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ABSTRACT. The behavior of marine-terminating ice sheets, like the West Antarctic Ice

Sheet, is of interest due to the possibility of rapid grounding-line retreat and consequent

catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where

the most popular approach is to relate the ice sheet velocity to a power-law function of basal

stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb

friction behavior. Here we address how Coulomb conditions modify ice sheet profiles and

stability criteria. The basal rheology necessarily transitions to Coulomb friction near the

grounding line due to low effective stresses, leading to changes in ice sheet properties within

a narrow boundary layer. Ice sheet profiles ‘taper off’ towards a flatter upper surface, com-

pared to the power-law case, and basal stresses vanish at the grounding line, consistent with

observations. In the Coulomb case, the grounding-line ice flux also depends more strongly

on flotation ice thickness, which implies that ice sheets are more sensitive to climate pertur-

bations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water

than with a power-law rheology. This implies that smaller perturbations are required to push

the grounding line into regions of negative bed slope, where it would become unstable. These

results have important implications for ice-sheet stability in a warming climate.

INTRODUCTION

Since the early 1970’s, with the work of Hughes (1973) and

Weertman (1974), it has been been recognized that marine

ice sheets grounded below sea level may be unstable to small

climate perturbations, particularly when the ice sheet bed

slopes down towards the interior of the ice sheet (Weertman,

1974, commonly termed a ‘negative bed slope’). With much

of the West Antarctic Ice Sheet (WAIS) in such a configu-

ration (e.g., Fretwell and others, 2013), there has long been

widespread concern regarding the future of the WAIS and

the amount of sea level rise that would result from such loss

of ice (e.g., Mercer, 1978; Alley and others, 2005; Mitrovica

and others, 2001, 2009; Bamber and others, 2009). This con-

cern has grown steadily with time, culminating with a num-

ber of observations within the last year that demonstrate in-

evitable ice loss due to negative bed slopes in various regions

of Antarctica (Favier and others, 2014; Mengel and Lever-

mann, 2014; Rignot and others, 2014; Joughin and others,

2014).

Interest in ice sheet stability has also prompted a num-

ber of theoretical investigations on the topic, starting with

Weertman (1974) and more recently with Hindmarsh and

LeMeur (2001), Wilchinsky (2001), and Schoof (2007b). Al-

though Hindmarsh and LeMeur (2001) suggest neutral sta-

bility for a wide range of conditions, all of the other analyses

predict that negative bed slopes at the grounding line (where

the ice sheet reaches flotation and becomes an ice shelf) result

in unstable ice sheets, whereas positive bed slopes (sloping

down towards the ocean) are stable. In all of these analy-

ses, except Wilchinsky’s, the ice sheet is assumed to slide

on bedrock with a non-linear power-law relationship between

velocity and stress. Alternatively, Wilchinsky’s no-slip basal

boundary condition can be thought of as an end-member

case of the power-law relation. As such, none of these previ-

ous studies incorporate more general basal conditions such as

Coulomb friction behavior, which is thought to be applicable

near the grounding line (Iverson and others, 1998; Tulaczyk

and others, 2000a; Schoof, 2006).

The goal of this work is to address how the inclusion of

both power-law basal stress and Coulomb friction dynamics

modifies ice sheet behavior. We take Schoof’s (2007b) model

as a starting point and provide side-by-side comparisons of

our results throughout the text. We begin with a review of

the traditional power-law assumption and the evidence for

a Coulomb friction regime. Next, we provide an approxi-

mate analysis for the modified ice sheet surface profile in the

Coulomb case, which is then followed by a numerical calcula-

tion of the full stress balance. We find that the profiles differ

substantially between the power-law and Coulomb cases near

the grounding line. The change in the stress balance here re-

sults in a Coulomb boundary layer with different dependence

on physical parameters than in the power-law case, and we
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provide implications for ice sheet stability. Finally, we find

that it is possible to arrive at the grounding-line ice-flux scal-

ings in both the power-law and Coulomb cases via a simpler

derivation using insights from the boundary layer behavior.

THE TRADITIONAL POWER-LAW
BASAL RHEOLOGY

We first introduce the power-law basal rheology as well as the

important implications of using this assumption. This stan-

dard power-law assumption on the basal boundary condition

at the bed of an ice sheet can be written as

ub =
1

C
τmb , (1)

where ub is the basal velocity, C is a constant, τb is the basal

shear stress, and m is usually related to the Glen’s flow law

exponent n (Glen, 1952). For example, in Weertman’s classic

1957 analysis of glacial sliding (Weertman, 1957), he finds

that m = 2 when n = 3 due to a competition between rege-

lation and enhanced basal viscous ice flow. Other authors

assume m ≈ 3 (e.g., Weertman, 1974; Schoof, 2007b). Due to

our later comparisons to Schoof’s results, it is worth noting

that Schoof’s m is defined as the reciprocal of the m defined

here, i.e. mSchoof ≡ 1/m ≈ 1/3.

A common approximation to the full Stokes model of glacier

flow, called the Shallow Ice Stream Approximation (SSA)

or Shallow Shelf Approximation (Bueler and Brown, 2009),

is particularly applicable to ice sheets near grounding lines,

where the deformation of ice is responsible for a small fraction

of the ice velocity (e.g., Schoof, 2007b). Under the SSA, the

vertically integrated stress balance in one horizontal dimen-

sion (1HD) can be written as

2A−1/n
(
hu

1/n
x

)
x
− τb − ρgh(h− b)x = 0, (2)

where A and n are the standard rate factor and exponent in

Glen’s flow law, u is the ice velocity, h is the ice sheet thick-

ness, b is the depth of the sea floor, ρ is the ice density, g

is the gravitational acceleration, x is a horizontal coordinate,

and the strain rate ∂u/∂x ≡ ux is assumed to be positive

(Schoof, 2007b). (With negative strain rates, the term u
1/n
x

should be written as |ux|1/n−1ux, but negative strain rates

are not found in any numerical solutions, so we omit the ab-

solute values for simplicity.) We refer to the three terms in

Eq. (2) (from left to right) as the extensional stress term (or

extensional stress divergence), the basal drag, and the driving

stress (see Fig. 1). We also note that if internal ice deforma-

tion is assumed small, which is appropriate for ice streams

near the grounding line, then u ≈ ub and τb = C1/mu1/m, so

that the only unknowns in Eq. (2) are h and u.

The shallow ice approximation (SIA) stress balance can

be obtained simply by deleting the extensional stress term,

leaving a balance between basal drag and driving stress. In

the SIA framework, a particularly simple solution for the ice

sheet profile h(x) can be derived when the perfectly plastic

approximation to Eq. (1) is assumed. This approximation cor-

responds to the limit m → ∞, resulting in ub = 0 below a

yield stress τ0 and arbitrarily high velocities above the yield
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Fig. 1. Schematic of the one-horizontal-dimension ice sheet model.

The three terms of the governing force balance, Eq. (2), are the

extensional stress divergence term (green), the basal shear stress

(or basal drag; red), and the gravitational driving stress (gray).

The grounding line is where the ice sheet transitions into an ice

shelf and therefore reaches flotation. The two insets schematically

depict the approximate magnitudes of the three stress terms in

the power-law case (left inset) and Coulomb case (right inset),

respectively.

stress. With zero basal slope bx ≡ 0, the stress balance in

Eq. (2) reduces to

−ρgh · hx = τ0, (3)

and an ice sheet profile may be derived by integration (e.g.,

Nye, 1951; Weertman, 1974) as

h2 = H2 − 2τ0x

ρg
, (4)

i.e., the classical parabolic ice sheet profile, where H is the

maximum height of the ice sheet (at x = 0). Note that this

classic result will be compared with our approximate profiles

in a later section.

Schoof (2007b) showed that the SSA with the power-law

basal rheology of Eq. (1) can be used to derive not only

steady-state ice sheet profiles but also stability criteria for the

grounding line. The system of equations is closed by adding

continuity and boundary conditions. Ice mass conservation

can be written as ht+(uh)x = a, where a is ice accumulation

and t is time, and the boundary conditions at the ice sheet

interior are (h− b)x = 0 and u = 0. The boundary conditions

at the grounding line x = xg are

h|xg =
ρw
ρ
b|xg ≡ hf |xg , (5a)

2A−1/nhu
1/n
x

∣∣
xg

=
1

2
(1− ρ/ρw)ρgh2

∣∣
xg
, (5b)

where ρw is water density, hf is the local ice thickness at

flotation, and |xg denotes being evaluated at x = xg. Here

Eq. (5a) is the flotation condition, and Eq. (5b) ensures con-

tinuity with the stresses in the ice shelf (Schoof, 2007b).

Schoof (2007b) applied boundary layer theory near the

grounding line and found that the flux of ice, q = hu at
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the grounding line xg can be written as

qg,PL =

(
A(ρg)n+1(1− ρ

ρw
)n

4nC1/m

) 1
1+1/m

h
n+3+1/m
1+1/m

g , (6)

where hg ≡ hf |xg is the ice sheet thickness at the ground-

ing line, which is equal to the flotation thickness through

Eq. (5a). With n = m = 3, it follows that qg ∝ h
19/4
g . This

strong dependence of grounding-line flux on grounding-line

ice thickness implies that the grounding line is stable for ‘pos-

itive’ bed slopes (i.e. sloping down away from the center of

the ice sheet, bx > 0, dhf/dx > 0) and unstable for reverse

(‘negative’) bed slopes. This argument can be summarized

as follows: If grounding-line flux is an increasing function of

hg and there is a positive bed slope (grounding-line thick-

ness hf increases with x, i.e. dhf/dx > 0) then dqg/dx > 0.

Thus, if the grounding line retreats, then ice flux decreases,

which causes the ice to thicken and therefore advance, sta-

bilizing the system. On the other hand, for a reverse slope

(dhf/dx < 0), dqg/dx < 0 and retreat of the grounding line

causes an increase in flux, thinning, and thus further retreat,

i.e. a positive feedback. This qualitative argument has been

found to be quantitatively accurate (Schoof, 2012).

COULOMB FRICTION AS AN
ALTERNATIVE TO POWER-LAW
BASAL RHEOLOGIES

The goal of this work is to demonstrate how some of the pre-

vious conclusions derived when using a power-law basal rhe-

ology are modified when complemented by Coulomb friction.

Specifically, we compute revised ice sheet profiles and the as-

sociated stresses, and provide an ice sheet stability analysis

in the form of a modified Eq. (6). Prior to these calculations,

however, we briefly describe the evidence for Coulomb fric-

tion, the importance of using such a description, our specific

quantitative modification to Eq. (1), and the likely regions of

applicability.

While the use of power-law basal rheologies in glacier mod-

eling has a long history (e.g., Boulton and Hindmarsh, 1987;

MacAyeal, 1989), more recent experimental evidence suggests

that glacial tills are often better described by a Coulomb plas-

tic rheology (Iverson and others, 1998; Tulaczyk and others,

2000a; Truffer and others, 2001). In this case, basal shear

stress is proportional to the effective pressure σn, or

τb = fσn = f(σ0 − p) = fρg(h− hf ). (7)

Here f is a friction coefficient (typically f . 0.6), σ0 = ρgh

is the ice pressure, p = ρwgb is the water pressure, other

symbols are as before, and the till is assumed cohesionless

and hydrostatically connected to the ocean. While power-law

basal rheologies have been proposed that include the effective

pressure dependence in an ad hoc manner (e.g., Paterson,

2002), the Coulomb law naturally has an effective pressure

dependence due to the fact that friction is only supported

by the pressure on solid contacts. The predicted difference

between the Coulomb law of Eq. (7) and the power law of

Eq. (1) is especially large near the grounding line, where the

Coulomb law predicts basal shear stresses that approach zero

(since σn → 0), whereas Eq. (1) predicts the largest basal

shear stresses there because velocities are greatest. Impor-

tantly, even in the ‘plastic’ case of Eq. (1) where m → ∞
and there is a constant yield stress, the two predictions are

distinctly different due to the effective pressure dependence

of the Coulomb law. Finally, since Coulomb friction limits

shear stresses in a till layer that lies underneath the basal

layer where the power-law rheology applies, both mechanisms

may act to limit shear stresses. To accommodate both mech-

anisms, we set the basal shear stress to the minimum of the

two stresses, i.e.

τb = min[(Cub)
1/m, f(σ0 − p)]. (8)

Note that the form of Eq. (8) is common to any system where

stresses are limited by two independent physical mechanisms

(e.g., Brace and Kohlstedt, 1980).

From this combined basal stress law, it is clear that τb
must obey the Coulomb law sufficiently near the grounding

line, where fσn → 0. The power-law applies sufficiently far

upstream of the grounding line, where the ice sheet is thick

enough (i.e., σ0 is large enough) that the Coulomb term is no

longer important. To estimate where this transition occurs,

we note that the power-law rheology can be approximated

with its (m → ∞) yield stress τ0, which Paterson (2002)

suggests is ≈ 100 kPa. Thus, we can expect the crossover from

Coulomb to power-law roughly when fρg(h−hf ) & 100 kPa,

or h − hf & 17 m. While this difference in ice sheet height

is quite small, implying a narrow Coulomb regime in many

cases (except when the thickness gradient is small, as with

ice plains, which can have surface slopes lower than 10−4),

we will show that the transition to Coulomb behavior near

the grounding line still results in significant modification of

both the ice sheet profile and ice sheet stability criteria.

While the Coulomb basal rheology has been used in a lim-

ited number of glaciological studies, including the ice stream

model of Tulaczyk and others (2000b), the theoretical treat-

ment of Schoof (2006), and the numerical glacier models of

Truffer and others (2000) and Bueler and Brown (2009), none

of these studies specifically address the question of ice sheet

profiles near the grounding line or the differences in stability

criteria that result from the modification of stresses in this

region. We focus on these points, and highlight the impor-

tance of the Coulomb modification for understanding ground-

ing line behavior even in the absence of other physics. Our

analysis closely follows the one-horizontal-dimension (1HD)

theory of Schoof (2007b), and therefore has the same limita-

tions of not including buttressing or other more complex ge-

ometric dependencies of less-idealized ice sheet models (e.g.,

Gudmundsson and others, 2012; Pattyn and others, 2013).

Nonetheless, the model predicts novel ice sheet behavior that

needs to be understood before adding more complex modifi-

cations.

APPROXIMATE ICE SHEET PROFILES
UNDER COULOMB SLIDING

In this section we explore some of the consequences of the

Coulomb modification of Eq. (8) under the simplifying as-

sumption of a balance between the driving and basal stresses

(e.g., Weertman, 1974). Though our later analysis shows that

extensional stress is also important close to the grounding
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Fig. 2. Near-grounding line ice sheet profile, prescribed by a bal-

ance between driving stress and Coulomb sliding, over linear to-

pography with positive (β > 0) bed slope. We use dimensionless

variables to illustrate the qualitative properties of the ice sheet

profile over a range of parameters. Note that we have chosen an

unrealistically small Coulomb parameter f̃ = 10 in order to visual-

ize the curve of the ice sheet profile and the slope of the bathymetry

together. The density parameter is set to δ = 0.1.

line, it is instructive to consider this approximate stress bal-

ance because its solutions may be more readily understood

and provide additional insight into the grounding line behav-

ior. As discussed above, close to the grounding line the basal

stress must transition from a power-law drag to Coulomb

friction, and in this region the basal stress is described by

Eq. (7). Neglecting the extensional stress term in Eq. (2), the

stress balance therefore becomes

fρg(h− hf ) = −ρgh(h− b)x. (9)

Eq. (9) is approximately valid for an ice sheet that is com-

pletely buttressed by its ice shelf, in which case the exten-

sional stress vanishes at the grounding line (Dupont and Al-

ley, 2005; Schoof, 2007a); the results of this section apply

exactly in this special case.

An immediate consequence of Eq. (9) is that at the ground-

ing line, where h = hf , the slope of the ice sheet’s upper sur-

face s = h−bmust be zero. To determine how the ice sheet ad-

justs to such a condition, we first simplify Eq. (9) via a change

of variables that describes its behavior close to the grounding

line. First we write the distance relative to the grounding line

as ξ = x−xg such that hg = hf |ξ=0, and we assume a locally

constant bed slope such that b = (ρ/ρw)hg +βξ. Then we re-

arrange Eq. (9) as a differential equation for s̃ = s − sg, the

surface height relative to the grounding-line surface height

sg = hg − b|ξ=0 = hg(1− ρ/ρw),

ds̃

dξ
= −f

s̃− δ
1−δβξ

s̃+ hg + βξ
. (10)

Here, for convenience, we define a relative density parameter

δ = 1− ρ

ρw
. (11)

Similar to Weertman’s (1974) stress balance, given by Eq. (3),

Eq. (10) is an ordinary differential equation for surface height

as a function of horizontal position. Unlike Eq. (3), however,

Eq. (10) cannot in general be solved analytically, but we may

obtain approximate solutions in certain limits.

First we consider the case of vanishingly small bed slope

(β → 0), as in Weertman’s (1974) parabolic solution, given

by Eq. (4). For small excursions of the surface height, s̃� hg,

Eq. (10) can be rewritten approximately as

ds̃

dξ
≈ −fs̃

hg
. (12)

The analytical solution is s̃ ∝ exp(−fξ/hg), implying an ex-

ponential decay of the ice surface towards the grounding line.

This differs substantially from the parabolic profile of Eq. (4)

for a constant basal shear stress. Here, the ice sheet profile

“tapers off” toward the grounding line instead of maintain-

ing a steep surface slope. We show later that the inclusion of

extensional stresses quantitatively changes this profile. How-

ever, the qualitative differences between the Coulomb case

and the power-law only case are the same and hence this ap-

proximate result provides a useful intuition regarding these

differences.

The case of vanishingly small slope β is distinguished in

that it cannot satisfy the boundary condition s̃ = 0 at the

grounding line ξ = 0; the only solution that can admit zero

gradient at the grounding line is zero everywhere. For nonzero

slope, the parameter dependence of the solution can be sim-

plified by nondimensionalizing Eq. (10) using s̃ = hg ŝ and

ξ = (hg/|β|)ξ̂,

dŝ

dξ̂
= −f̃

ŝ− δ
1−δ β̂ξ̂

ŝ+ 1 + β̂ξ̂
, (13)

where f̃ = f/|β| is a dimensionless friction coefficient and β̂ =

sign(β) is either equal to 1 for a positive bed slope or −1 for a

negative bed slope. At the grounding line, the surface height

perturbation vanishes (ŝ = 0), so we seek a solution close to

the grounding line by assuming ŝ � 1. We further assume

δ = O(ŝ) so that the terms in the numerator of Eq. (13) are

asymptotically of the same order, though in reality there is

no reason to expect such a relation to hold. At leading order

in ŝ, Eq. (13) becomes

dŝ

dξ̂
= −f̃ ŝ− δβ̂ξ̂

1 + β̂ξ̂
, (14)

which may be solved analytically to obtain

ŝ = −δ β̂

f̃ + β̂

[
1− f̃ ξ̂ −

(
1 + β̂ξ̂

)−f̃/β̂]
. (15)

Note that at the grounding line ξ̂ = 0, this solution satisfies

the boundary condition ŝ = 0, and additionally that the slope

of the ice sheet vanishes, dŝ/dξ̂ = 0, as expected from the

stress balance in Eq. (9).

In Fig. 2, we illustrate the shape of the ice sheet close to

the grounding line under the stress balance of Eq. (9), and

for positive bed slope β (β̂ = 1). We plot the dimensionless

ice sheet profile calculated analytically from Eq. (15) and

numerically from Eq. (13), along with the bathymetry and

the ice sheet surface height at flotation sf = hf−b = (ρw/ρ−
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1)b. There is relatively little scope for changes in the density

parameter δ, which we fix at δ = 0.1, so the range of possible

ice sheet profiles is essentially defined by the dimensionless

friction parameter f̃ and the sign of the bed slope β̂. Varying

f̃ simply expands or squeezes the ice sheet profile horizontally,

relative to the bed, so the characteristics of the solution are

summarized by the cases β̂ = 1 and β̂ = −1.

Fig. 2 shows that Coulomb sliding at the bed results in

a dramatic alteration of the ice sheet profile close to the

grounding line. The vanishing basal stress results in the ice

sheet “tapering off” towards the grounding line, in contrast

to the steep surface gradient predicted by a uniform basal

stress (Weertman, 1974) or power-law drag (Schoof, 2007b).

Another distinguishing feature of Coulomb sliding is that for

negative bed slope (β < 0) the solution is unphysical, as the

ice sheet lies below flotation everywhere. To understand this,

recall that the surface height must have zero gradient at the

grounding line, ds/dx = 0 at x = xg, but the gradient of the

flotation height, dsf/dx = (ρw/ρ − 1)db/dx = (ρw/ρ − 1)β,

depends on the sign of β. For the solution to be physical,

we require d(s − sf )/dx < 0 at x = xg so that the ice is

above flotation just upstream of the grounding line, but this

condition is only satisfied for positive bed slope β > 0. Thus,

for a negative bed slope and vanishing extensional stress at

the grounding line, the ice sheet cannot ground stably, as no

physical steady solutions exist.

STEADY-STATE ICE SHEET PROFILES
WITH COULOMB BASAL CONDITIONS

Though the ice sheet profiles discussed in the previous sec-

tion provide a qualitative illustration of the effect of Coulomb

friction close to the grounding line, the neglect of extensional

stress is problematic. Unless the ice shelf is buttressed, the

extensional stress must be sufficiently large to balance the

driving stress, so we expect the effects of both Coulomb fric-

tion and extensional stress to become important close to the

grounding line. In this section, we therefore expand our anal-

ysis to consider steady solutions of the full, one-dimensional,

depth-integrated force balance in Eq. (2).

We begin by nondimensionalizing the force balance in Eq. (2),

as this allows us to characterize the range of ice sheet profiles

using a small number of dimensionless parameters. We first

select scales for horizontal distance [x], ice thickness [h], and

ice accumulation [a]. The steady ice conservation equation

(hu)x = a motivates a velocity scale [u] = [a][x]/[h], such that

in dimensionless variables (denoted by hats ˆ) it becomes(
ĥû
)
x̂

= 1. (16)

For simplicity we have assumed the accumulation rate a to

be spatially uniform. Substituting these scales into the stress

balance Eq. (2) with the Coulomb-modified basal rheology of

Eq. (8), we obtain

4ε
(
ĥû

1/n
x̂

)
x̂
− τ̂b − ĥ

(
ĥ− b̂

)
x̂

= 0, (17a)

τ̂b = min
[
Ĉ1/mû1/m, f̂

(
ĥ− ĥf

)]
. (17b)

Here we define

ε =
([u]/[x]A)1/n

2ρg[h]
, Ĉ

1
m =

[x][u]1/m

ρg[h]2
C

1
m , f̂ =

[x]

[h]
f, (18)

as the dimensionless extensional stress coefficient, power-law

coefficient, and Coulomb friction coefficient respectively. Eqs. (17a)–

(17b) are complemented by no-flux and zero-surface gradi-

ent boundary conditions at the upstream edge of the domain

(x̂ = 0), and by stress continuity and basal flotation condi-

tions Eqs. (5a)–(5b) at the grounding line. With dimension-

less variables, these conditions become

(ĥ− b̂)x̂ = 0 at x̂ = 0, (19a)

û = 0 at x̂ = 0, (19b)

ĥ = ĥf ≡
b̂

1− δ at x̂ = x̂g, (19c)

û
1/n
x̂ =

δĥf
8ε

at x̂ = x̂g. (19d)

This nondimensionalization almost exactly mirrors that of

Schoof (2007b), except he sets the power-law coefficient Ĉ

to 1, such that Eq. (18) provides an additional constraint

relating the horizontal and vertical scales [x] and [h].

We base the solutions discussed below on ‘typical’ Antarc-

tic Ice Sheet scales (Schoof, 2007a): n = m = 3, [a] =

0.3 m yr−1, [x] = 500 km and [h] = 1 km,A = 1.0×10−25 s−1 Pa−3

C1/m = 7.624 × 106 Pa m−1/3 s1/3, ρ = 900 kg m−3, ρw =

1000 kg m−3, g = 9.8 m s−2, and f = 0.4. These scales yield

dimensionless parameter values of ε ≈ 2.6 × 10−3, δ ≈ 0.1,

Ĉ1/m ≈ 7.3 and f̂ = 200. These scalings suggest that the

extensional stress term in Eq. (17a) should be much smaller

than the driving and basal stresses, but condition Eq. (19d)

requires that the extensional stress itself to become O(1) at

the grounding line. Schoof (2007b) argues that this condition

is met via the development of a boundary layer close to the

grounding line. Meanwhile, the dimensionless Coulomb fric-

tion coefficient f̂ appears as a very large term in Eq. (17b),

whereas the dimensionless power-law coefficient Ĉ1/m isO(1).

As discussed above, this implies that the ice thickness must be

very close to flotation, i.e. ĥ− ĥf ∼ Ĉ1/m/f̂ � 1, before the

basal stress makes the transition from power-law to Coulomb

sliding.

The grounding-line position and stability of this model with

power-law-only basal stress has been explored in detail by

Schoof (2007a,b). We therefore focus on the differences intro-

duced by the modified basal stress Eq. (17b) that includes

Coulomb friction. We obtain steady solutions by first numer-

ically discretizing Eqs. (16)–(17) and boundary conditions

Eqs. (19a)–(19d) using second-order centered differences. Fol-

lowing Schoof (2007b), we stagger the û and ĥ grid points such

that the first û-point coincides with x̂ = 0 and the last ĥ-point

coincides with x̂ = x̂g. The grid points are uniformly spaced

between x̂ = 0 and x̂ = x̂g, where the grounding-line position

x̂, and thus the grid itself, is allowed to change as the cal-

culation proceeds. Finally, we employ Levenberg-Marquardt

nonlinear least-squares optimization (Moré, 1978) of the grid-

point velocities and layer thicknesses and the grounding-line

position to obtain an optimal steady solution of the equa-

tions and boundary conditions. In the cases discussed here,

we use Nx = 4000 grid points for each of the ĥ and û fields,
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Fig. 3. (a) Surface profiles and (b) velocities of a steady ice sheet computed using the dimensionless equations given by Eqs. (16)–(17)

and boundary conditions given by Eqs. (19a)–(19d). The dimensionless parameters ε ≈ 2.6 × 10−3, δ ≈ 0.1, Ĉ ≈ 7.3 and f̂ = 200

correspond to the ‘typical’ Antarctic Ice Sheet parameters given by Schoof (2007a). The insets zoom in on the region very close to the

grounding line, where the basal stress switches over from power-law drag to Coulomb friction.

which is sufficient to make the results insensitive to increased

resolution.

Fig. 3 shows ice sheet surface height and velocity pro-

files, with and without the Coulomb modification of the basal

stress in Eq. (17b). For the purpose of illustration we have

selected a simple parabolic bathymetry b̂(x̂) = 1
2 x̂

2. At the

ice sheet scale (O(1) horizontal scale) the profiles are qualita-

tively similar, with a parabolic-like thinning of the ice sheet

and rapid increase of the ice velocity toward the ground-

ing line. However, with Coulomb friction the position of the

grounding line shifts upstream by a dimensionless distance

of ∼ 0.2, equivalent to a dimensional distance of ∼ 100 km

using the horizontal lengthscale of [x] = 500 km given above.

On our idealized bathymetry this corresponds to grounding-

line thickness reduction from 0.648 to 0.472, or from 648 m

to 472 m using the height scale [h] = 1 km given above. The

fractional reduction in grounding line thickness exceeds the

fractional reduction in total accumulation over the ice sheet

surface, resulting in a larger ice velocity at the grounding

line. In the next section, we will show that this migration of

the grounding line is a consequence of the stress balance in

the boundary layer, which implies a smaller grounding-line

thickness under a Coulomb sliding law.

The insets in Fig. 3 show that Coulomb friction also quali-

tatively changes the shape of the ice sheet close to the ground-

ing line. Whereas the ice sheet surface is steepest at the

grounding line under power-law drag, with Coulomb friction

it tapers off toward the grounding line, similar to the exten-

sional stress-free solution shown in Fig. 2. Ice conservation

then requires that the velocity profile also tapers off toward

the grounding line. The contrast between the solutions close

to the grounding line may be understood by considering the

different contributions to the stress balance, which are plot-

ted in Fig. 4 (see also Fig. 1 insets for schematics). With

power-law drag alone, the extensional stress becomes suffi-

ciently large to satisfy Eq. (19d), but its divergence always

remains small compared to the driving and basal stresses, so

that the expected boundary layer is not apparent in the stress

balance. By contrast, with the Coulomb modification to the

basal stress in Eq. (17b), there is a rapid enhancement of the

extensional stress just beyond the transition from power-law

drag to Coulomb friction. This occurs because the basal stress

vanishes at the grounding line, and the extensional stress di-

vergence alone must balance the driving stress. Though the

ice sheet profile does not taper to zero surface slope, as sug-

gested by our earlier solution shown in Fig. 2, the driving

stress does decrease by around a factor of 4 across the bound-

ary layer.

Finally, we note that since the basal stresses in the Coulomb

modification drop to zero at the grounding line, the shear

stress is continuous across the grounding line. Thus, the stress

singularity encountered at the grounding line in many numer-

ical models (e.g., Wilchinsky, 2007; Nowicki and Wingham,

2008; Durand and others, 2009), which is inherent to the

power-law description, may disappear in the Coulomb case.

While the Coulomb regime would still need to be resolved

for a numerical model to be accurate, the behavior of such a

model in the Coulomb regime should be better behaved than

in the pure power-law case.

ICE SHEET STABILITY WITH
COULOMB BASAL CONDITIONS

The numerical solutions discussed in the previous section

show that the transition from power-law to Coulomb basal

rheology close to the grounding line substantially alters the

ice sheet shape, velocity, and stress balance in the boundary

layer. In this section, we explore the impact of this change in

boundary layer structure on the stability of the ice sheet.
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Fig. 4. Terms in the dimensionless stress balance in Eq. (17a) for the ice sheet solution shown in Fig. 3. In each case the plot covers only

the region very close to the grounding line. (a) With only power-law drag no boundary layer is evident: the extensional stress divergence

remains small all the way up to the grounding line, so the driving and basal stresses dominate. (b) With the Coulomb modification

in Eq. (17b) there is a clear transition from power-law drag to Coulomb friction. The basal stress vanishes at the grounding line, and

instead the extensional stress divergence becomes enhanced, ultimately balancing the driving stress at the grounding line. We note that

the extensional stress is enhanced, but the driving stress also drops significantly compared to the power-law case.

Following Schoof (2007b), we use the small dimensionless

extensional stress parameter ε� 1 to perform an asymptotic

expansion of the ice sheet equations Eqs. (16)–(17). Away

from the grounding line, the leading-order balance, corre-

sponding to the limit ε → 0 in Eq. (17a), is simply between

the driving and basal stresses. However, close to the ground-

ing line, Eq. (19d) suggests that the extensional stress diver-

gence term should become O(1), which may be accommo-

dated via the development of a boundary layer. We therefore

seek a rescaling of Eqs. (16)–(17) to describe the dynamics

asymptotically close to the grounding line,

û = εαU, x̂g − x̂ = εζX, ĥ = εγH, (20)

with the expectation that all of the terms in Eq. (17a) should

appear at the same order in ε in the rescaled variables.

As explained earlier, sufficiently close to the grounding line,

the basal sliding should follow a Coulomb rheology rather

than a power-law rheology, so we assume that the basal shear

stress is described by Eq. (7). First, anticipating that ζ > 0,

we note from Eq. (16) that the ice flux q = hu should be

approximately unchanged over the boundary layer,

q̂X = −εζ , (21)

so in the limit ε → 0 the ice flux must be equal to the ice

flux far from the grounding line, q̂ = q̂|X→∞ = O(1). (Note

that the subscript X in Eq. (21) refers to an X derivative, as

before.) Under our scalings of Eq. (20), this is only possible

if γ = −α, such that the rescaled ice flux Q = HU remains

O(1) as ε → 0. This constraint simplifies Eq. (17a), which

can be rewritten as

ε1+α−ζ
n −ζ4(HU

1/n
X )X − f̂(H −Hf )

+ε−α−ζ(HHX −HBX) = 0, (22)

where U
1/n
X should be interpreted as

∣∣U1/n−1
X

∣∣UX because

ûx̂ is positive and thus UX is negative. Here, the depth of

the bed b̂ = εγB is also assumed to be asymptotically small,

which physically implies that the ice grounds in relatively

shallow water. This is imposed by the requirement that the

mass conservation equation Eq. (16) remain balanced as ε→
0, as discussed above and by Schoof (2007b). However, the

length scale of bathymetry variations is comparable to that

of [x] (i.e. the ice sheet length scale), implying that BX is

O(εζ) rather than O(1) like HX . In other words, the ice sheet

surface changes rapidly close to the grounding line, but the

bathymetry does not. To first order in ε then the BX term

can be dropped and Hf = B/(1− δ) can be set constant and

equal to the scaled grounding-line thickness Hg = ε−γhg.

Balancing powers of ε in Eq. (22) we obtain the following

exponents,

ζ = γ = −α =
n

n+ 2
. (23)

Thus, the ice sheet thickness becomes asymptotically small

relative to the thickness further inland, while the velocity be-

comes asymptotically large. As discussed above, the resulting

scalings in Eq. (20) eliminate the dependence on the bathy-

metric slope in Eq. (22), resulting in the following leading-

order force balance,

4(HU
1/n
X )X − f̂(H −Hg) +HHX = 0, (24)

and ice conservation equation,

HU = Q, (25)

where Q is constant across the boundary layer.

This boundary layer scaling, Eq. (23), differs from Schoof

(2007b) for a power-law grounding-line basal rheology, who
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obtained the following exponents

ζPL =
n(1/m+ 2)

n+ 1/m+ 3
, γPL = −αPL =

n

n+ 1/m+ 3
. (26)

Note that we use an inverse definition ofm, i.e.m = 1/mSchoof,

resulting in a different algebraic form in Eq. (26). For n =

m = 3, our scaling in Eq. (23) estimates a grounding-line

thickness of ĥg ∼ ε3/5, whereas Schoof’s (2007b) scalings in

Eq. (26) yields ĥg ∼ ε9/19. Thus, an immediate prediction of

these boundary layer scalings is that the grounding-line ice

thickness should be smaller under a Coulomb basal rheology

than under a power-law basal rheology (for sufficiently small

ε), which is consistent with the numerical results shown in

Fig. 3.

In order to make further analytical progress with the bound-

ary layer force balance Eq. (24), we eliminateH using Eq. (25)

and define W = −U1/n
X , again following Schoof (2007b). This

allows us to write Eq. (24) as a pair of ordinary differential

equations for U and W ,

UX = −Wn, (27a)

WX = −W
n+1

U
− f̂

4

(
1− HgU

Q

)
+
QWn

4U2
. (27b)

The flotation and stress continuity conditions at the ground-

ing line, given by Eqs. (19c)–(19d), yield the following rescaled

boundary conditions for U and W ,

U(0) =
Q

Hg
, (28a)

W (0) =
δHg

8
, (28b)

and in order to match with the region far from the grounding

line, both U and W must vanish as X →∞,

(U,W )→ (0, 0) as X →∞. (29)

This matching condition arises in the limit ε → 0, in which

the boundary layer becomes infinitesimally thin, and so the

rest of the ice sheet approaches infinity in the boundary layer

coordinate X. The rescaling in Eq. (20) then implies that the

velocity outside the boundary layer is infinitesimally small

relative to the velocity inside the boundary layer, and hence

that U → 0 as X →∞. It follows that a similar condition on

UX , and thus on W , must also hold.

At this point, the boundary layer problem Eqs. (27)–(29)

can be solved numerically to yield the results in Fig. 5. Specif-

ically, for a given Q, we find that there exists a unique choice

of Hg that satisfies the 2nd boundary condition at (U,W ) =

(0, 0), with all other solutions diverging. The blue curve la-

beled ‘solution’ in Fig. 5 is that unique numerical solution

that satisfies both the grounding-line boundary conditions of

Eq. (28) (at the blue circle) and the outer boundary condition

of Eq. (29) as X →∞. Unlike Schoof’s power-law case, differ-

ent Hg result in different governing equations for Eq.(27) and

so there is a different phase plane for each choice of Hg. We

therefore only show the phase plane with the correct choice of

Hg. For Fig. 5, we use Q = 10 for the purposes of illustration,

which implies Hg = 34.9575. The solution is qualitatively

similar for all choices of Q, which is confirmed by the further

scaling analysis below. Note that, as with the extensional

stress divergence in Fig. 4, we observe that the magnitude
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Fig. 5. Boundary layer phase plane for scaled strain rate W =

−U1/n
X vs. scaled velocity U , with Q = 10, n = 3, δ = 0.1. Circles

denote the grounding-line position in phase space. The dashed line

shows the result of Schoof (2007b) for the power-law case, with

m = 3, which has a scaling of W ∼ U10/9, and hence is nearly

linear. The blue solid curve shows the result with Coulomb friction,

with f̂ = 500, which has a scaling of W ∼ U2/n as (U,W )→ (0, 0)

to satisfy Eq. (27b) as X →∞. Near the grounding line, W drops

so that (unlike in the power-law case) the maximum W is not at the

grounding line. The red solid curves denote numerical solutions for

the Coulomb case with initial conditions that diverge and therefore

do not result in a solution.

of the scaled strain rate W does not increase monotonically

towards the grounding line, but instead reaches a maximum

prior to the grounding line and then falls off to a lower value.

By substituting Eq. (28) into Eq. (27b), one can show that

WX > 0 at the grounding line and hence that there is always

a strain rate maximum in the boundary layer.

To determine a relationship between Q and Hg in the

Coulomb case, we seek a further rescaling of Eqs. (27)–(29)

which removes the dependencies on Hg and f̂ . We find that

this is uniquely achieved by setting

X =
Hg

f̂
X̃, Q =

Hn+2
g

f̂
Q̃,

U =
Hn+1
g

f̂
Ũ , W = HgW̃ , (30)

where variables with tildes are the newly scaled variables.

This choice then simplifies Eqs. (27)–(29) to

ŨX̃ = −W̃n, (31a)

W̃X̃ = −W̃
n+1

Ũ
− 1

4

(
1− Ũ

Q̃

)
+
Q̃W̃n

4Ũ2
. (31b)

Ũ(0) = Q̃, (32a)

W̃ (0) =
δ

8
, (32b)

(
Ũ , W̃

)
→ (0, 0) as X̃ →∞, (33)
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which are indeed independent ofHg and f̂ . The dependence of

Q on other variables is determined by Eq. (30) once Eqs. (31)–

(33) are solved to determine the appropriate Q̃ for a given δ

(which is analogous to determining Hg for a given Q as done

previously). These numerically determined values of Q̃ are

plotted in Fig. 6 for a range of δ in the n = 3 case. As shown,

Q̃ scales nearly as δ2 and it is shown in the Appendix that

Q̃ generally scales as (δ/8)n−1. Thus, we rewrite the scaling

for Q as

Q = Q0

(
δ

8

)n−1
Hn+2
g

f̂
, (34)

where Q0 is a constant determined by numerically solving

Eqs. (31)–(33). For the special case of interest where δ = 0.1

and n = 3, Q0 = 0.61; furthermore, 0.60 ≤ Q0 ≤ 0.65 over

the entire range of δ plotted in Fig. 6. For n = 3, then, the ice

flux Q in the Coulomb case scales as grounding-line thickness

to the fifth power (i.e. Q ∼ H5
g ), and inversely with the scaled

friction coefficient. This contrasts with the expression from

Schoof (2007b) of Eq. (6) for the power-law case which, in

scaled variables, can be expressed as

QPL =

(
δ

8

) n
1+1/m

H
n+3+1/m
1+1/m

g . (35)

We note that our result in Eq. (34) is different than the

m → ∞ (mSchoof = 0) limit of Eq. (35), which has Q ∼
Hn+3
g ∼ H6

g , and so the Coulomb result has distinctly differ-

ent behavior as compared to the ‘perfectly plastic’ limit of the

power-law case. Our scaling of Eq. (34) is also different from

the preferred choice of Schoof with n = m = 3, which gives

Q ∼ H4.75
g , as well as different from the scaling of Weertman

(1974) of Q ∼ H4.5
g . The dependence of ice flux on grounding-

line thickness for the Coulomb case is therefore stronger than

in either the preferred Schoof (2007b) or Weertman (1974)

cases (but not as strong as in the perfectly plastic limit).

This increased sensitivity in turn implies that positive bed

slopes (sloping down towards the ocean) are more stable than

in the power-law case and negative bed slopes are more unsta-

ble. It also explains why the grounding lines in the Coulomb

case (e.g., in Fig. 3a) generally lie upstream of the ground-

ing lines in the power-law case, as a stable configuration

is reached at a lower value of (positive) bed slope in the

Coulomb case (Schoof, 2012). Both of these conclusions can

be understood better by comparing the two scalings for the

non-dimensional grounding-line ice flux q̂g, which may be ex-

pressed as

q̂g = Q0

(
δ

8

)n−1
ĥn+2
g

f
ε−n (36)

and

q̂g,PL = Ĉ
− 1/m

1+1/m

(
δ

8

) n
1+1/m

ĥ
n+3+1/m
1+1/m

g ε
− n

1+1/m , (37)

for the Coulomb and power-law cases, respectively. One can

use Eqs. (36)–(37) to compare the sensitivities to perturba-

tions for a given bed slope gradient ĥ′f (x̂g), since q̂′g(x̂g) =

q̂′g(ĥg)ĥ′f (x̂g). Substituting our reference parameters into Eqs. (36)–

(37) yields q̂′g(ĥg) ≈ 2.7 in the power-law case and q̂′g(ĥg) ≈
8.3 in the Coulomb case, verifying that the Coulomb case is

indeed more sensitive to bathymetry variations. This result is

0
0
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Fig. 6. Scaled grounding-line ice flux Q̃ vs. δ, for n = 3 and

f̂ = 500, where Q̃ is defined in Eq. (30). The green circles are

numerical solutions from solving Eqs. (31)–(33), and the blue line is

the scaling of Eq. (34), Q̃ = Q0(δ/8)n−1, with Q0 = 0.61 chosen to

match the numerical solution at δ = 0.1. Since Q̃ was constructed

to be independent of f̂ , the figure is identical for all choices of f̂ .

robust for realistic parameter variations. Additionally, solv-

ing for ĥg for a given value of q̂ (and n = m = 3) shows

that ĥg scales as ε3/5 in the Coulomb case and as ε9/19 in

the power-law case, as suggested earlier, so that in the limit

ε → 0, ĥg will be smaller in the Coulomb case for the same

grounding-line flux. For example, fixing q̂ = 1 and using the

reference values of parameters as earlier, we find ĥg ≈ 0.50 in

the Coulomb case and ĥg ≈ 0.65 in the power-law case. Thus,

the ice sheet should indeed ground in shallower water under

Coulomb basal conditions, consistent with the numerical so-

lution shown in Fig. 3a. A shallower grounding is a robust

result for realistic variations of the model parameters; an or-

der of magnitude increase in ε would be required to produce

a deeper grounding line in the Coulomb friction case than in

the power-law case. Given that the ice sheet can only ground

stably on positive bed slopes, this means that Coulomb fric-

tion typically produces a grounding line that lies upstream,

closer to any negative bed slopes further inland.

As shown in Fig. 7, there is also excellent agreement be-

tween the grounding-line position predicted from the bound-

ary layer theory result of Eq. (34) and the numerical results

over a wide range of ε. This agreement demonstrates that the

boundary layer theory can be used to accurately predict the

location of the grounding line.

Finally, we note that the scaling of Eq. (34) can be substi-

tuted back to determine the dimensionally correct grounding-

line ice flux in the Coulomb case to be

qg = Q0
8A(ρg)n

4nf

(
1− ρ

ρw

)n−1

hn+2
g , (38)

where Q0 ≈ 0.61 is a numerical coefficient determined by the

boundary layer analysis.
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is from numerically solving Eqs. (16)–(19), as described for Fig. 3.

The black dashed line is predicted using the boundary layer scaling

by solving for the position at which the flux determined by inte-

grating accumulation matches the theoretical ice flux of Eq. (34).

A POSTERIORI SIMPLIFIED
DERIVATIONS OF ICE SHEET
STABILITY

The boundary layer analysis of the previous section provides

a rigorous analysis of the force balance near the grounding

line. The results, however, provide a basis for presenting a

simplified analysis of the key balances at the grounding line.

Specifically, we find that neglecting the boundary layer alto-

gether leads to similar scalings for the ice flux at the ground-

ing line. We first present this approximation for the power-law

case and then describe the Coulomb analog. In the power-law

case, we neglect the extensional stress term throughout the

boundary layer, although we include this term to satisfy the

grounding-line condition given in Eq. (5b). As discussed ear-

lier, the apparent contradiction here is due to the fact that the

divergence of the extensional stress remains small compared

to the other stresses at the grounding line (see Fig. 4a). We

also justify this approach based on the recovery of results

from the full boundary layer analysis.

After neglecting the extensional stress term in Eq. (2) and

applying the power-law basal stress law, Eq. (1), we further

assume that hx � bx within the boundary layer. This approx-

imation, which is in agreement with our numerical solutions,

leads to

C1/mu1/m = −ρghhx. (39)

The additional constraints include continuity of stress across

the grounding line, Eq. (5b), which simplifies to

ux = A

(
δ

4

)n
(ρgh)n , (40)

and mass conservation

(hu)x = 0, → hx = −hux
u
. (41)

This simplified set of equations Eqs. (39)–(41) is a closed

system that determines the ice sheet profile, ice flux and po-

sition of the grounding line. Combining the three yields

C1/mu1/m =
ρgh2ux

u
=
A (ρg)n+1 δnhn+2

4nu
. (42)

This relationship can then be used to solve for the ice flux at

the grounding line, qg = hu|xg , which exactly reproduces the

relationship given in Eq. (6). Again, the insight here is that

even in the boundary layer, the extensional stress divergence

makes a relatively small contribution to the force balance,

as shown schematically in Fig. 1 and numerically in Fig. 4a.

This result follows from the boundary layer analysis of Schoof

(2007b) since the limit of small Hf requires a balance between

driving stress and power-law basal stress at the grounding

line.

A similar analysis can be carried out for the Coulomb case,

but the assumptions necessary cannot be rigorously justified

as in the power-law case. Introducing Coulomb friction to

the left-hand side of Eq. (39) and again neglecting horizontal

gradients in the bed profile gives

fρg
(
h− hf

)
= −ρghhx. (43)

This balance is valid at the upstream edge of the Coulomb

boundary layer where, additionally, h� hf (for a thin ground-

ing line), resulting in hx = −f . Although the extensional

stress divergence cannot be neglected over the boundary layer

in this case, it is still expected to be relatively small. This sug-

gests that hx ∼ −f is a reasonable scaling near the ground-

ing line as well. However, at the grounding line itself, the

Coulomb case requires zero basal stress so that driving stress

is balanced by the extensional stress term, which in turn is

locally set by the stress boundary condition of Eq. (19d). This

suggests that hx scales with δ near the grounding line, but

retains the same dependence on f . Thus, the profile “tapers

off” by a factor of δ as it approaches the grounding line,

i.e., hx ∼ −δf . We therefore postulate that hx ≈ −δf is a

reasonable guess for the slope dependence at the grounding

line (within the boundary layer). While this assumption is

not rigorously justified, the choice is shown to reproduce the

boundary layer scaling. The result is presented as additional

intuition for how the flux scales with different parameters,

for example hf , but should not be viewed as a way to bypass

the full boundary layer analysis.

Substituting the conditions for stress across the grounding

line Eq. (40) and mass conservation Eq. (41) we have

δf =
hux
u

=
A (ρgδ)n hn+1

4nu
, (44)

which results in the relationship for ice flux at the grounding

line as a function of grounding-line thickness,

qg = hu =
A(ρg)nδn−1

4nf
hn+2
g , (45)

which is identical to the exact boundary layer theory result

of Eq. (38) except without the O(1) factor of 8Q0 ≈ 4.9.

The full boundary layer analysis offers insight into the prin-

cipal balances near the grounding line. The simplified analy-

sis presented here provides a more intuitive understanding of

how the scaling differs between the power-law and Coulomb

cases.
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CONCLUSIONS

In this work, we have presented a one-horizontal-dimension

model of ice sheet dynamics in which the basal stresses near

the grounding line are governed by Coulomb friction rather

than the more commonly assumed power-law basal rheology.

This transition in stress regime is a consequence of the flota-

tion condition at the grounding line, and results in a some-

what narrow ‘Coulomb’ region near the grounding line where

the ice sheet has distinctly different properties from what it

would have had without Coulomb friction. Specifically, the ice

sheet grounds at a substantially different location, ice sheet

surface profiles take on a distinctly different shape, with a

tapering off nearly exponentially towards the grounding line,

and the basal stresses reduce down to zero at the grounding

line, potentially removing the stress singularity inherent to a

power-law rheology. Unlike in the standard power-law case,

this implies that the largest extensional stress terms are not

at the grounding line but instead reach a maximum prior

to reaching the grounding line and subsequently diminish in

magnitude. These differences in the predicted surface profiles

and stresses could be verified with high-resolution data near

the grounding line.

Despite the general narrowness of the region where Coulomb

basal friction dominates over the power-law behavior, includ-

ing Coulomb friction nonetheless results in substantially dif-

ferent conclusions for ice sheet stability. In particular, we find

that the inclusion of Coulomb friction results in a bound-

ary layer at the grounding line that has a distinctly different

scaling of ice flux with grounding-line thickness (qg ∝ h5
g for

n = 3) as compared with the power-law case (qg ∝ h
19/4
g

for n = m = 3). The stronger dependence of ice flux on

grounding-line thickness in turn causes positive bed slopes

(sloping down towards the ocean) to be more stable and neg-

ative bed slopes (sloping down towards the interior of the ice

sheet) to be more unstable to climate perturbations. Further-

more, with Coulomb friction, the ice sheet grounds in shal-

lower water, placing the grounding line closer to highly un-

stable regions of negative bed slope. Thus, ice sheets are gen-

erally more sensitive to perturbations than previously recog-

nized. With the large number of recent observations of parts

of the Antarctic Ice Sheet with negative or nearing negative

bed slopes (e.g., Favier and others, 2014; Mengel and Lev-

ermann, 2014; Rignot and others, 2014; Joughin and others,

2014), our stability results may have important implications

for the future of the Antarctic Ice Sheet.
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APPENDIX

To determine how Q scales with δ, we start with Eqs. (31)–

(33) and first observe that δ � 1 implies that ŨX̃ ≈ 0 so that

Ũ is approximately constant within the boundary layer, to

order δ. Yet the UX term must become O(1) at the ground-

ing line in a boundary layer theory with δ as the parameter

that approaches zero, so we seek a further rescaling for the

boundary-layer equations. Introducing ∆ ≡ δ/8, we then in-

troduce a new scaling of variables with ∆ as

X̃ = ∆r1X̌, Q̃ = ∆r2Q̌,

Ũ = ∆r2(Q̌−∆Ǔ), W̃ = ∆W̌ , (A1)

which results in

ǓX̌ = W̌n, (A2a)

W̌X̌ = − Ǔ

4Q̌
+
W̌n

4Q̌2
+O(∆). (A2b)

Ǔ(0) = 0, (A3a)

W̌ (0) = 1, (A3b)

if r1 and r2 are chosen as r1 = 0, r2 = n − 1. This choice

ensures that the terms in Eq. (A2) balance at leading order in

∆. We note that the far-field condition analogous to Eq. (33)

can be satisfied by an appropriate choice of Q̌. This analysis

therefore suggests that Q̃ ∼ ∆n−1Q̌, where Q̌ is an O(1)

quantity that is independent of δ as δ → 0. As shown in

Fig. 6, this scaling is numerically verified in the case where

n = 3.


