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The role of learning in threat imminence and defensive
behaviors
Michael S Fanselow1,2

Life threatening situations as urgent as defending against a

predator precludes the use of slow trial and error strategies.

Natural selection has led to the evolution of a behavioral system

that has three critical elements. (1) When it is activated it limits

the behaviors available to the organism to a set of prewired

responses that have proven over phylogeny to be effective at

defense. (2) A rapid learning system, called Pavlovian fear

conditioning, that has the ability to immediately identify threats

and promote prewired defensive behaviors. (3) That learning

system has the ability to integrate several informational

dimensions to determine threat imminence and this allows the

organism to match the most effective defensive behavior to the

current situation. The adaptive significance of conscious

experiential states is also considered.
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Often, we hear that failure is the best teacher. A stochastic

sequence of successes and failures allows the environ-

ment to select and shape responses [1]. Trial and error

learning allows organisms to eventually maximize their

benefit to cost ratio, a strategy that would be favored by

evolution resulting in neural systems that are capable of

such learning. But there are also situations where the cost

of a single failure is so absolute that trial and error learning

is an evolutionarily unviable option. The most obvious of

these is the threat of predation, where the consequence of

trying out ineffective responses is likely to mean no

future reproductive successes. The central assumption

of this essay is that neural systems evolved that allow

rapid generation of effective defensive behavior upon an

initial experience with a predator. What I wish to consider

here are the relative roles of innate programming and

learning in the operation of this survival circuit.

Bolles equated fear with activation of a defensive behav-

ior system. From this vantage, one of the essential prop-

erties of fear was to constrain the behavioral repertoire of

an animal to its species-specific defense reactions (SSDRs

[2]). This was a critical juncture in the study of fear as it

moved the paradigm from one centered on trial and error

learning via fear-reduction reinforcement to the study of

defensive behavior. SSDRs are prepackaged biologically

programmed responses that could be executed effectively

the first time they were called upon. They were based

entirely on the phylogenetic history of the species and

were minimally shaped by experience [3]. Learning

played little role in the form or topography of the

behavior.

Learning and the recognition of danger
In order to defend you must recognize danger and then

appropriately respond to that danger. Because of the

urgency of defense learning plays little role in shaping

responses to danger. Equally important is when to

respond; for defense to succeed we must be able to

recognize threats the first time they are encountered.

This has led to the general acceptance of the idea that

most fears are innately programmed [4�,5��,6,7]. There

are two lines of evidence for the innate recognition

hypothesis. The first comes from the clinical literature

indicating that phobias are not randomly distributed

between stimuli but rather are far more likely for some

stimuli (e.g., snakes and spiders) than others (e.g., flowers

[8]). The second line of supporting evidence comes from

laboratory studies indicating that rats will freeze upon

their first exposure to potential predators such as cats

[9,10]. While innate recognition of threat would certainly

be an advantage, it would also be a fantastic load on the

genes to encode all threats in all their variations. I believe

that these two lines of evidence for the innate recognition

hypothesis are weak and natural selection has favored a

very different strategy commonly referred to as Pavlovian

fear conditioning. Furthermore, certain features of Pav-

lovian fear conditioning readily account for the two lines

of evidence supporting the innate recognition hypothesis.

The genetic space needed for this specialized form of

learning is far less than accurately encoding all potential

threats. Learning related plasticity should be especially

important in species that are confronted by several dif-

ferent predators [11,12] I will briefly examine an
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alternative explanation of the nonrandom distribution of

phobias and then turn to what I will refer to as the myth of

the first time.

Selective association formation
Mineka embarked on a series of studies initially intended

to investigate innate fears in primates by examining fear

of snakes in rhesus macaques [13��,14]. There were two

distinct populations of macaques in the Wisconsin pri-

mate facility. Some reacted with remarkably intense fear

of both real and toy snakes on the first exposure but others

showed no initial fear reaction. Importantly the animals

reacting to the snakes were all born in the wild. Lab born

monkeys showed no such reaction. She also found that

this fear could be rapidly acquired when a young rhesus

observed an adult showing fear to a snake. Masataka

[15��] also found that wild-born but not lab-born squirrel

monkeys had fear of snakes. However, if the lab-reared

monkeys had early exposure to a diet containing live

insects they showed fear of snakes that was indistinguish-

able from that of wild-born monkeys. If these primates

learned their phobias, might we not expect humans to

have such capacity? Learning through such indirect con-

ditioning trials is obviously a less risky strategy than ‘face-

to-face’ learning with a predator and would be expected

to be selected for via natural selection [12].

In the Mineka studies the rhesus did not have to see the

reaction live; simply viewing another rhesus reacting to a

snake on a TV screen was sufficient. This allowed her to

employ video editing where the observer could watch a

demonstrator that appeared to be reacting to either a

snake or a flower. She discovered that while observational

conditioning readily occurred to a snake there was little

conditioning to flowers [16]. The primate’s fear of snakes

was not hardwired, however there was a distinct bias in

what was learned. This associative bias is an example of a

ubiquitous feature of Pavlovian conditioning brought to

the fore by Garcia’s finding that tastes were readily

associated with illness and sounds with shock but little

associative learning occurred with the alternative combi-

nations [17]. Selective association formation is not limited

to these examples [18�]. Rats more readily associate shock

with tones than lights and this is at least in part caused by

wiring differences between the sensory system and the

amygdala [19,20��]. This selectivity in fear learning easily

accounts for the nonrandom distribution of phobias found

in the clinical literature. It is important to recognize that

the fear learning that occurred in the Mineka studies was

found after a single experience; in general, there is

significant Pavlovian fear conditioning with a single trial

[21].

The myth of the first time
In Pavlovian terminology, an innate fear is the uncondi-

tional reaction (UR) to an unconditional stimulus (US). A

learned fear is the conditional reaction (CR) to the

conditional stimulus (CS). It is important to recognize

that the idea that the CR and the UR are similar was

rejected some time ago [22,23�]. Fear conditioning in rats

with a footshock US is a good example; the jumping and

vocalization that characterizes the UR does not get trans-

ferred to the CS [24,25]. Rather, the clearest behavioral

CR is freezing. While the UR and the CR can be different

behaviors, the development of the CR depends on the

associative relationship between CS and US. Learning

theory outlines a very clear set of comparisons with

specific control conditions that allows one to conclude

that a CR is in fact a CR dependent on experiencing the

CS–US relationship [26,27]. However, there has been

little development of the rules for unequivocally conclud-

ing that a UR is truly a UR. There is a dearth of control

conditions that allows one to say that a response to a

stimulus is innate. Just to be clear, what we are talking

about is the relationship between US and UR (or CS and

CR); the actual topography of both CR and UR is innate.

The typical evidence taken as support for the idea that

the US–UR relationship is unlearned is that the response

is observed the very first time the stimulus is presented.

However, this logic is fatally flawed by what I call themyth
of the first time.

The myth of the first time is that initial reactions to a

novel stimulus are necessarily unlearned. Consider a well-

studied example, electric shock. On the very first expo-

sure to electric shock rats will freeze and defecate. For

many years it was assumed that this meant that these

responses were innate URs to shock. This turns out not to

be the case; several convergent lines of evidence indicate

that they are CRs [21,24,25,28��]. In a single trial, the

context and the shock become associated and these

responses are elicited by the contextual cues that remain

after the shock. The most striking example is what I call

the immediate shock deficit [28��]. If the shock is pre-

sented as soon as the animal is placed in the box no

freezing or defecation occurs after the shock because

there has been no opportunity to associate shock and

context [21,28��]. Shock does not innately provoke fear it

rapidly conditions fear. An analogous situation happens

when a rat is exposed to a cat [29]. If the rat is placed into a

chamber simultaneously with a cat, freezing is not

observed. As with shock, cat presentation must be

delayed.

In the above example with electric shock, freezing is

conditioned to the context [25,28��]. Similar to the bell

and salivation, CS andUS are separable stimuli. However,

often the CS and US are aspects of the same object [30]. A

common example of this is imprinting in birds [31,32]. On

the very first exposure to a moving object the visual

aspects of the object and its movement become associ-

ated. This object then provokes a wide range of behaviors

all of which depend on the initial learning experience.

The very first exposure to a cat may produce the same sort
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of object learning that is found in imprinting. In this case

the object learning results in the many features of a cat

becoming integrated and this associative learning endows

the cat with the ability to produce a fear CR. This

interpretation fits very well with the finding that hippo-

campal lesions, which impair the integration of multiple

features into a unitary whole [33], reduces freezing to cats

just as it does to contexts [34,35].

A remarkably creative series of studies conducted by Kim

provides direct evidence that this mechanism operates

effectively [36��,37]. To study more naturalistic defen-

sive behavior, he built a motorized lego robot that could

surge at a foraging rat. On the very first exposure to

‘robogator’ the rat engaged in a suite of defensive beha-

viors. Clearly, there is no way that natural selection could

have favored innate recognition of this predator. Rather,

the rat had to immediately learn this predator and respond

accordingly. But if this mechanism can protect against

robogator, certainly it would be effective against natural

threats.

In conclusion, I believe that evolution handled the prob-

lem of recognizing danger by selecting for a specialized

fear learning circuit. Such a circuit would require far less

genetic coding than recognition of all individual dangers.

Furthermore, already evolved synaptic plasticity mecha-

nisms could be co-opted by this circuit further saving

genetic space.

Selection of species specific defense
reactions
While fear profoundly constricts the behavioral repertoire

to SSDRs, for the most part mammalian species have

several SSDRs. This immediately raises the question of

how does the animal match the SSDR to the situation.

Several early proposals were found wanting [38�]. One

view that accurately predicts defensive behavioral topog-

raphy while providing insight into anxiety disorders is

predatory imminence theory [39��,40�,41,42]. This theory

suggested that SSDRs were organized along a continuum

that corresponded to the proximity to fatal contact with

the predator [39��]. Prior analyses of foraging had also

looked at the organization of predatory behavior along a

continuum of search, procurement and consumption [43].

Therefore, it makes sense that antipredator behavior is

organized along a similar sequence because different

SSDRs would be successful against search, procurement,

and consummatory strategies. Predatory imminence the-

ory envisioned the prey’s behavior consisting of indepen-

dent modules phylogenetically designed to thwart search,

procurement and consumption (see Table 1).

Learning and predatory imminence
Actual physical distance is one factor in determining the

prey’s assessment of where it stands on the predatory

imminence continuum. But there are other factors just as

important as this spatial dimension. For example, one

aspect of pre-encounter defense is the modification of

meal patterns if the feeding ground is a place of high risk

[44]. Predators forage near sources of water because prey

must travel there to exploit this resource. The distance

from nest to water may be fixed but what is important is

the probability that a predator will be present. Feeding

and drinking patterns change as the probability of preda-

tion in the foraging area increases [39��,44]. The size/

effectiveness of the predator is also a factor; gazelle allow

hyenas to approach more closely than cheetahs before

fleeing [45]. Predatory encounters during foraging can

even entrain the circadian rhythm of feeding [46]. Thus,

spatial distance, probability, timing and identity of the

predator are all elements of predatory imminence.

Given that the determination of predatory imminence is

multifaceted these factors must be integrated with each

other [39��]. The properties of Pavlovian conditioning

make it an ideal process for the necessary integration.

Spatial distance and the time a predator needs to close

that distance are part and parcel of the same construct.

Pavlovian conditioning is one way the brain represents

such timing information [47]. Spatial factors influence

Pavlovian learning in another way; stimuli coming from

similar locations are more readily associated [48]. The

probability of stimulus occurrence is also an essential

factor in the strength of conditioning because condition-

ing requires an integration or comparison between the

probability of an outcome in both the presence and

absence of the CS [49]. Finally, the first studies using

revaluation techniques such as devaluation and inflation

demonstrated that Pavlovian conditioning encodes the

identity of the outcome [50,51]. Thus while (instrumen-

tal) learning plays little role in shaping the topography of

46 Survival circuits

Table 1

Predatory imminence continuum and the organization of antipredator behavior in the rat.

Location Home/nest Foraging ground Prey and predator in contact

Predatory module Search Procurement Consumption

Antipredator module Pre-encounter Post-encounter Circa-strike

Examples of defensive

behavior primarily

based on rodents

Stretched approach,

nocturnal feeding

Freezing, Thigmotaxis Protean escape attempts

from predator, vocalization,

biting, thrashing

Emotional experience Anxiety Fear Panic
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defensive behavior, Pavlovian learning may be at the core

of selecting which innately programmed response is

selected under a set of stimulus conditions [52].

Predatory imminence, conscious experience
and survival
I view the three major modes of defense, pre-encounter,

post-encounter and circa-strike as corresponding to the

experiential states of anxiety, fear and panic, respectively

[42]. By contrast, LeDoux [53,54] has argued that the

‘survival circuits’ that mediate defensive behavior are not

causally related to subjective emotional experience. From

LeDoux’s perspective fear arises from orthogonal cir-

cuitry that supports consciousness. No one would deny

that these emotional states are powerful and resource

demanding. Evolutionary biology suggests that investing

energy in anything that does not, in some way, promote

survival would be selected against. From this perspective

there are two possible views of emotional states. One is

that they are epiphenomenal artifacts of brain function

that impose little cost and little benefit. The other is that

they were selected for because, despite their cost, they

provide some phylogenetic advantage. The latter view is

consistent with the idea that the experience of intense

emotion is resource demanding; but what are the benefits

of these states? To answer this question, one first has to

consider the adaptive function of consciousness. Pierson

and Trout [55�] have put forth the view that conscious-

ness evolved for the volitional control of movement. They

further argue that volitional movement provides the

conscious organism with ‘the flexibility to non-determin-

istically yet non-randomly’ support action. Insight into

the function of conscious emotional experience can be

gained by understanding how the behaviors called for in

each stage of defense interact with volitional actions.

Because pre-encounter defense is the furthest defensive

mode from consumption by the predator this mode is

more permissive of flexibility. Mobbs et al. [12] point out

that this level of predatory imminence ‘allows animals to

prepare for, and flexibly attend to, potential danger’ and

thereby derive flexible solutions. As an example, we have

found that one aspect of pre-encounter defense is a

reconfiguring of meal patterns that reduces exposure to

danger while maintaining caloric intake [44]. This flexi-

bility is consistent with the involvement of prefrontal

cortex in pre-encounter defense [56]. Anxiety plays a

critical role in pre-encounter defense as it draws height-

ened attention to the potential dangers that may exist

allowing the prey to maximize the effectiveness of pre-

encounter responses that reduce the probability of

encounters.

Quite the opposite is true during post-encounter defense.

At this highly vulnerable stage preprogrammed defensive

responses must occur, and we see that flexible trial and

error based behaviors are lost [2,3]. At this point fear

overwhelms consciousness and volition so that SSDRs

reel off unabatedly [57��]. A critical component of the

circa-strike behaviors that occur surrounding the point of

contact with the predator are ballistic protean escape

behaviors [40�,57��]. Panic may help drive the necessary

randomness of such behavior, in part by suppressing,

necessarily nonrandom, volitional action. Similarly, dur-

ing suffocation, the accompanying panic suppresses the

slow conscious deliberation needed for volitional behav-

ior favoring the necessary violent thrashing needed to

attain immediate respiratory freedom. Thus, in complete

contrast with the perspective of LeDoux [53,54], I view

conscious experience as an integral and critical compo-

nent of survival circuits.

Conclusion
Survival in the face of predation often requires brain

mechanisms that instantaneously select effective defen-

sive responses. Trial and error learning cannot be accom-

modated into such a system. Here I try to shake the idea

that Pavlovian fear conditioning is a laboratory model.

Rather, it is the natural mechanism that allows the best

preprogrammed defensive responses to occur instan-

taneously under conditions of new and old threats. The

conscious experiences that accompany behavior under

threat provide integral support for survival-related

activity.
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