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Abstract

Delivery of proteins into walled plant cells remains a challenge with few tractable solutions. 

Recent advances in biomacromolecule delivery using nanotechnology may evince methods to be 

exploited for protein delivery. While protein delivery remains no small feat, even in mammalian 

systems, the ability for nanoparticles to penetrate the cell wall and be decorated with a plethora 

of functional moieties makes them ideal protein vehicles in plants. As advances in protein 

biotechnology accelerate, so does the need for commensurate delivery systems. However, the 

road to nanoparticle-mediated protein delivery is fraught with challenges in regard to cell wall 

penetration, intracellular delivery, endosomal escape, and nanoparticle chemistry and design. The 

dearth of literature surrounding protein delivery in walled plant cells hints at the challenge of this 

problem but also indicates vast opportunity for innovations in plant-tailored nanotechnology.
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Introduction

For several decades, breakthroughs in nanomaterial synthesis, production, and 

characterization have advanced electronics, medicine, and basic research. Nanomaterials 

are now broadly commercially available, with functionalization approaches that are readily 

accessible in most laboratories, enabling ease of access and use in a diverse range of 

applications [1,2]. Although recent nanotechnology-based accomplishments have been made 

in sensing, delivery, and targeting of nanomaterials in planta, both fundamental and applied 
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plant nanoscience lag behind other fields of nanobiotechnology [3-6]. In particular, the 

delivery of molecular biology cargoes such as DNA, RNA, and proteins to plant cells 

have become increasingly important goals. Of these goals, protein delivery remains the 

most difficult to accomplish, and as such, protein delivery strategies using nanomaterial 

carriers are only nascent in plants [7-10]. The development of gene editing tools motivates 

in planta delivery of proteins that could enable DNA-free gene edited plants and could 

accelerate the development of both engineered crops and basic plant science. Recent 

in planta protein delivery successes have leveraged protein biolistics for DNA-free gene 

editing. Although these new protocols have enabled DNA-free genome editing applications 

in plants, they involve specialized instrumentation and intensive low-throughput screening of 

hits due to low protein delivery efficiencies [11,12]. Given these limitations, a nanoparticle-

mediated protein delivery technology could simplify workflows and streamline plant 

genome engineering.

To emphasize how challenging protein delivery to walled plant cells can be, we consider 

that evolution has not generated a “passive” way to bypass the barrier of the cell wall. To 

our knowledge, no intact plant virus has been found to diffuse across the plant cell wall 

despite possessing nanoscale (~15–200 nm) dimensions. Viral infection is instead mediated 

by injury to the plant cell wall on mechanical damage by weather, animals, or fungal attack 

[13]. Other pathogens have evolved elaborate secretory systems as seen in Agrobacterium or 

anatomical structures such as fungal haustoria to deliver proteins past the cell wall [14,15]. 

By contrast, certain engineered nanomaterials (ENMs) have been shown to internalize into 

walled cells, lending credence to their potential application as protein carriers in plants 

[8,16-18]. Why and how ENMs, defined as constructs synthesized with at least 1 dimension 

below 100 nm, are seemingly able to pass the cell wall remains an unanswered question 

in plant nanotechnology. Hypotheses put forward include optimized charge density, high 

stiffness, and small (<10 nm) size of ENMs.

Regardless of mechanism, recent research suggests that ENMs or other chemical approaches 

may play a role in developing generalizable strategies for protein delivery to plant 

cells. Research on nanoparticle-mediated delivery of plasmid DNA [3,4,19] and RNA 

[20], biomolecules many-fold larger than proteins in molecular weight, serve to motivate 

intensified efforts for protein delivery. While recent publications have shown the delivery 

of pDNA to plant cells for gene expression using a variety of nanocarriers, expression has 

been shown to be sporadic, with efficiencies lower than with biotic delivery methods such 

as Agrobacterium [21]. Thus, nanoscientists should consider whether gene delivery offers 

the highest phenotypic effect and whether nanoparticles may offer a practical solution. In 

this opinion, we discuss the barriers of the cell wall, cellular entry, and endosomal escape, 

and what chemical and nanoengineering strategies have been attempted or could aid in plant 

protein delivery.

Barriers to plant protein delivery

The plant cell wall complicates design and analysis of protein delivery

To effectively deliver biomacromolecules into a walled plant cell, the cargo and carrier must 

bypass two main key barriers: the plant cell wall, and the plasma membrane. Plant cells are 
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surrounded by an extensive network of biopolymers knitted together to form a multilamellar 

matrix hydrogel cell wall that restricts access to the plasma membrane [22]. The size 

exclusion limit (SEL) of the cell wall has been probed using a number of methods including 

gas adsorption [23], topographical EM studies [24,25], and uptake of dye-labeled nanoscale 

materials of defined sizes [26,27]. Although uptake of some large 100-nm ENMs in walled 

plant cells has been reported [28,29], evidence suggests a sub-10 nm or 100-kDa protein 

SEL. Diffusion remains the widely accepted mechanism through which ENMs are purported 

to bypass the cell wall to access the plasma membrane, although it remains unclear how 

ENMs near or above the SEL of the cell wall access the symplast. However, without greater 

evidence, we cannot discount biotransformation and subsequent in situ particle genesis 

or injurious application methods such as tissue infiltration [30,31] as being the source of 

detected ENMs above the SEL.

A major impediment to overcoming the cell wall challenge is the over-reliance on 

diffraction-limited fluorescence microscopy in assessing exogenous particle internalization. 

The presence of the thin symplast pressed against the perimeter of the plant cell, coupled 

with the diffraction limit of visible light (~200-nm), makes it difficult to distinguish whether 

fluorescent signals originate from the symplastic or apoplastic region of the plant cell. 

In addition, fluorescent labels often overlap with emission wavelengths of endogenous 

plant autofluorescence. It is possible to address this via plasmolysis induction [26,32,33] 

to increase cytosolic visualization or by using super-resolution microscopy, although both 

approaches have their drawbacks—-plasmolysis induces drastic morphological changes in 

cells, and super-resolution microscopy requires specialized equipment and expertise. Going 

forward, we encourage readers to exercise discretion with conclusions on uptake drawn from 

diffraction-limited imaging in walled cells without secondary validation.

Membrane penetration and endosomal escape

On passing the cell wall, nanomaterials have been suggested to enter the symplast via 

a variety of mechanisms including endocytosis [34], plasmodesmata [35], or physical 

disruption [36] (Figure 1). However, most of these studies have been performed in 

suspension cells, which do not recapitulate tissue structure and have been reported to possess 

half-plasmodesmata that expose the cell membrane to the extracellular environment [37]. 

The most investigated mechanism for cellular uptake of ENMs is endocytosis. Clathrin-

mediated endocytosis has been identified as the dominant endocytic process in plant cells 

and appears to operate analogously to animal cells [38]. Most examples of ENM uptake 

in walled plant cells do not leverage specific pro-endocytic motifs. Instead, studies take 

advantage of the natural tendency of ENMs to trigger endocytosis; thus, it remains unclear 

whether ENM functionalization with a cell-penetrating domain would enhance their cellular 

entry in plants.

On endocytosis, delivered materials must escape the endosome. Without a method to 

escape the endosome, endocytosed materials are sequestered into lytic organelles such 

as the central vacuole or lysosomes and are consequently destroyed [39]. In mammalian 

systems, polycationic polymers, cell-penetrating peptides (CPPs), or other chemical agents 

delivered in concert with the cargo have proven successful for cytosolic delivery [40-42]. 

Wang et al. Page 3

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite practical successes, the mechanism through which polycation-mediated endosomal 

disruption occurs is still under debate [43,44], and it remains unclear if endosome-disrupting 

tools can be translated for use in plant systems. However, some reports of cytosolic delivery 

of nucleic acids and proteins using polycation-rich polymers exist in plants [9,19]. For 

example, recent work by Liu et al. used a commercially available cationic lipid formulation 

to deliver Cas9 RNP to Nicotiana protoplasts [45].

In considering the barriers for protein delivery in plant cells, we hypothesize the 

requirements for designing efficient protein delivery systems. First, the protein and carriers 

in toto should be near or smaller than the SEL of the cell wall, which strictly limits 

the choice of nanocarrier. Second, the protein must be imparted by its carrier with pro-

internalization motifs or another mechanism of cell membrane bypass. Thankfully, many 

ENMs such as single-walled carbon nanotubes (SWNTs) and quantum dots appear to elicit 

endocytosis [46,47], or carriers can be functionalized with pro-endocytic peptide motifs, 

such as HIV-1–derived Tat peptide [48]. Finally, pro-endosomolytic moieties that allow 

endocytosed material to escape degradation and enter the cytosol should be present. A 

third barrier that we do not fully elaborate on exists for intact plant tissues and organs: 

the cuticle. In a laboratory setting, the hydrophobic cuticular barrier is often overcome via 

the application of the carrier/bio-molecule solution. Recent examples have used vacuum 

infiltration [49], syringe infiltration [20], and foliar spray [50], with or without nonionic 

surfactants such as Silwet L-77, to deliver the active solution to plant cells. Given that these 

solutions largely involve formulation rather than ENM design, we will not further digress. 

Clearly, many variables in not just chemical strategies but also protocols must be considered 

in developing ENM strategies for protein delivery. In the next section, we will elaborate 

on biochemical and nanocarrier approaches that may aid in developing in planta protein 

delivery systems.

Chemistries for plant cellular delivery

The design of an efficacious protein delivery system for plants remains challenging due 

to variability in protein sizes, protein structural sensitivity to chemical and mechanical 

perturbations, and the lack of amplified expression that could result from the delivery of 

DNA or RNA vectors, with the relative impact of each of these considerations being highly 

dependent on the protein of interest, the carrier, and the desired functional outcome. Despite 

these complexities, we can consider carrier systems for protein delivery and then separately 

delve into how proteins might be conjugated to said carriers. Examples of nonbiolistic, 

mechano-/electro-poration, or protoplast-based methods of protein delivery in plants are 

scant in literature (Table 1). The Numata group has been prolific in using synthetic CPPs for 

protein delivery in plants [9,10,19,36,51]. In this study, peptides bearing a protein-binding 

domain and a CPP domain are complexed with the cargo protein. However, given that 

carrier–protein complexes measure ~200-nm in radius, their ability to actually bypass the 

cell wall intact is difficult to explain [9]. One plausible explanation could be activity of 

noncomplexed pro-endocytotic peptides causing uptake of nonbound proteins. Such an 

effect has been observed in mammalian cells where coincubation with free CPPs enhances 

uptake and endosomal escape [44]. Another recent development was by Santana et al. where 

inorganic quantum dots were targeted to the chloroplast using an engineered chloroplast 
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transduction peptide [8]. In this case, the size of the carrier in toto was over 24-nm 

in diameter, suggesting some possible polydispersity in the cell wall SEL while also 

demonstrating the feasibility of transiting proteinaceous materials using a hard ENM. As 

their final design lacks an explicit mechanism for endocytosis or endosomal rupture, we 

cannot say what roles the nanocarrier or peptide play in their successful delivery.

Given our described requirements for ENM-mediated protein delivery, the list of eligible 

candidates appears short. Where delivery of efficacious quantities of proteins and delivery 

moieties requires a particle of considerable size to maximize loading, the SEL of the cell 

wall pushes design toward the smaller end of nanoscale. In this regard, we hypothesize that 

high aspect ratio nanomaterials, where one dimension is much longer than other dimensions, 

may provide the necessary surface area for protein conjugation and chemical modification 

and be plausibly wall-penetrant if one dimension remains considerably smaller than the 

cell wall SEL. The premier 1-D nanomaterial, SWNTs, possesses a length on the order of 

100–1000 nm and a nonfunctionalized diameter of only 1-nm. SWNTs have previously been 

used for nucleic acid delivery in walled plant cells [3,4] and protein delivery in mammalian 

systems. Results from Zubkovs et al. demonstrate several protein-conjugation techniques 

yielding protein-SWNT conjugates that limit perturbations to the cargo’s structure. In this 

case, ssDNA is used to both solubilize the SWNT and anchor proteins to the surface using 

alkyne click chemistry [52]. However, SWNTs are not the only viable 1-D nanomaterial; 

protein delivery to mammalian cells has been demonstrated using inorganic nanowires of 

similar dimensions to SWNT [53]. Given the diversity of materials that can be fashioned 

with high aspect ratios, the number of viable protein nanocarriers becomes much broader 

[54]. With a diversity of untested carriers, further complicating an ENM approach is the 

development of chemistries to conjugate proteins and other functional motifs to the ENM 

vehicle. In the next section, we elaborate on considerations for conjugation strategies.

Sticking it to the particle

Size variability is significant across proteins of interest for delivery, with the most common 

fluorescent reporter, GFP, being much smaller than the most common gene editing nuclease, 

spCas9 RNP (Figure 2). As proteins alone already approach the cell wall SEL, the addition 

of a carrier usually increases the complex size beyond the SEL. Furthermore, the role 

of size on intracellular delivery efficiency remains unclear. For example, Martin-Ortigosa 

et al. show that BSA undergoes release from mesoporous silica nanoparticle (MSN) 

carriers 3.5x more effectively than GFP despite being twice as large [55]. This points to 

the importance of understanding and modulating both protein-nanocarrier interactions and 

protein–nanocarrier–host interactions.

Association of a protein with its carrier can be accomplished through covalent 

bioconjugation or nonspecific adsorption. While nonspecific loading has been the dominant 

method used in the literature for carrier-mediated protein delivery to plants, the advantages 

that site-specific bioconjugation have brought to mammalian biology for decades [56] allude 

to their potential implementation in plants. Bioconjugation chemistry describes a class of 

fast, high–specificity reactions that site-specifically link biomolecules and has been widely 

used for covalent and noncovalent delivery strategies. Bioconjugates can be engineered 

Wang et al. Page 5

Curr Opin Plant Biol. Author manuscript; available in PMC 2023 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with responsive chemical mechanisms for inducible release on reaching the intracellular 

target. Protein bioconjugation chemistries have found promise for enhancing drug efficacy, 

delivery, and specificity in mammals [42,56-58], although adaptations of these chemistries 

for use in plants have not been widely explored.

In contrast to site-specific conjugation, nonspecific loading strategies rely singularly on 

nonspecific association such as electrostatics (e.g., PEI-DNA) or local concentration 

gradients (e.g., diffusion into an MSN pore). A notable caveat is that electrostatic grafting 

strategies onto nanoparticles used for nucleic acid delivery are not generalizable to proteins. 

Because strongly cationic environments can cause protein inactivation, targeted conjugation 

chemistries, encapsulation, or gentler adsorptive methods, as in the case of MSNs, are 

preferred for protein delivery. That said, efforts have been made to temper the high charge of 

cationic polymers by modification with hydrophobic moieties or through fluorination [59]. 

Finally, the reliance on weaker interactions for nonspecific loading may not by default a 

disadvantage, however, as a weaker interaction with the carrier could translate to effective 

release of protein cargo into the cytosol.

Alternatives to ENM carriers

Designing nanocarrier-based protein delivery systems for plants presents a major 

engineering challenge that may require alternatives to those presented previously. Direct 

covalent or noncovalent modification of proteins with cell-penetrating materials could be 

a viable alternative. In 2020, Tai et al. used a cholesterol–Coomassie dye conjugate to 

enable endocytosis-independent cytosolic delivery of proteins in mammalian tissue culture 

[60]. The result is a generalizable strategy that noncovalently links a small molecular 

carrier to the protein, generating small, penetrating particles. Other efforts have included 

covalent modification of the protein itself with larger molecules such as CPPs [9,10,51] 

or endosomolytic polymers [61]. Others have proposed comprehensive protein engineering 

strategies such as supercharging or protein resurfacing [62]. However, these approaches are 

neither trivial nor generalizable. As an additional question for alternative delivery systems, it 

has not been shown in literature whether or not small molecule endo-osmolytic agents such 

as chloroquine [63] are effective in plant cells.

Finally, several strategies exist based on enzymatic or mechanical disruption to forcibly 

overcome the cell wall—such is the logos for protoplast transfection and biolistic 

bombardment. Protoplast transfection of functional proteins has been widely demonstrated 

(Table 1), but the limitations of callus regeneration often overshadow the benefits of protein 

delivery. To date, the biolistic method has been adapted for delivery of protein across the 

plant cell wall and cell membrane (Table 1) via dehydration of the protein onto 0.6-μm gold 

particles via lyophilization or air-drying [11]. While similar in practice to biolistic DNA 

loading, which is widely used, the disadvantage of loading proteins by dehydration is the 

potential for protein functional deactivation via irreversible disruption of secondary structure

—thus the amount of active loaded protein may be low. In addition, the bombardment 

method itself contains inherent drawbacks, namely tissue damage. In comparison, studies 

of NPs in plants highlight growth benefits, enhanced immunity but also phytotoxicity 

and reduced biomass [64,65]. The benefit or harm of NPs in plants remains inconclusive 
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but promising, particularly for short-term use or in applications requiring selection across 

generations which would reduce or eliminate NP prevalence in the final product.

Concluding remarks

The ability to deliver proteins into walled plant cells could enable diverse plant 

biotechnology applications, particularly for CRISPR Cas-9-based genome editing 

applications. In plants, most Cas-9 strategies rely on delivery of plasmids coding for Cas-9 

and gRNA using Agrobacterium tumefaciens or gene gun bombardment [66]. Plasmid 

delivery techniques are hampered by both species specificity and by their potential to 

incorporate the delivered gene into the host plant genome which may generate off-target 

effects or trigger regulatory oversight [67]. Conversely, delivery of CRISPR Cas-9 proteins 

is DNA-free and thus could enable generation of edited plants without risking transgene 

integration. Recent strides in DNA-free editing have been made by adapting already 

existing techniques for protein delivery; however, these approaches often require manual 

selection of hundreds of in vitro transformants and may not be applicable to species with 

less robust tissue culture protocols or where regeneration remains elusive. A promising 

direction is in the characterization of morphogenic transcription factors toward generating 

edited explants in situ, simplifying regeneration [68]. Such technological advancements, 

when co-delivered with editing nucleases, exemplifies a system with untapped potential for 

nanoparticle-mediated protein delivery applications.

To advance nanoparticle-mediated protein delivery to plants in such a way that moves 

toward generalizable platforms for the many applications in agriculture, biotechnology, 

and academic research, we must engineer complex systems that address a multitude of 

factors including protein conjugation and release, in planta translocation, endosomal escape, 

subcellular localization, and transformant selection. We emphasize the need for more 

proof-of-concept studies in reduced biological representations of a whole plant–such as 

walled suspension cells, leaves, or regenerable tissue in model species such as Arabidopsis 
or Nicotiana benthamiana—that provide a simple system in which to test novel delivery 

strategies or reproduce results across numerous laboratories. Furthermore, the development 

of more robust microscopic methods (apart from diffraction-limited fluorescence imaging) 

for reproducibly assaying nanoparticle internalization and localization within plant cells 

is an area with great unmet need. We also point out that testing pre-existing or novel 

conjugation chemistries for a wide array of proteins should be pursued in parallel to testing 

in plant cells, especially as this work would have applications in other fields besides plant 

science. We hypothesize that a focus on nanomaterial conjugation of smaller proteins with 

less functional reliance on secondary structure (such as intrinsically disordered peptides) 

could improve chances of success on translation to in planta studies, due to the smaller 

net carrier size and reduced need to maintain a precise protein fold during conjugation and 

delivery.
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Figure 1. 
Overview of mechanisms of nanoparticle (red circles) penetration through cell walls and 

cell membranes. Nanomaterials might bypass the cell wall by diffusion, by entering through 

existing plasmodesmata transport channels, or by harnessing chemical or physical disruption 

strategies to increase the wall size exclusion limit [35,36,86,87]. Penetrating cell membranes 

may similarly occur by utilizing the plasmodesmata, inducing endocytosis, or transient or 

permanent physical disruption of the membrane [34-36]. Endosomal escape must occur after 

endocytosis to evade sequestration into lytic organelles.
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Figure 2. 
Schematic showing common cargoes and a representative but not exhaustive list of 

nanoscale materials for delivery to plant cells that have been demonstrated to enter walled 

plant cells. As evidenced by the hydrodynamic radius of the represented biomolecules 

[88-91], cargoes vary widely in Stokes radius and molecular weight. The size exclusion limit 

of the plant cell wall lies around 10 nm, suggesting constructs below 10 nm are unlikely 

to diffuse through cell wall pores. Nevertheless, several nanoscale materials with smallest 

dimensions both below and above the SEL have been demonstrated to enter walled plant 

cells [3,4,13,16,19,28,92,93].
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