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DIFFRACTION SCATTERING AND VECTOR MESON RESONANCES
~ David Atkinson
Lawrence Radiation Laboratory

University of California
Berkeley, California

and
A, P. Contogoui‘isJr

Laboratoire de Physique Thégrique et Hautes Energies,
Orsay (Seire-et-Oise), France

March 17, 1967

- ABSTRACT

It is shown that, under reasonable assumptions about in-
elasticiﬂy and agsymptotic behavior, the usual diffraction picture
combined with the ﬁ/D approach to  n-v scattering leads to a
singular integral equation. The authors' formalism is then used
to show that, in conformity with the nearby singularities philosophy,
a constant leftuhand discontinuity is by itself incapable of

producing resonances in the GeV region. Next, a model for the
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v‘éfeétioﬁ of véctor fesonances, which combines.a long-range force .
(defined by exchange of a éutdff.véctor meson ) pius a short-range_
force (compatible with diffraction requirements), ;g introduced.
The_effect'Of.the short-range force.on the self-consistent
(bootstrap) solutions is investigated in an approximate scheme.
For a self-consistent solution Qiﬁh the correct p-meson mass,
which is fdund to exist, inclusion of the short-range force is
shown tq decrease (by a factor ofv2) the self-consistent width

(which is nevertheless still greater than the experimental value).



. _UCRL—'1736LL._V_
L | |

I. INTRODUCTION

Most of the low-energy calcﬁlations on strongly interacting .
systems are based on the assumption that the scatte;ing in thé
GeV region is determined by low-energy singularities and that the
effects of the high;enérgy region are completely unimportant. This
assumption is fully justified in pion-nucleon scaftering, notably
below 500 MeV, where detailed quantitative agreement between dis-
persion calculations and experiment has béen found.l It is also
Justified in nuclieon-nucleon scattering, where reasonable models

account for all the important experimental features.2
No similarvagreement can be claimed for pion-pion scattering—?
, invparticulér for a self-consistent deterhination of the parameters

of the p- meson. For this system, it is quité possible that the
effécts of the.high-energy region are less 1,1nim;por‘c,za,nt.5_1L Further-
ﬁore, in a determination of the parameters of the p, the mass

of which is rather high, the features of the amplitude in a region
which starts at 2 or 3 GeV are, perhaps, of some importance.

The purpose of this work is to give a hint concerning
the.effeét of the high-energy region on the features of the vector
meson resonances. For this,vthe experimentally well-established
picture of diffraction scattering is combined with the usual .N/D
approach employéd in self—consistent‘calculations of pion-pion

>

scattering. This leads to a marginally sihgular integral equation



‘ which caﬁ be solved by an applicéﬁion of ﬁethods developed 5y
‘the_authors élsewhere.

In Section 2 it is showﬁ that, under éertain‘assumptions,3
bofh Regge behavior and the conventioﬁai diffraction.picture'(with '
npnshrinking‘forﬁard peak) lead to marginally Singular N/D
equations. In'Sec. % the possibility that the distant singularities
(shortFrange forées) produce'resonances in.the low-energy region‘is
studied separately. For this_thé basic integral equation fofmulated
inFSec. é is applied-fo a model which consists of a constaﬁt left-
hand discontinuity (and constant ineiasticity). .This model is
compatible with the requirements of unitarity and of the diffraction
picture, but cpmpletely neglects‘the structure of the nearby
singularities; as.a result it is known to be incapable of‘generatingv
resonances iﬁ the GeV region. Section 4 contains the formulation
of‘a more realistic ﬁodel whose left-hand discontinuity combines a
long;range part determined by vector exchange with a short-range
part compétible withlthe requirements of diffraction scattering.
‘Finally, in Sec. 5, the results of an approximate numerical
calculation involving the model of Sec. L are presented and compared
'ﬁith.the solutions of the conventional vector-meson bootstrap
(withoutvshort-range part). The conclusion is that the shdrt-rangé-
part tends to decrease significantly the coupling necessary to
produce a resonance, affecting its width to a lesser exteﬁt; ta '

reduce the self-consistent mass; and, for low cutoffs, to change
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the self-consistent width in tﬁe correct direction. In partiquiar,
the width of the.self-consistént solution which co;re8ponds to
m,p2 ¥ 30 mﬂ2 "is reduced byva factor of 2; |

In Appendix A the model of Sec. % is reconsidéred in the
approximafion of”contfacting to zefo the gap bétwéeﬁ left- and
right-hand cﬁts; this approximation has thé advéntage of pro-
viding explicit and relatively simple solutions. Again, it is
concluded that a featureless left-hand discontinuity and in-
elasticity are incapable of producing acceptable resonances.
Finally, the contracted-gap~case, certain features of the solutions,
and in particular the positiqns of the zeros of the denominator

function, are studied in Appendix B.
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1iI;  FbRMUZATION OF THE BASIC EQUATIONS

Consider the elastic scattering of two pseudosqalar.partiéles

‘of mass unity, and assume that the partial P4wéve.[émplitudé :Al<v)

admits the usual decomposition,
A (v) = N(O)/D(v) 5 , - (2.1)

v 1is the square of the center-of-mass momentum. It is convenient
to consider once subtracted representation for N and D, with the
subtraction point at v = 0. Due to the usual threshold properties,

N(0) = 0, so the equations are

N(v) = ¥ v dy? "S"’:)' D(v") ,  (2.2)
T v‘(v - v)
© +') R 1 vt
D(v) = 1 - f. [- ! p(v') 1(V ) N(v') (2.3)

JO vi(v' - v)

o - Here o(-v) 1is the discontinuity along the left-hand cut

N

: . 1
-~ <yL- @, o(v) = [v/v + 1]2 1is the usual phase-space factor,
and Rl(v) is the inelasticity of the P wave;? thus the unitarity

condition reads

Im Al(v) = p(v) Rl(v)lAl(v)l'2 O0Lv<m. (2.4)
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To derive the basic integral equation of the. problem,- one

can substitute (2.2) into (2.3). Then the definitions

v DW= ) o (2)
give.
o) = T+= | Kuu') ofw') £(') (2.6)
(.OL )
where |
[0 e R |
K(w,w )‘ = = dx (x T o) (2.7)

0
Next, assume that, for v - + o, Al(v) becomes purely
imaginary. Equation (2.4) implies

p(v) By (¥) ~ [ImA (W] - (2.8)

According to the Phragmen-Lindelof theorem,8 if
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= o Q. ' Q o Q-
'Al(v) ~ v O(log v) 1 (log log v) 2f--(ldg log: - +log v) n

for v o=,

and

T t T

L o o .
.Al(v) ~ ]yl 0 (10g|v]) 1 (log logl|v]) 2 .-+ (log log-*-log|v|) n

for v » -» ,
and if

|A1(v)| < lae(Tt 'A€)V| , where a = const,

for all complex v and € > O , then % = qb', o =at, e,

a =o' and
n n :

o(-v) »~_'Im Al(v) , for v-oo . - (2.9)

Lest it be felt that these conditions are too restrictive, éne may
prefer simply to assert (2.9). Any N/D» system'for which -
| Im Al(v) had different limits for v - + o. would constitute a
pathology lying outside the‘SCOpe of this paper. |

| It wil} be shown now that all the important modelé of high-
energy élastic scattering imply an Im Al(vj , and hence a of(v) ,
such that the kernel of (2.6) has an unboﬁnded norm, so that (2i6)
is a singular integral equation. For energiesvabpve a few GeV,

N | 1
and momentun transfers [t|2 51 GeV/c , a good parameterization of
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the observed .t4dependen¢e of the scéttéring amplitude :'LslL
N2 2 tof
A 8)[2 = [aG,0)[2 ()

It will be assumed that, as v » » , A(v,t) becomes purely

9

imaginary. Then projection onto the P wave gives

O TR Plé“% VLR ORINON
by ' voe (2.10)

Ofot(v) is the total cross-section, which is taken to be
asymptotically constant. As for b(v) , the width of the

diffraction peak, two cases are of interest:

(i) 1v(v) ~ log v, in accord with the hypothesis of asymptotic
dominance by a Pomeranchuk Regge trajectory of non zero
slope [ar'(t = 0) # 01.

(ii) b(v) ~ const, éorresponding to the conventional diffraction

picture, or to a flat Pomeranchuk trajectory.lo

 Consider first the case (i),when for v — +w :
Im Al(v) ~ (ldg v)-l o(v) Rl(v) ~ log v . (2.11)

The behavior of K(w,0') for large w,w' is controlled by the
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large values of the integrand in (2.7). Thus

(2]

Ko | e Ry NG

With the lower limit of integratioh taken at x = O this givesll

_ o e _ 2 '
K(w,0') N% (Log v 3),. - f)log C) | (2.13)

In view of (2.9), olw) ~ (log w)-l . Thus for large w, w' the
kernel of (2.6) reduces to

 {

1 lo

The norm of this diverges.(iogarithmically) for large w,w' ,

so that (2.6) is a marginally singular integral equation.12
Consider now the case (ii). The above considerations

can be easily geheralized to inciude the asymptotic behavior

Re Al(v) ~ const togethér with Im Al(v) ~ const (for v - w)..‘

- In view of (2.4), (2.7) can be split as follows:

I 20 R0 - m ) I
J (X+(D)(X+a)'). )

0 .
(2.15)

» .
w
Im Al(w) log —

K((.L),w,) = % +

T e =)]?

e

w' - o
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Then use of (2.9) reduces (2.6) to the form

W
. - log — -
1 : 1
Blo) =5 LE At g ) 2 dt K(e,et) $(t)

L o L - (2.16)
where . . : : |
FE e e
: KF(w;w') of (2.16) contains the integral of (2.15) and the difference
olw) - Im.Al(w)-. Thus, with suitable assumptions about the way
Rl(v) and Im Al(v) approach their asymptotic limits, the norm of
Kf(w,w') is finite. Then (2.16) is a standard form solved and

studied in Ref. 6.

Furthermore, the definition (2.17) implies
0g<AgL. ’ _ (2.18)

Then it is knoWn that solutions free of unwanted poles on the
physical sheet of v (ghost-free solutions) can be constructed

6,14-16 (see also Appendix B).

by the N/D approach
The rest of this work is restricted to models of the type (ii),

for which the methods developed in Ref. 6 are directly applicable.
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IIT. INABILITY OF SHORT-RANGE FORCE TO GENERATE’RESONANCES.
As a first application of the foregoing formalism, consider

a model with a constant left-hand discontinuity
0(-v} = Im Al(g)', -0 <y < -wyp | D (3.1)

and constant inelasticity

R = By(e) = Ima ()[a ()77 (3.2)

also, the approximation p(v) =1 will be made. Then, it is asked
whether resonances can be produced in the GeV region. This example,
which neglects basic features of the.low-energy part of the amplitude,
and of the long-range part of the potential, cannot be realistic. for |
low-energy calcﬁlations. Nevertheless,.it can give some idea of the
relative importance of the distant singularities in the generation
of the sfrong-interactiqn resonances.

Before the consideration of the maih'problem it will be shown

that a ghost-free amplitude éan be constructed by direct application

of the N/D equations. Substitution of (2.3) in (2.2) gives
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| N(v) =: B(“/)v*‘ _;i Rl(oo) . dv.' st'z ;'B(.V‘l | : -N\(l?l) : (3.3)
" where
B(V) = ';' ' Cav! 31-“31 - v ' (5')4')
| or; due to (3.1):-
Im A () 5 . | .
B(v) = -TAl——— log(1l + v/w) - | (3.5)

In view of (3.2)
Rl(oo_) Im A (®) < 13

" then Ref. 6 concludes that an iteration solution of (3.3) (Neumann-
Liouville series expansion) exists. On the other hand, it is easy

to see from (3.5). that for any wv,v' > 0,

B(v) >0 , -Bx) = B(v') > 0. | (3.6) |

v - !

 Hence, all the terms in this itefation solution will be positive

and

N(v) > 0, v > 0. “ »- (3.7).
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Then_(z.ﬁj impliés tha£  ;D(v) i§ a Héfglotzfunction, i.e};
CImD(y) <0 Imv'>0 - . _» v‘(s-.‘a)

_énd fhat

b(ﬁ) >0 v<o. - ‘-f (3.9)

Thus D(v) has no zeros on the first sheet of the complex . v plane.

It is concluded that the solution of Egs. (2.2) and (2.3) which

admits a Neuiann—Liouville expansion will be free of ghost poleé.
With (3,1), (3.2), and the approximation p(v) = l,.

, KF(w,w') of (2.16) vanishes; then; with the simplificat;on wp, =1

(ho loss of generality), Eq. (2.16) can be written

- 1 oa ® log %&- .
flw) = 5,+ 'ﬂ—e dw* o o ') 3 _ - (3.10)
1 .

A isvgiven by (2.17). A solution of this equation is
-rh

+'xf :
_/l .

o) -

g I

G’ Rlo,o'n) Iy (3.11)

where R(w,w';A) 1is a resolvent of (3.10). Reference 6 shows that

‘there exists a unique resolvent with a branch point only at X = 1:
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[ g S ﬁagh(ns) -VP;i+is
J cosh™(xs) - N 2 o
B - | (3.12)

(20" - 1)

PO

: Ty} o o L o
Rlww'5n) = (Bw = 1) P a5

Thus, the extra requirement of analyticity at A =V6 (and thus
the existence of a Neumann-Liouville expansion) leads to.the N
unique chbice (3.12); in the ngxt section this choice is further
éﬁpported by certain continuity arguments.

Substitution of (3.12) into (3.11) and use of the identityl7

(o2}
: _ cosh &8 dx _
P—%—+is ( ) = T . X + z P—%+is (x) (z > -1)
1
(3.13)
gives the solution
D(w) = w@?w)
[9] I
.1+ Mmoo | g4 S tanh (xs) P-%+is (20 - 1)
2, cosh2(nS) - A cosh(xs)
(3.1%)

AY

The foregoing conclﬁsions on the absence of ghost zeros
of this solution can be checked directly, at léast for v feal’
and negati#e (according'to Appeﬁdix B this is a particularly relevant
region). -Figure 1 presents plots of (B.ih)-in the interval

1 <w < 700 for various values of the parameter A, subject to the
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-condition (2.18); no ghost zeros of D(-w) are indicated.
An analytic continuation of (3.14) to o <O will be
-necessary in order to look for resdnances., This is best accomplished

by means of the identitys'

P, (-z) _ F it p,(z) - -i- sin(xf) Qé(z)

(+ according as Im z R 0), which gives

'ﬁ(V) =1 - i\nv ds = tanh(xs) P,.. (ev+1)
v . 2 -5+is
o cosh™(xs) - A - :
- )\V dS S ;a.nh(]’fs) Q__];_*_is (2V + l)
o cosh“(xs) - A 2"
| (3.15)

To simplify the first infegrand, use has been made of the symmetry

propertyl5

Py
2

oy (z) = P 1 (z) . | : (3.16)
. Foi v > 0, because of (3.16), the contribution of the second
term of (3.15) is purely imaginary. Hence the condition for a

resonance at v = VR is
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Re B(VR) l - 2}\,1} [m dS _5 tanh(ﬂsl ’ Re Q-~]'—+]._S (2VR +l) = O
cosh (ns) -2 2
0

(3.17)

The functions Re D(v), for A = 0.25, 0.50, 0.75, 0.95 and 1,
‘are plofted in Fig. 2. ‘For 0 <y <50 there are no zeros of

" Re 5(v); with the beginning of the left-hand cut defined by

2 1) this region extends up to 2 GeV.

‘tWO-pion exchange (wL =
Moreover, the weak dependence of Re ﬁkv) on v at large v'
indicates that, probably, there are no zeros at all.

. For A\ close to unity (x‘» 1-) the majorizations of
R(w,w';\) given in Ref. 6 and the asymptotic properties of the
Legendre functions-for large argument indicate that, apart from
logarithmic factors, |

e 1 : -
Im D(v) ~ v, for v - « . | (3.18)

Since a once-subtracted representation for B(v) is used, this
béhavior is in agreement with the conclusions of Olesen and Squires.18
The conclusion of this section is that a constant left—hand
diséontinuity along With a constant inelasticity is incapable of
generating strong-interaction resonances: the real part'of the
corresponding denominator function does not vanish at all, at least

in the GeV region. This conclusion is further strengthened by the

explicit solution of Appendix A (approximation Wy = 0)
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In this model, & constant left-hand discontinuity and
inelasticity'can be considered as an abstraction repfesenting
thé effeéts of £he high-energy region. In this sense it can be
said that for the generation of the known resonances the high-
energy effects are not primarily respdnsible; the resonénces are
generated by the long-range forces. This conclusion is, of courée;
hardly surprising.' However, the model shéws also that an
asymptotically constant left-hand-disconfinuity, which is
compatible with the present experimental information in the
diffraction region, in no way contradicts the basic principles
of dominance by nearby singularities.

On the other hand, althoﬁgh not primarily responsible, the
short-range force may have a significant effect on certain features
of the resonances. This question is taken ﬁp in the next tﬁo

sections.
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Iv. A MODEL COMBINING LONG- AND_SHORT-RANGE FORCES_"V
The next application of the formalism of Sec. 2 is a more
realistic model with a left-hand discontinuity of which the nearby
part is given by the exchange of an elementary vector meson of
mass m (long;rangeAforces);'and.the'diétant part is constant

(short-range force). Thus, for -wy < v < o = - m2/h,l9

> > 2 -
o, (v, n) = YQ— + m8V+ u)@ + 2‘7‘) o(-v - %—) 6wy +v) ,
| = (k1)

where y 1is proportional to the gnp coupling (the width
Ib o = 120 MeV corresponds to 7y <~ '3.8; and for v <_—mlv,

02(-5) =X 6(-v - wl) , with 0 <A <1 .  (k.2)

For simplicity, elastic unitarity [Rl(v) = 1] will be assumed,
the generalization to any asymptotically constant inelasticity
being straightforward.

| One way to combine. (4.1) and (4.2) is indicated in Fig.Aj:
Oi(-v’ me) rises on the left until it reaches the value A.

Correspondingly, ay is the larger zerb of the équation

-2 a-L) - a. o (w)
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Unfortunateiy, in ﬁhis model, which has fhe advahtage of not-
introducing additional pgrameters, calculations with.“
"_6 <A <1 and. 1 £ v <50 gave no indication of zeros of '
Re D(v) for energies w to v =50. It can be said that the
attractive part of the poténtiall ( E'vpositive ;art of left-hand
discontinuity) ié not sufficiently strong to produce physical |
 resonances. Notice.that'increase ofv Y étrengthéns thé
repulsion rather than the <':Lttraction.2-o

Thus.one is led to a comﬁination of (k.1), (4.2) according
to Fig. L, where a sharp cutoff, A, is imposed on the vector

meson contributioﬁ, so that
. 2 o
('Dl = A (—E -l) . ’ ()-l-.)'(')

It can be shown again that for all x,'o <A <1, aghost-
free amplitude exists, because an iteration solution of (3.3)
can be constructed; and B(v) , as defined in (3.4), has been
found to.satisfy (5.6); ot least for b4 <m° < 50 , and A > 10 .
: _The_defect of this model is that it contains two free‘
parameters, A and A. In view of the-smallness_of the real part
of tﬁe forward amplitudes observed in high-energy p-p and x-p

scattering,h it is perhaps reasonable to assume that A 1is close

to unity, say 0.9 <A <1l. However, A remains in principle
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undeterminéd. vStill; important informafion maybbe obtéinéd.by
"éomparing the resuiting solutipns with those from a model with
the same cl(—v, m?) (i.e., the same A) but with A =0. By
keeping the same long-range part one may-expect tohéet some J
infofmation about the effect of thé short—range force on various
. features of the amplitﬁde. | |
| This program will be pursued in_an approximate scheme
defined as follows: With the left-hand discéntinuiﬁy of Fig. L,

suppose that Eq. (2.16) is written in’operator form,
£=f +AKgf H KT, | (4.5)

- where fo stands for i P KS for the sihgular kernel

’ .
log L.

1 w ’ : . ] )
ﬂg ’w' e etc. When the last part (KF ) is neglected{ the

‘solution of (L.5) is given in Sec. 3 and can be written
o ‘ .
£=1f,+ xBefo ; | | (L.6)

R represents the resolvent (3.12). The approximate solution that’
will be used is

N

Bty Ok ) E. (1.7)
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To compare this with the exact solution, note that (4.5)

can be written
f =.(1 +R) £, + (1 + xR)-KF'f . | (L.8)
Reference 6 has shown'that for 0 <A <1, and with the resolvent

(3.12), Eq. (4.8) is Fredholm; hence, for sufficiently small A,

an iteration solution exists. The first iteration gives

£, = (1 + aR) £y . (1 + XR)-KFf?'.

- Use of the well-known identitygo
KS'(l + 2R) = R
- . ‘
shows that fl d}ffers from f to terms of order KIIR'Kle//”KF|I
‘Equations (2.15) and (2.16) show that, for A~ O, KF
‘tends to a finite limit, say KF(O), so that (L4.5) becomes

£y el )

(a Fredholm equation). On the other hand, since R is the

resolvent analytic at A =0, lim AR =0 , and (4.8) reduces.
- - A > 0 |
again to the form (L4.9).
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- Suppose, however;,thét the calculation is carried out,

(1)

not with R , but with another resolvent R ; which contains a

muiﬁiple of the homégeneous solution corrésponding to

f‘;‘fo + %Ks-f. It can»be seen [Eq. (2.11) of ref!.18] that

in the limit A -0, ¥4 £, and ) # 03 hence in this case

(4.9) is not reproduced. Clearly,.on grounds of continuity; it is

" desirable that the limit X - O reproduce the situation that

corresponds to simple exchange of a cutoff vector meson [Eq. (h.95j;
Note that in the limit X - O, with T - f,

solution of (L.7) tends to ta fo * KF(O) f,- Clearly, this is

, the approximate

the first iteration of (L4.9), usually called the "determinantal™
solution;.21 most of the numerical results.of bootstrap calculations
have been obtained with this type of solution.

In terms of the solution D(-w) of (3.14), Eq. (L.7) can be

written
A W - K(w.w') olw! mz) ~
D(~w) =1 + = d! 2 = 2 D(-w') , (4.10)
oy ()

where g(w;m?) is given by (4.1), (4.2) (or Fig. 4), and
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K(co:w ) = n(m _— Q_ 1> 10€[w2 + (w - 1)2]
< > log[a)'é + (o' - 1)2]\‘ v (k.11)

Again, to determine the resonances (v > 0) an analytic

" continuation to w<O0 is needed. For this} let
i

V_w = coshg(i 5t v) = - s_inh2 y

and, for w <0,

N

- o i i
sinh'y = (-w)2, i.e., ¥ = log[(-~w)2 + (-0 + 1)2] .

- -Hence

i ' i in \\
loglw? + (w - 1)?] ={ = +y | tanh ¥

=/

B ‘;'E + log[(-'w)% + (-0 * l)ﬁj‘( :Z)

With thié, one has

T\
e
|._l

fi

o

n ) | .» _;r°° d;)' Re_K(wj)(i) O((D s, l D( |
. wL(me o | |
_ S (h.le)

~w ) )
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A\ 1 | .
2~ )* 20g[(-0)? + (- + 1)7]

log[a)'%?l- W -121) ,  (:23)

and

e -2 [ ey IeEeel) e gy,

Y S G

where

N

- Im K(w,d') =3 % | T :‘“w . (L.15)

The condition, then, for a (narrow) resonance at
| A - »
v=ow o= vp is 'Re D(VR) = 0, and this results in an equation

of the form
-2
r o= vl o) o - (1)
(1) determines the coupling necessary to produce a resonance at

v = vp (input coupling). The self-consistent (bootstrap) solutions

are defined by the condition

U,CIRT.J‘_17V_3’6L‘L S
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and by the relation of the width of the produced resonance (output

width) to the coupling of the exchanged veétor-meson, which is

1+ Y2/ 1 B0)

3/2 d . AN
v e Re D(v)

= 6 (11)
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V. NUMERICAL RESULTS AND DISCUSSION -

‘Numerical calculations of the program of Sec. 4 have been

carried out for several dutoff values in the.range=u5;§/\§i80.

For each A, two cases were compared:

(a) A

(v) A

0 (i.e., without short-range force).

0.95 (i.e., with short-range force).

In Fig. 5, four curves are shown between v, the coupling, and
VR/mi , the resonance position, for the cutoff A = 10. Curve (Ia)
is a plot of Eq. (I), subject to Eq. (I'), that is to say, the re-
lation between the input, or cross-channel céupling, ¥, and the
mass of the produced resénance, this latter being consﬁrained to
be the same as the mass of the input resonance. Curve (Ib) is a.
similar plot, but this time with the short-range force added.
Curve (IIa) is a plot of Eq. (II), so that 71 1is now the (reduced)
width of the outputrresonahce, vR/mi being; as before, fhe self-
consistent resonance position. Curve (iIb)>repeats this with the
shoft-range force added. Finally, Fig. 6 is a similar graph for
£he cutoff A = L4O; for other values of A ‘the results remain
qualitatively ﬁnchanged. |

Several oﬁservations can be méde within this approximate

" model, on the basis of Figs. 5 and 6:

(iii) In general; bootstrap solutions exist both without the

short-range force (intersection of curves Ia and IIa) and
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with the short-range force (intersection of Tb and ITb).

‘For each case (a), (b), the self-consistent mass and width -
as a function of A 1is presented in Fig. 7. For all A the
.addition of the short-range force decreases the self—con;istent
" mass. For large A, the differences Y(a) - Y(b) and
(mp/mﬁ)%a) - (mp/mﬂ)%b) are small, as they should be (most of
the left-hand discontinuity being given by the p—ekchange); but
as A decreases, these diffgrences increase. | | |

It is of particular inferest that a bootstrap solution with
the correct  p-meson mass (mpg = 30) does exist. Here the
short-range attraction_decreases the self—consiétent ﬁidth by a
factor of 2'.(from Y(a) ~ 48 to T(p) ~ 22).

Howéver,-even with a short-range fbrce,-thié width remains
about six times as large as the experimental value. Thus, the
conclusion is that the addiﬁion of the short-range attraction acts
in the correct direction, but is not sufficient to explain the

whole magnitude of the discrepancy.

(i) For é given resonance position VR/mn2 , the addition of
the short;range force decreases_significantly the necessary
input coupling v (cf. curves Ia and Ib)f This.is true
for each cufoff, and is an eminently reasonable state of
affairs: 1if a short-range attréction is preseht, the -

long-range force needed to produce a resonance.at a given
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position is-reduced. Similarly, fqr'a‘given T, the
resonance mass is decreased by the addition of the long-~

range force.

VR? the short-range force increases the

(ii) For & given

' width of the output resonance, hbwever (cf. curves Ila
and IIb).' This is not surprising, for it is known
that what is required to narrow the output resonance,

for a given mass, is the addition of a long-range

repulsion,22 rather than a short-range attraction.

Of course, in this calculation many important contributions -
to the binding force have.been omitted. For example, the exchange
of two bions in relative &S state could be significant, either if
its contribution is strongly_repu].s:‘we,g2 or if it is strongly
attractive, with perhaps a resonance.25 It is even possible that
multi-particle exchange i1s important. Moreover, this simple model
has neglected inelasticity. It is possible that a one—channel_
calculation would reqﬁire a CDD pole, even if the correct in-
elasticity were 1,1vs,e'd,21'L and that a dynamical calculation could only
be done with good accuracy in a many—channel'scheme._ An  SU(3) —
model in which the Kﬁ channel was aiso incorporated suggested
that this channel might not be too importagt;25 but an  SU(6)

model, in which'the nw channel also occurs, would, if it is

to be believed, require a one-channel CDD pole, or equivalently
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-é‘many-channel Np L system.26 In this'connection? it is
interesting'that a galculation by Fuico,‘Shaw, and Wbﬁg27 of
the .p‘meson in the three-channel system (nx, Kﬁ,nﬁw) with
a cutoff, and no- short-range force, gives, as usual, a resonahce
width that.is too large, although the KK aﬁd nw channels
dovéssist in redﬁcing'the p-width. It can be expected that thé'
direction and order of magnitude of the effect of d short-range
force will be the same in a more sophisticated model of this
kind as it was in the work presented here. That is, we may ex-
pect a singular tail to assiéf materially in the narrowing of the
n 'P-Wave resohance.

From'the.mathematical point of view the fact that the
numerical calculations wére done in an approximate scheme may be
vconsidered as unsatisfactory. It would certainly be of interest
to repeat the whole program with the exact sclution of (2.16)

[or (4.5)]; and in view of the preseﬁted formalism and of the
metho@s developed in Ref. 6, which reduce thé singular to a |

Fredholm equation, this can be done in a straightforward manner.
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APPENDIX.A
In this Appendix Eq. (3.10) is solved under the assumptiéns
.(3,1),'(5.2); plus the additional‘approXimation infoived in .
v-eliminating the gap between the left- and right-hand cuts (mL = 0).
This simplification, alonngith (3.1) and (3.2), can be
characterized as a high-energy aﬁproximation. Such a situation
is even-more unrealistic than that éf Sec. 3; however, insofar as
one 1is concerned with the effects of the distant parts of the
discontinuities on the resonance region, and because of the possibility
of obtaining explicit and relatively simple solutions; its study is,
perhaps, of some interest.
A disadvantage of this treatment is that;'by replacing
w = 1 by W = 0, the mass scale has been lost. Thus, it is
necessary to subtract the N and D equations at some point
Vo= vy = Wy (ﬁot the nérmal threshold), at which D(v) can be

normalized to unity; the value of W reintroduces a mass-scale.

With
R, (@) N(-wy) = R ’ _ o (A1)

the integrai equation becomes:

| log(w/w,) ™ :
p(0) = e 2 0T A gy 108(0TU) 4y
) v K 0 e JO ‘ )

: (A.2
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In operator notation this can be written
A : : '
L5 Kf, (a.3)

where

a = 1 é —~.a 1og(w/wo) K_;>\log§w'{w!
17" w - W 277w - W = et - w

Then; defining f., f

10 T BY
£ = a. +M Kr for 1-1,2 (A.4)
i 172 M =t s | s
one has
£ o= £ +f,. | - (a.5)

The functions f,; are solutions of (A.4), which can be expressed

in the BHrm

fi =a;, + Ma; , { (A}6)

where R is a resolvent of the kernel 2£§ K, satisfying
i

R = =K+ =5 KR . : (A.7)
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- It was shown in Ref. 6 that R 'existé_but is not unique;'it has
a two-parameter manifold. However, if the solution is required
to have no singularity at A = 0, and thus to admit a.perturbation
expansion in powers. of A, a unique resolvent is singled out,
which has a branch point only at A = 1 (see also Appendix B).

This resolvent is

1 sinh [So log(w’/w)]

(A1 - A)]

R(w:(""‘;}\) = g ) (A.8)

W' - W

" where

i
2

Log[(-2)F + (1 - 0BT,

0]
One might solve the two equations (A.L) by using the resolvent

with 0< S, <3 for 0<A<1l.

(A.8). Tofind -fl(w) it is necessary to evaluate (A.6) for i =1

by pérforming the integral explicitly. The result is

fl(w) = ___l~_; C?Sh[so log(w/wo)] k ".. " (A.9)

OJ-Q)O

The equation for fz(w) is trivial, since

.aa(w) = % K(w,wo) , (A.10)
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so that by comparing (A.4) for i =2 with (A.7) one has immediately
fé(w)_ = arn R(w,mogx) . ' o - (A.11)

Finally, by (A.5), one has the solution

D) = (- ) £(w)

" 1. -

= ,COSh[SO log(w/wo)] +'3 31nh[SO log(w/go)] s (A.12)

. where
| }
g = A1 -2)]
: a
Substituting w = - v, one has, for v real and positive ( = physical

regiQn),the following real and imaginary parts:

v 1 . vyq
Re D(v) = cos(nso) [cosh(SO log oy ) + 5 51nh(SO log wo)] s
N s L . v v 1 v v
Im D(v) = s1n(nSO) [81nh(So log ™ ) + 3 cosh(So log wo)] .
(A.13)

Now, the condition for a resonance at v = v is

Re D(VR) =0, i.e.,

tanh(SO log(vR/wO) = -B. i ‘ (A.1L)



© UCRL-17364

34
AS VR changes from zero.to'infinity'the left-hand'side'progresseé
monotonically from -1 to +l. Accordingly, if |B| < 1 there
is one, and only one solution of (A.14), while if [B|-> 1 there

are no solutions. 1In the former case the coupling (or, equivalently;

the width) of the resonance is

‘%E. - 3 Inm D(V}
T =

v a
0 3, Be D(v)

0 arc sin A2

' 1
E 2
- -S-i tan(xS,) = (1 A Q in . (A.15)

. v. + 1 J
In the first equality of (A.15) the phase-space factor <:7;l~———;> has

.been replaced by unity. Notice that the subtraction point, and

(A.)O,
the subtraction cohstant; N(-wo), (or equivalently B) have
disappéared, and (A.lf) is a simple equation invoiving only A and
the width ég/hﬁ.

Hence, in the approximation wL

= 0, and provided that |B| <1,
a constant 1.h. discontinuity is capable of producing a resonance

- at some point v = v_ satisfying (A.1L4). However, one can see

R
' from (A.l5) that for all A, 0 < A < 1, the corresponding width

is exceedingly large (gg/hn > 3y compare, for examplé, with -the ex-
perimental value for the width of o - 2x: gpnf/hn ~ 0.6). Such a

wide resonance can hardly produce any of the usual effects on the

cross-section of the corresponding process (and hardly justifies
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‘the use of formulas like (A.15), which are meaningful only for
narrow'resonances). Thus it cannot be considered acceptable.

To find solutions of the equation

- - gg,tmﬂnﬂﬂ

' corresponding to gz/hn >~ 1 one needs SO outside the interval

0< 8y < 1. As the first Riemann sheet of the A-plane corresponds
to -3 < 8. <1 this means that one has to go to higher A-sheets.
On the higher sheets branch points exist at both A = O and A = 1
(see Appendix B); moreover, the continuation of a solution onto a
higher sheet is not necessarily a solution of the original equation,
because the integral in (A.2) will no longer cohverge. The continued
sélution corresponds to a higher CDD class.lu Thus, in fine, there

. 18 no resonance with acceptable width generated by a featureless,

constant left—hand discontinuity.
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~ APPENDIX B
The purpose of this Appendix is twofold: First, to present
-the sheet éfruqture‘in A of the resolvent of Appendix A [Eq. (A.8)];
.sécond, to study in certain §implé exémples (corresponding to w = O).
. the zeros of the denominator fuhction. As the approximation W = 0
leads to relatively simple explicit solutions having a number of
~£eéturés'in common with the exact bnes, the conclusions are expected
to pfovidevuseful insight.
To find the structure of (A.8) it is convenient to map the
infinity of Riemann shee%s in A onto the complex plane of ancther

-appropriate variable w defined by
A 5 o |
A = cos™(nw). : : (B.1)

Under this mapping,

| R(w,w*jx) _ 2 sinh[(% - w) log 5_] ) (3.2)
Con(w - w') sin(2 nw)

This is a meromorphic function of -w; its poles correspond to branch

points in A and appear at

w = m, m = 0, t1 .1, i% Lot . (B.3)
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.‘Thus, the various. sheets of - A are mapped‘onto parallel sﬁrips
of the w-plane (Fig. 8).
. _i_ : +

The point A = O corresponds to m = ¥ 3, _.'% , . In

particular w = 1 does not lead to a singularity of (B.2); and

as the first sheet of A corresponds 'to O<Re w< 1 it is con-
cluded that (B.2) has no singularit&.aﬁv A= O‘ on the first sheef;
However,‘on higher sheets A = O 1s a branch point;' |
Sheet IT is defined to be the sheet connected to shéet T
across the cut l < A<« and maps onto the strip 1< Ré w < % .

Here there are branch points.at both A =0 (cut - « <A <0)

and - AN = 1 (cut 1<A<ow), and this is true for all higher
sheets. It follows that a double circuit around A = 1 which
does not enclose A = 0 (Cl of Fig. 8) brings one back onto

sheet I; however; circuits enclosing A =0 and A =1 (Cngf Fig. 8)
lead into higher sheets. Notice the similarities with the sheet-
structure of the exact resolvent (for"wL ;!‘O):15 as in that case,
the branch>points may be said to behave individually like sQuarg
roots but together like a logarithm.

Ny Consider nowvthe zeros of D(v)’ corresponding to the
resolvent (B.2), and téke (for simpliclﬁy) N(—wo) = 0. Then Eq. (A.12)
:reduces to ' ‘ | |

7 .

D(-w) = cosh(s, mégg) . ()
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Clearly, the-thsical—sheet of w is
-t < argw < w 1 : (B.5)

and cbrresponds to 0 < arg v < 21.

Supppse now that A\  varies over real values. At first
- o< A<O0O corresponds to w=k + %- +iv, k=0, +1, +2, -,
‘and 0 < v < e (or - o< v<O0). Hence A\ = - sinh2(nv), 8y = - iv ,

and the zeros of (B.4) appear at
w o=y exp[n + 1) %} n = 0, +1, +2, *--, (B.6)

This gives two sets,each of an infinite number of zZerog lying on the
positive réal w-axis; for 0<v< o, the.one set, which corresponds
to n=-1, -2, -3, «++, accumulates at w = O, and the other set
(n=0,1,2, --*) ‘accumilates at ® = o In view of (B.5) these
zeros lie on the physical sheet of the complex v-plane (along the
negative'real. v—axis).

| Next, suppose that A wvaries on its first sheet along
0< A<1l. From Fig. 8 this correspoﬁds to w=real, O0<w<1l.

Now, the zeros of (B.lL) appear at

{en +1) x n=0, t1, £2,.--

W = W, exp -
0 2w - 1
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- For allb_n, and w in O0<w<l1,.
larg w| > = .
Hence, none of these zeros lies on the physical sheet of w (or - v).

' Finally, let A > 1. This corresponds to w = k + iv,

k=0, i, #,-*,and 0<v<o (or - «< vy <O0). Hence

>).
tt

coshe(nv) and the zeros of (B.lL) appear at

w = Wy exp (en + 1) x 2r=1 n=0, £, 2,

S (2v)? + 1

For all v, 0 < v < », this relation gives at least dne pair of
‘complex zeros on the physical sheet of w. Note that the zefos of
eaqh ?air do not appear at complex conjugate positions; in this case
the Riemann-Schwartz reflection symmetry is violated. |

The conclusion ig that for A <0 and A\ >.1' the denominator
function has zeros on the physical sheet of the complex v-plane
which correspond to unwanted poles of the amplitude (ghos£s).
However, for O % A < 1 these zeros disappear from the physical
‘sheet,"

This conclusion can be further strengthened by similar analysis

of a different resolvent. E.g.,

N
p  sin(alog 3

R(l)(w,w;;x) = ‘
- 2r (M - 1))

o

I
w' - w (w'w)?
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‘where _ o

1 1 1
= log[® + (x - 1)%]

qO =
is one of the resolvents of (A.2) having a branch poiﬁt at A\ = O.6
Here,for - o < X <0, D(v) has at least one complex pair of ZETos

6n the first sﬁeét of D (violatipg the.Riemann-Schwaré éymmetry)j
and for A > 1 it has a double infinity of zeros aloﬁg mo< v < 0.
However, again for - 0 < A <>l, no zeros appear on the.physical-sheet
of wv. |

In view of these examples‘aﬁd of more general theorems on the
existence of ghost-free solutions of partial-wave dispersion relations,
one presumes that only the case 0 < A <1 (considered in Secs..2-5)

can possibly lead to solutions of physical interest.
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 FIGURE CAPTIONS

The function D(v), given by Eq. (3.14), for real negative
v. | C

The function Re ﬁ(f);vgiven by Eq. (3.17), for.real \
positive wv. h o

One possible way to combine 1ong4 and short-range forces;
however, the attraction is_insufficient to generate resonanées'
at .v$50.

Left-hand discontinuity in a realistic model combining
long- and short-range forces.

Bootstrap solutions in the model of Fig. L4 for a cutoff

A = 10. The curves I representvKi (1) of Sec. suﬁject

to the condition (I'); the curves II represent Eq. (II).

_ The case (a) corresponds to absence of short-range force;

Fig. 1.
Fig. 2.
Fig. 3.
Fig. k.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

the case (b) to presence of short-range force.

The same as in Fig. 5 for A = LO.

The selffconsistent,mass-ratiq mp/mﬁ and coupling 7y as
functions of the cut-off A . As always, the case (a)

corresponds to absence of short-range force and the case (b)

to presence of short-range force. Experimental values:

2
(m/m )" = 30, v-=53.8.

Appropriate mapping (defined by (B.1)) of the resolvent

of Eq. (A.8), which determines its structure in .
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