more efficient resource allocation, and the creation of new economic activity,1

while opponents argue that these markets avoid regulations and increase rents for

local renters.

The present research contributes to this discussion by studying the effect of peer-

to-peer housing technologies on traditional, impermanent markets for accommoda-

tion. That is, we study how rental properties affect the availability and price of hotels

and long-term (annually leased) rentals. To guide our work we endeavor to address

two questions, one positive and the other normative. (1) How are the number of

Airbnb listings in an area related to the average price paid for rentals / hotels and

(2) What is the optimal way to regulate the market for short-run accommodation? In

this effort we construct and use a novel dataset for the Santa Barbara, California hous-

ing market. We combine hotel price and vacancy data for hotels (Visit Santa Barbara)

with information on rental properties readily available from the U.S. Census Bureau’s

American Community Survey (ACS). Finally, we rely on scraped Airbnb data collected

by Inside Airbnb and Tom Slee.

Though the data are rich in many respects, purely reduced form analyses of such

markets may suffer from an inability to isolate exogenous variation in the key co-

variates and identify causal relationships. Even using fixed effects and controlling

for amenity heterogeneity using proxy variables, identifying causal estimates without

bias is implausible. Indeed, this difficulty is inherent to identification in the housing

literature because amenity values are imperfectly measured. To circumvent some of

these issues we develop a structural search and matching model where property man-

agers post vacant rooms (and their prices) and tenants direct their search to these post-

ings. By fully defining and describing the agents, their actions, and the equilibrium,

1https://blog.atairbnb.com/economic-impacts-los-angeles/
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we bypass the need to directly address amenity heterogeneity and instead can use ob-

servables and the model’s structure to disentangle the mechanisms at play2. Discrete

agent types and the contracts they make with one another define three separate–but

endogenously related–markets for lodging. Hotels are accessible by innkeepers and

visitors, short-term rentals by visitors and landlords, and long-term rentals by land-

lords and residents. The key feature is that, since multiple markets are available to

some agents, behavior in one market may influence the outcomes in the others. For

example, a landlord’s decision to list a property in the short-term market negatively

affects residents who are seeking long-term accommodation.

In our calibration exercise, we target average (median) prices for hotels, Airbnbs,

and rental units, sizes (i.e. number of) of these markets, and average length of stays

for visitors and residents. After calibrating the model we find that Airbnbs decrease

nightly hotel prices by about $24 while they increase average rents by $39 per room,

per month. The added choice afforded to visitors, though, increases their flow utility

by about 3%. This is offset quantitatively to losses in welfare of residents, who have

fewer rentals to search for and higher prices. We ultimately find that, with limited

entry, aggregate welfare is lower with Airbnb. Search decisions by visitors and land-

lords do not internalize the costs to innkeepers and residents. As a result, government

policy can improve efficiency. We find that the optimal policy is to set a high transient

occupancy tax on short-term rentals as the lost utility to residents is quantitatively

dominant.

This paper relates to a limited yet growing literature on the relationship between

short-term, peer-to-peer rental markets and traditional housing and rental markets.

A majority of this scholarship is case studies of individual cities. These case studies

2To put this in a slightly different context, the model allows us to disentangle simultaneous equa-
tions that would, in a reduced form, introduce bias.
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provide anecdotal and descriptive analysis on the relationship between the growth of

Airbnb and housing and rental markets in a number of cities. For example, Lee (2016)

suggests that Airbnb listings are limiting the supply of rentals for long-term use and

pushing up rents in the Los Angeles housing market. He goes on to recommend a set

of regulations and taxes that could help lead to more affordable housing. Quattrone

et al. (2016) investigate when and where Airbnb listing are offered in London and the

socio-economic conditions of the areas with concentrated Airbnb usage. They find

that Airbnb listings tend to be in areas that are accessible to public transit, and have

residents who are young, employed, and born outside the UK.

Others have explored the heterogeneous impact–both within and between cities—

of these peer-to-peer technologies. Coles et al. (2017) explore the usage of Airbnb

across neighborhoods in New York City to look at this differential relationship. Using

matched census tract level data from Airbnb with neighborhood rent data produced

by Zillow, they find that Airbnb listings have become more geographically dispersed

over time. They also find that short-term rentals appear most profitable relative to

long-term rentals in outlying, middle-income neighborhoods. Coyle and Yeung (2016)

provide an overview of Airbnb in fourteen European cities. They find that the presence

of Airbnb in a market has a negative relationship with hotel occupancy rates, but a

positive relationship with average daily hotel rates. They also find an ambiguous

relationship on the rental market, suggesting that the relationship between Airbnb

and rental markets may depend on specific characteristics of the rental market.

Other studies have pursued identifying the causal effect of Airbnb on rental and

housing markets. Horn and Merante (2017) utilize data from online apartment and

Airbnb listings to evaluate the growth of Airbnb on asking rents in Boston. Using a

fixed effects model, they show that a one standard deviation increase in Airbnb list-

ings is associated with a 0.4% increase in asking rents in Boston. Garcia-López et al.
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(2019) study the effect of Airbnb listings on rental rate in Barcelona, Spain. Using

multiple econometric specifications, they find that a neighborhood with the average

amount of Airbnb activity saw rents increase by 1.9%, while neighborhoods in the top

10% percent of Airbnb activity, saw increased rents by 7%. Looking to French cities,

Ayouba et al. (2020) show that increase in Airbnb rentals is associated with increased

rents in Lyon, Montpellier, and Paris, however Airbnb has no significant effect in other

cities. Understanding how this heterogeneity in effect arises is an important charac-

teristic for policy makers to study and understand.

Barron et al. (2018) offer the most complete look at the impact of Airbnb listings

on rent and house prices across the United States. Using an instrumental variable ap-

proach they estimate that a 1% increase in Airbnb listings leads to a 0.018% increase

in rental prices and a 0.026% increase in home prices. Doing a quick back-of-the-

envelope calculation, this corresponds to a $9 increase in monthly rent and $1,800

increase in house prices. In addition they find that Airbnb does not impact the total

supply of housing but does decrease the supply of long-term rentals. The model we

write down is informed by this finding insofar as we take the supply of rental proper-

ties as given, but endogenously allow the fraction of vacancies posted in one market

or another to depend on market conditions.

A major concern when estimating causal effects in rental and housing markets is

the bias introduced by the exclusion of amenity values in an area. The utilization of

area specific fixed effects can control for some of this bias by estimating parameters

using within area variation. However, a time varying component of amenities may

still be biasing the estimates. Using an instrument may also be able to reduce the

bias, as the first stage relationship may reduce the correlation with the error term.

However, as detailed in the next section, omitted variable bias is still a concern. Due

to these doubts about producing unbiased causal estimates, we turn our attention to
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the theoretical literature on search and matching in housing markets.

Dating back at least as early as Wheaton (1990), models with search frictions have

been used in the context of buying and selling property. First, they offer a realistic

and intuitive reason for vacant properties to exist in equilibrium by taking seriously

the idea that markets may clear through prices and time. Genesove and Han (2012)

use a random search framework to study buyer and seller contact rates and time on

the market. Second, models with search frictions have also had varied success in

describing and explaining price dispersion (Albrecht et al. (2016)). Maury and Tripier

(2014) and Moen et al. (2014) think about search strategies (e.g. where to direct search,

when to make an offer, etc.) and their role in the dynamism of housing markets.

Indeed, models of directed search are particularly attractive theoretically inas-

much as they seem to align with what happens in observed housing markets. Zhu

et al. (2017) develop and formalize multiple models of housing with price posting.

We contribute to the above literature by applying the insights and tools of search the-

oretic models to impermanent lodging markets. More specifically, hotels and rental

properties. In this effort we also seek to connect the often disjointed approach of look-

ing at hotels and rentals separately. Finally, by explicitly modeling the endogenous

relationships of key acting agents in these markets, we can therefore think in terms

of normative assessments of optimal policy and address, perhaps incompletely, the

discussions and debates about how peer-to-peer technologies should be governed.

In the next section we present and explore statistical facts about Airbnb, hotels,

and rental properties in various regions. We also present and discuss some of the

confounds and shortfalls of interpreting these results in the context of identifying

the effect of Airbnb on these markets. We then develop a rich-yet-simple model of

rental markets that allows us to circumvent these shortfalls and enables us to study

the highly interrelated markets for lodging. We calibrate this model to a novel dataset
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that we construct for Santa Barbara, California, which we also use to assess questions

of optimal policy regarding how to tax the various agents to maximize welfare.

2.2 Empirical Regularities

In this section we present the main sources of data and establish the statistical

relationship between Airbnb listings and the price of apartment rentals. Our empir-

ical strategy likely does not identify the causal effect of these listings on the price of

rental properties. Its purpose is to motivate the key mechanisms in our structural

model of impermanent housing markets. We begin by examining the Airbnb data and

the distribution of prices and the growth of listings in major American metro areas

since 2017. From Zillow and the American Community Survey we merge the features

of long-term (i.e. “traditional”) rental markets: prices, stocks, and vacancies. These

characteristics are then later used to calibrate the structural model.

Using these data we estimate the statistical relationship between the number of

Airbnb listings and the median rental price using a simple fixed effects model. The

implied effect is then used to compare to the results generated by the structural model.

As this is the first paper to use a search and matching model in this setting, this

exercise allows us to compare our results to the empirical literature.

2.2.1 Description of Airbnb Data

The Airbnb data for major United States metro areas come from the free, publicly

available data collected and hosted by Inside Airbnb.3. Data for Santa Barbara was

3The data was sourced from publicly available information from the Airbnb site and cleaned and
aggregated by Inside Airbnb The is available under a Creative Commons CC0 1.0 Universal (CC0 1.0)
“Public Domain Dedication” license at http://insideairbnb.com/get-the-data.html
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collected and provided publicly by Tom Slee4 on his website. This data consists of

information about the room type, price, number of reviews, and exact location of each

listing. The data also consists of the availability calendar for the next year into the

future. The calendar for a listing gives a price for dates that are available to book,

but nights that are unavailable to book cannot be differentiated from nights that have

already been booked. However we aggregate the calendar for each listing from the

daily to monthly level. This means that if a listing is available for at least one day in a

month, the listing is considered active. We then calculate the price of a listing for the

month by taking the median of its listed prices for the month.

Data are collected at roughly a monthly frequency, therefore we can observe many

overlapping calendars for the same listing. In other words, for a listing collected in

January 2017 we observe available nights for January 2017 to January 2018. When this

listings data is collected again in February 2017 we observe February 2017 to February

2018, therefore we observe availability and prices for February 2017 to January 2018

twice in these two observations. That is, we can observe data for a single month for a

listing up to twelve times.5 The monthly price for a listing is calculated by finding the

median monthly price in each observation then taking the maximum value across up

to twelve monthly median price observations.6

Our dataset contains listings for 12 cities: Boston, Chicago, Denver, Los Angeles,

Nashville, New York City, Portland, San Diego, San Francisco, Santa Barbara, Seattle,

4http://tomslee.net/airbnb-data-collection-get-the-data
5Because of this fact, even popular listings are likely to appear as available at least once even if they

become fully booked.
6The method we use to determine the price of the listing will not impact the empirical analysis as

we are only looking the relationship of the number of Airbnb listings on rent prices. This method will
be used to determine the value used in calibration, however doing this exercise by taking the mean or
median of the observed prices does little to affect the analysis because the data is aggregated to the ZIP
code level for each month and only the median monthly price for the entire ZIP code is used. So, the
price we calculate can be thought of as the maximum price a landlord can receive per night for their
listing.
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Figure 2.1: Distribution in the price of Airbnb listings for the entire dataset with price
top coded at $1,000.

and Washington DC. This data contains characteristics of 477,314 unique listings for

the years 2016 to 2020.7 The distribution of Airbnb listing prices across the full sample

can be seen in Figure 2.1. The median price per night of an Airbnb listing is $125 and

the majority of listings have a price between $75 and $200 per night. The median

Airbnb nightly price is a key calibration target.

Since its introduction Airbnb has seen heterogeneous growth with some markets

growing extremely quickly seeing growth of several hundred percent in only a few

years while others have seen relatively slow growth. Figure 2.2 presents the differ-

ences in growth between several large United States metro areas. This graph presents

the time trend of the indexed number of rooms listed on Airbnb across from January

2017 to January 2020. We can see some cities, such as Denver, are growing extremely

7While, we use a full sample of cities for the empirical section which gives us a larger sample size
and longer observation period, we calibrate the model using just data from Santa Barbara because we
have richer data on the housing and hotel market available to us for that region.
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Figure 2.2: Monthly Airbnb listings across all room types.

quickly while other cities, especially those that already had a large number of Airbnb

listings by January 2017, have seen much less growth in listings. There is also sig-

nificant heterogeneity in the growth of Airbnb within metro areas. Figure 2.3 shows

the spatial heterogeneity in the growth in the number of rooms listed by ZIP code

from January 2017 to January 2020 in the Los Angeles area. We can see that some ZIP

codes have seen much faster growth in the number of Airbnb listings than others. This

spatial heterogeneity is going to be utilized in our regression analysis.

2.2.2 Description of Rental Market Data

Rental market price data comes from Zillow.com, an online real estate and rental

marketplace company. Zillow maintains an online real estate database of over 110

million U.S. homes and estimates housing and rental prices across the United States.

Because Zillow is used for finding houses and apartments listed for sale or rent, the

price and rental rates represent the conditions in the long-term housing market. From
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Figure 2.3: Change in the number of Airbnb listings from January 2017 to January
2020 by ZIP code in Los Angeles.

Zillow, we use data on the median rental price of apartments of various sizes at the

zip code level. In Figure 2.4 we see differences in the changes in the estimated price

to rent a 1-bedroom apartment from January 2017 through December 2019. We can

also see the heterogeneity of changes within Los Angeles in Figure 2.5. While there

isn’t large change in the median rent price for a 1-bedroom apartment over this time

period in Los Angeles, some ZIP codes in the area saw large increases of up to 40%

while others saw very little change.8

In addition to Zillow housing data, additional housing data and socioeconomic

variables come from the American Community Survey (ACS). From the ACS, we use the

number of housing units, the number of occupied and vacant units, and the number

of renter occupied housing units broken down by number of bedrooms at the ZIP

8This observation may be partly driven by area-specific rent controls.
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Figure 2.4: Monthly price to rent a 1-bedroom apartment.
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Figure 2.5: Change in the median price to rent a 1-bedroom apartment from January
2017 through December 2019 by ZIP code in Los Angeles.
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min p25 median p75 max

December 2016
Airbnb Listings 1.00 13.00 45.00 156.00 3,145.00
Housing Units 0.00 7,928.75 12,821.00 18,007.25 48,196.00
Rental Units 0.00 2,916.75 5,785.50 10,207.25 32,060.00
Vacant Units 0.00 443.25 778.50 1,253.25 9,173.00
Airbnb Price 20.00 70.94 92.73 133.06 5,000.00
Rent 1 Bd. 1,112.00 1,600.00 1,885.00 2,561.38 4,425.00

December 2018
Airbnb Listings 1.00 21.50 81.00 250.00 2,925.00
Housing Units 0.00 8,058.75 13,120.50 18,396.25 48,359.00
Rental Units 0.00 2,715.25 5,740.00 10,192.00 32,900.00
Vacant Units 0.00 430.00 784.50 1,368.50 7,799.00
Airbnb Price 18.03 74.65 95.98 143.20 1,162.10
Rent 1 Bd. 750.00 1,525.00 1,800.00 2,405.38 4,995.00

Table 2.1: ZIP Code Level Summary Statistics

code level for each year.9 These data are derived from the ACS 5-year estimates for

the years 2014 to 2018. We use the 5-year estimates because this data offers better

precision when working within geographic areas with smaller populations such as ZIP

codes(Decisions, 2008). Because the ACS data are calculated at a yearly frequency, we

compute the monthly ZIP code level characteristics using a cubic spline.10 Summary

statistics for the data from Airbnb, Zillow and the ACS are in Table 2.1.
9The American Community Survey is a continuous survey conducted by the United States Census

Bureau. The Census Bureau randomly samples and mails questionnaires to approximately 295,000
addresses every month. The sample does not target individuals but rather targets specific addresses to
ensure good geographic coverage. The ACS defines a housing unit as occupied if it is the current place
of residence of the person or group of people living in it at the time of interview, or if the occupants are
only temporarily absent from the residence for two months or less. A vacant housing unit is defined as a
housing unit that has no occupant living in it at the time of interview or the unit is occupied at the time
of interview entirely by persons who are staying two months or less and who have a more permanent
residence elsewhere. An occupied housing unit which is not occupied by the owner is considered as
renter-occupied.

10Additional details can be found in section B.1

46



The Sharing Economy and Rental Markets Chapter 2

2.2.3 Relationship between Airbnb and Rental Markets

As seen in Figure 2.2, the number of Airbnb listings has seen large growth in many

metro areas from 2017 to 2020. Visually, looking at Figure 2.2 and Figure 2.4 we can

see that the metro area that saw the largest growth in the number of Airbnb listings,

Denver, also saw the largest growth in the median rent of a 1-bedroom apartment.

In fact, we can see that three of the five metro areas that saw the largest growth in

Airbnb listings in this time frame (Denver, San Diego, and Boston) were the metros

that saw the highest increases in the median rent of a 1-bedroom apartment. This

limited evidence suggests that there may exist a relationship between the number of

Airbnb listings and rental prices.

Looking to Table 2.1, we can see that the 25th percentile, median, and 75th per-

centile number of renter occupied units all decreased in this time span. This fact

taken along with the increasing number of Airbnb listings and increasing number of

vacant units (units occupied entirely by individuals who are staying two months or

less are classified as vacant) could suggest housing units previously used as long-term

rental units may have been converted to units used as short-term rental units. How-

ever, these aggregate trends may not reveal the true relationship.

As we saw in Figure 2.3 and Figure 2.5, not only is there heterogeneity between

cities there is heterogeneity at the ZIP code level within cities. To formally evaluate

the relationship between the number of Airbnb listings and the median rental price at

the ZIP code level we use the following fixed effect specification:

ln (yzmt) = β ln (Airbnbzmt) +Xzmtγ + ηz + τt + µmonth + εzmt, (2.1)

where yzmt is the median rental price of a 1-bedroom apartment in ZIP code z, metro
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m, and time t. Airbnbzmt is the number of rooms listed on Airbnb in a ZIP code in pe-

riod t. Xzmt is a vector of observed ZIP code level characteristics including population,

the number of housing units, the number of vacant housing units, and the unemploy-

ment rate. We include ZIP code level fixed effects, ηz, to control for time invariant

ZIP code level characteristics and year fixed effects τt to control for aggregate trends.

We also include month fixed effects, µmonth, to control for seasonality. Including these

fixed effects means we are comparing the rents within a ZIP code in the same month of

the year across years with different levels of Airbnb listings. Table 2.2 presents results

for the regressions. Looking at column (4) we can see that the a one percent increase in

the number of Airbnb corresponds to an increase in rent prices by 0.01%. The median

ZIP code saw approximately a 36.20% year to year increase in Airbnb listings, which

corresponds to a 0.31% increase in the price of rent. This equals a $5.80 increase in

monthly rent at the median rent in the data.

Our findings are similar to the results found in Barron et al. (2018) which trans-

late to a $9 increase in monthly rent. To separate differences in effects by the size of

location, we also conduct this analysis for the rental price of two bedroom and three

bedroom rentals11. The results are presented in the second and third panel of Ta-

ble 2.2. While these figures are similar for two bedroom rentals, they are about half

the size (and estimated with less precision) for three bedroom rentals.

It is important to note that the above analysis only demonstrates the statistical

relationship between the number of Airbnb listings in an area and the median rental

price. With this fairly naive approach, we do not believe that our econometric estima-

tion leads to a causal interpretation of the results. When investigating the impact of

Airbnb listings on rental market or housing prices, a major issue with identification

11The number of observations and clusters are different between each set of regressions because the
Zillow data is available for different time frames and ZIP codes for the different variables.
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(1) (2) (3) (4)

1 Bedroom
ln(Airbnb count) 0.09*** 0.02*** 0.01*** 0.01***

(0.0099) (0.0026) (0.0022) (0.0022)
Observations 10,818 10,818 10,818 10,818
Clusters 432 432 432 432

2 Bedroom
ln(Airbnb count) 0.11*** 0.02*** 0.02*** 0.01***

(0.0088) (0.0027) (0.0023) (0.0023)
Observations 12,127 12,127 12,127 12,127
Clusters 505 505 505 505

3 Bedroom
ln(Airbnb count) 0.11*** 0.01*** 0.01*** 0.005*

(0.0119) (0.0032) (0.0025) (0.0025)
Observations 5,877 5,877 5,877 5,877
Clusters 254 254 254 254

ZIP code FE X X X
Year FE X X
Month FE X

Significance levels: * p<0.1, ** p<0.05, *** p<0.01

Table 2.2: Relationship between the Number of Airbnb Listings and the Median Rental
Price
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stems from isolating the impact on rental price apart from another factor driving both

the demand for Airbnb and the demand for rental housing. That is, we may only be

identifying changing desirability or amenities in an area. Reverse causality is also a

concern. As rents rise in an area it may be more likely that individuals choose to rent

a room in their apartment or if they own an apartment they may choose to relocate to

another area to live and rent that apartment at a higher price.

Past research controls for this endogeneity by controlling for characteristics corre-

lated with desirability such as crime rates, new building permits, and amenities such

as nearby restaurants. While these characteristics may be a proxy for amenity val-

ues in an area and controlling for them removes some of the omitted variable bias,

they are not a perfect measure of amenities and the estimated coefficient may still

be biased. Barron et al. create a shift-share instrument interacting the popularity of

Airbnb, measured by the Google search index, with an area’s attractiveness to tourists

in 2010, measured by the number of establishments in the food service and accom-

modation industries. The argument for this approach is that an exogenous time trend

(i.e. Google searches for Airbnb) will differentially impact areas based on exposure

(“touristiness”). Again, while this may remove some of the concern about omitted

variable bias, disentangling the impact of Airbnb growth and differential recoveries

from the Great Recession based on amenity levels is still a concern.

In an ideal setting, one would observe two identical housing markets and have one

allow Airbnb rentals while the other limits (i.e. bans) them in some way. Observing

a natural experiment where this occurs seems unlikely as places that have passed

restrictions on Airbnbs tend to be places worried about increasing rents and affordable

housing. Without such a natural experiment, identifying the impact of Airbnb listings

on rental prices requires a factor (instrument) that shifts the number of these listings

without directly impacting rental prices. Because the decision to choose to rent a
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unit through Airbnb, as opposed to the long-term market, is one determined by profit

incentives, it would seem that any factor that changes the profitability of an Airbnb

listing might also change it in the long-term housing market.

The use of a model circumvents some of these issues by explicitly adding struc-

ture to the endogenous relationships that may confound reduced-form analyses. In

particular, we specify the objectives (e.g. profit, utility, or welfare optimization), deci-

sions (e.g. price setting, vacancy posting, where to search), and trade-offs faced by the

key agents in these markets. While we abstract away from many specifics about the

realities of rental markets, we carefully consider those elements to be of first-order

concern, motivating further study of the nuances introduced by extensions once the

groundwork has been established.

2.3 A Model of Rental Markets

In this section we formulate a model of rental markets and study its behavior.

This model is then extended to evaluate the public policy and welfare implications.

It features three distinct decentralized markets distinguished by the types of agents

that interact within them: hotels, short-term rentals, and long-term rentals. We think

of long-term renters as annual leasers. Peer-to-peer technologies allow some property

managers to compete with hotels for those looking for short-term stays. Property

managers publish prices and potential tenants direct their search to these postings.

Prices and queue times are determined endogenously with market utilities taken as

given by these managers, making the equilibrium competitive. Importantly, the three

markets are endogenously linked which allows us to investigate policy spillovers.
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2.3.1 Environment

Time is continuous, infinite, and agents discount the future at a rate r. To find,

purchase, and sell lodging services, property managers and tenants interact in three

distinct, frictional dwelling markets.12 Both property managers and tenants are one of

two types, and these types exist in fixed measures. That is, we assume that the number

of accommodation-seeking individuals and the number of available properties are

fixed.13 Property managers are either innkeepers (I) or landlords (L) and are endowed

with a single dwelling unit that can be vacant and searching for a tenant, or occupied

and receiving a flow payment p. Tenants are either visitors (V) or residents (R). If

the tenant is accommodated, she receives flow utility w − p, otherwise they search

for lodging and receive flow utility b, where w and b may vary by type of tenant.

Further, an agent’s type affects which of the three dwelling markets are available to

them. Hotels (H) are available to innkeepers and visitors; short-term rentals (S) are

available to landlords and visitors; and long-term rentals (L) are available to landlords

and residents. The key feature in the above structure is that residents and innkeepers

may only participate in one market, but landlords and visitors may participate in

multiple, allowing the behavior in one market to influence outcomes in the others.14

Within each dwelling market (hotels, short-term, and long-term; indexed by i)

12“Frictions” here arise from the time it takes for a tenant and property manager to coordinate on a
contract for accommodation.

13Regarding the fixed supply of properties, we argue that this is a reasonable assumption given that
development is relatively slow and we concern ourselves with the short-run effect of Airbnb on the
housing market. Accounting for entry is an interesting problem, and unlikely of first-order concern to
our question and therefore left for future study.

14Importantly, these markets are not necessarily distinguished by location. Rather, we define markets
by the types of agents that interact within them. One can think of hotels and rental properties as being
spatially distinct and separate, but we abstract from any quality differences that may exist between
hotels and short-term markets (and within hotels and rental properties more generally). This is done
not without loss of generality, but to make the model as simple as possible to highlight the first-order
effects of the peer-to-peer rental economy on the existing markets.
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there is a continuum of sub-markets differentiated by price (indexed by j).15 Each

agent may only participate in one of these sub-markets, which are separate in the

sense that search in the ijth sub-market can only produce matches with other agents

in that sub-market. Search is assumed to be directed as in Shimer (1996) and Moen

(1997). Tenants observe all prices and choose where to search, but within a sub-

market search is random. These stochastic, bilateral meetings are governed by a tech-

nology that maps the measures of unaccommodated tenants and vacant dwellings

into matches: mi(uij, vij). mi is assumed to be increasing and concave in both argu-

ments, has continuous derivatives, and satisfy constant returns. We allow the func-

tion (namely its parameterization) to vary by market. Further, let mi(uij, vij)/vij =

mi(1/θij, 1) ≡ λi(θij) ≡ λij denote the rate at which a property manager meets an un-

accommodated tenant, where θij ≡ vij/uij is the “tightness” of sub-market ij, and that

lim
θ→0

λ(θ) = ∞ and lim
θ→∞

λ(θ) = 0. From the perspective of an unaccommodated tenant,

the rate at which she finds a vacant dwelling is given by mi(uij, vij)/uij = mi(θij, 1) =

θijλi(θij).

We follow the literature in assuming that sub-markets are formed by a market

maker who posts pij for each sub-market. Then, both property managers and tenants

choose which sub-market to search in. Any sub-market that fails to attract tenants or

managers is assumed to be costlessly shut down. As noted in Rogerson et al. (2005),

the assumption of a market maker is a convenience and isomorphic to assuming that

one side of the market posts prices and the other side directs to these postings. This

is appropriate in the context of rental markets as tenants typically search for listings

15The assumption of a continuum is a mathematical convenience and will allow us to later write the
problem faced by property managers as a well-defined optimization problem in a continuous domain.
That is, it enables us to take derivatives. Further, it is important to note that this continuum is a feature
of the environment, not the equilibrium. We later show that all search activity occurs in a single sub-
market for each market. In other words, only “one” sub-market within each market will attract a
positive measure of searchers and vacant listings in equilibrium.
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and take the price as given.16 To post a vacancy in any sub-market j within market i,

property managers must pay a flow cost κi. In the abstract we interpret these costs as

reflecting all technologies (e.g. physical, digital, or legal) that allows certain land to

be sold to individuals for (temporary) residence. More concretely, we interpret differ-

ences in this cost by market as capturing differences in the regulatory structure asso-

ciated with allowing a property to be sold to a tenant. Matches, i.e. tenant-manager

pairs, are assumed to dissolve at a rates δV and δR for visitors and residents, respec-

tively. Capturing differences in preferences between the two groups, it is assumed

that δV > δR. A visual schematic of the environment is given in Figure 2.6.

Short-term:
κS , pS , λS

Hotel:
κH , pH , λH

Long-term:
κL, pL, λL

Innkeeper:
NI

Landlord:
NL

Visitor:
bV , wV , δV

Resident:
bR, wR, δR

vH

uH
uS

vL
vS

uL

Figure 2.6: Schematic summary of the model environment.

16In contrast, this assumption would be less desirable when considering the more general housing
market, where alternating offers and negotiations are more prevalent.
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2.3.2 Value Functions

In this section we recursively formulate the value functions for each agent type

(R, V , I, L) in sub-market ij depending on whether or not they are currently matched

{0, 1}. First consider a resident searching for accommodation. Residents may only

search for long-term rentals, but choose which sub-market j to search in. While

searching she receives flow utility bR plus the expected gain from locating a dwelling.

rRj
0 = bR + θLjλLj

[
Rj

1(p
Lj)−Rj

0

]
(2.2)

An accommodated resident receives flow utility wR − pLj plus the expected loss from

separating.

rRj
1(p

Lj) = wR − pLj + δR
[
Rj

0 −R
j
1(p

Lj)
]

(2.3)

It will prove useful to substitute Equation 2.3 for Rj
1(p

Lj) into Equation 2.2 and sim-

plify.

rRj
0 =

bR(r + δR) + θLjλLj(wR − pLj)
r + δR + θLjλLj

(2.4)

for pLj ≤ wR − bR. If the price is higher than the gain from finding lodging, the

resident does not search and receives expected utility bR/r.

Visitors may search in either the hotel or short-term rental market, i ∈ {H,S}.

Given this choice, they also choose which sub-market j to search for. The value func-

tions for unaccommodated and accommodated visitors are given by the following.

rV ij0 = bV + θijλij
[
V ij1 (pij)− V ij0

]
(2.5)

rV ij1 (pij) = wV − pij + δV
[
V ij0 − V

ij
1 (pij)

]
. (2.6)

As with residents, if no price induces visitors to search, they receive utility bV/r. Sub-
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stituting out the value of being accommodated produces

rV ij0 =
bV(r + δV) + θijλij(wV − pij)

r + δV + θijλij
(2.7)

for pij ≤ wV − bV .

Innkeepers manage property in the hotel market. When searching for a tenant,

they must incur a flow cost κH but receive an expected gain when the vacancy is filled.

rIj0 = −κH + λHj
[
Ij1(pHj)− Ij0

]
(2.8)

When occupied, the innkeeper receives pHj plus the expected loss from separation.

rIj1(pHj) = pHj + δV
[
Ij0 − I

j
1(pHj)

]
(2.9)

for pHj ≥ 0. If the price is negative we assume that the dwelling remains indefinitely

vacant. Combining the above we have

rIj0 =
−κH(r + δV) + λHjpHj

r + δV + λHj
. (2.10)

Finally, landlords may participate in either the short-term or long-term rental mar-

kets, i ∈ {S, L}, and then additionally choose a sub-market j.

rLij0 = −κi + λij
[
Lij1 (pij)− Lij0

]
(2.11)

rLij1 (pij) = pij + δi
[
Lij0 − L

ij
1 (pij)

]
(2.12)

for pij ≥ 0 and where δi = δV if i = S and δi = δR if i = L. Eliminating Equation 2.12
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we have

rLij0 =
−κi(r + δi) + λipij

r + δi + λij
. (2.13)

2.3.3 Equilibrium

In this section we establish and characterize the model’s equilibrium, focusing

in particular on the notion of competitive search equilibria.17 One can solve for such

an equilibrium by maximizing property managers’ profits subject to tenants receiv-

ing some fixed level of utility. Since tenants are homogeneous within type, any sub-

market that a positive measure of tenants searches in must pay them the same util-

ity. This level of utility received by market participants is called their market utility.

Agents in the economy take this level of utility as given, but it is determined endoge-

nously in equilibrium.

Consider a resident searching for accommodation and denote her market utility as

R0 where it must be that rR0 ≥ bR. Plugging this into Equation 2.4 and rearranging

gives us the following expression for the relationship she faces between accommoda-

tion finding and price for some given level of utility.

θLjλLj =
(r + δR)(rR0 − bR)

wR − pLj − rR0

(2.14)

From the above we can see that a searching resident must pay a high price to achieve a

high finding rate and receive the market utilityR0. In other words, Equation 2.14 de-

scribes her indifference curve. Further, the RHS is continuous and strictly increasing

in both pLj and R0 on pLj ∈ (−∞, wR − rR0). As the price approaches wR − rR0, the

17The term “competitive search” equilibrium comes from Moen (1997) and, as explained by Rogerson
et al. (2005), can be thought of as the combination of directed search and price posting. As noted earlier,
posting with directed search can be made outcome-equivalent to assuming a third type of agent (or fifth
in this paper), a market maker, sets up the sub-markets to attract both property managers and tenants.
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gain from finding accommodation goes to zero, and the sub-market tightness goes to

infinity. If the price is above wR− rR0, no resident searches and the sub-market shuts

down. A similar argument with similar conditions can be made for a searching visitor.

Here, though, her market utility is not only equal for all j within a given market, but

also between markets i ∈ {H,S}.

θijλij =
(r + δV)(rV0 − bV)

wV − pij − rV0
(2.15)

We can thus think of the problems faced by property managers as a choice of sub-

market with price p and tightness θ such that the (p, θ) relationships of Equation 2.14

and Equation 2.15 deliver searching tenants their market utility, where this market

utility is taken as given. Letting θH(pH ;V0) describe this relationship for the hotel

market, θS(pS;V0) for the short-term market, and θL(pL;R0) for the long-term market,

the problems of property managers can be written as a (profit) maximization problem

in θ or p given this market utility. In addition to visitors receiving V0 in both the hotel

and short-term markets, landlords must also be indifferent to posting vacancies in the

short and long-term markets.

max
pH
I0
(
pH , θH(pH ;V0)

)
(2.16)

max
pS
L0

(
pS, θS(pS;V0)

)
= max

pL
L0

(
pL, θL(pL;R0)

)
(2.17)

The following lemma establishes that the above is well-defined.

Lemma 1 Let Ĩ0 ≡ suppH I0
(
pH , θH(pH ;V0)

)
, L̃S0 ≡ suppS L0

(
pS, θS(pS;V0)

)
, and L̃L0 ≡

suppL L0

(
pL, θL(pL;R0)

)
, where L̃S0 = L̃L0 = L̃0. Further, assume that Ĩ0 ≥ 0 and L̃0 ≥ 0.

Then the property managers’ problems are well defined and the argmax in the price domain

is achieved in [0, wV − rV0) for the hotel and short-term markets, and in [0, wR − rR0) for
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the long-term market.

Proof: See Appendix B.2.

Notably, the solutions to the problems defined by Equation 2.16, Equation 2.17 are

not necessarily unique. Put differently, many combinations of prices and finding rates

may deliver tenants their market utility and maximize managers’ profits. Given our

assumptions on the matching technology, though, the following lemma establishes

that there is no price dispersion within a market.

Lemma 2 All property managers within market i ∈ {H,S, L} choose the same price, and

this price is a weighted average of each agent’s gain from market participation.

pH = ηH(θH)
(
wV − rV0

)
+
(
1− ηH(θH)

)
rI0 (2.18)

pS = ηS(θS)
(
wV − rV0

)
+
(
1− ηS(θS)

)
rL0 (2.19)

pL = ηL(θL)
(
wR − rR0

)
+
(
1− ηL(θL)

)
rL0, (2.20)

where θ dλ
dθ
/λ ≡ η(θ)− 1 is the elasticity of the filling rate with respect to θ (and is a number

between 0 and 1). Equivalently, η(θ) is the elasticity of the finding rate with respect to θ.

Proof: See Appendix B.3.

The equilibrium pricing equations Equation 2.18, Equation 2.19, and Equation 2.20

make clear the endogenous relationship between the three dwelling markets. The ex-

istence of a technology allowing landlords to compete with innkeepers makes visitors

weakly better off (an increase V0). Given that innkeepers may lose customers, prices

and profits in the hotel market will decline. Residents, too, are affected by this tech-

nology. With this additional renting channel, profits for landlords are weakly higher

and may induce more of the fixed stock of rental units to be posted for short-term
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stays. This has upward pressure on prices in the long-term market. The introduction

of this peer-to-peer technology has unclear welfare effects: though innkeepers and

residents are worse off, landlords and visitors are better off. Resolving whether the

aggregate welfare effect is positive or negative is therefore a quantitative exercise.

Turning to solve the model, we start by expressing equilibrium market tightnesses

as implicit functions of a vacancy’s value. Put differently, we derive the demand for

vacancies per searcher as functions of their cost–i.e. the expected profits that a vacancy

commands. Below, we formalize that this relationship is decreasing.

Lemma 3 Let θH = ζH(I0), θS = ζS(L0), and θL = ζL(L0) be functions that map the

expected profits of a vacant dwelling into market tightnesses. In equilibrium, we have that

dζH
dI0

< 0,
dζS
dL0

< 0,
dζL
dL0

< 0.

Proof: See Appendix B.4.

To close the model we consider the steady state: the inflows into accommodation

equal the outflows from it. Let uV and uR be the positive, exogenous measures of

visitors and residents, respectively. Further, let NI and NL be the positive, exoge-

nous measures of hotels and rentals, respectively. Starting with the hotel market, the

measure of innkeeper-managed properties equals the sum of all vacant properties and

those accommodating visitors: NI = vI + aI . In the steady state, the flows into and

out of accommodation must be equal. That is uIθHλH = δVaI . For ease of notation,

define λ̃ ≡ θλ and let χ = uH/uV be the fraction of visitors searching in the hotel
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market. We then have

NI = vI +
χuV λ̃H

δV

⇐⇒ NI = χuV
[
ζH(I0) +

λ̃ ◦ ζH(I0)
δV

]
, (2.21)

noting the substitution of θH = ζH(I0).

In the rental market the measure of landlord-managed properties must equal the

sum of all vacant properties and those accommodating visitors and residents: NL =

vL + aL. Use the steady state conditions for both short and long-term markets and

substituting for θS and θL.

NL = vL +
(1− χ)uV λ̃S

δV
+
uRλ̃L

δR

⇐⇒ NL = (1− χ)uVθS + uRθL − (1− χ)uV λ̃S

δV
+
uRλ̃L

δR

⇐⇒ NL = (1− χ)uV
[
ζS(L0) +

λ̃ ◦ ζS(L0)

δV

]
+ uR

[
ζL(L0) +

λ̃ ◦ ζL(L0)

δR

]
(2.22)

(2.23)

The above two conditions describe the steady state equilibrium conditions for

properties managed by innkeepers and landlords. These two equations, though, are

functions of three endogenous variables: I0, L0, and χ. Recalling that χ is the share

of searching visitors in the hotel market, we pin down its value with the indifference

condition of visitors–i.e. that visitors are indifferent between search in the hotel and

short-term markets. To do so, separately rearrange Equation 2.13 for pS and pL. Plug-
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ging these into Equation 2.7 and equating them between markets, we have

bV(r + δV) + θHλH(wV − rI0)− θH(r + δV)(rI0 + κH)

r + δV + θHλH
=

bV(r + δV) + θSλS(wV − rL0)− θS(r + δV)(rL0 + κS)

r + δV + θSλS
.

This describes an implicit relationship between market θs that we write as ξH(θH ; I0) =

ξS(θS;L0). Rewriting θH in terms of known quantities and χ and substituting for θS ,

ξH ◦
δVNI − χuV λ̃ ◦ ζH(I0)

δVχuV
= ξS ◦ ζS(L0). (2.24)

Definition 1 A steady state, competitive search equilibrium is a set of values
{
V0,R0, I0,L0

}
,

prices
{
pH , pS, pL

}
, and quantities

{
θH , θS, θL, χ

}
that solve the following equations.
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NI = χuV
[
θH +

θHλH

δV

]
(2.25)

NL = (1− χ)uV
[
θS +

θSλS

δV

]
+ uR

[
θL +

θLλL

δR

]
(2.26)

rV0 = ξH ◦
δVNI − χuVθHλH

δVχuV
= ξS

(
θS
)

(2.27)

rR0 =
bR(r + δR) + θLλL(wR − pL)

r + δR + θLλL
(2.28)

θH = ζH(I0) (2.29)

θS = ζS(L0) (2.30)

θL = ζL(L0) (2.31)

pH = ηH(θH)
(
wV − rV0

)
+
(
1− ηH(θH)

)
rI0 (2.32)

pS = ηS(θS)
(
wV − rV0

)
+
(
1− ηS(θS)

)
rL0 (2.33)

pL = ηL(θL)
(
wR − rR0

)
+
(
1− ηL(θL)

)
rL0 (2.34)

A graphical representation of the equilibrium is presented in Figure 2.7. In the

center column we describe the indifference relation of visitors (top) and residents (bot-

tom). Tenants receive their market utility, paying relatively low prices and finding ac-

commodation slowly, or high prices and finding it quickly. The equilibrium lies along

these indifference curves where property managers maximize the expected profits of

a vacancy. For innkeepers this is straightforward. For landlords there is the added

condition that the expected profits in both short and long-term markets is equal. This

highlights the interconnectedness of the three markets. For example, changes that

affect residents therefore alter the problems faced by landlords. This affects profit
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maximization in the short-term markets, and therefore visitors and innkeepers.

θH

I0

θ

p

θS

L0

θL

L0

θ

p

VIC

RIC

I∗0

θH
∗

pH
∗

pS
∗

L∗0pL
∗

θS
∗

θL
∗

Figure 2.7: Graphical representation of the model’s equilibrium.

2.3.4 Comparative Statics

We next present and discuss several exercises moving towards understanding the

model laid out above. Though the model is reasonably simple, the interrelatedness

of the three markets makes analytic comparative static exercises difficult, if not im-

possible. We thus rely on the computer to solve and disentangle it. Since the primary

focus of this paper surrounds the existence (effect) of peer-to-peer technologies on

traditional, lodging markets, we highlight the vacancy posting costs as convenient

levers with which to pull. Namely, we can think of taking κS → ∞ as reflecting the

case when peer-to-peer meetings are impossible (or, rather, negligibly rare). When

finite, we will later interpret the κ’s as the choices of a government agent with its own

objective function. For now we look at the effects of changes in κi on the model’s
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endogenous variables holding all κj , j 6= i, constant. We report the results of this

exercise in Table 2.3.

V0 R0 I0 L0 pH pS pL θH θS θL

↑ κH + + − − − − − − + +
↑ κS − + + − + + − − − +
↑ κL + + − − − − − + + −

Table 2.3: Comparative Statics

First consider raising the posting cost of innkeepers, κH . This lowers the value of

hotel vacancies and, recalling that the equilibrium price is an increasing function of

I0, puts downward pressure on pH . More visitors are inclined to search for hotels,

decreasing the vacancy-to-searcher ratio in H (and increasing it in S). For landlords,

the higher market utility enjoyed by visitors hurts them insofar as they must deliver

tenants a combination of lower prices and higher finding rates. In response to the

lowered profitability in the short-term market, more landlords post in the long-term

market (partially undoing the increased tightness in S). Residents thus benefit as they

more easily find accommodation at lower prices.

Next, assume that the cost of posting vacancies for short-term rentals, κS , in-

creases. The value of unoccupied rentals declines and leads landlords to post more

vacancies in the long-term market. This makes residents better off, as there are more

vacancies vying for their business at lower prices. Visitors, on the other hand, are

made worse off. More are pushed into the hotel market where innkeepers can raise

prices alongside filling rates, increasing the value of a vacant hotel room. The fall in

market utility for visitors is found to be large enough such that prices in the short-term

market actually increase. Recalling the equilibrium pricing equation Equation 2.19,
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the fall in market utility makes the gain from accommodation higher. Though the

value of a vacancy drops, the net effect is that visitors must pay more and find accom-

modation more slowly.

Last, consider raising costs for long-term rentals, κL. Profits for landlords are re-

duced and more prefer to list their vacancies in the short-term market. Because these

markets are competitive, pS and pL fall. This unambiguously makes visitors better

off who enjoy lower prices and faster finding. For residents, the effect is slightly less

clear. Accommodation is harder to find, but prices are lower. Though, because accom-

modation finding is relatively fast, we find that the lowered prices are quantitatively

dominant and result in raised resident market utilities.18 Finally, the value of unoc-

cupied hotel rooms falls as innkeepers must deliver visitors a higher market utility.

Overall, the above exercises demonstrate the importance of modeling all three

markets. In models with only two of the three markets, much can be lost when failing

to consider the spillovers associated with affecting any one type of agents’ decisions.

Further, these considerations may also impact notions of optimal policy concerning

how short-term accommodation is governed. For example, thinking of changes in

κH as a government’s transient occupancy tax (TOT) policy, the above suggests that

increases in this rate could benefit residents through multiple channels. Increased

TOT revenues may be distributed directly, while indirectly benefiting them by reduc-

ing prices, raising finding rates, and lifting market utilities. This of course comes

at the cost of property managers (both innkeepers and landlords). κS can similarly

be thought of the fees charged to Airbnb. A lot of discussion has centered around

whether or not these peer-to-peer websites should be allowed to operate in certain ar-

eas. A “ban” would correspond to κS → ∞. What the optimal fees should be in each

18This result holds for a large portion of the parameter space, and all regions where this model makes
sense qualitatively and quantitatively.
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market, what the funds are used for or given to, and what the government’s objective

function is are all explored in the next section.

At this point it is important to discuss the assumption of a perfectly inelastic sup-

ply of dwellings. Some obvious detractions are that we know that properties are being

developed for housing accommodation over time, and that decisions to develop are in-

herently tied to their profitability. Notwithstanding, we argue that the largest hold-up

for new buildings centers around issues of permitting rather than, say, small changes

in a TOT. In this respect, the model should be thought of in a static, short-run context.

Static because we look at steady states, and short-run because of time-to-build restric-

tions on the construction of new lodging. Put differently, the results concerning the

model’s policy implications are conditional on there being no entry (or exit) response.

Using a previous example, the identifying assumption requires that changes in the

TOT do not affect the supply of hotels or rentals.

2.4 Calibration

We calibrate the model using Santa Barbara, California data. We do this for sev-

eral reasons. The first is that we have detailed data on prices for hotels, Airbnb’s, and

rentals for the region. Visit Santa Barbara19 provides data on hotel prices and vacan-

cies. They report a sample of 75% of the rooms across their jurisdiction (Santa Bar-

bara, Goleta, Montecito and Summerland), and therefore are estimates with a slight

margin of error. These data are provided by “STR” and do not include hostels, vaca-

tion rentals or long-term rentals. Also, because these only show hotel room consump-

tion, they do not represent any indicator of total visitor volume (it doesn’t include day

visitors from our surrounding area). We plot time series of monthly hotel demand

19https://santabarbaraca.com/
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Figure 2.8: Monthly Demand for Hotels in Santa Barbara

in Figure 2.8. We rely on data from Zillow for information on rental properties. For

comparison with hotel demand, we plot trends in the median rental prices in Fig-

ure 2.9. We use Inside Airbnb and Tom Slee for data on Airbnb listings. We plot the

change in median prices of these listed short-term rentals for the Santa Barbara area

in Figure 2.10.

The second reason we calibrate to this region is that the Santa Barbara Coast is

fairly isolated along the central coast of California, with very limited expansion po-

tential. Inland mountains prevent building away from the coast, while the coastal

commission (paired with what one may call NIMBY sentiments) greatly hinders ver-

tical construction. Since entry is impossible in the model, we view this as a near-ideal

scenario to study and assess the policy and welfare implications of peer-to-peer tech-

nologies on communities. Indeed, the concern for affordable housing is an important

topic for Santa Barbara residents and is a key topic for local politicians. We hope that

the following exercises will provide insights into notions of optimal policy regarding
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Figure 2.10: Median Price of Airbnb listings from January 2017 to July 2017 by ZIP
code in Santa Barbara.
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the effects of Airbnb and traditional lodging markets.

To calibrate the model we must make some functional form assumptions on the

matching function. We assume that mi is isoelastic and parameterized by ηI and ηL

for each respective property manager. This assumption is attractive for two reasons.

First, it reflects the idea that similar increases in the vacancy-to-searcher ratio may

differentially impact vacancy filling for innkeepers or landlords. Second, it is quan-

titatively necessary to generate the price dispersion observed in data. Recalling the

equilibrium pricing equations Equation 2.18 - Equation 2.20, a structurally rigid as-

sumption of uniform elasticities across markets can produce only small differences in

market prices faced by visitors. In total there are 16 parameters, 10 we set directly and

6 we jointly calibrate. We group these parameters into those related to preferences (r,

wV , wR, bV , bR, δV , δR), search (ηI , ηL, uV , uR, κH , κS , κL), and the stock of lodgings

(NI , NL).

To begin with the preference parameters, we calibrate the model to the daily fre-

quency with discount rate r of 0.00013, corresponding to an annual discount rate of

5%. δV and δR are set so that the average stay for a visitor and residents, respectively,

match what is observed in the data. According to Visit Santa Barbara, the average

length-of-stay for tourists in 2017 was 2.8 days. The associated daily separation prob-

ability is therefore 1/2.8. Converting this to a rate, we set δV = 0.442. For residents

we assume annual leases, implying a separation rate of δR = 0.0027. Flow utilities

for unaccommodation, bV and bR, are unidentified and therefore normalized to zero.

Those for accommodation, wV and wR, are jointly calibrated such that prices paid by

visitors and residents match the data. Utilizing January 2017 through July 2017 data,

the median (nominal) price for an Airbnb in Santa Barbara is $158.83 (Tom Slee). For

the same time period, the median price for a hotel room was $245.14 (Visit SB). Fi-

nally, Using Zillow listings for two bedroom apartments, the median per-room rental
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price is $49.29.

Moving on to the search parameters, the matching function is characterized by ηI

and ηL. Unlike in the labor market context, there is a dearth of scholarship on the find-

ing and filling rates of rental properties (or their elasticities w.r.t. market tightnesses).

As a result, we reduce the number of parameters to calibrate by letting ηI = 0.5 + η

and ηL = 0.5 − η so that we capture the spread in elasticities with a single parameter.

Since these are free parameters (here centered at 0.5), we later evaluate our results’

sensitivity to them and find that they are quantitatively robust for reasonable val-

ues.20 Because both hotels and Airbnbs pay transient occupancy taxes, we calibrate κH

and κS so that they correspond to the 12% TOT in Santa Barbara. Since TOTs are paid

as a rate for the whole stay–and in the model they are paid in flow prior to the stay–we

thus calculate the expected cost of search relative to the expected gain from filling a

vacancy. In the model the total cost of a vacancy is κ/λ and the flow revenue is given

by p/δ. Thus we have κδ/λp = 0.12 for both the H and S markets. Rental properties

do not pay any tax (other than property taxes), so we set κL = 0.

The final four parameters (uV , uR, NI , NL) are calibrated to match observed pop-

ulations of rental market participation observed in data. We normalize the total mea-

sure of dwellings to equal 100. The fraction of innkeepers and landlords is then di-

rectly calculated using ACS and Visit Santa Barbara estimates on the total number of

rental and hotel properties, respectively. From January through July 2017, there were

4,657 hotel rooms and 50,874 rental units, so NI = 8.39 and NL = 91.61. uV and

uR are jointly calibrated to target the average measures of hotel and rental vacancies,

respectively. Using the same data sources as before, there are an average of 1,075

unoccupied hotels and 4,601 vacant rental units (vH = 1.94 and vL = 8.29). The care-

20By “reasonable” we tested values from (0.20, 0.80) with negligible quantitative impact on the equi-
librium values.
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ful reader will have noticed that there is one more moment than jointly calibrated

parameters above. To make this exercise exactly identified, we lastly use the num-

ber of Airbnb vacancies from Tom Slee’s data, which find an average of 394 listings

(vS = 0.71). A summary of the calibration, and its results, are presented in Table 2.4.
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Parameter Value Description Target

Preferences
r 0.00013 discount rate 5% annual discount rate
wV 1,345.72 visitor’s flow utility of accomm. price of hotels / Airbnbs (?)
wR 8,201.30 resident’s flow utility of accomm. price of long-term rentals (?)
bV 0.0 visitor’s flow utility of search unidentified, normalization
bR 0.0 resident’s flow utility of search unidentified, normalization
δV 0.442 visitor’s separation rate average stay of 2.8 days
δR 0.0027 resident’s separation rate annual lease

Search & Matching
η 0.072 spread in matching elasticities price dispersion (?)
uV 0.34 measure of searching visitors 1,075 hotel vacancies (?)
uR 0.03 measure of searching residents 4,601 rental vacancies (?)
κH 17.14 hotel vacancy posting cost 12% TOT (?)
κS 8.69 short-term vacancy posting cost 12% TOT (?)
κL 0.0 long-term vacancy posting cost No TOT equivalent

Stock of Lodging
NI 8.39 measure of hotel units 4,657 hotels
NL 91.61 measure of rental units 50,874 rental units

Moment Data Model

average per day hotel price $209.50 $209.50
average per day Airbnb price $158.83 $158.83
average annual rent (per day) $49.29 $49.29
hotel TOT 0.12 0.12
Airbnb TOT 0.12 0.12
number of Airbnb listings 0.709 (394 listings) 0.709
average long-term vacancy filling rate 0.011 (3 months) 0.062

Table 2.4: Results of the calibration. The top panel displays the parameters and the bottom
reports the moments targeted in the joint exercise. Jointly calibrated parameters are “starred”
in the top panel.
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2.5 The Effect of Airbnb on Rental Markets

In this section we use the calibrated model to explore the effect of peer-to-peer

rentals, namely Airbnb, on rental markets. To do so we compare two economies, the

calibrated economy from the previous section and one where we let κS → ∞. As dis-

cussed earlier, the case when κS is high can be thought of as a situation where Airbnbs

are too costly to operate or, equivalently, that peer-to-peer technologies are not yet

feasible. In the context of equilibrium quantities in the model, as we let κS → ∞, χ

becomes arbitrarily close to 1. We summarize the steady state equilibria in both mod-

els in Table 2.5.21 We report prices, the share of visitors in the hotel market (χ), the

measure of vacancies that landlords post in the long-term market (≡ γ), market utili-

ties, and aggregate welfare measures (for specifics about the precise welfare function

we use, see Section 2.6).

From the benchmark model, note that the prices are the same (i.e. reproduced

from) the calibration exercise. In this regime 87% of visitors search for hotels (13%

for Airbnbs), and 84% of vacant rental properties are listed in the long-term mar-

ket. As we squeeze the short-term market into nonexistence, we find some intuitive

qualitative results. The presence of Airbnb depresses hotel prices as innkeepers must

compete with them. Further, prices for long-term rentals increase as landlords must

be adequately compensated for not listing in the short-term market. Quantitatively

we find modest effects on prices. The average price for a hotel is about $24.00 (per

night) less expensive with Airbnb. The average room in a rental property is $1.28 more

expensive per day (about $39 more per month). For visitors, added choice in search

and lower prices make them better off by about 3% with Airbnb competition. Resi-

dents, however, are worse off. Property manager vacancy profits mimic these results:

21The presented results are found to be quantitatively robust to ± 5% perturbations to the calibrated
parameters around the steady state.
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Prices Search

pH pS pL χ γ

Benchmark $209.50 $158.83 $49.29 0.87 0.84
No Airbnb $233.25 ∞ $48.11 1.00 1.00

Values Welfare

rV0 rR0 rI0 rL0 rG rW × E5

Benchmark 1,037.4 8,149.12 45.98 47.14 92.04 7.17
No Airbnb 1,006.7 8,150.33 77.33 45.98 83.48 7.24

Table 2.5: Equilibrium outcomes in the same economy with and without peer-to-peer rentals.

landlords are better off, innkeepers worse off.

To make these numbers comparable to the empirical literature, we use the model

to “translate” the above results. In particular, we convert the model’s results in terms

of an elasticity: “a percent change in the number of Airbnb listings is associated with

anX% change in Y .” One difficulty in directly making this calculation, though, is that

the number of Airbnbs in the model is endogenous, so directly manipulating the num-

ber of listed short-term rentals is difficult (read impossible). Instead we vary κS and

solve for the model’s equilibrium each time. We then use this collection of equilibria

to construct a mapping from vS to equilibrium outcomes. Interpolation of this dis-

crete mapping allows us to uncover the desired statistics. It should be noted, though,

that because vS is varied through κS for this exercise, we cannot comment on the effect

of changes in Airbnb listings on the price of Airbnb.22 Results are displayed in Fig-

ure 2.11. In the left plot we display the effects on prices; values are displayed on the

right. We graphically report the effect for -10% to 10% changes in posted vacancies.

22Instead, the exercise produces the effect of changes in the posting cost of Airbnbs on Airbnb prices.
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Figure 2.11: Percentage change in equilibrium values from a percentage change in the
number of Airbnb listings.

A 1% increase in the number of Airbnb listings . . .

increases rents 0.023%
visitor utilities 0.022%
the value of a vacant rental 0.024%

decreases hotel prices 0.086%
resident utilities 0.0001%
the value of a vacant hotel 0.138%.

The model numbers are larger than what are found in our reduced-form analyses:

the regression results found an effect of 0.01% on the price of rentals. However, they

are closer to estimates found in Barron et al. (2018) which suggest an effect of 0.018%.

Their paper utilizes data for the entire United States, so quantitative differences may

stem from Santa Barbara’s relatively unique isolation and development constraints.
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More broadly this raises questions about the importance of building constraints in

generating heterogeneous effects of Airbnb. This important extension is left for future

research.

Notwithstanding, the model generally produces effects larger than what is found

in empirical studies that we feel the need to comment on. While our structural ap-

proach avoids issues of measurement error and reverse-causation, for example, it does

abstract in some key ways that might be important. Most notably there is no hetero-

geneity in quality; differences in price reflect differences in finding / filling rates and

market-level search frictions. In reality we know that there are at least some key

differences in most short and long-term rentals. Traditional (long-term) rentals are

typically unfurnished, while Airbnbs are. If we think that Airbnbs attract furnished

(or some notion of higher quality) properties, we a priori predict that that the above

price effects would be smaller. Further, we might expect peer-to-peer markets to cater

towards medium length–as opposed to short–stays. We have modeled both short-term

rentals and hotels to be perfect compliments. Relaxing this might keep hotel prices

from dropping as much as we vary the availability of Airbnb.

We argue that these results offer a starting point to exploring the general equilib-

rium effects of peer-to-peer technologies on existing, traditional markets. In addition,

we find a relatively surprising normative result regarding aggregate welfare: the econ-

omy is worse off with Airbnb. Phrased differently, what are the sources of inefficiency

that can generate lower welfare with more choice? In the next section we more for-

mally define the welfare problem and think of this question in the context of optimal

policy.
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2.6 Policy and Welfare

Now we extend the model above to address questions of public policy and welfare.

We interpret the κ’s as elements in the choice set of governing agent G. Let κi = κ+ τ̃ i,

i ∈ {H,S, L}, where κ is a flow cost charged to properties in all markets.23. Because

of linear production and utility, we normalize κ to zero. τ̃ i are fees paid to operate

in market i ∈ {H,S, L}. τ̃H and τS model TOT fees, while τL are hypothetical fees

placed on traditional rentals.

The government’s objective is to maximize aggregate welfare using one of several

policies. The different policies limit which markets the government can tax. For ex-

ample, in one policy we suppose that the government cannot tax traditional rentals,

but is free to tax hotels and Airbnbs. Deviations away from the unlimited policy (i.e.

can levy fees on all markets) are constrained optimal and interpreted as “politically

feasible” options. Letting τ = [τ̃H , τ̃S, τ̃L]′, the government’s objective is to maximize

W = max
τ

{
uVV0(τ ) + uRR0(τ ) + vI(τ )I0(τ ) + vL(τ )L0(τ )

+
χ(τ )uV λ̃H(τ )

δV

[
V1(pH ; τ ) + I1(pH ; τ )

]
+

(
1− χ(τ

)
)uV λ̃S(τ )

δV

[
V1(pS; τ ) + L1(p

S; τ )
]

+
uRλ̃L(τ )

δR

[
R1(p

L; τ ) + L1(p
L; τ )

]
+ G(τ )

}
,

(2.35)

where rG(τ ) = vH(τ )τ̃H + vS(τ )τ̃S + vL(τ )τ̃L. In the above we make clear the de-

pendence of the model’s endogenous variables upon τ through prices, values, and

search.
23This, for example, includes property taxes which are paid on all types of property
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In total there are eight welfare exercises whose outcomes are summarized in Ta-

ble 2.6 along with the benchmark economy from the calibration. For ease of compar-

ison, we report the policies as tax rates of total revenues (τ = κδ/λp) and summarize

the steady state search behavior with the share of visitors searching for hotels (χ) and

the share of vacant rental properties posted in the long-term market (γ). We group

and order the exercises by how many markets are allowed to be taxed, beginning with

a no-tax case. In this environment there are no government revenues, prices paid by

visitors are lower, and prices paid by residents are higher relative to the calibrated

benchmark. The short-term market is more attractive for both visitors and landlords,

and so a larger proportion redirect their search away from the hotel and long-term

market, respectively. A notable theme that will arise in the results to follow is that

aggregate welfare can be improved by government intervention. Put differently, the

no-tax case does not produce a socially optimal allocation of search effort and vacancy

posting. Briefly, though search is directed and competitive, barriers to entry result in

positive profits for posted vacancies. This opens up the possibility for agent decisions

(to search in another market) to not fully internalize their effects on other agents.

Consider the government having access to tax revenues from each market sepa-

rately. That is, one-by-one we set τ j = 0.0 for all markets j 6= i. When taxing hotels

the government sets a high tax rate (49%) to maximize aggregate welfare. Since hotels

must compete with each other and landlords, hotel prices fall, more visitors search in

the hotel market, and market utilities rise. Indeed, they also rise for residents who

enjoy lower prices and faster finding rates as landlords shift some vacancies to the

long-term market. Here, visitor decisions to search for Airbnbs do not adequately

compensate innkeepers for the lower filling rates. The government can improve ag-

gregate welfare by taxing hotels to lower prices and induce these visitors back into

the hotel market, where tax revenues can be distributed to hotels to compensate for
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the lost revenues. In the absence of these taxes, individual innkeepers take market

utilities as given and so do not have incentives to lower prices and induce more visi-

tors to search in the hotel market. In contrast the governing agent can affect market

utilities. In this sense one may think of this inefficiency as a coordination problem in

the price / market utility space. An atomistic innkeeper cannot improve visitor utility

to induce enough short-term searchers to change their search behavior.

A similar intuition also follows when the government can only tax short-term

rentals–though through a slightly different channel. Noting from above that visitors

are inefficiently searching for Airbnbs, landlords also inefficiently re-direct vacancy

postings from residents to this market. Since residents have no outside occupancy op-

tions (and because they are a large portion of the population) lost utility from lower

finding rates and higher prices add up quickly and have large effects on aggregate

welfare. Increasing fees in the short-term market can kill both of these birds (with

one stone). Higher fees reduces landlords profits and leads more to advertise their

vacant rentals to residents. Since both markets are available to landlords, in order to

keep at least some posting in the short-term market, pS must increase.24 These higher

prices lead more visitors to search for hotels. Since this policy addresses two sources

of inefficiency, aggregate welfare is higher than when only taxing innkeepers. Further,

due to the Airbnb market being relatively small, this welfare improvement is achieved

with very little redistribution.

The last, single-market tax exercise is the long-term market. Very straightfor-

wardly, we find that the optimal fee to place is 0.00 as one of the main sources of

inefficiency involves not enough vacancies for residents. This can also be seen in the

two-market exercise where the governing agent may tax hotels and long-term rentals.

24This differs from the case above because innkeepers do not have an outside option to lodge non-
visitors.
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We find no tax should be levied in L, and the high, 49% tax should be imposed in H to

reallocate search effort. When taxing the two visitor markets, we find a slightly more

“balanced” optimal policy wherein Airbnb taxes are slightly lower (though virtually

identical after rounding) and hotel taxes are present, but small. Finally, the welfare

maximizing policy can be achieved by taxing only landlords. Here, the government

sets taxes on Airbnbs so high (71%) that they are effectively nonexistent, bringing

back the economy to one where peer-to-peer rentals do not exist. In addition, since

all agents have limited choice sets (i.e. no outside option for visitors or landlords), the

government can levy a small, redistributive tax on long-term rentals à la the single-

market hotel tax case. Because the search externalities can be corrected primarily with

the high tax in the short-term market, there is no need to tax the hotel market.
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2.7 Conclusion

In this paper, we examine the impact of the presence of Airbnb listings on the

price of long-term rentals and hotels. We do this by developing a structural search

and matching model where property managers post vacant rooms and tenants direct

their search to these postings. In our model we have three separate but interconnected

markets, the hotel market accessible to innkeepers and visitors, the short-term rental

market accessible to landlords and visitors, and the long-term rental market accessible

to landlords and residents. We then apply our model using a novel dataset for the

Santa Barbara, California, housing and hotel markets combining data from several

sources including Visit Santa Barbara, the American Community Survey, Zillow, and

scraped Airbnb listings.

Our results suggest that Airbnbs decrease hotel prices by about $24 per night while

increasing average rents by $39 per month. While the presence of Airbnb creates

added choice in accommodation for visitors, increases their flow utility by about 3%,

this welfare gain is more than offset by the reduction in welfare for residents due to

fewer rentals to search for and higher prices. Overall, we find that with limited entry,

aggregate welfare is reduced by the presence of Airbnb. As a result, a government

policy to set a high transient occupancy tax on short-term rentals would increase ag-

gregate welfare.

While this paper addresses the impact of Airbnbs on renters, there are other im-

pacts of Airbnb on housing markets that are not accounted for, such as the effect on

the price of owning a home. Furthermore, we do not explore the impacts of allowing

for the development of new properties.
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Chapter 3

Effective Number of Clusters and

Inference with Instrumental Variables

with Douglas G. Steigerwald

3.1 Introduction

Empirical studies with clustered data have relied on the number of clusters to de-

termine if critical values from the normal distribution are appropriate for inference.

We show that the number of clusters is not the appropriate value for guiding inference

when cluster heterogeneity is present. As cluster heterogeneity grows, inference using

cluster-robust standard errors and normal critical values can suffer from false rejec-

tion of the null hypothesis. This result is more pronounced when using instrumental

variables. We develop a measure for cluster heterogeneity when using instrumental

variables and using simulations and empirical examples show how this measure can

be used to guide inference.

When conducting inference with panel data or with data that can be grouped into
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clusters, failure to control for within cluster error correlation can lead to downward

biased standard errors. Recent work examines the effect of cluster heterogeneity on

the ability to control for within cluster correlation. Consistency of cluster-robust stan-

dard errors for models without instrumental variables is established in Carter, Schne-

pel, and Steigerwald (2017), who also provide a measure of the severity of the hetero-

geneity in a given sample. When cluster heterogeneity grows, inference using cluster-

robust standard errors and normal critical values can suffer from false rejection of the

null hypothesis. They show that substantial cluster heterogeneity requires the use of

critical values that are larger than the normal critical values to produce accurate infer-

ence. This result may become more pronounced when using instrumental variables.

We may expect the effect of cluster heterogeneity on inference documented for OLS

estimates to be even more pronounced for two-stage least squares (2SLS) estimators

for several reasons. One, the use of instrumental variables results in fitted regres-

sor values that have less variation then the original regressor. Because the effective

number of clusters is a function of the heterogeneity of the covariate matrix for each

cluster, this reduction in variation can lead to a smaller effective number of clusters.

Weak instruments can further reduce the variation in the fitted regressor and thus the

effective number of clusters. A low effective number of clusters can then lead to an

increase in the bias in the standard errors and to non-normal asymptotic distributions

for the coefficient estimates. We show that the effective number of clusters can be an

informative measure for determining the normality of the test statistic.

We use simulations to study the relationship between cluster heterogeneity and

the distribution of the test statistic. Utilizing simulations allows for the study of the

distribution of the test statistic. We find that when using instrumental variables the ef-

fective number of clusters is much lower than the actual number of clusters even when

the relationship between the first and second stage error terms is zero, meaning even
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when the regressor of interest is exogenous using an instrumental variable greatly re-

duces the effective number of clusters when compared to OLS. We further show that

when the effective number of clusters is low the test statistic is not distributed nor-

mally. This indicates that using critical values from the normal distribution will lead

to rejecting the null hypothesis too frequently. We show that the restricted wild clus-

tered bootstrap can be used in instances when the feasible effective number of clusters

is low to return the size of the hypothesis test to the desired level.

We then look to published papers to evaluate how the choice of critical values im-

pacts inference. Using data from empirical studies published in American Economic

Association journals we show that inference with instrumental variables and clustered

data is sensitive to cluster heterogeneity. Our results verify the observation of Young

(2017) who shows using robustness checks that standard instrumental variable infer-

ence systematically understates confidence intervals leading to rejection rates greater

than nominal size, using 2SLS regressions from published papers. We further show

that the effective number of clusters can be used as an indicator to when over-rejection

of the null hypothesis may be occurring.

In Section 3.2, we review the current instrumental variable methodology for work-

ing with clustered data and discuss the impacts of clustered data on causal inference.

In Section ??, we extend the results of Carter, Schnepel, and Steigerwald (2017) to a

model using IV and 2SLS estimators. In Section 3.4, we use simulations to demon-

strate the effect of cluster heterogeneity on the rejection rate of hypothesis tests in

models with IV and 2SLS estimators and show that the restricted wild clustered boot-

strap can be used for more accurate inference. In Section 3.5, we utilize published

empirical results to demonstrate how to utilize our results to determine appropriate

critical values for inference. In Section 3.6, we conclude and offer suggestions for the

application of our results to future empirical research.
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3.2 Setup

Data with clustered error structures is widely utilized in applied econometric re-

search. Cameron and Miller (2015) provide a comprehensive overview of clustered-

robust methods. Asymptotic theory for clustered based inference when clusters are

equally sized is established in multiple papers including Liang and Zeger (1986) and

Hansen (2007). Carter, Schnepel, and Steigerwald (2017) and Hansen and Lee (2019)

establish asymptotic theory for clustered samples with heterogeneous clusters.

Cluster Robust Variance Estimators often perform well when conducting infer-

ence. However, Bertrand et al. (2004) demonstrate that if the number of clusters is

small over rejection of the null hypothesis can occur. Carter, Schnepel, and Steiger-

wald (2017) further show that over rejection not only occurs when the number of

clusters is few but can also occur when the number of clusters is large if substantial

cluster heterogeneity is present in the data. When the number of clusters is small,

bootstrap methods can be used to improve the accuracy of inference. Cameron et al.

(2008), MacKinnon and Webb (2017), Djogbenou et al. (2019) demonstrate the im-

proved properties of bootstrap methods with clustered data. Finlay and Magnusson

(2019) show how bootstrap methods can improve inference when the number of clus-

ters is small and instrumental variable models are used.

In applied work, researchers often rely on the number of clusters to infer the nor-

mality of the test statistic. A popular rule is that if there are 40 or more clusters,

then the test statistic is approximately normal. Yet this “rule” relies on homogeneity

of the clusters. If clusters are heterogeneous, for example if the number of observa-

tions in each cluster differs - then a sample with more than 40 clusters can yield a test

statistic that is severely non-normal. This arises because heterogeneity across clusters

leads to a larger variance for the estimated standard errors, which in turn leads to
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non-normality of the test statistic.

3.2.1 Asymptotic Behavior and the Effective Number of Clusters

There are n observations from the linear model

y = Xβ + u, (3.1)

where the covariate matrix X consists of k linearly independent columns. There are

two key features of the model. The first is that X = [x : W ] where only W is mean

independent of the error u (that is, only W is exogenous). There exists a valid instru-

ment z that is correlated with x and for which Z = [z : W ] is mean independent of

u. The second key feature is that the observations can be split into G clusters, where

errors are independent between clusters. Because x is also independent across clus-

ters, this implies that the covariance matrix of u, given Z, can be written as a block

diagonal matrix, where the diagonal element Ωg is the covariance matrix for cluster g.

In this setting, the estimator of β is the two-stage least squares estimator

β̂TS =
(
XTPX

)−1
XTPy,

where P is the projection matrix Z(ZTZ)−1ZT. The variance of the two-stage least

squares estimator is

V := Var
[
(XTPX)−1XTPu | Z

]
.

Because Ω is block diagonal, this variance can be written as a function of the sum
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of the variance components for each cluster

V = (X̂TX̂)−1

(
G∑
g=1

X̂T
g vgv

T
g X̂g

)
(X̂TX̂)−1,

where X̂ = PX , v = Pu, and the subscript g denotes the observations for cluster g.

Interest centers on hypotheses regarding the coefficients in (3.1), the general form

of which is H0 : aTβ = aTβ0, where aT is a vector selecting the coefficients under test.

Because any factor that multiplies the selection vector cancels out of the test, we can

simplify calculations by assuming that ||a|| = 1. We focus on the cluster robust test

statistic of the following form

t =
aT(β̂TS − β0)√

V̂ar(aTβ̂TS)

where V̂ar(aTβ̂TS) = aTV̂ a and V̂ is the cluster-robust variance estimator. The cluster-

robust estimator is the sample analog of V

V̂ = (X̂TX̂)−1

(
G∑
g=1

X̂T
g v̂gv̂

T
g X̂g

)
(X̂TX̂)−1,

where for each cluster g the observed residuals v̂g replace the errors vg.

The variance, and so the estimator of the variance, depend only on the within-

cluster variation, that is, the variance of the cluster-specific estimators of β. As a

result, it is the number of clusters, not the total number of observations, that governs

the asymptotic behavior of the variance estimator and of the test statistic. To show

this, we establish that both V and V̂ can be written as a weighted sum of the variances

for β̂TS g, which is the estimator based only on the observations for cluster g.
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Lemma 4 Under the assumption that {ug} is a sequence of independent random vectors:

V =
G∑
g=1

Cg Var(β̂TS g | Z)CT
g ,

and

V̂ =
G∑
g=1

Cg(β̂TS g − β̂TS)(β̂TS g − β̂TS)TCT
g ,

where Cg = (X̂TX̂)−1X̂T
g X̂g.

We provide a proof in the appendix.

To allow for a wide range of behavior in cluster sizes we study V̂a/Va, where V̂a =

aTV̂ a, rather than V̂a − Va. Following Carter, Schnepel, and Steigerwald (2017) (CSS),

the main contribution to the mean-squared error of V̂a is governed by

G∗ =
G

1 + Γ∗(Ω, Z)
. (3.2)

The quantity G∗ is the effective number of clusters, which adjusts the number of clus-

ters downward to account for the increased variation in V̂ brought about by hetero-

geneity in the clusters. The heterogeneity is captured by

Γ∗(Ω, Z) =
1
G

∑G
g=1(γg − γ∗)2

(γ∗)
2 , (3.3)

where γ∗ = 1
G

∑G
i=1 γ

∗
g and

γ∗g = aT(X̂TX̂)−1X̂T
g ΩgX̂g(X̂

TX̂)−1a.

The quantity Γ∗(Ω, Z) plays an important role in understanding both the asymp-

totic behavior of the test statistic and the accuracy of the asymptotic approximation
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in finite samples. To establish an asymptotic distribution we need four conditions.

Assumption 1

i) The error vectors ug are independent over g with bounded fourth cumulants.

ii) As n→∞, the number of clusters G grows without bound.

iii) As G→∞,
E(Γ∗(Ω, Z))

G
→ 0.

iv) As n→∞,
1

Va
aT

G∑
g=1

(
(Cg −

1

G
I)V (Cg −

1

G
I)

)T

a
P−→ 0.

Two of the conditions are worthy of discussion. The third condition states no sin-

gle cluster can have a dominant effect on the overall variation, in that the heterogene-

ity arising from that cluster will be asymptotically negligible. Of course, in finite

samples, there may be a single, or a few, clusters that dominate the heterogeneity.

The fourth condition also restricts the dominance of any single cluster, but directly

captures the effect of heterogeneity in the explanatory variables weighted by their

contribution to the overall variance. With this level of control on the asymptotic het-

erogeneity we can establish a central limit theorem.

Theorem 1 Under Assumption 1:

V̂a is a consistent estimator of Va and, under H0,

t N (0, 1),

where denotes convergence in distribution.

We provide a proof in the Appendix.
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Any quantity that is a function of the latent Ω is infeasible and is denoted with

a ∗ superscript. To implement these results we follow CSS and construct a feasible

quantity by replacing Ωg with the ng × ng unit matrix:

γ̃g = aT(X̂TX̂)−1

(
G∑
g=1

X̂T
g ιg ι

T
g X̂g

)
(X̂TX̂)−1a,

G̃ =
G

1 + Γ̃(ιg ιTg , Z)
,

where ιg is the ng × 1 vector of 1’s and Γ̃(ιg ι
T
g , Z) is computed as in (3.3) with γ̃g in

place of γ∗g . This generally delivers an upper bound for Γ∗ and so a lower bound for

G∗.

3.3 Behavior of the Effective Number of Clusters

To illustrate how cluster variation affects hypothesis testing in applied settings

we turn to simulations. Because earlier work has confirmed the widespread belief

that the effect of heterogeneity is most pronounced for tests of regressors that are

highly correlated within clusters, we focus on cluster-level explanatory variables. The

baseline model for individual i in cluster g is

yig = β0 + β1xg + β2wig + uig, (3.4)

with wig ∼ N (0, 1) and E(uig | wig) = 0. For the endogenous regressor xg:

xg = α0 + α1zg + ηg, (3.5)
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where Cov(zg, uig) = 0 and Cov(xg, zg) 6= 0. There are two settings: xg is a binary

random variable and zg ∼ Bernoulli(0.5); and xg is a continuous random variable and

zg ∼ N (0, 1). The endogeneity arises through the construction of the error term

uig = ρηg + (1− ρ2)
1
2νig, (3.6)

where {ηg} and {νig} are each sequences of i.i.d. N (0, 1) random variables and {ηg}

is independent of {νig}. Therefore uig ∼ N (0, 1) and ρ = Corr(uig, ηg) measures the

strength of the endogeneity. If ρ = 0, then xg is exogenous.

The simulations are based on a sample size of 2,500, divided into 100 clusters.

Cluster heterogeneity is controlled by varying the cluster sizes. In the baseline case,

all clusters contain 25 observations. The first heterogeneous design has one cluster

of 50 observations, with all other clusters having 24 observations. Each additional

design increases the size of the large cluster by 25 observations until the large cluster

contains half of the sample, which is the most extreme degree of heterogeneity that

we consider.

For each cluster-size design, we have 33 simulated settings. Each setting corre-

sponds to a value of ρ and a draw of the exogenous variables, zg and wig. We allow

ρ to take the values {0.0, 0.1, . . . , 1.0} and, for each value of ρ, we randomly draw the

exogenous variables three times. For each of the 33 simulated settings we perform

1000 Monte Carlo simulations by randomly generating the error terms, ηg and νig.

3.3.1 Feasible Effective Number of Clusters

In the case where all the explanatory variables are exogenous and the cluster level

variable is Bernoulli, Carter, Schnepel, and Steigerwald (2017) show that G̃ = G with

equally sized designs and, as the fraction of the sample in the largest cluster grows,
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that G̃ declines exponentially. Figure 3.1 reproduces these results with our designs

(we set xg = zg to mirror an exogenous covariate). The design in which the clusters

are equally sized, so one percent of the observations are in the “largest” cluster, has

G̃ equal to, or nearly equal to, G in all cases. Because the exogenous variables are

randomly drawn, they are not perfectly balanced over clusters and variation in the

value can lead to a slight reduction in the feasible effective number of clusters.

The use of instruments may alter these results. It is well known that passing the

endogenous explanatory variable through the first-stage filter reduces the variation in

the variable, which could lead to less heterogeneity and a larger value of G̃ than is

reported in Figure 3.1. We report the results in Figure 3.2. The broad pattern is very

similar between these two figures, with a sharp reduction in G̃ as the fraction of the

sample in the largest cluster grows. With 5 percent of the observations in the largest

cluster G̃ is half of G. As the size of the largest cluster approaches 10 percent of the

sample, G̃ falls below 10. The range of values for G̃ for a given cluster-size design is

larger for the endogeonous regressor case because of the additional variation arising

from different values of ρ.

Figure 3.3 shows the median value of the feasible effective number of clusters

across all simulations for each cluster-size design. The scaling on the horizontal axis

is now the coefficient of variation in cluster sizes, which is the standard deviation of

the cluster sizes divided by the average cluster size. This measure can be used in em-

pirical settings where there are a number of clusters of unequal size. We report the

corresponding value of the coefficient of variation for three empirical papers that are

studied in more detail below. In addition to the binary endogenous covariate, a con-

tinuous covariate is also included. For the continuous covariate, the effective number

of clusters is much lower for equal cluster sizes and declines at a slower rate. The low

values for equal or nearly equal cluster sizes are the result of the fact that zg and wig
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Figure 3.1: Cluster size variation and the feasible effective number of clusters: exoge-
nous binary covariate

Figure 3.2: Cluster size variation and the feasible effective number of clusters: en-
dogenous binary covariate
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Figure 3.3: The feasible effective number of clusters for a continuous and a binary
regressor for varying cluster size coefficient of variation.

vary more over clusters in the continuous case than in the binary case.

3.3.2 Empirical Test Size

Of interest to empirical researchers is the relationship between feasible effective

number of clusters and accuracy of inference. CSS demonstrated that with OLS, when

the feasible effective number of clusters is small the empirical test size can be much

greater than the nominal size. With 2SLS, for low values of G̃ the empirical test size

can lie far above the nominal size of 5 percent. Interestingly, even with a moderately

high level of endogeneity, ρ = 0.6, the empirical test size is inflated even if G̃ is as

large as 40, which corresponds to the largest cluster having only 2-3 percent of the

sample (the baseline is 1 percent). The binary pattern appears to be different, with

size distortions that are much more responsive to ρ.
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Figures 3.4 and 3.5 display the empirical test size as a function of the feasible

effective number of clusters for a binary and continuous regressor. The cluster-robust

IV test statistic of interest, t, is given by β̂ − β0 divided by the cluster-robust standard

error. From these figures it is clear that for small values of ρ the empirical test size

is below the nominal size while for larger values of ρ result in an empirical test size

greater than nominal size. However, all values of ρ appear to have an increase in

empirical test size when the feasible effective number of clusters drops below about

10.

When looking at the average empirical test size when split into low, medium, and

high feasible effective number of clusters groups, we can see in Table 3.1 that for both

continuous and binary regressors the empirical test size is only much larger than the

desired 5 percent for the low feasible effective number of clusters group. To investi-

gate why this may be occurring we look to the distribution of the test statistics of the

simulated data.

Table 3.1: Average empirical test size split by low feasible effective number of clusters
(FENC < 15), medium feasible effective number of clusters (15 < FENC < 30), and
high feasible effective number of clusters (FENC > 30)

Average Empirical Test Size
Low FENC Medium FENC High FENC

Continuous 0.098 0.047 0.047
Binary 0.097 0.053 0.049

In Figure 3.6, we can see that with equal cluster sizes for all values of ρ the simu-

lated distributions are all close to the Standard Normal distribution and the feasible

effective number of clusters is around 30 for all values of ρ. Once cluster hetero-

geneity is introduced, as seen in Figure 3.7, the feasible effective number of clusters

drops and the distribution of the test statistic becomes non-normal. The distribution

when the feasible effective number of clusters is 15.78 is slightly non-normal, while
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Figure 3.4: Empirical test size for varying values of the feasible effective number of
clusters when the regressor of interest is binary.

Figure 3.5: Empirical test size for varying values of the feasible effective number of
clusters when the regressor of interest is continuous.
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the distributions when the feasible effective number of clusters is near 1 are highly

non-normal.

Figure 3.6: Distribution generated from 1,000 simulations for each specification with
equal cluster sizes.
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Figure 3.7: Distribution generated from 1,000 simulations for each specification with
unequal cluster sizes.

3.4 Non-normality of the Test Statistic

3.4.1 Bootstrap Approximation to the Distribution of the Test Statis-

tic

We have seen from simulations that when using 2SLS with clustered data the em-

pirical test size often does not match the nominal size. We have also seen that the

distribution of the test statistic is non-normal. When conducting inference with test

statistics of unknown sample distributions, the bootstrap can be used to obtain appro-

priate critical values. The “wild” bootstrap is useful when we believe that the variance

of the error term depends on the value of the covariates. Instrumental variable estima-

tion allows for consistent estimation, however can result in biased estimates. To boot-

strap in the IV case we need to estimate the parameters in both the first and second

100



Effective Number of Clusters and Inference with Instrumental Variables Chapter 3

stage regressions. We utilize a procedure adapted from the Simultaneous Equations

section of MacKinnon (2019).

Consider the two-equation model

yig = β1 + β2xg + β3wig + uig

xg = α1 + α2zg + α3wig + ηg

where yig and xg are endogenous variables and wig and zg are exogenous variables.

1. Obtain estimates of the first and second stage parameters.

(a) Estimate the restricted estimates of the structural equation, β̃1 and β̃3, and

residuals, ũig, by imposing the null value β0 and regressing yig−β0xg on wig.

(b) Estimate the restricted estimates of the reduced-form equation by regress-

ing xg on wig, zg, and ũig. The estimated restricted residuals, ũig, are in-

cluded to estimate α̃1 and α̃2 because this yields more efficient estimates

because uig and ηg are correlated.

2. Calculate the cluster-robust t statistic

3. For each of B bootstrap replications,

(a) Generate a set of bootstrap disturbances for both stages by multiplying ũig

and η̃g by vg which takes the values -1 and 1 with equal probability.

(b) Generate x∗g followed by y∗ig using the bootstrap disturbances and estimated

restricted parameters such that

x∗g = α̃1 + α̃2zg + α̃3wig + vgη̃g
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y∗ig = β̃1 + β0x
∗
g + β̃3wig + vgũig

(c) Obtain bootstrap parameter estimates and calculate the bootstrap t statis-

tic.

4. From the distribution of the B bootstrap t statistics calculate the critical values.

Table 3.2: 1000 simulations with the bootstrap performed 1000 times for each speci-
fication.

Homogeneous Clusters Sizes
FENC 36.81 35.93 35.61 28.43
Coverage Probability Robust 0.92 0.94 0.93 0.94
Coverage Probability Bootstrap 0.94 0.95 0.94 0.96

Heterogeneous Cluster Sizes
FENC 28.53 15.78 1.68 1.36
Coverage Probability Robust 0.94 0.94 0.90 0.86
Coverage Probability Bootstrap 0.96 0.95 0.95 0.95

Using simulations we study the behavior of the bootstrap test statistic for a variety

of specifications, the coverage probabilities for a 95% hypothesis test are in Table 3.2.

We can see that for all values of the feasible effective number of clusters the cover-

age probability is approximately 0.95 even for the low values of the feasible effective

number of clusters when the coverage probability using normal critical values falls to

below 0.90.

3.5 Empirical Examples

Empirical research papers that employ both instrumental variables and cluster ro-

bust inference have been spotlighted recently. Young (2017) notes that in a number

of these papers there are one or two influential clusters. Indeed, he reports that for

a large sample of published papers that report two-stage least squares estimates with
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statistical significance at 1% size, nearly half are “insignificant” when the most influ-

ential cluster is removed. While a test based on the minimal t-statistic - obtained by

sequentially dropping one cluster - does not have a N (0, 1) distribution, and so one

cannot easily determine if a minimal t-statistic is significantly different from zero, the

finding does draw attention to the importance of heterogeneity across clusters.

The effective number of clusters is closely tied to the concept of influence through

the measure of leverage. To formally relate leverage to the effective number of clusters,

consider a univariate model in deviations-from-means form, yig = βxg + uig. The

leverage of an observation is determined by the relative magnitude of the explanatory

variable for that observation and in the two-stage least squares context, is given by

x̂2ig∑G
g=1

∑ng

i=1 x̂
2
ig

.

From (3.3), the contribution of a single observation to the effective number of clusters

is
x̂2igω

2
ig∑G

g=1

∑ng

i=1 x̂
2
ig

,

which is the leverage weighted by the variance of the error. An influential observation

is one for which the leverage and the magnitude of the error are high. Because a

larger error variance generally leads to larger magnitude errors, the effective number

of clusters is a natural measure of influence.

Unsurprisingly, there is a close link between the size of the largest cluster and the

feasible effective number of clusters. Figure 3.8 presents the relation for the simula-

tion model of Section 3.3.

To demonstrate the effectiveness of using the feasible effective number of cluster

as an indicator for non-normal distributions of the test statistic we use data from
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Figure 3.8: Relationship between size of largest cluster and total leverage of the largest
cluster with OLS.

papers published in AEA journals that use instrumental variables. We first evaluate

the sensitivity of the estimated coefficients and standard errors to influential clusters.

We can further investigate the sensitivity of the inference by comparing the critical

values generated from using the wild cluster bootstrap to the standard critical values

and to the estimated test statistic.

3.5.1 Empirical Paper #1

The first empirical paper we look as is The Long-Run Effect of Mexican Immigration

on Crime in US Cities: Evidence from Variation in Mexican Fertility Rates published in

the American Economic Review (Chalfin (2015)). This paper uses instrumental vari-
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ables to measure the effects of Mexican immigration on crime rates reported to police.

We see in Table 3.3 that the total number of groups in this paper is 92. This value

would appear to be large enough to use critical values from the Normal distribution

for hypothesis testing. However, for the 2SLS regression specification in the paper the

feasible effective number of clusters is equal to 11. This means the number we should

use to determine if we should use a Normal distribution for the critical values is 11

not 92. From our simulations, we saw that a feasible effective number of clusters of 11

would be an indicator that using the bootstrap to determine the critical values would

be appropriate. When leaving out just one cluster the estimated t-statistic changes

from 2.05 to 1.29 demonstrating that the estimated coefficient is very sensitive to one

cluster. We can also see in Table 3.3 that the largest change in test statistic corresponds

to a 21% change in the estimated β and a 26% change in the estimated standard error.

Table 3.3: Leave-One-Out Estimation

Chalfin

G 92
|t̂| 2.05
Max Leverage 22.3 %
FENC 11

Leave-One-Out(Cross Validation)

min. |t̂| 1.29
% Change β̂ 21%
% Change ŝe 26%

Figure 3.9 show the distribution in the percentage change for the removal of each

cluster from the regression estimation. We can see that the change in the estimated

β ranges from -20% to 20% while the change in the estimated standard error ranges

from about -18% to 26%. These large percentage changes from the removal of a single

cluster shows that both the estimated β and standard error are sensitive to the removal

of one cluster.
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Figure 3.9: Distributions of estimated β and se with the removal of one cluster.

3.5.2 Empirical Paper #2

The second empirical paper we look at is Income and Democracy published in the

American Economic Review (Acemoglu, Johnson, Robinson, and Yared (2008)). This

paper uses instrumental variables to measure the impact of economic growth on mea-

sures of democracy. The data consists of 747 observations clustered at the country

level with 114 countries. Comparing the evaluation of Acemoglu et al. and Chalfin,

we can see that while the two data sets have a similar number of groups, 114 and

92, the feasible effective number of clusters for Acemoglu et al. is equal to 37 while

for Chalfin it was only equal to 11. Referring back to Figure 3.5, the empirical test

size seems to begin increasing when the effective number of clusters is below 10 to

15. We can see that the feasible effective number of clusters of the Acemoglu et al.

data is above this threshold and thus would not require the use of a bootstrap proce-

dure. The results of the leave-one-out estimation do not cause the results to become

insignificant. As demonstrated in both of these papers, a low feasible effective number

of clusters occurs when the minimum leave-one-out test statistic is below the Normal
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critical value while a high feasible effective number of clusters occurs when the mini-

mum leave-one-out test statistic is above the Normal critical value

Table 3.4: Leave-One-Out Estimation

Acemoglu et al. Chalfin

G 114 92
|t̂| 2.53 2.05
Max Leverage 14.9% 22.3 %
FENC 37 11

Leave-One-Out(Cross Validation)

min. |t̂| 2.39 1.29
% Change β̂ -2% 21%
% Change ŝe 8% 26%

In Figure 3.10 we can see that the range of changes produced by the leave-one-

out estimation is much smaller compared to Empirical Paper #1. This again shows

the relationship between the sensitivity to leave-one-out estimation and the feasible

effective number of clusters. Looking at the values in Figure 3.10 compared to the

values in Table 3.4 we can see that the minimum test statistic does not correspond to

the largest percent change in β̂ or ŝe.
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Figure 3.10: Distributions of estimated β and se with the removal of one cluster.

3.5.3 Empirical Paper #3

The third empirical paper we look at is The China Syndrome: Local Labor Market

Effects of Import Competition in the United States published in the American Economic

Review (Autor et al. (2013)). This paper analyzes the effect of rising Chinese import

competition on US labor markets. They instrument for growth in Chinese imports

to the United States using the contemporaneous composition and growth of Chinese

imports in eight other developed countries.

Table 3.5: Leave-One-Out Estimation

Acemoglu et al. Chalfin Autor et al.

G 114 92 48
|t̂| 2.53 2.05 5.94
Max Leverage 14.9% 22.3 % 9.7 %
FENC 37 11 14.5

Leave-One-Out(Cross Validation)

min. |t̂| 2.39 1.29 5.39
% Change β̂ -2% 21% 11.5%
% Change ŝe 8% 26% -2.4%
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While this paper has only 48 clusters in the data, about half the number of clusters

as Empirical Paper #1, the feasible effective number of clusters is larger than that

paper with FENC equal to 14.5 compared to 11. We also see in Figure 3.11 that these

estimates are much less sensitive to both Empirical Paper #1 and Empirical Paper #2.

Figure 3.11: Distributions of estimated β and se with the removal of one cluster.

3.5.4 Empirical Paper #4

The fourth empirical paper we look at is The Effects of Rural Electrification on Em-

ployment: New Evidence from South Africa published in the American Economic Review

(Dinkelman (2011)). This paper analyzes the impact of electrification on employment

growth in South Africa instrumenting for program placement using the average com-

munity land gradient.

In Table 3.6 we see that this paper has 293 clusters the largest of any paper we

study. But the feasible effective number of clusters is only 18.7 even with close to

three hundred clusters. As expected with son many clusters, the maximum leverage

of any one cluster is much smaller than the maximum leverage in any of the other
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Table 3.6: Leave-One-Out Estimation

Dinkelman Acemoglu et al. Chalfin Autor et al.

G 293 114 92 48
|t̂| 1.64 2.53 2.05 5.94
Max Leverage 3.75% 14.9% 22.3 % 9.7 %
FENC 18.7 37 11 14.5

Leave-One-Out(Cross Validation)

min. |t̂| 1.23 2.39 1.29 5.39
% Change β̂ -30% -2% 21% 11.5%
% Change ŝe -6.8% 8% 26% -2.4%

empirical papers looked at so far.

Figure 3.12: Distributions of estimated β and se with the removal of one cluster.

3.5.5 Empirical Paper #5

The final empirical paper we look at is German Jewish Émigrés and US Invention

published in the American Economic Review (Moser et al. (2014)). This paper analyzes

the impact of Jewish émigrés’ from Nazi German on chemical innovation in the United

States.
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Table 3.7: Leave-One-Out Estimation

Dinkelman Moser et al. Acemoglu et al. Chalfin Autor et al.

G 293 166 114 92 48
|t̂| 1.64 2.48 2.53 2.05 5.94
Max Leverage 3.75% 1.47% 14.9% 22.3 % 9.7 %
FENC 18.7 1 37 11 14.5

Leave-One-Out(Cross Validation)

min. |t̂| 1.23 2.16 2.39 1.29 5.39
% Change β̂ -30% -14.1% -2% 21% 11.5%
% Change ŝe -6.8% -1.38% 8% 26% -2.4%

We can see in Table 3.7 that this paper has the lowest maximum leverage of any

paper we study and the leave-one-out estimation does not produce a minimum test

statistic below the Normal critical value of 1.96. However, the extremely low feasible

effective number of clusters is would indicate to us the Normal critical value should

not be used for inference with this data.

Figure 3.13: Distributions of estimated β and se with the removal of one cluster.
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3.5.6 Analysis of Empirical Studies

Now that we have summarized the characteristics of the data and estimation in

all five Empirical Papers we look at what these results mean for inference. Table 3.8

summarizes the use of Normal critical values and the use of bootstrapped critical val-

ues to conduct hypothesis testing. In the top panel we see G, the number of clusters,

which traditionally has been used to guide inference would suggest using the Normal

distribution to conduct inference for all five regressions. These results suggest failing

to reject significance in only the regression in column 1. The leave-one-out sensitivity

test in the middle panel finds that one regression (regression 4) is sensitive to an influ-

ential cluster, and would suggest failing to reject significance in both regression 1 and

regression 4. In the bottom panel, the feasible effective number of clusters measure

also identifies regression 4 as potentially having sensitive inference as well as identi-

fying two other regressions (regressions 2 and 5). We see that with bootstrap critical

values, the statistically significant results in regressions 2 and 4 disappear once the

bootstrap is used. Using the feasible effective number of clusters to guide inference

captures the sensitivity of the regressions captured by the leave-one-out estimation,

as well as, identifying an additional regression that was not captured by the leave-

one-out procedure.
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Table 3.8: Evaluation of Inference in Five Empirical Papers

Dinkelman Moser et al. Acemoglu et al. Chalfin Autor et al.
(1) (2) (3) (4) (5)

G 293 166 114 92 48
Distribution N N N N N
|t̂| 1.64 2.48 2.53 2.05 5.94
Conclude Fail to Reject Reject Reject Reject Reject

Leave-One-Out(Cross Validation)

min. |t̂| 1.23 2.16 2.39 1.29 5.39
Conclude Fail to Reject Reject Reject Fail to Reject Reject

Feasible Effective Number of Clusters
FENC 18.7 1.0 35 11 14.5
Distribution N Bootstrap N Bootstrap Bootstrap
Critical Value N 1.96 1.96 1.96 1.96 1.96
Critical Value Bootstrap - 2.84 - 2.20 2.52
Conclude Fail to Reject Fail to Reject Reject Fail to Reject Reject

3.6 Conclusion

The use of G, the number of clusters in the data, to guide inference when using

data that can be divided into clusters has become common among applied econome-

tricians. We show that when cluster heterogeneity is present the effective number of

clusters, not G, is the appropriate measure to use to determine critical values for hy-

pothesis testing. When the feasible effective number of clusters is low, simulations

show that the distribution of the test statistic is non-normal even when the number of

clusters is large. This non-normality will lead to incorrect inference if the critical val-

ues are determined using the normal distribution. If the feasible effective number of

clusters is low then critical values should be obtained from the wild cluster bootstrap.
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Appendix A

The Health Cost of Wildfire Smoke

A.1 Health Data

The hospital admissions data is grouped by International Classification of Dis-

eases Clinical Modification 9th Revision (ICD-9-CM) and 10th Revision (ICD-10-CM)

produced by the Centers for Medicare and Medicaid Services (CMS) and the National

Center for Health Statistics (NCHS). These codes are a morbidity classification for

classifying diagnoses and reason for visits in American health care settings. These

codings are based on the statistical classification of disease published by the World

Health Organization (WHO).

Table A.1: Groupings based on principal diagnosis codes

ICD-9 ICD-10
2012-2015Q3 2015Q4-2018

Circulatory System 390 to 460 I00 to J00
Infections 001 to 140 A00 to C00
Injuries Poisonings 800 to 999 S00 to T89
Respiratory System 460 to 520 J00 to K00
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A.2 Smoke Data

Figure A.1 displays the distribution of monthly Smoke Days by County grouping.

We can see the the Colusa and Glenn Counties unit had the highest median number of

monthly Smoke Days with 7 days, while Marin, San Francisco, San Mateo, and Orange

all have the lowest median number of 0 monthly Smoke Days.
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Figure A.1: Distribution of Smoke Days 2012 – 2018
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A.3 Dynamic Effects of Wildfire Smoke on Respiratory

Health

Table A.2: Impact of number of smoke days on hospital admissions in California.

Respiratory Admissions
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Smoke Days 6.57∗∗ 5.32∗∗ 5.58∗∗ 5.56∗∗ 5.05∗∗ 3.47∗ 3.03∗ 3.18∗ 3.48∗ 3.92∗

(3.11) (2.54) (2.64) (2.66) (2.40) (1.77) (1.62) (1.65) (1.81) (1.96)

Smoke Days 4.52∗∗ 3.79∗∗ 3.78∗∗ 3.40∗ 3.00∗ 2.25∗ 2.31∗ 2.63∗ 2.82∗

1 Month Previous (2.22) (1.83) (1.88) (1.75) (1.54) (1.23) (1.22) (1.37) (1.43)

Smoke Days 2.19∗ 2.25∗∗ 1.61∗ 0.60 0.33 0.53 0.71 1.06∗∗

2 Months Previous (1.29) (1.01) (0.81) (0.65) (0.59) (0.50) (0.47) (0.48)

Smoke Days −0.21 2.01 0.98 0.41 0.50 0.91 1.07
3 Months Previous (1.42) (1.95) (1.58) (1.43) (1.42) (1.53) (1.53)

Smoke Days −7.43∗∗ −4.04∗ −4.75∗ −4.59∗ −4.40∗ −4.00∗

4 Months Previous (3.63) (2.18) (2.48) (2.43) (2.30) (2.16)

Smoke Days −12.19∗∗ −10.40∗∗ −10.19∗∗ −9.81∗∗ −9.53∗∗

5 Months Previous (5.46) (4.64) (4.59) (4.37) (4.27)

Smoke Days −6.61∗∗ −6.96∗∗ −6.50∗∗ −6.12∗∗

6 Months Previous (3.11) (3.17) (2.92) (2.80)

Smoke Days 1.39 0.62 1.02
7 Months Previous (0.99) (0.84) (0.90)

Smoke Days 3.03 2.36
8 Months Previous (1.86) (1.63)

Smoke Days 2.77∗∗

9 Months Previous (1.26)

Num. obs. 4,059 4,059 4,059 4,059 4,059 4,059 4,059 4,059 4,059 4,059
Num. clusters 49 49 49 49 49 49 49 49 49 49
FENC 32.3 35.69 36.9 36.44 35.29 35.71 35.25 38.25 35.94 34.56
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
All regressions include weather controls and month, county, and year fixed effects.
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Figure A.2: Coefficient Plot for the impact of number of smoke days on respiratory
hospital admissions.
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A.4 Dynamic Effects of Wildfire Smoke on Circulatory

Health

Table A.3: Impact of number of smoke days on hospital admissions in California.

Circulatory Admissions
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Smoke Days 2.23∗∗ 1.84∗∗ 1.90∗∗ 1.84∗∗ 1.70∗∗ 1.43∗∗ 1.40∗∗ 1.27∗∗ 1.13∗∗ 1.24∗∗

(0.94) (0.80) (0.82) (0.81) (0.74) (0.64) (0.62) (0.57) (0.52) (0.57)

Smoke Days 1.40∗∗ 1.25∗∗ 1.19∗∗ 1.08∗∗ 1.02∗∗ 0.97∗∗ 0.91∗∗ 0.78∗∗ 0.82∗∗

1 Month Previous (0.55) (0.47) (0.46) (0.42) (0.39) (0.37) (0.35) (0.32) (0.33)

Smoke Days 0.46 0.69∗ 0.51 0.34 0.33 0.16 0.08 0.16
2 Months Previous (0.38) (0.37) (0.31) (0.28) (0.27) (0.24) (0.24) (0.24)

Smoke Days −0.72 −0.11 −0.29 −0.33 −0.40 −0.58 −0.54
3 Months Previous (0.48) (0.45) (0.43) (0.44) (0.44) (0.45) (0.44)

Smoke Days −2.08∗ −1.50∗ −1.55∗ −1.67∗ −1.76∗ −1.66∗

4 Months Previous (1.07) (0.86) (0.88) (0.92) (0.94) (0.91)

Smoke Days −2.08∗∗ −1.96∗∗ −2.13∗∗ −2.30∗∗ −2.23∗∗

5 Months Previous (0.92) (0.87) (0.94) (0.99) (0.96)

Smoke Days −0.47 −0.16 −0.36 −0.27
6 Months Previous (0.29) (0.23) (0.25) (0.24)

Smoke Days −1.16∗∗ −0.82 −0.72
7 Months Previous (0.56) (0.49) (0.49)

Smoke Days −1.34∗∗ −1.50∗∗

8 Months Previous (0.52) (0.58)

Smoke Days 0.68
9 Months Previous (0.44)

Num. obs. 4,054 4,054 4,054 4,054 4,054 4,054 4,054 4,054 4,054 4,054
Num. clusters 49 49 49 49 49 49 49 49 49 49
FENC 28.96 34.38 35.48 35.6 35.46 36.17 36.52 36.03 34.52 36.49
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
All regressions include weather controls and month, county, and year fixed effects.

A.5 Nonlinear Effects

An alternate approach to creating bins of 5 days is to split the data based on the

quintile of the number of Smoke Days. The advantage of this method is that the bins

contain roughly equal number of observations. However, because the effect of wildfire
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smoke is only seen for the bins with the most days of smoke expose and these are also

the least frequently observed the highest bin contains the largest range of values. As

expected with this approach, only the coefficient for the highest number of Smoke

Days quintile has a significant positive results. Therefore, this approach is not able to

capture the variation in the impact of Smoke Days that is only present in the months

that have a high number of Smoke Days.

Figure A.3: Count of Observations in Each Smoke Days Bin

(a) 5 Day Bins (b) Quintile Bins
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Table A.4: Impact of number of smoke days on hospital admissions in California.

Respiratory Admissions
(1) (2) (3) (4)

0 to 1 Smoke Days −45.80∗ −31.97 −32.43 −31.14
(25.57) (24.48) (31.48) (31.00)

1 to 3 Smoke Days −60.19∗∗ −12.80 −4.58 −1.71
(27.36) (20.12) (24.50) (22.95)

3 to 9 Smoke Days −95.26∗∗∗ −9.14 −8.98 −9.16
(32.70) (18.56) (23.23) (24.01)

9 to 31 Smoke Days −89.86∗∗∗ 45.57∗ 45.67∗ 50.13∗∗

(24.57) (23.88) (23.08) (23.88)

0 to 1 Smoke Days −51.57∗ −37.55 −36.82 −43.19
1 Month Previous (27.63) (24.75) (31.66) (35.99)

1 to 3 Smoke Days −60.89∗∗ −27.29 −22.91 −26.09
1 Month Previous (28.87) (21.46) (29.93) (30.66)

3 ot 9 Smoke Days −77.14∗∗ −25.88 −30.50 −32.20
1 Month Previous (34.70) (22.35) (32.82) (32.72)

9 to 31 Smoke Days −55.73∗∗∗ 30.58 35.58∗ 30.64∗

1 Month Previous (16.61) (19.84) (17.92) (18.09)

0 to 1 Smoke Days −14.97∗ −34.55∗∗ −40.46∗ −40.83∗

2 Months Previous (7.93) (13.88) (23.22) (23.65)

1 to 3 Smoke Days −22.32∗ −39.74∗∗ −42.33 −43.16
2 Months Previous (11.98) (17.14) (28.76) (28.09)

3 to 9 Smoke Days −50.58∗∗ −60.10∗∗ −66.04 −74.70
2 Months Previous (24.02) (27.49) (39.47) (45.22)

9 to 31 Smoke Days −32.76∗∗ −28.90∗∗ −14.45 −22.12
2 Months Previous (14.14) (12.45) (17.93) (23.57)

Weather Controls X X X
Month FE X X X
County-by-Year FE X X
Year FE X
Num. obs. 4059 4059 4059 4059
Num. clusters 49 49 49 49
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
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Table A.5: Impact of number of smoke days on hospital admissions in California.

Circulatory Admissions
(1) (2) (3) (4)

0 to 1 Smoke Days −4.51 −28.89∗∗∗ −7.42 −8.36
(4.84) (10.69) (5.92) (5.97)

1 to 3 Smoke Days −12.97∗ −25.28∗ 5.55 2.96
(6.48) (13.55) (4.01) (3.48)

3 to 9 Smoke Days −26.11∗∗∗ −25.11 0.99 −0.66
(9.63) (20.45) (5.04) (5.98)

9 to 31 Smoke Days −6.89 −26.23 29.20∗∗ 27.13∗∗

(4.16) (28.86) (12.82) (11.81)

0 to 1 Smoke Days −2.66 −31.84∗∗∗ −10.30 −11.05
1 Month Previous (4.08) (11.68) (6.89) (7.62)

1 to 3 Smoke Days −11.67 −35.19∗∗ −10.56 −9.30
1 Month Previous (7.25) (17.02) (14.04) (12.31)

3 ot 9 Smoke Days −15.17 −36.79 −15.15 −14.26
1 Month Previous (9.68) (22.57) (15.16) (15.25)

9 to 31 Smoke Days −3.09 −47.72∗∗ −0.33 1.53
1 Month Previous (4.28) (22.06) (8.15) (7.91)

0 to 1 Smoke Days −3.10 −36.12∗∗∗ −14.39∗∗ −15.10∗∗

2 Months Previous (5.81) (11.85) (6.45) (7.38)

1 to 3 Smoke Days −7.73 −39.38∗∗∗ −10.59 −10.53
2 Months Previous (5.73) (14.05) (7.22) (7.04)

3 to 9 Smoke Days −17.56∗∗ −49.69∗∗ −20.56 −20.47
2 Months Previous (7.38) (21.80) (12.83) (12.48)

9 to 31 Smoke Days −6.58 −65.75∗∗ −6.76 −5.86
2 Months Previous (4.23) (25.87) (8.63) (6.45)

Weather Controls X X X
Month FE X X X
County-by-Year FE X X
Year FE X
Num. obs. 4054 4054 4054 4054
Num. clusters 49 49 49 49
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10
Standard errors are clustered at the county level.
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A.6 Feasible Effective Number of Clusters

Table A.6 presents the feasible effective number of clusters (fenc) calculated fol-

lowing Carter, Schnepel, and Steigerwald (2017). Each column corresponds to the

columns in the other regression tables with columns 1 and 5 using no controls or

fixed effects and columns 4 and 8 using month, year, and County fixed effects and

weather controls. A point to note is that we would expect the fenc to be the same for a

given covariate and and specification regardless of outcome variable (for example for

Smoke Days column 1 is 43.67 and and 5 is 43.62), however they are slightly differ-

ent because a few observations are dropped from the regression due to missing data

differences between the data for respiratory and circulatory admissions.

Table A.6: The Feasible Effective Number of Clusters for Regression Coefficients

Respiratory Admissions Circulatory Admissions
(1) (2) (3) (4) (5) (6) (7) (8)

Smoke Days 43.67 36.08 35.47 36.44 43.62 36.15 35.85 35.6
Smoke Days 1 Month Previous 44.64 37.37 20.94 33.67 44.56 37.31 36.64 38.42
Smoke Days 2 Months Previous 44.26 37.54 34.88 35.48 44.07 37.29 37.34 21.66
6 to 10 Smoke Days 44.57 41.93 42.64 42.02 44.97 42.28 41.06 9.27
11 to 15 Smoke Days 44.56 40.47 0.41 39.56 44.82 40.76 0.28 0
16 to 20 Smoke Days 36.31 37.05 5.02 35.73 35.96 36.78 0.16 0
21 to 25 Smoke Days 33.26 37.38 21.37 24.11 32.55 36.89 2.13 0
Over 25 Smoke Days 25.99 27.36 0.21 17.29 27.03 27.86 4.94 0
Num. clusters 49 49 49 49 49 49 49 49
The Feasible Effective Number of Clusters calculated by using the formula derived in Carter, Schnepel, & Steigerwald, 2017
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The Sharing Economy and Rental

Markets

B.1 Interpolation of American Community Survey Data

In our empirical analysis we wish to control for trends in housing and demo-

graphic using data taken from the American Community Survey (ACS). The ACS col-

lects demographic and housing data on a continuous basis from a national sample.

Due to the nature of the collection of the data, the ACS estimates describe conditions

over the time period during which the data was collected. Using the 5-year estimates

means that about four-fifths of the data for one year overlaps with the data of the fol-

lowing year. That means comparing estimates from one year 5-year dataset to the next

will not allow you to isolate the differences in the two estimates. The 5-year estimates

however are useful for representing long run trends in the data.

The Airbnb listings data and the Zillow housing data are both available at the

monthly ZIP code level, however the ACS data is only at the yearly ZIP code level.
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Therefore, we wish to interpolate the ACS data to the monthly level. To do this we

assign the month of December1 to each reported value from the ACS then use a cubic

spline to fill in the data for the remaining month between the observed years. The

interpolated data for select ZIP codes can be seen in Figure B.1.
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Figure B.1: Interpolated number of vacancies for select ZIP codes. Large circles rep-
resent ACS data points and small circles represent interpolated points.

B.2 Proof of Lemma 1

Proof:

Consider the problem faced by innkeepers and define Î0(pH ,V0) ≡ I0
(
pH , θH(pH ;V0)

)
for 0 ≤ pH < wV − rV0 and Î0(wV − rV0,V0) = −κH . It is easy to see that Equation 2.10

1Varying the month of the year the ACS estimate is assigned has little impact of the results of the
analysis.
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is continuous in pH at wV − rV0 and so Î0 is continuous across its domain. Noting

also that Î0(0,V0) = −κH , the innkeeper’s problem is well defined and must achieve a

maximum on the interval [0, wV − rV0) since we have assumed Ĩ0 ≥ 0.

The problem faced by landlords in the short and long-term markets is structurally

similar and, for brevity, not included. Since we have assumed that participation is

weakly profitable, the short-term market’s argmax, like that of the hotel market, must

be in the interval [0, wV−rV0), and the long-term market’s in the interval [0, wR−rR0).

(Back to Model)

B.3 Proof of Lemma 2

Proof:

It is sufficient to show that the first order conditions of property managers have

unique solutions. First, consider an innkeeper who has entered the hotel market and is

choosing which price to post. She maximizes Equation 2.10 subject to Equation 2.15.

Rearranging the constraint for pH , we have

pH = wV − rV0 −
(r + δV)(rV0 − bV)

θHλH
. (B.1)

Substituting the above into Equation 2.16, we can write the problem of innkeepers as

a choice of θH .

max
θH

[
−κH + λH

(
wV − rV0 − rI0

r + δV

)
− 1

θH
(
rV0 − bV

)]
(B.2)
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The first order condition is given by

− (θH)2
dλH

dθH
(
wV − rV0 − rI0

)
= (r + δV)(rV0 − bV) (B.3)

which, given our assumptions on the matching function, has a unique solution. Thus,

all innkeepers choose to search in a sub-market with the same market tightness, and

because of the one-to-one relationship, the same price. By plugging Equation B.3

into Equation B.1 and simplifying, we uncover a classic competitive search result that

the total surplus is split according to the elasticity of matching with respect to their

participation. The problem in the short-term and long-term markets is structurally

similar. The first order conditions are

−(θS)2
dλS

dθS
(
wV − rV0 − rL0

)
= (r + δV)(rV0 − bV) (B.4)

−(θL)2
dλL

dθL
(
wR − rR0 − rL0

)
= (r + δR)(rR0 − bR). (B.5)

(Back to Model)

B.4 Proof of Lemma 3

Proof:

To begin we derive the (implicit) demand functions, starting with the hotel market.

First rearrange Equation 2.10 for pH .

pH = rI0 +
(r + δV)(rI0 + κH)

λH
. (B.6)
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Combining this with Equation 2.7, Equation B.3, and simplifying we have

− (θH)2
dλH

dθH

[
wV − rI0 −

bV(r + δV) + θHλH(wV − rI0)− θH(r + δV)(rI0 + κH)

r + δV + θHλH

]
= (r + δV)

[
bV(r + δV) + θHλH(wV − rI0)− θH(r + δV)(rI0 + κH)

r + δV + θHλH
− bV

]
⇐⇒ − (θH)2

dλH

dθH

[
wV − rI0 − bV + θH(rI0 + κH)

λH

]
=
λH(wV − bV − rI0)− (r + δV)(rI0 + κH)

λH

⇐⇒
[
r + δV +

(
1− ηH(θH)

)
θH
]
(rI0 + κH) = ηH(θH)

(
wV − bV − rI0

)
. (B.7)

Equation B.7 describes an implicit function for the equilibrium demand for vacancies,

θH , in terms of their cost, I0, which we write as θH = ζH(I0). Next, differentiate w.r.t.

I0.

dζH

dI0
=

−r
[
r + δV + ηH(θH) +

(
1− ηH(θH)

)
θH
]

(rI0 + κH)
[
1− ηH(θH)− θH dηH(θH)

dθH

]
− (wV − bV − rI0)dηH(θH)

dθH

(B.8)

The above is strictly negative iff

dηH(θH)

dθH
<

(
1− ηH(θH)

)
(rI0 + κH)

(wV − bV − rI0) + θH(rI0 + κH)
. (B.9)

That is, if the marginal effect of market tightness on the filling rate elasticity is not too

high, the demand for hotel vacancies is declining in I0. Given our standard assump-

tions on the matching function, dη(θ)
dθ
≤ 0 so this condition is necessarily met. Under

an isoelastic function, i.e. a Cobb-Douglas matching function,

dζH

dθH
=
−r
[
r + δV + ηH + (1− ηH)θH

]
(1− ηH)(rI0 + κH)

< 0. (B.10)
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A similar set of steps establishes this result for the short and long-term markets. The

implicit demand curves θS = ζS(L0) and θL = ζL(L0) are reproduced below.

[
r + δV +

(
1− ηS(θS)

)
θS
]
(rL0 + κS) = ηS(θS)

(
wV − bV − rL0

)
(B.11)[

r + δR +
(
1− ηL(θL)

)
θL
]
(rL0 + κL) = ηL(θL)

(
wR − bR − rL0

)
(B.12)

(Back to Model)

B.5 More Comparative Static Results

In Table B.1 we report more comparative static results for completeness. These

parameters do not as easily map into policy choices, but also provide some interest-

ing model insights. First consider the flow values of unaccommodation. As they are

increased, residents and visitors are made directly better off when searching for ac-

commodation. Because property managers must deliver higher market utilities, they

are made worse off. Increases in bV , ceteris paribus, increase finding rates for resi-

dents, while similar increases in bR, increase finding rates for visitors as landlords

adjust vacancy posting strategies.

Increases in the flow value of being accommodated has similar effects. By making

accommodation more attractive, market utility increases and prices rise. Increases in

wV hurts residents in terms of value and finding rates as landlords increase posting in

the short-term market. The opposite holds whenwR increases. Interestingly, increases

in bV do negatively affect R0 like increases in wV do (and the mirrored scenario). The

key distinction is that increases in the flow value of searching effectively amount to

129



The Sharing Economy and Rental Markets Chapter B

better outside options. This pushes some landlords to post in the long-term market

in the case of bV increasing (and the short-term market in the when bR increases). In

other words, increases in one type’s b directly increases their utility, while it indirectly

improves the other by incentivizing landlords to the other market.

When δ increases, more properties are vacant in the steady state, increasing market

tightnesses across the board and lowering vacancy values. If δR increases, all prices

fall with the value of the vacancies. In contrast, if δV increases landlords can mitigate

lost values by posting more in the short-term market and raising prices (which feeds

through to the hotel market). Last, the results for increasing the number of searchers

and properties are reported in the bottom of the table. Briefly, more tenants benefits

property managers, and more properties benefit tenants.
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V0 R0 I0 L0 pH pS pL θH θS θL

↑ bV + + − − − − − − − +
↑ bR + + − − − − − + + −

↑ wV + − + + + + + + + −
↑
wR

− − + + + + + − − +

↑ δV − + − − + + − + + +
↑ δR + + − − − − − + + +

↑ uV − − + + + + + − − −
↑ uR − − + + + + + − − −

↑
NI

+ + − − − − − + + +

↑
NL

+ + − − − − − + + +

Table B.1: More Comparative Statics
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Appendix C

Effective Number of Clusters and

Inference with Instrumental Variables

Proof of Lemma 1: Let X̂∗g be the n×k matrix of explanatory variables with all rows

that do not correspond to cluster g set to zero.

Part a: The cluster-specific estimator β̂TS g is constructed with a generalized inverse

to allow both for cluster-invariant explanatory variables and for clusters with ng < k.

Because X̂Ty =
∑G

g=1 X̂
∗T
g y and X̂∗Tg y = X̂T

g yg,
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β̂TS = (X̂TX̂)−1X̂Ty

= (X̂TX̂)−1
G∑
g=1

X̂∗Tg y

=
G∑
g=1

(X̂TX̂)−1X̂T
g X̂g(X̂

T
g X̂g)

−X̂∗Tg y

=
G∑
g=1

Cg(X̂
T
g X̂g)

−X̂T
g yg

=
G∑
g=1

Cgβ̂TS g,

where Cg = (X̂TX̂)−1X̂T
g X̂g and (X̂T

g X̂g)
− is a generalized inverse. Thus,

V = V ar
[
β̂TS|Z

]
= V ar

[
G∑
g=1

Cgβ̂TS g|Z

]

=
G∑
g=1

CgV ar
[
β̂TS g|Z

]
CT
g .

Part b: Using the property X̂T
g X̂g = X̂∗Tg X̂∗g = X̂∗Tg X̂

X̂∗Tg (y − X̂β̂) = [X̂∗Tg − X̂∗Tg X̂(X̂TX̂)−1X̂T]y

= X̂T
g X̂g[(X̂

T
g X̂g)

−X̂∗Tg − (X̂TX̂)−1X̂T]y

= X̂T
g X̂g(β̂TS g − β̂TS).
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Therefore

Cg(β̂TS g − β̂TS) = (X̂TX̂)−1X̂∗Tg (y − X̂β̂TS) = (X̂TX̂)−1X̂T
g v̂g, (C.1)

where the second equality follows because (y − X̂β̂TS) = v̂ and X̂∗Tg v̂ = X̂T
g v̂g. The

cluster representation for V̂ follows directly from (C.1). �

Proof of Theorem 1: We want to show that under H0 the test statistic converges in

distribution to N (0, 1).

The first step is to establish that

T =
aT(β̂TS − β0)√

Va
 N (0, 1),

where Va = aTV a. Observe that

T =
G∑
g=1

Dg,

where the cluster-level components are Dg := aTCg(β̂TS g − β0)/
√
Va. Conditional on

Z the elements of {Dg} are asymptotically independent, E(Dg | Z) asymptotically

approaches zero, and

Var(Dg | Z) = aTCg Var(β̂TS g | Z)CT
g a.

Let s2G :=
∑G

g=1 V ar(Dg | Z) = Va. Under Assumption 1(ii), E(D4
g) < ∞, so there

exists a δ > 0 for which

lim
G→∞

1

s2+δG

G∑
g=1

E
[
|Dg | Z|2+δ

]
= 0.
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Therefore, by the Lyapunov Central Limit Theorem the distribution ofDg|Z converges

to a standard normal distribution. The convergence is almost surely over Z, so

T  N (0, 1).

The test statistic

t =
aT(β̂TS − β0)√

V̂ar(aTβ̂TS)

,

which can be written as

t = T

(
Va

V̂a

) 1
2

,

will converge in distribution to T if V̂a
Va

P→ 1, by Slutsky’s lemma.

Let

Ṽ = (X̂TX̂)−1
G∑
g=1

X̂T
g vgv

T
g X̂(X̂TX̂)−1,

be an unbiased estimator of V , with Ṽa = aTṼ a. Now

V̂a
Va
− 1 =

V̂a − Va
Va

=
Ṽa − Va + V̂a − Ṽa

Va
,

so V̂a
Va

P→ 1 if ∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ and

∣∣∣∣∣ V̂a − ṼaVa

∣∣∣∣∣
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are each oP(1). This will follow if

P

{∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ > ε

}
→ 0,

P

{∣∣∣∣∣ V̂a − ṼaVa

∣∣∣∣∣ > ε

}
→ 0.

(C.2)

To do so we show that

P

{∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ > ε

∣∣∣∣∣Z
}
→ 0,

P

{∣∣∣∣∣ V̂a − ṼaVa

∣∣∣∣∣ > ε

∣∣∣∣∣Z
}
→ 0.

(C.3)

Because the probabilities in (C.3) are bounded, they are uniformly integrable func-

tions of Z. Under uniform integrability, convergence in probability implies conver-

gence in expectation so, for example,

P

{∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ > ε

}
= E

(
P

{∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ > ε

∣∣∣∣∣Z
})
→ 0.

Adapting Lemma 1 from Carter, Schnepel, and Steigerwald (2017), Chebyshev’s

inequality implies

P

{∣∣∣∣∣ Ṽa − VaVa

∣∣∣∣∣ > ε

∣∣∣∣∣Z
}
≤ 2

ε2
1 + Γ∗(Ω, Z)

G
. (C.4)

Under Assumption 1(ii)-(iii) the expected value of this bound goes to zero.

Adapting Lemma 2 from Carter, Schnepel, and Steigerwald (2017), Markov’s in-
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P

{∣∣∣∣∣ V̂a − ṼaVa

∣∣∣∣∣ > ε

∣∣∣∣∣Z
}
≤ 1

ε

(
1

G
+

1

Va
aTMa+ 2(

1

Va
aTMa)1/2

)
, (C.5)

where M =
∑G

g=1(Ag −
1
G
I)V (Ag − 1

G
I)T. Under Assumption 1(ii) and (iv) this bound

goes to zero in probability. Hence

limn→∞P

{∣∣∣∣∣ V̂aVa − 1

∣∣∣∣∣ > ε

}
= 0,

which implies convergence in distribution. �
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