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We spend most of our time indoors, and the indoor
environment is the greatest contributor to human
chemical exposures.”> Despite its importance, our under-
standing of indoor chemicals is more limited than that for the
outdoor environment. A recent report of the US National
Academies’ helps answer a 2-fold question: why does indoor
chemistry matter, and what is needed to advance our scientific
understanding of indoor chemistry?

Indoor chemistry is dynamic and complex. Thousands of
chemicals are found indoors in air, particles, dust, and surfaces,
often at concentrations exceeding those found outdoors.
Sources can be primary or secondary, continuous or episodic,
and of indoor or outdoor origin (Figure 1). Humans modify
indoor chemistry through cooking and the use of personal care
products and are a primary source of chemicals in the gas and
particle phases.

© 2022 The Authors. Published by
American Chemical Society
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Indoors, chemicals partition between air, airborne particles,
dust, water, and surfaces. These surfaces act as primary sources
and chemical sinks or reservoirs. Partitioning results in both the
removal and release of chemicals from surfaces. Partitioning
does not occur instantaneously and may require years to achieve
pseudoequilibrium due to the slow rates of molecular transport.
Equilibrium conditions change over time and respond to
changes in relative humidity, temperature, and other environ-
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Figure 1. This schematic lists examples of the most important primary chemical emission sources and reservoirs found in the indoor environment. CO,
carbon monoxide; NO,, nitrogen dioxide; PM, particulate matter. Credit: NASEM, 2022. Reproduced with permission from the National Academy of

Sciences, courtesy of the National Academies Press, Washington, DC.

mental conditions. Indoor chemicals undergo extensive move-
ment within a building and its furnishings. Partitioning can be
reversed, resulting in emission of chemicals into the air. Thus,
partitioning is a critical determinant of the amount and duration
of a chemical’s presence in a particular physical phase and
compartment. This directly influences exposure potential for
occupants. For example, inhalation exposure increases as
chemicals partition to air, while ingestion increases as chemicals
partition to dust and surfaces.

Indoor chemicals undergo oxidation, photolysis, hydrolysis,
acid—base, and other reactions. Gas-phase oxidation forms
highly oxygenated gas-phase species that can lead to the
formation of secondary organic aerosols. These reactions not
only reduce the concentration of a chemical but also lead to the
formation of intermediaries and reaction products with different
chemical and physical properties. Products may be more or less
toxic than the reactants. Multiphase chemistry occurs on human
skin and clothing and surfaces contaminated by cooking or
smoking emissions. Ozonolysis of unsaturated organics forms
ozonides and volatile oxygenates on surfaces. Chemicals found
in air and on surfaces illuminated with sunlight undergo

photochemical reactions that produce high oxidant concen-
trations that drive indoor chemistry. Aqueous surface films
facilitate several reactions, including acid—base reactions and
nitrogen dioxide disproportionation, that form nitric and nitrous
acids. Chemical reactions occur throughout the indoor environ-
ment, including attics and other hidden spaces, air ducts, and
HVAC systems. This complex environment and the dynamic
behavior of chemicals indoors contribute to challenges and
uncertainty in measurement, modeling and exposure, and health
risk assessments that need to be overcome.

We know little about human exposures to chemicals across
phases, exposure pathways, and time scales. Our understanding
of whether indoor chemicals have synergistic or antagonistic
effects is also lacking. Advanced targeted and nontargeted
analytical methods are needed to fully characterize and quantify
chemical mixtures and model their emissions, fate, and
transport. There is a critical need to develop chemical process
models that account for indoor chemistry across phases and
compartments. These models can be linked with human
exposure and uptake models and toxicological data. Linked
models can estimate internal dose and subsequent health effects
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of mixtures across exposure pathways. Improved knowledge of
molecular reaction rates, kinetics, emission rates, building and
environmental factors, and human behaviors and time activity
patterns along with their uncertainties are needed to refine
exposure and health risk models. This scientific foundation will
further our understanding of indoor chemistry and its impacts
on health and the environment and support regulatory action
and guidelines.

Regulatory actions can include banning or phasing out
chemicals; however, recycling of materials can inadvertently
reintroduce flame retardants and other phased-out chemicals
back into the indoor environment. Similarly, replacement
chemicals often have less data available on their emission
rates, exposure potential, and health hazards. A lack of
transparency on chemicals in consumer products and incom-
plete chemical inventories complicate regulation of indoor
chemicals.

The COVID-19 pandemic has raised global awareness of the
importance of the indoor environment on viral transmission and
human health. The pandemic increased use of bleach,
quaternary ammonium compounds, and other indoor air
cleaning devices with unknown impacts on indoor chemistry.
‘While filtration-based devices can be beneficial, unsubstantiated
claims around removal efficacy, safety, and personal health risks
and benefits are rampant. Air cleaners that rely on ozonolysis,
photolysis, ionization, or other chemical transformations to
“remove” chemicals indoors can potentially generate harmful
secondary chemicals with no clear evidence of health benefits.
Research is needed to understand the unintended consequences
of these devices, and standardized consensus test methods could
help regulators determine whether oversight is warranted.

Commercial grade or “low-cost” sensors have gained
widespread use. These sensors increase spatiotemporal coverage
of air quality monitoring indoors and outdoors, especially in
areas with poor coverage or environmental justice concerns.
There is a critical need to develop effective public health
messaging regarding these sensors. For example, current
messaging is often based on ambient air quality risk thresholds
that may not translate directly to indoor environments.

In conclusion, important data gaps remain, and research is
needed to increase our understanding of indoor chemistry,
exposure pathways and routes, and health risks and to provide
scientific evidence to support efforts to protect human health
and the environment. Studies of indoor chemistry in realistic and
diverse settings are needed, especially in environmental justice
communities. There is a need for strategic investment in
collaborative and interdisciplinary research to accelerate knowl-
edge of indoor chemistry, translate the science into practice that
benefits public health and the environment, and promote active
stakeholder engagement and dissemination. Researchers,
planners, and engineers should integrate indoor chemistry
considerations into building materials, operations, and design.
Finally, given the importance of indoor chemistry and remaining
knowledge gaps, federal and state agencies and research funders
should prioritize studies of indoor chemistry and its impacts on
human exposures and health.
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