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ABSTRACT OF THE DISSERTATION

Robotic Spatial Autonomy: Multirobot Localization and Online SLAM

by

Tsang-Kai Chang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Ankur M. Mehta, Chair

Spatial autonomy enables autonomous agents to interact with the environment intelligently

and smoothly. This dissertation considers two particular scenarios to realize and improve the

spatial autonomy for robots. In the first scenario, the cooperation among multiple robots

to localize themselves is studied. I propose a new multirobot localization algorithm with

observation and communication steps separated. This algorithm uses far less communication

than other algorithms, which improves the efficiency and robustness. I furthermore develop

a framework to optimize the observation and communication rates of the algorithm. I also

study an online solution for simultaneous localization and mapping (SLAM). Current SLAM

algorithms solve the trajectory and the map via an optimization problem, especially after

loop closure. However, these algorithms are offline, whose computational cost increases

significantly with time. Instead, we formulate the SLAM problem as an inference problem

over a hidden Markov model, and this structure allows an online implementation. Therefore,

the comparable accuracy can be achieved with far less computation. Both scenarios show

more efficient spatial autonomy algorithms for robots when the information usage is carefully

designed, and pave a way for robots with stronger autonomy.
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CHAPTER 1

Introduction

One of the major robot potentials is to navigate and explore the world. The applications

rely on this potential will also be ubiquitous: We are about to witness the road packed

with autonomous driving vehicles. Robots are sent to deep oceans, volcanos, and even the

outer space to explore the unknown. A swarm of drones will be able to completing tasks

collaboratively [YBD18].

The essence of navigation and exploration is an accurate and efficient spatial autonomy

capability. The spatial autonomy includes that the robot can build a map of the environment

as well as locate itself in this map. The map and its own spatial state together enable the

robot to interact with the environment. Since this problem is fundamental, this problem has

been investigated as simultaneous localization and mapping, or SLAM, in robotics for long.

To fully characterize the spatial autonomy, I divide it into three aspects: sensing, algo-

rithm, and representation. The first aspect regards the data collected from the sensors to

realize spatial autonomy. With the advanced of optical and MEMS technology, there are now

a variety of options of sensors for autonomous robots, including laser, LIDAR, IMUs, etc.

The raw data are usually classified into proprioceptive and exteroceptive: the former one

encodes the robot dynamic, while the later one relates the robot and the environment. The

second aspect focuses on how algorithms can realize the spatial autonomy with the available

information. In addition to simply realizing spatial autonomy, we would also expect these

algorithms to be accurate, efficient, and robust in face of all the imperfections in the reality.

The last aspect characterizes how the outputs of the spatial autonomy algorithms are stored.
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This is particularly important from a systematic perspective. The representation should al-

low rapid update, since the robot is mobile and the information keeps accumulating. The

representation should also be accessible, for various tasks like navigation, path planning, etc.

Animals serve a vivid example to understand spatial autonomy. For mammals partic-

ularly, including human beings, the visual system and the vestibular system provide exte-

roceptive and proprioceptive sensing data, respectively. These two types of sensing data

together construct our spatial understanding of the environment. Also, neuroscientists have

discovered that the position is encoded in place cells and grid cells, while these two types of

neurons have different firing patterns [OD71, HFM05]. The mechanism (or the algorithm)

that takes sensing data and produces all these cell firing patterns is not fully understood yet.

While the brain is such an integrated and complicated computer, it is difficult to precisely

assess the contribution of each factor. Researchers devise novel techniques and experiments

to uncover the algorithm from the sensing to the representation. For example, researchers

use virtual reality to determine the effect of two types of information [RKW13,CLK19].

The focus of this dissertation is on designing spatial autonomy algorithms. Even though

we now have high-performance SLAM algorithms that are about to be ready to be applied in

our daily lives, there are still fundamental challenges in some critical scenarios. I investigated

the excessive information exchange in multirobot systems, and the offline nature of SLAM

algorithms. In both scenarios, I am interested in improving the efficiency of information

usage to realize spatial autonomy, in which we can either lower the communication cost or

lower the information requirement.

1.1 Multirobot Localization Algorithm

The first scenario in this dissertation is the localization in multirobot systems, where mul-

tiple robots try to determine their spatial states collaboratively. Multirobot systems have

better robustness and scalability compared to the single robot systems for various tasks, but
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acquiring their spatial states remains the premise of all high-level tasks. Multirobot systems

introduce more opportunities for localization than a single robot. First, if the spatial state

of other robots is known, observing other robots is similar to observe a landmark, which

could improve the localization performance. Second, robots can share their information and

spatial states via wireless communication, which might also improve the overall performance.

However, designing a multirobot localization algorithm has to take the distributed nature

into account to ensure its efficiency and resilience. The traditional multirobot localization

algorithm, which is extended from a single-robot localization algorithm, requires extensive

communication, which poses vulnerability even with a single communication failure.

Before delving into the algorithm design, I first study how informations are combined

in a distributed system [FCM20]. While the localization is commonly treated as a filtering

problem, combining spatial states is equivalent to fusing probability distributions. The

fusion of probability distributions can be generally formulated as finding a barycenter of

several distributions. With different problem formulation, the resulting fused distribution has

different properties. In particular, we are interested in the Kullback-Leibler (KL) barycenter,

which ensures that the fused distribution is conservative. A special case of KL barycenter

is the covariance intersection when only consider Gaussian distributions are considered. We

also extend the KL barycenter to von-Mises Fisher distributions, which are used for circular

data. We then apply this fusion scheme together with the von-Mises Fisher filter to study

the estimation and the fusion of non-Euclidean data.

Equipped with covariance intersection, I developed a multirobot localization algorithm

that ensures the estimation consistency and also separates the communication and the ob-

servation [CCM20,CCM22]. This separation not only reduces the required communication,

but also enhances the resilience of the localization algorithm in the face of communication

failures and adversaries. We compare the algorithm with other multirobot localization algo-

rithms, and evaluate them with the UTIAS dataset. The result shows the accuracy as well

as the resilience of our algorithm.
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Since our multirobot localization system uses covariance intersection, the communication

update may introduce unnecessary uncertainty to keep the estimate conservative. Therefore,

I further investigate the optimal scheduling of this algorithm [CM18b]. I take both the cost of

operations as well as the contribution to the estimation into account, and propose a method

to determine the optimal operation rate according to different goals.

1.2 Online SLAM

The other scenario I studied in this dissertation is the SLAM problem. I particularly consider

a system with only a camera and a IMU sensor, which is often called a visual-inertial system.

Common SLAM algorithms for visual-inertial systems usually consist of two parts: frontend

reconstructs the local trajectory, while the backend part takes care of the global consistency,

especially after loop closures are detected. There are various methods for the frontend, but

the backend is mainly treated as a nonlinear least squares (NLS) optimization problem. In

a technical term, the frontend will produce several constraints regarding the spatial states

and the map, and the backend finds the best spatial states and map from a numerical

optimization procedure.

The NLS formulation gives a straightforward understanding for SLAM backend, but there

is an implementation concern. The NLS optimization problem is an offline problem, which

means that the scale of the problem increases with the number of the data. For robotic

systems, the data keep arriving, and the cost of the backend optimization problem keeps

increasing and eventually becomes very large. Now, the interesting question is how can we

design an online SLAM backend, which will be more efficient than the offline optimization

counterpart. In other words, it is a question about how can we discard information while

maintaining the estimation accuracy.

To fundamentally come up with a solution, I go back to the original problem formulation,

which is the state transition model that describe the state dynamics and the observability.

4



Instead of regarding the SLAM problem as a NLS optimization problem, we can leverage

the intrinsic hidden Markov model (HMM) structure of spatial dynamics and model the

SLAM problem as an inference problem. The inference problem with hidden variables is

typically solved by the EM algorithm, and thus we can design an online SLAM algorithm

with the online EM algorithm for HMMs. Due to the dependency of the HMM, the block

size of this algorithm should keep increasing. Therefore, we arrive at the block online EM

(BOEM) SLAM algorithm. We verify the BOEM SLAM on the EuRoC datasets, and show

the efficiency of the BOEM algorithm. To realize an end-to-end SLAM system building on

the BOEM algorithm, as other state-of-the-art SLAM algorithms are already mature now,

more work should be done.
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CHAPTER 2

Barycenter of Distributions

In robotic systems, we often use probability distributions to represent informations. For ex-

ample, we usually use Gaussian distributions, where the mean represents our knowledge while

the covariance matrix represents the uncertainty. When we consider multiagent systems, we

will encounter the problem of combining information from several agents. Conceptually, it

is similar to find a representative “average” of all distributions, which is also known as the

“barycenter”.

To motivate the general barycenter formulation, we begin with a simple weighted average

example. For an Euclidean space Rd, the weighted average xc of points x1, . . . , xN ∈ Rd with

positive weights w1, . . . , wN summing to 1 is simply xc =
∑N

n=1wnxn. In fact, xc is the

solution of the following optimization problem

xc = arg min
x∈Rd

N∑
n=1

wn(x− xn)2. (2.1)

Let Sd−1 denote the d-dimensional unit hypersphere, i.e., Sd−1 = {x ∈ Rd : xTx = 1}.

Similarly, if we consider circular terms θ1, . . . , θN ∈ S1 with the circular distance between

two terms as d(θ, θ′) = 1− cos(θ− θ′), we can formulate an optimization problem to find the

barycenter of these circular terms. In particular,

θc = arg min
θ∈S1

N∑
n=1

wn(1− cos(θ − θn)). (2.2)

We get

exp(iθc) =
N∑
n=1

wn exp(iθn). (2.3)

6



These examples show that finding the barycenter can be formulated as an optimization

problem, as long as we determine a proper distance measure. By formulating an optimization

problem, the barycenter problem becomes more tangible since we can now use optimization

tools. In this chapter, we will extend the barycenter formulation to probability distributions,

discuss the properties of the results, and derive the Kullback-Leibler barycenter for both

Gaussian distribution and von Mises-Fisher (vMF) distributions.

2.1 Kullback-Leibler Barycenter

The Kullback-Leibler (KL) divergence quantifies the difference between two distributions.

For distributions P and Q of a continuous random variable, the KL divergence is defined as

DKL(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx, (2.4)

where p and q denotes the probability densities of P and Q. With a slight abuse of distance

notation, the corresponding weighted average with KL divergence for probability density

functions p1, . . . , pN and weights w1, . . . , wN can then be defined as

pc = arg inf
p∈P

N∑
n=1

wnDKL(p||pn), (2.5)

where P is a set of probability density functions.1 We will call pc the KL average of p1, . . . , pN

with weights w1, . . . , wN .

When using probability densities to represent information, the KL average can be in-

terpreted as a conservative fusion of the original distributions p1, . . . , pN . In [BJA12], an

axiomatic definition of conservative approximation is proposed, and the KL average satisfies

this definition. From their analysis, the KL average does not double count common infor-

mation, and does not set the distribution to 0 if one of the source distributions is non-zero.

1Due to the asymmetry of KL divergence, another KL barycenter can be defined by switching its two
arguments, which is discussed in [GBC20]. Basically, the first KL average in (2.5) has the conservative
properties, and it is also the most commonly adopted method. We therefore only focus on the first KL
average, and just call it the KL barycenter.
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In [BC14], the authors use the interpretation that the KL divergence in (2.4) quantifies the

information gain achieved when moving from a prior density q(x) to a posterior density

p(x). Therefore, the KL average is the one that minimizes the sum of the information gains

from the initial densities. We will demonstrate the conservative nature in the following two

particular distributions.

2.2 Covariance Intersection

The covariance intersection (CI) is actually the KL barycenter of Gaussian distributions.

Theorem 1. Given N multivariable Gaussian distributions p1, . . . , pN with the mean µ1, . . . , µN

and the covariance matrices Σ1, . . . ,ΣN , together with positive weights w1, . . . , wN summing

to 1, the mean µc and covariance matrix Σc of the KL barycenter distribution satisfy

Σ−1
c =

N∑
n=1

wnΣ−1
n , (2.6)

Σ−1
c µc =

N∑
n=1

wnΣ−1
n µn. (2.7)

The proof can be found in [BC14].

In fact, CI is first developed in the data fusion context, and is later recognized as a KL

barycenter. In the data fusion setting, we use Gaussian random vectors as estimates, and

can then substantiate the previous discussion on conservativeness with concrete examples.

A consistent estimate can be seen as a conservative estimate regarding the estimation un-

certainty intuitively. In other words, a conservative estimate reports larger uncertainty than

the estimate really provides, so as to avoid over-confidence data fusion. When the covariance

matrix represents the uncertainty of the estimate, a consistent estimate can be considered

as an estimate that has larger covariance matrix in the positive definite sense.

The aforementioned over-confidence problem and the double counting problem can be

avoided if estimation consistency is maintained. Formally, a consistent estimate is mean-

8



preserving and has no smaller covariance matrix in the positive definite sense, with the

following definition:

Definition 1 (Estimation consistency). An estimate ẑ of a real vector z is a Gaussian

random vector with mean E[ẑ] and covariance Σẑ. The estimation ẑ′ of z is called consistent

of ẑ if E[ẑ′] = E[ẑ] and Σẑ′ ≥ Σẑ.

Lemma 1 (Covariance intersection [JU97, CAM02, Sun04, RNA15]). Given N consistent

estimates ẑn of ẑ with covariances Σn for n = 1, . . . , N , the estimate ẑ′ is also consistent of

ẑ where ẑ′ is obtained by CI.

CI is able to combine several consistent estimates which might be correlated, and the

result stays consistent.

2.3 KL Barycenter of von Mises-Fisher Distributions

In addition to Gaussian distribution, we extend the KL barycenter to non-Gaussian cases

by considering von Mises-Fisher (vMF) distributions. VMF distributions reside on hy-

perspheres, and are often used to model the orientation in robotics and sensor networks.

The barycenter of vMF distribution naturally arises in sensor fusion and data aggrega-

tion [SRA14]. The vMF distribution is also common in machine learning. In practice,

it is common to normalize data to remove the length information leaving only the direc-

tional information. The vMF distribution is then often used to model the distribution of

directional data. Several methods are then proposed to process directional data, includ-

ing [BDG05,HBM17,DFC18,CYG20].

The vMF distribution for x ∈ Sd−1 is given by

pd(x;µ, κ) = Cd(κ) exp(κµTx). (2.8)

The vMF distribution depends on two parameters: the mean direction µ ∈ Sd−1 and the
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concentration parameter κ > 0. The normalization constant is given by

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2.9)

where Iα(κ) denotes the modified Bessel function of the first kind.

The KL barycenter of vMF distributions can be formulated as the solution of following

problem:

pc = arg inf
p∈PvMF

N∑
n=1

wnDKL(p||pn), (2.10)

where PvMF is the set of all vMF distributions and p1, . . . , pN ∈ PvMF .

Theorem 2. Given N vMF distributions p1, . . . , pN with the mean directions µ1, . . . , µN and

the concentration parameters κ1, . . . , κN , together with positive weights w1, . . . , wN summing

to 1, the mean direction µc and concentration parameter κc of the KL barycenter distribution

satisfy

κcµc =
N∑
n=1

wnκnµn. (2.11)

The proof can be found in [FCM20]. In summary, by using Lagrange multipliers, the

optimization problem (2.10) can be formulated in Rn, which can then be solved analytically.

The equation (2.11) shows the computation of the KL barycenter is actually very easy. Since

µc is a unit vector, κcµc in (2.11) can be viewed as a vector in Rd. Based on Theorem 2,

the KL barycenter of vMF distributions can be obtained conveniently by averaging vectors

in Rd.

We visualize the KL barycenter of 3 vMF distribution with detail in Table 2.1. Following

the result in Theorem 2, we obtain the KL barycenter. With the configuration in Table

2.1, the mean direction and the concentration parameter of the resulting distribution is

[0.139, 0.928, 0.345]T and 12.39, respectively. In Fig. 2.1, we can see that the distribution

of the KL barycenter represents the “average” of the three distributions. Moreover, the

10



Table 2.1: Parameters of KL barycenter simulation

Distribution µT κ Weight wn

1 [0, 0, 1] 20 0.3

2 [1/
√

3, 1/
√

3,−1/
√

3] 25 0.4

3 [−0.5, 1/
√

2, 0.5] 27 0.3

x
−1.00−0.75−0.50−0.250.000.250.500.751.00

y

−1.00−0.75−0.50−0.250.000.250.500.751.00

z

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

dist. 1
dist. 2
dist. 3
KL barycenter

Figure 2.1: The KL barycenter of 3 distributions. Each vMF distribution is sample with 50

points. The KL barycenter, calculated by Theorem 1, visually resides at the average of the

3 distributions.

concentration parameter κ of the KL barycenter is smaller than the 3 fused distributions,

due to the conservative fusion nature of the KL barycenter discussed.

2.3.1 von Mises Filters with Overlapping Sensors

To demonstrate that the proposed KL barycenter produces conservative results, we consider

a scenario with 2 estimators. These two estimators try to estimate a dynamic circular value

θt ∈ S1 that evolves according to

θt+1 = θt + ut + wt, (2.12)
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S1

E1 E2

C

S2 S3

Figure 2.2: The topology of the fusion between 2 dependent von Mises filters. S1, S2, and

S3 are the sensors that observe θt by (2.13). E1 and E2 are the von Mises filters. The von

Mises filters E1 and E2 operate the time and the observation updates for 20 times, then send

its own estimate to the fusion center C for the final fused result. For the KL average fusion,

the weights are fixed as w1 = 0.6 and w2 = 0.4.

where ut is the input and wt is the process noise modeled by vM(0, κw). These two estimators

do not directly observe θt, but receive the observation data from distributed sensors, which

observe θt by

ok,t = θt + νk,t, (2.13)

where ok,t is the observation from sensor k. In (2.13), νk,t is the observation noise of sensor

k, and is modeled by vM(0, κν,k). All process noises and observation noises are independent

of the rest of the system.

We consider a system with 2 estimators and 3 sensors, with the system topology in

Fig. 2.2. We choose a constant input ut = 0.7 with κw = 7. For the sensor parameters,

κν,1 = 3.3, κν,2 = 4.4, and κν,3 = 2.2. The two estimators E1 and E2 use the von Mises filters

to dynamically estimate θt, but the estimates are dependent since both estimators use the

observation from S2. These two estimators run 20 iterations of both the time update and

the observation update, and then send their own estimate to the fusion center C.

We compare various fusion protocols at the fusion center C, including our KL average

fusion protocol and the fusion equation assuming independence from [ARC09], in Fig. 2.3.

As a benchmark, we also plot the optimal fusion where the estimator can directly obtain
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Figure 2.3: The density function of vMF distributions under different fusion methods. The

independence fusion produces over-confident estimates, since its concentration parameter is

larger than that of the optimal fusion. On the contrary, the KL barycenter gives reasonable

estimation without even knowing the exact independent observation data, which shows its

efficiency in distributed networks.

the raw observation data, and fuse them. However, the optimal fusion is not practical in

distributed networks.

In Fig. 2.3, the concentration parameter of the independence fusion is larger than that

of the optimal fusion. Therefore, the independence fusion is definitely over-confident, which

effects the estimation reliability. We further execute the identical simulation for 200 trials,

and summarize the statistics of the concentration parameters of these three fusion methods

in Table 2.2. The concentration parameters from the independence fusion are significantly

higher than those of the optimal fusion. On the contrary, the result from the derived KL

average gives reasonable concentration parameter. In Table 2.2, the concentration parame-

ters of the KL average are smaller than those of the optimal fusion, since the proposed KL

average fusion is a conservative fusion scheme. Moreover, no independence is required in the

derived KL average fusion, which shows its efficiency in distributed networks.
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Table 2.2: The statistics of the concentration parameters κ under different fusion methods

over 200 trials

Fusion method Mean Standard deviation

Optimal fusion 13.467 1.210

KL average fusion 11.042 0.771

Independence fusion [ARC09] 21.825 1.491

14



CHAPTER 3

Multirobot Localization I: Algorithm and Resilience

Localization is one of the most fundamental elements for spatial autonomy. As multiple

robots form a team to improve robustness and scalability, localization of a multirobot system

is therefore a premise to the successful deployment of such system to achieve high-level goals.

Compared to single robot localization, there are two additional sources that enable multiple

robots to localize themselves cooperatively. First, a robot can observe other robots and

the relative observation between them can enhance the overall localization performance.

Second, robots can share their information with one another, which can also improve the

overall localization performance. Among all approaches of cooperative localization, we focus

on the EKF-based approaches primarily due to its computational efficiency.

While cooperative localization takes advantage of relative observation and inter-robot

communication, designing a cooperative localization algorithm has its own difficulties. By

considering localization as an estimation problem, maintaining estimation consistency re-

mains challenging for multirobot systems. Intuitively, as a correlation implies the dependency

between two estimates, if these two estimates are fused with underestimated correlation, the

resulting estimate no longer accounts for the estimation uncertainty and the over-confidence

problem occurs. An extreme example is to regard two repetitive datapoints as two indepen-

dent information in data fusion, and therefore some researchers also refer this problem as

the double counting problem.

In order to keep each inter-robot correlation updated, communication is often extensively

performed, but excessive communication poses resilience concern. In the seminal cooperative
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localization algorithm [RB02], an all-to-all communication is required after every observation

in order to maintain correlations equivalent to a centralized EKF. Tracking correlations in a

distributed system not only requires extensive communications, but it also makes the system

vulnerable to even a single communication failure. The following works attempt to decrease

the amount of communication either by introducing additional server in the distributed

system [KHG18], or by sacrificing the estimation consistency [LNY13, LSR18]. For either

improvement, communication is regarded as a supplementary step in an observation update,

whichtakes place right after a relative observation. However, such association strongly relies

on the assumption that communication is available whenever needed. In short, in most

cooperative localization algorithms, communication between robots is either excessive or is

implicitly assumed to be always available and free from failure, which makes these algorithms

less resilient.

To maintain estimation consistency and to ensure communication resilience, we separate

the communication step from the observation step in the proposed algorithm by using the

covariance intersection (CI) fusion technique [JU97, CAM02, Sun04, RNA15]. In this algo-

rithm, the estimation consistency is directly assured by CI. Since the communication step

is explicit in the proposed algorithm, communication is no longer a complementary part af-

ter observation updates but rather an independent source contributing further information.

Therefore, the proposed algorithm does not need excessive communications, and communi-

cation unavailability will not affect our algorithm’s observation update which enhances the

resilience.

In addition to the proposal of the algorithm, we provide a performance analysis on the

proposed algorithm. By interpreting the proposed algorithm as a distributed estimation

algorithm, we investigate the covariance boundedness criterion to assure an upper bound on

localization performance. To address the nature of multiagent system, the analysis takes the

configuration of observation and communication into account with graph description.
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3.1 Related Work

The concept of cooperative localization is first proposed in [KNH94], and the term “coop-

erative localization” is later coined in [RDM98]. The work [KH00] extends the techniques

in [KNH94] to an experimental setting. The cooperative localization is also developed in

a team of small robots [GK01] to globally localize the team. While these algorithms are

able to use the relative observation and the inter-robot communication, they are limited to

particular system settings. In the early stage of the cooperative localization development,

these algorithms establish the basis for current cooperative localization algorithms that are

more fundamental and general.

Depending on the underlying framework, we classify current cooperative localization al-

gorithms into three categories: EKF-based approaches, particle filter-based approaches, and

optimization-based approaches. In this section, we highlight the advantages of each algorithm

as well their limitations, with specific focus on estimation consistency and communication

resilience.

3.1.1 Extended Kalman Filter-based Approaches

EKF-based approaches are the mainstream for cooperative localization algorithms. The

benchmark of the EKF-based approach is established in the seminal paper [RB02], together

with its theoretical analyses in [MR06,HTM11]. This cooperative localization algorithm em-

phasizes the importance of correlations between inter-robot estimates, and is fundamentally

free from the over-confidence problem. In particular, this algorithm is exactly a distributed

implementation of the centralized Kalman filter, and the correlations between inter-robot es-

timates are well tracked and updated. However, the communication cost for this distributed

implementation is very high. In particular, an all-to-all communication is needed after every

observation. As a result, the algorithm performance is very susceptible to the communica-

tion failure. The estimation consistency no longer holds with a single communication failure,
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which impairs the system’s overall resilience. To lower the communication cost in [RB02],

a server in charge of calculating and broadcasting the estimation information is introduced

in [KHG18]. Therefore, all-to-all communication is no longer necessary to recover exact

inter-robot correlations. However, the introduction of the server makes the whole system

less distributed. Not only is the entire system more vulnerable to the server’s failure, but

also an initial setup of the server is required.

Beyond the proposal of the algorithm itself, the theoretical analysis of this centralized-

equivalent algorithm is reported in [MR06,HTM11]. In [MR06], with an implicit assumption

that all-to-all communication is available and successful at all times, the observation config-

uration criterion of the bounded covariance is thoroughly investigated. We conduct a similar

boundedness analysis for our algorithm, especially on the observation and the communi-

cation configurations without the assumption of perfect communication. In [HTM11], the

linearization consistency issue of EKF-based localization algorithms is presented, with focus

on the linearization points while calculating the Jacobians. In this chapter, we maintain

the assumption that linearization error is small, and focus on the linear estimation in the

performance analysis.

The over-confidence problem can be avoided by only fusing uncorrelated estimates in a

multirobot system. This idea is substantiated by keeping a bank of filters in each robot

[BWL09, ZR19]. In [BWL09], each underwater vehicle maintains a bank of EKFs and only

uncorrelated estimates in the bank are fused subsequently. A similar localization method

is proposed for mobile robots while simultaneously tracking targets in [ZR19]. The main

disadvantage of this category is that the number of the filters in a single bank grows expo-

nentially with the number of the robots in a system, which imposes significant storage cost.

Another way to realize this idea, called the state exchange scheme, is proposed in [KCA06].

Specifically, there is no fusion but rather replacement within robot estimates to maintain the

independence between robot estimates. Historical information is therefore discarded with

the arrival of new information, which leads to extremely inefficient estimates.
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Instead of retrieving exact inter-robot correlations, some approaches approximate the

correlations and thus largely decrease communication cost. Covariance intersection is often

applied in these approaches, since it can fuse several estimates without knowing the correla-

tions and maintain estimation consistency at the same time. To the best of our knowledge,

the first application of CI for cooperative localization is the example in [ARM01]. Our al-

gorithm is similar to this one, but we generalize the algorithm and systematically study the

boundedness criterion in this paper. CI is also applied differently in the cooperative local-

ization in [CNG13]. In this algorithm, each robot only keeps its own state estimate, and the

relative observation is fused by CI. As a consequence, the estimation is very conservative

in this method. On the contrary, in our algorithm, robots keep an estimate of the entire

system, and relative observations can directly update the estimate. Consequently, our al-

gorithm is not overly conservative, as verified by the experiments in Sec. ??. An extended

work of [CNG13] is presented in [KAC19] by incorporating the covariance union. However,

as an even more conservative fusion scheme than CI, this algorithm with covariance union

is too conservative for any practical use.

While algorithms based on CI ensure estimation consistency, some other algorithms with

approximated correlations do not maintain such property. The split covariance intersection

is applied in cooperative localization in [LNY13]. The main drawback of this approach is

that the independent part and the dependent part can not be clearly split. Therefore, the

fusion in relative observation is problematic, as mentioned in [CNG13]. In [LSR18], the

exact covariance matrix is approximated by a block diagonal matrix, and the inter-robot

correlations are thus suppressed. Since the estimation consistency is not maintained, the

over confidence problem can occur when applying this algorithm. A cooperative localization

algorithm that targets at the scenario with measurements at different time instances is

proposed in [IGR12]. However, the fundamental Kalman filtering assumption of the noise

independence has to be contradicted to avoid recursive updates among robots, which also

raises the same concerns of estimation consistency.
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3.1.2 Particle Filter-based Approaches

To alleviate the nonlinearity issues in multirobot localization, particle filters are often ap-

plied [FBK00, HMS03b, PBM12]. However, the correlations among robot estimation is not

easy to handle in particle filter-based cooperative localization algorithms. One of the early

attempts to applying particle filter in cooperative localization can be found in [FBK00].

However, the correlations between robots are ignored, and the result is overly confident.

In [HMS03b], a dependency tree is introduced to alleviate the double counting problem

between two robots, but it only avoids the most obvious cases and still cannot prevent

the over-confidence problem from happening. In [PBM12], a particle clustering method is

introduced to reduce the computational complexity of particle filter-based methods, but cor-

relations between estimates are not explicitly addressed. In fact, the authors wrongly assume

the independence between the estimates in different robots in reciprocal sampling.

In summary, particle filter-based multirobot cooperative localization algorithms cannot

track the correlations between distributed estimates easily. Moreover, particle filters are

generally more computationally expensive compared to Kalman filter-based approaches.

3.1.3 Optimization-based Approaches

Cooperative localization can also be solved with optimization-based methods, including

maximum likelihood estimation [HMS03a] and maximum a posteriori estimation [NRM09].

Optimization-based approaches first formulate cooperative localization as a nonlinear least

squares problem in a centralized fashion, and then is directly solved offline. To counter the

centralized modeling and offline solving for localization, excessive communication is necessary

between distributed robots. As a result, in both algorithms [HMS03a,NRM09], robots have

to broadcast their information to the entire team regularly. In terms of the offline nature,

the authors in [NRM09] partially tackle this problem by marginalization, but an all-to-all

communication is expected in this marginalization step. For optimization-based approaches,
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the burden of communication makes them less popular compared to those aforementioned

algorithms.

3.2 Multirobot Cooperative Localization Algorithm

We consider a multi-robot system in the 2D scenario with N robots. At time t, the spatial

state of robot i is given by qi,t = [θi,t, p
T
i,t], which includes the orientation θi,t and the Cartesian

position pi,t = [xi,t, yi,t]
T, for i ∈ {1, . . . , N}. We assume that spatial states across all robots

are in a common reference frame, which can be initialized by the cooperative localization

setting [TZZ10, ZR13]. The robots can observe several distinguishable landmarks whose

positions are given. While all landmarks serve as a reference for absolute spatial state,

without loss of generality, we consider a single landmark in the environment, denoted by λ.

In the proposed cooperative localization algorithm, robot i has to track its own spatial

state and the positions of other robots. We can represent the state of the entire system

estimated by robot i as

si,t =
[
pT1,t, . . . , q

T
i,t, . . . , p

T
N,t

]T
. (3.1)

We consider that case where the orientations of other robots are not tracked by robot i.

The state defined in (3.1) is similar to the one in the EKF SLAM [DNC01], where those

pi,t in (3.1) are not stationary but dynamic. The proposed algorithm remains valid when

the orientations of other robots are tracked with various sensing modalities. In fact, the

proposed algorithm will be easier if all robots track the same state. We instead demonstrate

the necessary steps when the robots track different states in the model (3.1).

Based on the Kalman filtering, robot i keeps a Gaussian estimate of si,t, denoted by

ŝi,t, with mean s̄i,t and covariance Σi,t. Depending on the type of arriving information, the

proposed cooperative localization algorithm contains three updates:

• the time propagation update at the arrival of the proprioceptive information,

21



• the observation update at the arrival of the exteroceptive information, and

• the communication update at the inter-robot communication.

The proposed algorithm does not require communication after the inter-robot observation.

Therefore, all these three sources of informations contribute independently and complemen-

tarily to achieve localization.

3.2.1 Time Propagation Update

The time propagation update is performed when robot i has the proprioceptive information

of the system, which consists of its own odometry input and those of other robots. Robot i

has the odometry input ui,t, and estimates its next spatial state by a generic motion model:

qi,t+1 = f(qi,t, ui,t + wi,t), (3.2)

where wi,t is the input noise and it is modeled as a zero-mean Gaussian random vector with

covariance matrix Qw.

The odometry inputs for other robots, uj,t, j 6= i, however, are not available for robot

i. Without the exact value, we regard uj,t as a random variable, and the variability of

that random variable is large enough to incorporate all possible values and to ignore the

noise effect. The goal is not to guess the odometry input of other robots, but to maintain

large estimation uncertainty that the estimate can be corrected during the observation or

the communication updates. To be specific, we model the input uj,t as a Gaussian random

vector with covariance matrix Qu large enough to maintain the estimation consistency. That

is, for robot i,

pj,t+1 = fp(pj,t, uj,t), j 6= i. (3.3)

As the input noise in each robot is independent, the time update for ŝi,t can be easily

obtained, as in Algorithm 1.

22



Algorithm 1 The time propagation update for robot i

Input: s̄i,t, Σi,t, ui,t

Output: s̄i,t+1, Σi,t+1

s̄i,t+1 =



fp(p̄1,t,E[u1,t])
...

f(q̄i,t, ui,t)
...

fp(p̄N,t,E[uN,t])


.

Fi = ∂f(q,u)
∂q

(q̄i,t, ui,t).

Fj = ∂fp(p,u)

∂p
(p̄j,t,E[uj,t]), for j 6= i.

Gi = ∂f(q,u)
∂u

(q̄i,t, ui,t).

Gj = ∂fp(p,u)

∂u
(p̄j,t,E[uj,t]), for j 6= i.

Q = Diag(G1QuG
T
1 , . . . , GiQwG

T
i , . . . , GNQuG

T
N).

Σt+1 = Diag(F1, . . . , FN)ΣtDiag(F1, . . . , FN)T +Q.

3.2.2 Observation Update

When robot i observes either the landmark or other robots, the observation update is per-

formed with the exteroceptive information. Specifically, robot i observes the landmark in

the environment according to model

oiλ,t = hiλ(qi,t) + viλ,t, (3.4)

where the viλ,t is the observation noise modeled as zero-mean Gaussian with covariance Riλ,t.

The relative observation model between two robots is similarly given as

oij,t = hij(qi,t,pj,t) + vij,t. (3.5)

In reality, robot i can observe more than one object at the same time, and the ob-

servation results may therefore be correlated. Thus, we define the set Oi,t as the set of
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Algorithm 2 The observation update for robot i

Input: s̄i,t, Σi,t, oi,t

Output: s̄i,t+ , Σi,t+

Hi =
[
∂hij(s)

∂s
(s̄i,t)

]
j∈Oi,t

.

s̄i,t+ = s̄i,t + Σi,tH
T
i (HiΣi,tH

T
i +Ri,t)

−1(oi,t −His̄i,t).

Σ−1
i,t+ = Σ−1

i,t +HT
i R
−1
i,t Hi.

objects that robot i observes at time t, which may includes landmarks and robots. With

Oi,t = {i1, i2, . . . , ini
}, we stack all the measurements at time t into the vector oi,t,

oi,t =


oii1,t

...

oiini ,t

 = [oij,t]j∈Oi,t
, (3.6)

together with the entire observation noise vi,t = [vij,t]j∈Oi,t
. With the covariance of the noise

vi,t denoted by Ri,t, we have the EKF observation updates:

s̄i,t+ = s̄i,t + Σi,tH
T
i (HiΣi,tH

T
i +Ri,t)

−1(oi,t −His̄i,t), (3.7)

and

Σ−1
i,t+ = Σ−1

i,t +HT
i R
−1
i,t Hi, (3.8)

where the observation matrix is the stacked matrix given by

Hi =

[
∂hij(s)

∂s
(s̄i,t)

]
j∈Oi,t

. (3.9)

3.2.3 Communication Update

When robot j sends its estimation information, in particular s̄j,t and Σj,t, to robot i, robot i

can use this information to update its own estimation. However, the correlation between ŝi,t
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and ŝj,t is hard to track in a distributed system. Without knowing the exact correlations,

we use CI to fuse these estimates to maintain the estimation consistency.

The direct application of CI by (2.6) and (2.7) is problematic, because ŝi,t and ŝj,t do not

estimate the same state. In particular, the orientation estimate of θi,t is in ŝi,t but not in

ŝj,t. In order to ensure that ŝi,t and ŝj,t represent the same state, we first have to remove the

estimate of θj from ŝj,t, and then add the dummy estimate of θi. We denote the resulting

estimate as ŝji,t and then the CI can be applicable at robot i.

To remove the estimate of θj from ŝj,t, we use a 2N × (2N + 1) matrix defined by

[Tj− ]m,n =


1 if m = n, n ≤ 2(j − 1)

1 or m = n− 1, n ≥ 2j

0 otherwise

.

Therefore, Tj− ŝj,t will be the estimate of [pT1,t, . . . , p
T
N,t] with mean Tj− s̄j,t and covariance

matrix Tj−Σj,tT
T
j− . Equivalently, the same estimate admits an information form with the

information mean (Tj−Σj,tT
T
j−)−1Tj− s̄j,t and the information matrix (Tj−Σj,tT

T
j−)−1.

Next, we insert θi to the estimate Tj− ŝj,t in the information form to obtain ŝji,t. Since

there is no information of θi from robot j, this step just ensures that the corresponding

terms in the vector are matched, and the variance of θi in ŝji,t will be infinite. We use a

(2N + 1)× 2N matrix,

[Ti+ ]m,n =


1 if m = n, n ≤ 2(i− 1)

1 if m = n+ 1, n ≥ 2i

0 otherwise

,

to append θi. Thus, the information mean of ŝji,t will be Ti+(Tj−Σj,tT
T
j−)−1Tj− s̄j,t, and the

corresponding information matrix will be Ti+(Tj−Σj,tT
T
j−)−1TT

i+ . By this construction, the

exact mean of θi,t in the estimate ŝji,t is not important, since the corresponding variance is

infinite, and will not affect the result of CI.
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Algorithm 3 The communication update for robot i

Input: s̄jt , Σj,t, j ∈ C∗i,t
Output: s̄it+ , Σi,t+

To construct the information form:

ēji,t = Ti+(Tj−Σj,tT
T
j−)−1Tj− s̄j,t, j ∈ Ci,t

Iji,t = Ti+(Tj−Σj,tT
T
j−)−1TT

i+ , j ∈ Ci,t

To fuse incoming estimates by CI:

s̄i,t+ = Σi,t+

(∑
j∈Ci,t

cj ē
j
i,t + ciΣ

−1
i,t s̄i,t

)
.

Σ−1
i,t+ =

∑
j∈Ci,t

cjI
j
i,t + ciΣ

−1
i,t .

We define the set Ci,t to contain all robots whose information is received at robot i at

time t, and C∗i,t = Ci,t ∪ {i}. Together with the convex coefficient {cj, j ∈ C∗i,t}, we have the

communication update described in Algorithm 3.

3.3 Boundedness Analysis of the Position Estimation Covariance

For the localization algorithm, the boundedness of the covariance matrix ensures that the

estimation uncertainty is limited, which is essential for the success of the high-level tasks.

Whether the estimation covariance matrix of each robot is bounded depends on the commu-

nication and the observation configurations of the entire multirobot system. To concretely

study the covariance boundedness, we consider a system with unicycle motion model and

the bearing-and-range measurements to demonstrate the analysis. We then derive the co-

variance upper bound of the estimation covariance, and apply the result from the distributed

estimation algorithm to obtain the boundedness criterion.

To proceed the analysis, we furthermore impose two assumptions on the system:
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1. Each robot has its orientation estimate, and the upper bound of the orientation esti-

mate variance σ2
θ is small and given.

2. The observation and communication configurations are invariant over time, including

the CI coefficients.

As introduced in [MR06], the first assumption decouples the position estimation from the

orientation estimation, which is the main source of the linearization inconsistency problem

[JU01, BNG06, HD07]. As the EKF heavily relies on the linearization approximation, the

requirement of small orientation error also ensures the applicability of ongoing analysis. The

second assumption is imposed to assure that the entire system configuration is stationary. As

a result, the boundedness analysis of the cooperative localization algorithm can be achieved

by that of the distributed estimation algorithm [CM18a].

With the assumption that the orientation estimate is provided, all robots now estimate

the same state, or the positions of all robots, denoted by ξt = [pT1,t, . . . , p
T
N,t]

T. The estimate

of ξt at robot i is ξ̂i,t, with mean ξ̄i,t and covariance Φi,t. While all the robots are estimating

the same state, the communication step just degenerates to the vanilla CI step.

3.3.1 System Model

Given the velocity input ui,t, the unicycle model describes the state propagation as

pi,t+1 =

xi,t + (ui,t + wi,t)∆t cos θi,t

yi,t + (ui,t + wi,t)∆t sin θi,t

 , (3.10)

where wi,t denotes the input noise and ∆t is the time interval between two consecutive

update points.

In terms of the observation model, we first set up a generic relative observation model,

whose observability can be explicitly characterized. We then use the relative observation

model as an intermediate step to analyze the bearing-and-range measurements. When robot i
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observes object j, which can be either another robot or a landmark, the relative measurement

oij,t is given by

oij,t = CT(θi,t)(pj,t − pi,t) + vij,t, (3.11)

where C(θ) =

cos θ − sin θ

sin θ cos θ

 is the rotation matrix. The observation noise vij,t is a zero-

mean Gaussian random vector with covariance Rv,ij. If robot i observes object j by the

bearing measurement φij and the range measurement rij, we characterize this measurement

as

o′ij,t =

φij,t

rij,t

+ v′ij,t

=

 tan−1
(

yj,t−yi,t

xj,t−xi,t

)
− θi,t√

(xj,t − xi,t)2 + (yj,t − yi,t)2

+ v′ij,t. (3.12)

With the bearing measurement φij,t and the range measurement rij,t, the relative measure-

ment can be obtained by

oij,t = rij,t

cos(φij,t)

sin(φij,t)

 , (3.13)

together with the noise by linearizing (3.13)

vij,t =

−rij,t sin(φij,t) cos(φij,t)

rij,t cos(φij,t) sin(φij,t)

v′ij,t. (3.14)

3.3.2 Covariance Boundedness Analysis

We omit the technical derivation of covariance upper-bound Ψi,t of Φi,t, which can be found

in [CCM22]. All we need now is that Ψi,t ≥ Φi,t, and the all coefficients of the updates of Ψi,t

are constant. We now apply the result of the distributed Kalman filter with CI in [CM18a]

to analyze the covariance boundedness of Ψi,t. To explicitly characterize the relations among

all robots, we use graphs to describe the observation and the communication configurations
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in the multirobot system. We define the observation graph and the communication graph

separately to distinguish the observation and the communications relations.

We define the observation graph of robot i as a graph GOi
= {Ω∗, EOi

}. The nodes of the

graph Ω∗ = {1, . . . , n, λ}, which includes all the robots as well as the landmark. The pair

(i, j) ∈ EOi
if j ∈ Oi. In other words, the links in the observation graph GOi

stand for the

observation from robot i to entity j. We also define the communication graph as a graph

GC = {Ω∗, EC}, where (i, j) ∈ EC if j ∈ Ci. We then can use the following notation to

collect all the robots that contribute the information to robot i by the communication links.

Definition 2 (Super Neighborhood [CM18a]). For j 6= i, j ∈ Si if there exists a path in GC

from j to i.

We define that S∗i = Si ∪ {i}.

Proposition 1 (The Boundedness Criterion). If the graph Gi = (Ω∗,∪j∈S∗iEOj
) is weakly

connected, then Φi,t is bounded.

Proposition 1 states that as long as all the information collected by robot i covers the

entire robot team, the information is sufficient enough to localize the entire robot team,

which leads to bounded Φi,t as well. Proposition 1 also signifies that the information can

come either from observation or from communication, and both sources contribute to the

localization performance.

3.4 Simulations and Experiments

In this section, we present the performance and the resilience of our algorithm as compared

to other four state-of-the-art multirobot cooperative localization methods. Based on the

state tracked in a single robot and the underlying method, for simplicity, we rename all 5

algorithms as
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Figure 3.1: The system topology with N = 5 robots in the simulation. The communi-

cation graph is specified for the GS algorithm. For the LS algorithms, a fully connected

communication graph is inherently required.

• the local-state centralized equivalent (LS-Cen) [RB02],

• the local-state covariance intersection (LS-CI) [CNG13],

• the local-state split covariance intersection (LS-SCI) [LNY13],

• the local-state block diagonal approximation (LS-BDA) [LSR18],

• our global-state covariance intersection (GS-CI).

As the LS-Cen algorithm uses the entire available information without any approximation,

the result of LS-Cen can be regarded as the optimal performance. We first simulate all

methods with generated data, which not only shows that our algorithm requires far sparser

communication topology to achieve comparable performance of other methods, but also vi-

sualizes the boundedness analysis. Next, we analyze all methods in a common multirobot

dataset, and show that our algorithm is more resilient during unfavorable and adverse com-

munication loss than other algorithms.
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Figure 3.2: The cooperative localization performance with generated data. As for the com-

munication graph, local-state (LS) algorithms assume all-to-all and perfect communication,

and the global-state (GS) algorithm follows the graph in Fig. 3.1. The RMSE plot of LS-

Cen and that of LS-BDA are overlapped. For the proposed GS-CI, robot 1 has bounded

covariance matrix, as suggested by Proposition 1.

3.4.1 Simulation

To begin with, we investigate the performances of all 5 algorithms with generated data.1 In

this simulation, we consider that the orientation estimate is given for N = 5 robots. For

each robot, the velocity input ui,t is taken uniformly between [−0.09, 0.09] m/s, in which the

velocity input variance in GS-CI can then be calculated. Fig. 3.1 specifies the observation

graph for the multirobot system. In terms of the communication graph, for local state

(LS) algorithms, a fully connected communication graph is inherently required and therefore

communication after each relative observation step is assumed to be perfect. For the global

state (GS) algorithm, the communication is constrained as in Fig. 3.1, which is far sparser

than those communication graphs for LS algorithms.

To quantify the estimation performance against the ground truth, we define the root-

1The code of this subsection is available at https://github.com/tsangkai/multirobot localization.
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Table 3.1: Time-averaged RMSE of UTIAS datasets [m]

sub-dataset LS-Cen LS-CI LS-SCI LS-BDA GS-CI

1 1.28 1.67 1.12 1.31 1.42

2 0.74 1.41 1.75 0.80 0.79

3 0.23 0.96 1.23 0.26 0.29

4 0.21 1.21 1.49 0.23 0.28

5 1.72 5.45 5.20 1.79 2.17

6 0.79 2.08 2.07 0.82 0.85

7 0.59 1.49 1.73 0.86 0.82

8 0.71 0.96 2.00 0.84 0.80

9 0.26 0.28 0.65 0.27 0.31

mean-squared-error (RMSE) of the entire N robots as

RMSEt =

√∑N
i=1 ‖[p̄i,t]i − pi,t‖

2

N
,

where [p̄i,t]j is the estimate of pi,t by robot j. We also consider the root-mean-trace-error

(RMTE) to capture the uncertainty evaluated in the algorithm, defined as:

RMTEt =

√∑N
i=1 tr([Φi,t]i)

N
,

where [Φi,t]j denotes the sub-covariance matrix of robot j that relates to the position estimate

of robot i at time t. We plot the result in Fig. 3.2. In particular, for the GS-CI, we plot

both the RMSE and the RMTE of robot 1 to discuss the boundedness analysis in Sec. 3.3.2.

Based on the RMSE in Fig. 3.2, the LS-BDA and the proposed GS-CI show desir-

able results since their RMSEs remain relatively constant. However, the LS-BDA does not

guarantee the estimation consistency, and achieve this performance with the fully-connected

communication graph. Other CI-based methods, including LS-CI and LS-SCI, have increas-

ing localization error over time, due to the overly conservative estimation.
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Figure 3.3: The trajectories of robots with different localization algorithms in sub-dataset

9 starting 1500 sec. The communication is assumed to be available whenever needed. The

proposed GS-CI is comparable to the LS-Cen, whose result is regarded as the best achievable

performance.

Even though the proposed GS-CI shows desirable result, the required communication

graph specified in Fig. 3.1 is far sparser in the GS-CI than those of the LS algorithms.

Especially, as the graph G1 is weakly connected, Proposition 1 assures the boundedness of

Φ1,t. In fact, besides the observation of the landmark, the rest of the information of robot

1 comes from the single communication from robot 3. This simulation thus shows how the

observation and the communication are treated as complementary information sources in the

proposed algorithm. In addition to the sparseness of the communication graph, the proposed

GS-CI has the estimates of the entire robot team by design, which facilitates the cooperative

planning within the multirobot system.

3.4.2 Communication Resilience Experiment on the UTIAS Dataset

To demonstrate the resilience to communication failures of our algorithm, we use the Uni-

versity of Toronto Institute for Aerospace Studies (UTIAS) Multi-Robot Cooperative Lo-
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Figure 3.4: The RMSE with blocked communication from 1340 to 1360 sec of sub-dataset

9. The communication remains available besides the window between 1340 to 1360 sec.

The proposed GS-CI shows resilience during this 20 sec time window by separating the

communication update and the observation update.

calization and Mapping dataset [LHB11]. This dataset is a cohesive collection of odometry

and observation data from N = 5 robots, together with accurate ground truth data of robot

and landmark positions. This dataset is also widely used across several works as a common

benchmark dataset.

We first test those 5 algorithms on the entire 9 sub-datasets with all communication avail-

able on the first 500 sec.2 Each algorithm estimates both the orientation and the position,

and we mainly consider the position estimation here. We record the time-averaged RMSEt

in Table 3.1 for all 9 sub-datasets. As expected, the LS-Cen algorithm has the lowest lo-

calization error in the entire 9 sub-datasets. Overall, the proposed GS-CI has comparable

localization performance compared to the LS-Cen, which is consistent with the previous

simulation.

Among all 9 sub-datasets in the UTIAS dataset, sub-dataset 9 is the only one that

contains barriers, thus creating a more challenging scenario with its occasional occlusions in

2The code of this subsection is available at https://git.uclalemur.com/kjchen/tro2020/tree/master/v3.
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Figure 3.5: The RMSE of a 100 sec snapshot in sub-dataset 9 with two different communi-

cation link failure probabilities ρ. As there are more communication failures, the estimation

error is larger with ρ = 0.9 that that with ρ = 0.1 for all algorithms. However, algorithms

are affected differently. For instance, between 140 and 150 sec, the proposed GS-CI does not

have a significant increase in the estimation error, and thus shows its resilience.

observations. We therefore select sub-dataset 9 to demonstrate the communication resilience

in the following. To visualize this sub-dataset as well as the localization algorithms, we plot

the estimated trajectories of all 5 robots in Fig. 3.3. Both figures shows that the proposed GS-

CI is comparable to the LS-Cen, whose result is regarded as the best achievable performance

in the ideal scenario.

To investigate the communication resilience of each algorithm, we consider the scenario

where the communication is blocked from an adverse source, and study the localization per-

formance dynamics during this period. While different time windows show similar trends, we

plot the time window between 1300 and 1400 sec of sub-dataset 9 in Fig. 3.4 as an example.

During the entire 100 sec time window, the communication is entirely blocked from 1340 to

1360 sec, while the communication remains available for the rest of the time. In this 20 sec

window, which is marked as shaded area in Fig. 3.4, the estimation errors of all cooperative

localization algorithms increase, but the proposed GS-CI has the lowest slope. In other

words, by separating the communication update and the observation update, our algorithm

is less susceptible from the communication unavailability but continues integrating informa-
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Figure 3.6: The time-averaged RMSE with varying communication link failure probabilities

ρ of the first 500 sec of sub-dataset 9. We analyze every 50 sec and plot the 3 standard

deviation error bar for all 10 windows. The proposed GS-CI is only slightly affected by

the increase of ρ, and it shows resilience across different ρ values, especially in unfavorable

communication conditions.

tion from the observation updates. For LS algorithms, since communication is essential to

complete the some observation updates, the localization performances are largely impaired

in this 20 sec window.

We further consider the effect of the communication link failure probability on those

cooperative localization algorithms. In particular, we consider the scenario in which all

the communication links between two robots exist, but suffer from failures with a constant

probability ρ. For instance, the number of communications after the relative observation

of LS-BDA is 2. Therefore, with probability (1 − ρ)2, the relative observation update of

LS-BDA can be completed successfully without communication failure.

To emphasize the effects on estimation dynamics, we plot the 100 sec snapshots with

ρ = 0.1 and ρ = 0.9 in Fig. 3.5. The former case with ρ = 0.1 is close to the ideal

case where all the communication is assumed perfect, while the later case with ρ = 0.9 is

similar to the 20 sec window with blocked communication in Fig. 3.4. By comparing the

two snapshots, the effect of the communication link failure probability ρ on the cooperative
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localization algorithms becomes noticeable. For instance, between 140 and 150 sec, all the

estimation errors increase with ρ = 0.9 due to communication failures, but the resilience of

each algorithm differs. Among all LS algorithms, the LS-BDA shows its estimation accuracy

when ρ = 0.1. However, while the LS-BDA has comparable performance to our GS-CI

with ρ = 0.1, it has overall worse localization performance with ρ = 0.9. Such comparison

substantiates the resilience of our GS-CI under the communication failure.

To characterize the resilience performance under various scenarios, we plot the time-

averaged RMSE against the communication link failure probability ρ on the first 500 sec

of sub-dataset 9 in Fig. 3.6. In general, the increase of the communication link failure

probability ρ has negative impact on all algorithms, as the information coming from the

communication becomes less available. However, as the communication failure probability ρ

increases, the LS-Cen and the LS-BDA algorithms suffer from higher localization error, even

though they show superb localization performance in the ideal cases. On the contrary, the

proposed GS-CI maintains a relatively flat curve as the communication failure probability

ρ increases. As the proposed GS-CI is only slightly affected by the increase of ρ, it shows

resilience across different ρ values, especially in unfavorable communication conditions.
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CHAPTER 4

Multirobot Localization II: Optimal Scheduling

For the algorithm developed in the previously chapter, we use CI to enable a fully distributed

multirobot localization algorithm. We now further investigate the effect of the conservative

nature of CI on the localization performance. In more detailed, CI in communication update

introduces extra uncertainty to ensure the estimation consistency. Therefore, the commu-

nication update brings in information, as well as extra uncertainty. To use this algorithm,

the critical question is when to take the communication update? And what is the effect

on the overall performance? We formulate this problem as an optimal scheduling prob-

lem of the operations in the localization algorithm, which trades off between the operation

cost and the resulting performance. We particular consider the observation update and the

communication update, since both operations can contribute to the estimation accuracy.

We layout the optimal scheduling method in this chapter, which consists of 3 steps: First,

we derive the covariance upper bound for the algorithm, which is identical to Sec. 3.3.2. The

coefficients of the upper bound is independent of the state, and we therefore only discuss the

upper bound. Second, we find the limiting continuous-time approximation of the discrete-

time covariance update. The analysis of discrete-time modeling requires the existence of

recurrent points, which restricts the flexibility of the method. The corresponding covariance

update the follows a continuous-time Riccati recursion, and the steady-state localization

uncertainty can be represented by the solution of the corresponding continuous-time alge-

braic Riccati equation (CARE). Finally, depending on different goals, we formulate and

numerically solve two optimization problems: the cost minimization problem and the trace
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minimization problem.

In addition to the optimal scheduling method, we furthermore analyze the effect of com-

munication update on the estimation performance. We explicitly focus on the CI parameter

α and the communication rate fc. We use Frechet derivative to characterize the effects of

these two parameters on the steady-state covariance. The analysis analytically shows the

information that the communication update brings as well as the uncertainty it induces,

which completely characterizes the communication update.

4.1 Setup

The system setup is identical to the one in previous chapter, and we only briefly state it

here for self-consistency, and emphasize the difference. We consider a 2D multirobot system

where robots are indexed by {1, . . . , N}, and several landmarks whose locations are known

by the robots in advance. The position of robot i at time t is regarded as the state, denoted

as pi,t = [xi,t, yi,t]
T The state of the whole system is denoted by ξt = [pT1,t, . . . , p

T
N,t]

T.

We denote the time difference between two consecutive time update as Tp and the CI

coefficient as α. We also impose a few assumptions for derivation simplicity:

1. Robot i only receive information from robot k, who has no information source.

2. The observation rate is larger than the communication rate.

We now can summarize the covariance update of Σi,t as well as the covariance upper bound

Πi,t in Algorithm 4.

To sum up, the covariance update equations for exact covariance Σi,t are state dependent.

We instead find the update equations of Πi,t with constant coefficient. With the same initial

covariance, or Σi,0 = Πi,0, we have Σi,t ≤ Πi,t for all t. Therefore, we interpret the constant

update equations as the upper bound of the exact covariance, and optimize over the upper

bound instead.
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Algorithm 4 The Exact and the Upper-Bound Covariance Updates of the Multirobot Co-

operative Localization Algorithm

Motion Propagation

Σi,t+1 = Σi,t + T 2
pQu,

Πi,t+1 = Πi,t+1 + T 2
pQ.

Observation

Σ−1
i,t+ = Σ−1

i,t− +HT
i C(θi,t)R

−1
oij
CT(θi,t)Hi, (4.1)

Π−1
i,t+ = Π−1

i,t− +HT
i R
−1
i Hi. (4.2)

Communication

Σ−1
i,t+ = αΣ−1

i,t− + (1− α)Σ−1
k ,

Π−1
i,t+ = αΠ−1

i,t− + (1− α)HT
k R
−1
k Hk.

4.2 Continuous-Time Riccati Recursion with Operation Rates

To obtain the limiting continuous-time Riccati recursion, we have to construct the discrete-

time modeling concerning the three types of updates. With operations being taken at differ-

ent rates, we first define a time interval of the discrete time model T equal to the period of

communication update Tc. This implies that there are Tc/Tp motion propagation updates,

Tc/To observation updates, and 1 communication update in each interval T . Even though

the numbers of each action are fixed, the covariance update is still undetermined since the

specific order of those actions is unspecified. We instead approximate the covariance up-

date by reordering the operations: first observations, then communication, and then motion

propagation.

In each time interval, the covariance update after observation and communication updates
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can be expressed as

Πt∗ =

[
αΠ−1

t + α
Tc
To
HT
i R
−1
i Hi + (1− α)HT

k R
−1
k Hk

]−1

=
[
αΠ−1

t + αȞTŘ−1Ȟ
]−1

=
1

α
Πt −

1

α
ΠtȞ

T

[
1

α
Ř +

1

α
ȞΠtȞ

T

]−1

Ȟ
1

α
Πt

=
1

α
Πt −

1√
α

ΠtȞ
T
(
Ř + ȞΠtȞ

T
)−1

Ȟ
1√
α

Πt, (4.3)

where

Ȟ =

Hi

Hk

 , Ř =

ToTcRi

α
1−αRk

 .
The exact motion propagation update in a single interval is given by

Πi,t+1 = Πi,t∗ +
Tc
Tp

(
Tp
Tc
T

)2

Q = Πi,t∗ +
Tp
Tc
T 2Q. (4.4)

Combining (4.3) and (4.4), the overall covariance update can be obtained as

Πt+1 = F̌ΠtF̌
T +

Tp
Tc
T 2Q− F̌ΠtȞ

T
(
Ř + ȞΠtȞ

T
)−1

ȞΠtF̌
T, (4.5)

with F̌ = 1√
α
I. This overall covariance update is exactly a discrete-time Riccati recursion.

From the discrete-time Riccati recursion (4.5), the corresponding limiting continuous-

time Riccati recursion can be obtained with the procedure in [SMG88]. To begin with, we

let F̌c = 1
T

(F̌ − I), and rewrite the update equation as

Πt+1 − Πt

T
= F̌cΠt + ΠtF̌

T
c +

Tp
Tc
TQ− ΠtȞ

T
(
TŘ + TȞΠtȞ

T
)−1

ȞΠt +
o(T )

T
.

By taking T → 0 while keeping F̌c, TŘ, and TQ constant, we obtain the limiting continuous-

time Riccati recusion

Π̇(t) = F̌cΠ(t) + Π(t)F̌T
c − Π(t)ȞTŘ−1

c ȞΠ(t) +Qc. (4.6)

Since TŘ and TQ are constant, we can determine Řc and Qc with their initial values. That

is,

Řc = TcŘ =
1

fc
Ř =

 1
fo
Ri

1
fc

α
1−αRk

 ,
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and

Qc =
Tp
Tc
TcQ =

1

fp
Q.

The order in the original discrete-time recursion (4.3) does matter in the limiting continuous-

time approximation. For example, if the order of communication and observation operations

are interchanged, the resulting continuous-time recursion differs. While this effect is negli-

gible in the following optimization, detailed analysis should be further explored.

4.3 Properties of the CARE

4.3.1 Convergence of the CARE

After establishing the relationship between the original discrete-time and the limiting continuous-

time processes, we further require that the limiting continuous-time process inherits the

convergence property from the original discrete-time counterpart. The convergence of esti-

mation covariance in discrete-time modeling, which mainly depends on the observation and

communication topologies, is discussed in the previous chapter, and we only consider the

convergent case in this paper to emphasize the scheduling aspect.

Theorem 3. If (F̌ , Q
1
2 ) is stabilizable and (F̌ , H) is detectable in the discrete-time model,

then both the discrete-time Riccati recursion (4.5) and the associated continuous-time Riccati

recursion (4.6) converge to the solutions of the corresponding Riccati equations with positive

semidefinite initial condition, respectively.

Even though the conditions in Theorem 3 is only sufficient, they are very close to neces-

sary condition with some tradeoff between initial condition and the requirement on control-

lability and observability. The details can be found in [KSH00].

With Theorem 3, once we assure the convergence in the discrete-time scenario, the con-

vergence of the continuous-time recursion (4.6) is guaranteed, and the recursion converges
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to the solution Π of the corresponding CARE

F̌cΠ + ΠF̌T
c − ΠȞTŘ−1

c ȞΠ +Qc = 0. (4.7)

The solution Π can then be interpreted as the estimation uncertainty of the particular

configuration of the operable parameters, fp, fo, fc and CI parameter α.

4.3.2 Effects of Parameters on Π

Even though (4.7) can be solved numerically without difficulty, the analytical effects of those

parameters on Π are still of great engineering concern. As all operations are associated with

certain costs, one of the practical concern involves how should one allocate the operation

resource to decrease the uncertainty Π in the most efficient way. It can be shown that Π

decreases when increasing fp or fo based on the result in [FI01]. However, the effects of fc

and α on Π is less obvious. Conceptually, we want to know the implicit derivative of Π with

respect to fc and α in (4.7), which can be explicated by the Fréchet derivative in functional

analysis [Zei95].

To begin with, the recursion (4.6) is rewritten as a function of operation parameters

G(Π, fc, α) = 2fc

(
1√
α
− 1

)
Π− ΠȞTŘ−1

c (fc, α)ȞΠ +Qc, (4.8)

and the CARE (4.7) with solution (Π0, fc,0, α0) is exactly

G(Π0, fc,0, α0) = 0. (4.9)

4.3.2.1 The communication rate

By applying the implicit function theorem of the Fréchet derivative on (4.9),

Gfc∆fc +GΠΠfc∆fc = 0.

With some manipulation, the Fréchet derivative of Πfc∆fc at (Π0, fc,0, α0) is given by

Πfc∆fc = −G−1
Π Gfc∆fc. (4.10)
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For the first operator, Gfc∆fc is the Fréchet derivative at (Π0, fc,0, α0), given by

Gfc∆fc = 2

(
1
√
α0

− 1

)
Π0∆fc +GŘc

Řc,fc∆fc,

where

GŘc
∆Řc = Π0Ȟ

TŘ−1
c,0∆ŘcŘ

−1
c,0ȞΠ0,

with Řc,0 = Řc(fc,0, α0) and

Řc,fc∆fc =

0

− 1
f2c,0

α0

1−α0
Rk

∆fc.

In the following, the operator G−1
Π ∆Π is the inverse of the operator

GΠ∆Π = Fcl,0∆Π + ∆ΠFT
cl,0,

and

Fcl,0 = F̌c(α0)− Π0Ȟ
TŘ−1

c,0Ȟ.

Therefore, the output of the operator G−1
Π ∆Π is the solution X of the Lyapunov equation

Fcl,0X +XFT
cl,0 = ∆Π.

To sum up, the output of the operator Πfc∆fc is the solution X of the Lyapunov equation

Fcl,0X +XFT
cl,0 = −Gfc∆fc

= −2

(
1
√
α0

− 1

)
Π0∆fc −GŘc

Řc,fc∆fc. (4.11)

To interpret the derivative Πfc∆fc, we let the solution X = X1 +X2 in (4.11), where X1

is the solution of

Fcl,0X1 +X1F
T
cl,0 = −2

(
1
√
α0

− 1

)
Π0∆fc

and X2 is the solution of

Fcl,0X2 +X2F
T
cl,0 = −GŘc

Řc,fc∆fc.
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For ∆fc ≥ 0, or by increasing communication rate fc,

−2

(
1
√
α0

− 1

)
Π0∆fc ≤ 0,

and

−GŘc
Řc,fc∆fc ≥ 0.

Since (F̌c, Q
1
2 ) is stabilizable and (F̌c, H) is detectable, Fcl,0 is stable [KSH00]. Therefore,

as the solution of Lyapunov equation, we have X1 ≥ 0 and X2 ≤ 0. That is, by increasing

the communication rate fc, the increasing part of Π is characterized by X1 with the effect

of F̌c, and the decreasing part is given by X2 with the effect of Rk. In other words, the

communication update provides the information from HT
k R
−1
k Hk with the cost that the

original covariance is enlarged at the same time. This analysis not only substantiates the

qualitative understanding, but also characterizes quantitative effect as well.

4.3.2.2 The CI coefficient

The same analysis applied on the CI coefficient is direct. At (Π0, fc,0, α0),

Πα∆α = −G−1
Π Gα∆α, (4.12)

with

Gα∆α = −fc,0α
− 3

2
0 Π0∆α +GŘc

Řc,α∆α,

and

Řc,α(fc,0, α0)∆α =

0

1−α0+α2
0

fc,0(1−α0)2
Rk

∆fc.

Similarly, we can write Πα∆α = Y1 + Y2 with

Fcl,0Y1 + Y1F
T
cl,0 = fc,0α

− 3
2

0 Π0∆α

and

Fcl,0Y2 + Y2F
T
cl,0 = −GŘc

Řc,α∆α.
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With ∆α ≥ 0, we have Y1 ≤ 0 and Y2 ≥ 0. Increasing α represents emphasizing the internal

estimate over received data at the communication step, which decreases Π with the effect of

F̌c but increases Π by that of HT
k R
−1
k Hk.

4.4 Optimal Scheduling Problems

To investigate localization accuracy as well as the associated costs, we formulate two opti-

mization problems: to minimize the cost with predetermined covariance constraints, or to

minimize the covariance with a resource limit. In the localization algorithm, one can design

the observation rate fo and the communication rate fc, as well as the CI parameter α.

4.4.1 Cost Minimization Problem

We first consider the optimal scheduling problem that aims to minimize the overall cost of

the localization algorithm, while maintaining a specified accuracy requirement.

minimize
fo,fc,α

µofo + µcfc

subject to 2fc

(
1√
α
− 1

)
Π +Qc − ΠȞTŘ−1

c (fo, fc, α)ȞΠ = 0

tr(Π) ≤ πmax

fo ≤ fo,max

fc,min ≤ fc ≤ fc,max

0 < α < 1.

(4.13)

In (4.13), µo and µc are the costs associated with the observation and communication rates,

respectively. The uncertainty criterion is established with the first two constrains. The

stationary estimation covariance Π is characterized by the CARE (4.7), and the accuracy

requirement is presented by the second constrain, where the trace of the stationary estimation

covariance should be bounded by πmax. The maximum observation rate fo,max and the
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maximum communication rate fc,max represent the physical limitation of the underlying

operation. The last constraint is the requirement from CI fusion on α.

The inequality fc,min ≤ fc is imposed to account for the imperfection of the continuous-

time approximation. According to the investigation in Section V, increasing the communi-

cation rate fc may lead to the increase of Π, and thus the optimal fc may be relatively small;

this results in large amplitude steps in the covariance of the corresponding discrete-time

setting. With this large sawtooth behavior in the discrete-time case, our continuous-time

approximations, including the reordering of operations especially, become suspect.

4.4.2 Trace Minimization Problem

We can also establish the optimal scheduling problem by minimizing the localization uncer-

tainty given an overall cost budget µmax, as shown in the following:

minimize
fo,fc,α

tr(Π)

subject to 2fc

(
1√
α
− 1

)
Π +Qc − ΠȞTŘ−1

c (fo, fc, α)ȞΠ = 0

µofo + µcfc ≤ µmax

fo ≤ fo,max

fc,min ≤ fc ≤ fc,max

0 < α < 1.

(4.14)

Since the feasible set of parameters is bounded, the global optimum of both optimization

problems can be obtained by exhaustive search. More sophisticated solving techniques may

be explored using a further understanding of the properties of both optimization problems.
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Figure 4.1: The topology of the simulated multirobot system. We will discuss the optimal

scheduling on robot 1, since it has both observation and communication.
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Figure 4.2: The plot of minα tr(Π) in the region with feasible operation rates. We can see

that the trace decreases with the increase of the observation rate fo. The trace does not

necessarily decreases with the communication rate fc, as discussed.

4.5 An Example of Optimal Scheduling

We demonstrate the effectiveness of reducing the operation cost or achieving better estima-

tion performance by solving the optimization problems on a simulated system with parame-

ters listed in Table I. We consider three robots, indexed by 1, 2, and 3. Robot 1 can observe

the landmark and robot 2; robot 2 can observe robot 3 and sends its information to robot

1, as the complete topology in Fig. 4.1. Based on the analysis in the previous chapter, the

estimation covariance of robot 1 is bounded, even though that of robot 2 is not.
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Table 4.1: Parameters of a real scenario for scheduling examples

observation cost µo 20 mW

maximum observation rate fo,max 3 Hz

maximum observation distance dmax 4.8 m

the variance of range sensing σ2
d 0.0215 m2

the variance of bearing sensing σ2
φ 0.01 rad2

communication cost µc 100 mW

maximum communication rate fc,max 10 Hz

minimum communication rate fc,min 0.2 Hz

propagation rate fp 10 Hz

A typical example scenario is presented as a baseline with fc = 1 Hz, fo = 2 Hz. The

total cost is µ = 140 mW, and the trace of stationary covariance is tr(Π) = 2.0918 m2 with an

optimized α = 0.90. With this baseline example, we can consider both the cost minimization

problem (4.13) with the same performance criterion, and the trace minimization problem

(4.14) with the same amount of cost budget µmax = 140 mW, respectively.

We plot the trace of the stationary covariance with optimized α in Fig. 4.2, and we arrive

the optimal solution for each optimization problem. The optimized parameters and the

optimization result of two scenarios are listed in Table 4.2 for comparison. After solving the

cost minimization problem, the cost reduction is around 64% for the same error performance,

achieved by reducing the communication rate fc and CI parameter α jointly. In the trace

minimization problem, we can instead reduce 15% of the stationary covariance trace within

the same original resource budget, in fact simultaneously decreasing cost by 43%.

With the parameters obtained in continuous-time approximation, we can apply them in

the original discrete-time setting. The simulation with baseline scenario, cost minimization

and trace minimization is presented in Fig. 4.3, where the operation parameters are obtained

from Table II. The estimation error is defined as ||ŝ1 − s||2. We plot an average over 10
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Figure 4.3: The discrete-time simulation with parameters from optimal scheduling result.

This simulation shows that even though we are optimizing the covariance upper bound, the

real covariance as well as the position error show similar trend.

Table 4.2: Results for scheduling examples in continuous-time approximation

scenario fo [Hz] fc [Hz] α µ [mW] tr(Π) [m2]

baseline 2 1 0.90 140 2.9018

cost min (4.13) 1.52 0.2 0.63 50.4 2.9003

trace min (4.14) 3 0.2 0.47 80 2.4617

sampled curves in Fig. 4.3 and present the result in Table 4.3, where the estimation error

and the covariance trace are averaged over the operation period. From Fig. 4.3, as fc = 0.2 in

both optimized case, we can observe that the error curves in these two cases follow a sawtooth

profile in accordance with the communication period. This motivates the constraint fc,min

in the optimization problems (4.13) and (4.14). Also, the discrete-time realization reflects

the design goal in the continuous-time counterpart. The two examples show the desired

improvement in terms of the cost and of the stationary trace by considering the optimal

scheduling problems.

In the trace optimization problem, the communication rate is small comparing to the

baseline case. The saving of communication operation with the benefit of trace improvement
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may seem confusing at first. However, since the communication update applies covariance

intersection, the multiplication of α does increase the covariance. This phenomenon can also

be explained by the discussion in Section V. With the analysis of the Fréchet derivative, from

fc = 0.2 to fc = 1, the contribution of communication incoming information is compensated

by the uncertainty introduced by CI algorithm. This example not only demonstrates the

improvement by simply engineering the parameters, it also shows the necessity of optimizing

operation parameters in such scheme.

While this example presents a minimum topology to clearly demonstrate our algorithm,

the extension to general topologies is direct. Equation (4.3) can account for arbitrary ob-

servation topology without difficulty via equations (4.1) and (4.2). For the communication

topology, two types of generalization are considered for completeness. If the incoming in-

formation contains other communicated data, (4.3) can simply be extended to include the

additional terms. If there are multiple incoming communication paths, from several robots

transmitting their data to the receiving node, CI will use a set of convex coefficients in-

stead of a single coefficient α for such data fusion. In this case, the number of optimization

variables will increase, but the formulation remains unaltered.

One should note that the operation periods, for example To and Tc, may not have a

common divisor in general, which makes discrete-time analysis intractable. Nevertheless, as

demonstrated by this example, we show that it is straightforward to design and to analyze

these operation periods in a corresponding continuous-time limiting approximation. The

tightness of the upper bound mainly depends on the knowledge of odometry and observation

error. One can further improve those bounds with more available information, and optimize

the localization algorithm following the procedure in this paper without changing any step.
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Table 4.3: Results for scheduling examples in discrete-time simulation

scenario estimation error [m2] cov. trace [m2] power [mW]

baseline 0.1894 2.5051 140

cost min (4.13) 0.2365 2.6251 50.4

trace min (4.14) 0.1615 2.4070 80
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CHAPTER 5

Block Online EM SLAM

Simultaneous localization and mapping (SLAM) enables a robot to obtain such spatial

relationships intelligently and autonomously [CCC16, BAY17, SRD21]. After 30 years of

extensive study, we now have sophisticated SLAM algorithms for visual-inertial systems

that achieve unprecedented performance, for example ORB SLAM series [MMT15,MT17b,

MT17a] and VINO-Mono [QLS18].

Typically, a visual-inertial SLAM system is divided into a frontend and a backend. The

frontend abstracts sensor data, and gives a local trajectory estimation. While the trajectory

from the frontend has inevitable drift, the backend takes the results from the frontend, and

computes a globally consistent trajectory and map with loop closure. In fact, the SLAM

backend is the computation bottleneck for obtaining globally consistent trajectory and map,

and it often operates offline from the frontend process [CCC16].

The reason that most of the current backend algorithms are offline mainly lies in the

fact that they solve the SLAM problem as a maximum likelihood (ML) problem of the

trajectory. This ML problem is formulated as a nonlinear least squares (NLS) problem,

and its computational cost and storage requirements grow significantly with respect to the

time duration. The NLS formulation does not have sound methods to remove the historical

data. Existing solutions try to downsize the optimization problem by pruning out or culling

less informative nodes, but the overall formulation remains offline [CCC16]. In this paper,

we propose an online backend algorithm that can summarize the past data into sufficient

statistics, and then are no longer needed, which will greatly improve the efficiency and thus
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the scalability of the entire SLAM systems.

To develop online backend algorithms, instead of solving the SLAM problem as a pure

optimization problem, we first follow the EM SLAM that models the SLAM problem as a ML

problem of landmark positions with the trajectory as latent variables [SSG17]. Furthermore,

by acknowledging that the SLAM problem follows a general state hidden Markov model

(HMM), we can apply the block online EM (BOEM) algorithm for the ML problem [LF13],

and formulate BOEM SLAM. In essence, the historical data are summarized into the land-

mark estimates and the most recent state distribution, and each iteration only takes place

within non-overlapping blocks. Since past statistics can be summarized and discarded, the

BOEM SLAM is online. The authors of the BOEM algorithm used the algorithm in a simple

2D scenario [LFM12] and in wireless sensor networks [DL13, DL14], but the systems they

considered are fairly simple. Incorporating visual input, we are the first to extend the BOEM

SLAM in 3D visual-inertial systems to the best of our knowledge.

In particular, we apply the BOEM SLAM in visual-inertial systems with a monocular

camera and inertial measurement unit (IMU). Even though the EM SLAM lays out the

framework for our BOEM SLAM, several critical implementation issues in visual-inertial

systems are barely addressed in the original EM SLAM paper [SSG17]. First, as the E-step

contains the Kalman filter and the RTS smoother, it is necessary to expand the filtering

methods to consider rotation estimation, which requires a Lie group representation. Second,

visual measurements occasionally contain outliers, which greatly deteriorate SLAM perfor-

mance. Similar to the robust cost function in optimization-based methods, we propose the

outlier removal approach to reject spurious measurements.

We compare SLAM backend algorithms in both synthetic data and the EuRoC datasets,

and show that BOEM SLAM achieves comparable estimation accuracy with a significantly

lower computational cost compared to other backend solutions. In simulation, we highlight

the relationship between the increasing time interval and the resulting computational cost.

The realistic scenario considers the fact that data keep arriving in robotic applications, and
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therefore online SLAM algorithms are essential for better efficiency and scalability. We

further run the BOEM SLAM on EuRoC datasets to show that the BOEM SLAM algorithm

is applicable in real visual-inertial systems.

5.1 Review on SLAM Algorithms

In order to understand the offline nature of SLAM algorithms, we systematically review

various SLAM backend algorithms. As these algorithms directly estimate globally consistent

trajectory, they are referred to the SLAM algorithm before the clear separation of frontend

and backend in visual-inertial systems. For readers that are interested in the entire SLAM

development, please refer to SLAM survey papers [CCC16,BAY17,SRD21].

Modern SLAM algorithms and systems have converged to a common underlying model

[CCC16]. In particular, landmarks are treated as parameters in the modern model. While

these algorithms admit the same model, we classify them by two criteria:

• whether the trajectory is solved as parameters or as distributions, and

• whether the map is explicitly obtained or not.

5.1.1 Trajectory as Parameters

This category directly solves the ML problem of the trajectory in an optimization problem.

With noise assumed Gaussian, the optimization problem leads to a NLS problem, and there

are several numerical tools designed to solve NLS problems, including g2o [KGS11] and

Ceres [AMO]. Therefore, this category is often referred as the optimization-based algorithms.

We can further classify the algorithms in this category by the second criterion on map.
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5.1.1.1 Explicit Map

When solving the map explicitly, the landmark positions and the trajectory are jointly

formulated as the parameters in the optimization problem. The
√

SAM is considered one

of the first successful implementations in this category [DK06]. Due to the sparsity of

the optimization problem, the
√

SAM can solve the optimization problem efficiently by

factorizing matrices into square root form. Built on
√

SAM, the iSAM is later proposed to

improve the efficiency by using QR factorization [KRD08]. The Bayes tree in introduced in

iSAM2 to further enhance the efficiency, especially on the incremental factorization [KJR11].

These algorithms are able to do incremental update in the exploration stage without

loop closure. In other words, only the affected parameters are updated but not all the

parameters. However, the underlying optimization problem remains unchanged, and thus

these algorithms are still offline. Particularly, the entire trajectory has to be stored, and is

updated all together after loop closure.

5.1.1.2 Implicit Map

Instead of using the exteroceptive information directly, there are ways to formulate an opti-

mization problem without landmark parameters. Observations with overlapping landmarks

can be transformed into constraints among states that take those observations. In other

words, the exteroceptive information is turned into the constraints among states, and the

resulting optimization problem only has the trajectory as parameters.

The entire optimization problem can be regarded as a graph with states in the trajectory

as nodes, and constraints as edges. Since the transformed constraints are imposed between

nodes, this category is also known as the pose graph SLAM. This concept is introduced

very early in the seminal paper by [LM97], and is later improved in [TM06] and [GKS10].

Visual-inertial systems also heavily rely on the pose graph methods to refine the trajectory

estimate after loop closures.
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5.1.2 Trajectory as Distributions

SLAM algorithms can also solve the trajectory as distributions, and accordingly they have

to use filtering techniques. Similarly, we can further separate the algorithms in this category

by whether the landmarks are explicitly solved or treated as relative constraints.

5.1.2.1 Explicit Map

As landmark positions are treated as unknown parameters in the system, optimizing these

parameters with latent variables can be considered as an ML problem, and can be solved

by the EM algorithm. Following this idea, [SSG17] propose the EM SLAM. In particular,

the E-step uses filtering methods to estimate the trajectory while the M-step optimizes the

landmark positions.1 Since the EM algorithm is an offline algorithm, EM SLAM is also

offline. The proposed BOEM SLAM relies on this EM framework, but takes advantage of

the HMM structure to enable an online solution.

5.1.2.2 Implicit Map

The similar concept of turning observation into constraints is also applicable for this cate-

gory, but constraints are used in the observation update in the Kalman filter instead. This

approach is first proposed in [ESL06], and is called the exactly sparse delayed state filter

(ESDSF). An extension to Lie group is later presented in [LCM18]. When establishing con-

straints between states, the ESDSF encounters the same issue as mentioned in the pose

graph SLAM where old states should be maintained. As a consequence, even though the

Kalman filter is an online algorithm, the overall implementation of the ESDSF is offline.

1We avoid the traditional dichotomy between filtering-based and optimization-based algorithms, since
EM SLAM naturally integrates both.
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5.1.3 Discussion

There are two reasons that all aforementioned algorithms are offline. First, for the algorithms

with implicit landmarks, they need to store the historical state in order to realize the relative

constraints. Even for the algorithms with explicit landmarks, the existing algorithms use

offline methods, including the NLS optimization and the EM algorithm. In other words,

there is no way that the old states can be discarded. The proposed BOEM SLAM belongs to

the same category of the EM SLAM, but it solves the SLAM problem online by leveraging

the HMM structure.

5.2 Parameter Inference in HMMs

We summarize the parameter inference problem by EM algorithms in this section. The

thorough treatment of the EM algorithm and the block online EM algorithm can be found

in their original papers [DLR77] and [LF13], respectively. Formally, we consider a HMM

with latent states {st}t≥0, and the observation {ot}t≥1. The unknown parameter θ, which

is in the state transition model and/or the observation model, will be inferred by the EM

algorithm.

5.2.1 Standard EM Algorithm

The complete-data log-likelihood function of the HMM is

log p(s0:T , o1:T ; θ) = log p(s0) +
T∑
t=1

log p(st, ot|st−1; θ).

The EM algorithm computes the ML solution of the unknown parameter θ by two iterative

steps: The E-step constructs the function Q(θ) and the M-step finds the θ that optimizes

Q(θ). Typically, the function Q(θ) is the conditional expectation of the complete data log-

likelihood given the observations. To ease the transition to the online setting, we write the
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E-step by normalizing the conditional expectation with T as

Qk(θ) =
1

T
Eθ̂k−1

[
T∑
t=1

log p(st,ot|st−1; θ)

∣∣∣∣∣o1:T

]
. (5.1)

The M-step directly solves the optimal θ by

θ̂k = arg max
θ

Qk(θ). (5.2)

5.2.2 Block Online EM Algorithm (BOEM) for HMMs

The BOEM algorithm performs the EM algorithm in non-overlapping blocks. The only

historical information needed in each block is the distribution of the previous state, while

the rest of the past statistics are not required. This property makes the BOEM algorithm

an online algorithm in essence.

The BOEM algorithm requires the block size to grow due to the dependency in the

Markov chain. In the original paper, the block size {τn}n≥1 is taken as τn = bcnac, with

c > 0 and a > 1. For convenience, we also define Tn as the end time of the block n, or

Tn =
∑n

m=1 τm, T0 = 0. We now present the BOEM algorithm in block n. The E-step

computes a function similar to (5.1), but only takes the states and the observations within

the block.

Q̄n(θ) =
1

τn
E
χn−1

θ̂n−1

[
Tn+1∑

t=Tn+1

log p(st,ot|st−1; θ)

∣∣∣∣∣oTn+1:Tn+1

]
. (5.3)

The initial distribution of this block, or the distribution of sTn is given by χn−1. The M-step

remains the same:

θ̂n = arg max
θ

Q̄n(θ). (5.4)

To finish the calculation in this block, we need to provide χn for the next block. While

χn represents the distribution of sTn+1 with the current parameter estimate θ̂n, χn can by

obtained by starting with χn−1 and calculating the distribution of sTn+1 conditioned on

oTn+1:Tn+1 .
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The convergence of the BOEM algorithm is discussed in the original paper [LF13] under

fairly restrictive conditions. The strong mixing condition requires the distribution function

to be larger than a positive constant, which is too strong even for the linear Gaussian

model. Even the convergence of the BOEM algorithm in the linear Gaussian model is

shown numerically without proof in [LF13]. While most SLAM works use Gaussian noise for

modeling, the current convergence analysis is not ready for SLAM applications, including

[LFM12] and this work. We expect the analysis to be more complete and general in the

future.

5.3 Block Online EM (BOEM) SLAM

In this section, we apply the BOEM algorithm to solve the SLAM problem of a visual-inertial

system. It is not difficult to recognize the HMM structure in the SLAM problem, but we

need to take care of the manifold nature of the SLAM problem, which will be emphasized in

this section.

5.3.1 System Model

A mobile agent can be described by the state space model,

st+1 = f(st, ut) + wt, (5.5)

ot = h(st, λ) + vt. (5.6)

As the noises wt and vt are independent, the states {st}t≥0 together with the observations

{ot}t≥1 admits a HMM.

We now specify the model in (5.5) and (5.6) for a visual-inertial system. The state

st includes the rotation, velocity and position, or sTt = [qTt , v
T
t , p

T
t ]. The rotation qt ∈ S3

is represented as a unit quaternion. For rotation disturbance, we use the right-plus ⊕
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convention in [SDA20], which leads to

qt = q̄t ⊕ et = q̄t ◦ expq(et). (5.7)

This definition decomposes the rotation qt into the deterministic term q̄t and the random

term et in the tangent space.

The time dynamic model (5.5) describes the state transition with IMU measurements ut,

including gyroscopes and accelerometers. With fairly common assumptions [KHS17], we use

the model:

qt+1 = qt ◦ expq (∆t(uω,t − δω,t) + wq,t) ,

vt+1 = vt + ∆t (Rq(qt)(ua,t − δa,t) + g) + wv,t, (5.8)

pt+1 = pt + ∆tvt +
∆t2

2
(Rq(qt)(ua,t − δa,t) + g) + wp,t,

where Rq(·) maps a quaternion to the corresponding rotation matrix. This model includes

the IMU biases δω,t and δa,t. The zero-mean Gaussian noise wT
t = [wT

q,t,w
T
v,t,w

T
p,t] can be

derived from the IMU measurement noises, and we denote the covariance matrix of wt by

Q.

For the observation model (5.6), the monocular camera is used as the exteroceptive

sensor [MSK03]. We use the standard pinhole camera model, and the normalized camera

measurement of landmark m at time t is given by

om,t = π(T cn(λm)) + vm,t. (5.9)

The projection π is defined as π([x, y, z]T) = [x/z, y/z]T, and T cn is the transformation from

the navigation frame to the camera frame. Let Mt denote the sets of landmarks observed at

time t. The entire observation at time t is

ot =


...

om,t
...


m∈Mt

=


...

π(T cn(λm))
...


m∈Mt

+ vt, (5.10)

where vt is zero-mean Gaussian with covariance matrix Rt.
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5.3.2 Algorithm

When solving the SLAM problem in the EM framework, we aim to optimize the parameter λ

given the available observation data {ot}t≥1. While the application of the BOEM algorithm

is direct, we take a closer look at the calculation procedure for the BOEM SLAM.

By combining the E-step (5.3) and the M-step (5.4) in the BOEM algorithm, we have

λ̂n = arg max
λ

E
χn−1

λ̂n−1

[
Tn+1∑

t=Tn+1

log p(st,ot|st−1;λ)

∣∣∣∣∣oTn+1:Tn+1

]

= arg min
λ

E
χn−1

λ̂n−1

[
Tn+1∑

t=Tn+1

‖ot − h(st, λ)‖2
Rt

∣∣∣∣∣oTn+1:Tn+1

]

≈ arg min
λ

Tn+1∑
t=Tn+1

∥∥∥ot − h(Eχn−1

λ̂n−1

[
st
∣∣oTn+1:Tn+1

]
, λ
)∥∥∥2

Rt

.

The notation ‖x‖2
M = xTM−1x is used for the squared Mahalanobis distance with covariance

matrix M , and the approximation in the last equation is taken by interchanging the expecta-

tion and the entire function. In each block, the BOEM SLAM first calculates the conditional

expectation E
χn−1

λ̂n−1

[
st
∣∣oTn+1:Tn+1

]
by the Kalman filter and the RTS smoother [RTS65]. In

the following, obtaining λ̂n is exactly to solve a NLS problem, thanks to the Gaussian noise

assumption. The BOEM SLAM algorithm can be summarized as

• E-step: calculate E
χn−1

λ̂n−1

[
st
∣∣oTn+1:Tn+1

]
with the Kalman filter and the RTS smoother.

• M-step: solve the NLS problem to get λ̂n.

• End of the block: obtain χn for the next block.

Overall, the EM framework naturally approaches the SLAM problem by tacking two

sub-problems separately. As the E-step keeps the landmark parameters constant, it can be

regarded as the localization step to improve the trajectory estimate; meanwhile, the M-step

can be considered as the mapping step to optimize the landmark parameters. In BOEM

SLAM, the past information is not explicitly used, but is implicitly incorporated in χn−1
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and also in λ̂n−1. When the past information can be summarized and discarded, the BOEM

SLAM algorithm greatly decreases the amount of data required in calculation, and provides

an online solution.

5.3.3 Implementation Details in the Visual-Inertial System

We now turn to the implementation aspects of the BOEM SLAM. The calculation of the

conditional expectation in the E-step is typical in filtering and smoothing problems, which

are typically solved by the Kalman filter and the RTS smoother. One of the main challenge is

that we have to take the manifold structure of the rotation into consideration. The Kalman

filer on Lie group is well-developed [BMG13], while the RTS smoother on Lie group receives

little discussion. We then follow the derivatives on Lie groups in [SDA20] to design the RTS

smoother on the Lie group.

The state space S = S3×R3×R3 is the direct product of three Lie groups, and thus it is

also a Lie group. The group multiplication, the exponential and logarithm maps, and even

the plus and minus operations, are all well-defined in S by inheriting from individual Lie

groups. We use s̄t|t′ for conditional expectation of st given o1:t′ , and Σt|t′ for the associated

covariance matrix. With the derivatives on Lie groups, we can then use the following iterative

equations

s̄t|T = s̄t|t ◦ exp
(
Ct
(
s̄t+1|T 	 f(s̄t|t, ut)

))
, (5.11)

and

Ct = Σt|tF
T(FΣt|tF

T +Q)−1, (5.12)

for the estimate update in the RTS smoother, while the covariance update remains identical

to the original RTS smoother.

Another key factor in the SLAM performance in the visual feature outlier detection and

removal. In the optimization-based approaches, robust cost functions are often employed

to reduce the effect of outliers, for example the Huber loss function. In our experiments,
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we implement the similar detection scheme to remove the outliers. We reject the visual

measurements that are far from the predicted measurements. We also reject the observation

update in the Kalman filter that changes the trajectory abruptly. While the current methods

are straightforward, we believe that more sophisticated outlier removal methods can be

proposed with more investigation.

5.4 Results

In this section, we compare the accuracies and the computational costs of different SLAM

backend algorithms. We focus on the explicit-map algorithms, which simultaneously esti-

mate the trajectory and the landmarks. In particular, we consider three algorithms: the

optimization-based SLAM (opt.), the EM SLAM and the proposed BOEM SLAM.2

To ensure fair comparison of processing times, the simulations and the experiments are

all performed on a single computer equipped with an Intel i5-8250U CPU @ 1.60 GHz and

8 GB of DDR4 RAM, and all optimization problems are solved by Ceres [AMO].

5.4.1 Simulations

We test all three SLAM algorithms on a circular trajectory with discrete time interval 30

ms as in Fig. 5.1. The camera on the robot is constrained to face outward to observe

landmarks on the walls throughout the trajectory. We then generate the IMU measurements

and camera observations for the robot with random noise. All the SLAM results together

with the dead reckoning trajectory are shown in Fig. 5.1.

To verify the effectiveness of the BOEM SLAM, we plot the rotation and the position

estimation errors of all SLAM algorithms over 50 sec in Fig. 5.2. All SLAM algorithms

maintain reasonable estimation errors throughout this interval. The only noticeable differ-

2The source code and the parameters of the simulation and the experiment is available at
https://github.com/tsangkai/slam demo.
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Figure 5.1: The first 16 sec of the simulated trajectories. Three SLAM algorithms are

presented in dashed lines, including optimization-based algorithm (opt.), the EM SLAM

and the BOEM SLAM. 200 landmarks are randomly generated on the walls of a 7.5× 7.5 m

box.

ence between BOEM SLAM and other algorithms is that the estimation trajectories from

BOEM SLAM have larger variance. Since the BOEM SLAM processes less data in each

time block, we expect that it needs more data for convergence compared to other offline

algorithms. Overall, the estimation accuracy of these 3 algorithms are comparable.

To emphasize the importance of the online feature for robotic applications, we consider

the computation time with various durations. The duration of the trajectory is increased

by 15 sec, and the performance analyzing tool perf is used to calculate the processing time,

with the results shown in Fig. 5.3. Even though all algorithms achieve similar estimation

accuracy, the processing times are significantly different. While the NLS optimization proce-

dure dominates the computation cost, an improvement of processing time can be achieved by

decreasing the size of the optimization procedure, which makes the EM SLAM more efficient

over the optimization-based SLAM. Furthermore, as an online algorithm, BOEM SLAM can

effectively summarize and discard past data, and thus has the least computational cost. For

the duration of 150 sec, while optimization SLAM needs more than 1000 sec, BOEM SLAM
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Figure 5.2: The rotation and the position errors of the SLAM algorithms. The shaded areas

show 1 standard deviation error bar over 50 trials.

only takes around 20 sec to complete the task.

5.4.2 EuRoC Datasets

We then test the algorithms on the EuRoC datasets, which provide images, IMU measure-

ments and ground truth data [BNG16]. Three SLAM backend algorithms use the output from

the common frontend of monocular camera vision, which includes the feature measurements

and the estimated trajectory from visual-inertial odometry (VIO). The data association of

the feature measurements is also provided by the frontend. Therefore, the SLAM algorithms

can close the loop when the same landmarks are observed at both ends of the loop. The

VIO trajectory is provided by the open-source okvis project [LLB15]. As for the IMU mea-

surements that are obtained at a higher rate, we use the preintegration method in [FCD17]

to combine IMU measurements between two keyframes.

In EM-based SLAM algorithms, the forward Kalman filtering in the E-step only uses

IMU odometry data, which gives a very inaccurate result over a longer period of time. In

a visual-inertial system, the visual-inertial odometry (VIO) normally gives a better initially

estimated trajectory. Therefore, we take the weighted average between the IMU propagated
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Figure 5.3: The trajectory estimation accuracy and the processing time with increasing time

intervals. The shaded areas show 1 standard deviation error bar over 20 trials. As an online

algorithm, the BOEM SLAM can effectively discard information, and thus it has a lower

processing time.

states and the VIO states in the forward Kalman filtering. As for optimization SLAM, the

VIO trajectory is used to initialize the optimization process.

The MH 04 dataset is demonstrated as an example to show the estimation trajectories in

Fig. 5.4 and the trajectory errors in Fig. 5.5. Overall, the SLAM algorithms provide more

accurate estimated trajectories than the VIO result, since they can improve the estimation

with loop closure. We can also see the error drop in the last 20 sec of BOEM SLAM due to

the loop closure, which shows the effectiveness of the BOEM SLAM.

We then extend to all EuRoC datasets, and the trajectory estimation errors are presented

in Fig. 5.6. While all SLAM algorithms bring down the VIO trajectory error, the optimiza-

tion SLAM has the most consistent performance, but overall the performances of all SLAM

algorithms are comparable. We attribute the prominent performance of optimization SLAM

to two possible explanations: First, this algorithm can incorporate robust cost functions

easily to remove outliers of visual measurement. Even though we implement the similar

mechanism in the EM-based algorithms, we believe that there is still room for improve-

ment with further investigation. Second, since the EM-based algorithms perform filtering
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Figure 5.4: The estimated trajectories of SLAM algorithms on dataset MH 04. The visual-

inertial odometry (VIO) is obtained from the okvis project.
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Figure 5.5: The trajectory errors of SLAM algorithms on dataset MH 04.

and smoothing in the E-step, they are more susceptible to linearization issues. The perfor-

mance difference between the EM SLAM and the BOEM SLAM is not significant, which

demonstrates that the block online structure does not sacrifice the estimation accuracy.

We now turn to the processing time across all datasets as shown in Fig. 5.7. Throughout

all datasets, the BOEM SLAM uses less than 40 sec consistently to reach comparable SLAM

performance. In general, the processing time increases with the duration of the trajectory,

and the processing times of EM SLAM and BOEM SLAM reflect this trend. For optimization

SLAM, the small processing times in datasets MH 02 and MH 03 in particular come from
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Figure 5.6: The trajectory estimation error of SLAM algorithms on EuRoC datasets.
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Figure 5.7: The processing time of SLAM algorithms on EuRoC datasets. Each error bar

shows the standard deviation over 10 trials. The BOEM SLAM algorithm shows a signifi-

cantly lower processing time compared to the other two algorithms.

the fact that the initial estimated trajectory leads to convergence early. However, for other

datasets, the optimization SLAM takes the longest processing time, which is about 5 times

of our BOEM SLAM.
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CHAPTER 6

Conclusions

This dissertation demonstrates two important spatial autonomy scenarios. In the first multi-

robot scenario, I proposed a new cooperative localization algorithm that uses less communi-

cation and is more robust to communication failures. Second, an online EM SLAM algorithm

is designed and implemented for visual-inertial systems that can discard past information

efficiently.

In this section, I will discuss further topics in robotics with the foundations built in

previous chapters. First, I will propose an algorithm for multirobot mapping. With the ex-

perience in multirobot localization, the proposed algorithm highlights the robustness nature

in the multirobot systems. I will also discuss the exciting topics revealed from my research.

I will talk about the principle of handling data in robotic scenarios: sharing data and for-

getting data. Even though the concept is straightforward, the questions for researchers and

engineers lie in how to find a good algorithm.

6.1 Multirobot Mapping

Multirobot mapping considers an extension of single-robot SLAM problem to a multirobot

scenario. Several robots do not have any pre-existing knowledge to an environment, and they

want to construct a map of this environment cooperatively. The coverage of multiple robots

is larger than that of a single robot, which suggests that the multirobot mapping scenarios

will be more efficient. However, the information exchange among robots pose engineering
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Figure 6.1: The roadmap of proposing the multirobot mapping algorithm. The proposed

algorithm maintains robustness from the multirobot localization algorithm, and it uses the

EM framework as for the online EM algorithm.

challenges to realize this system.

Current methods typically consist of two individual steps: first, each robot builds its own

map, and then all individual maps are combined together. One major technical challenge

is to determine the transformation between individual maps before merging them. Even

though this two-step framework can construct a map with cooperative robots, its simplicity

limits its potential in reality. First, while the entire map is constructed in the end, it prevents

robots to change its behavior according to the map. For example, robots are not able to

determine the unvisited territory on the fly. Second, the fusion is done on a centralized robot

that collects all the map, which poses a vulnerability issue is a distributed system.

This dissertation suggests a novel way to design a multirobot mapping algorithm. The

EM-based SLAM algorithm for a single robot provides a framework that separates localiza-

tion and mapping, where the mapping is viewed as an optimization problem. For multirobot

system, we can extend this EM framework, and uses distributed optimization algorithm for

the cooperative mapping problem. We follow the notation in the SLAM section. In particu-

lar, the E-step takes place in each robot, and robot n computes the conditional expectation

as

Qn
k(λ) =

1

T
Eλ̂k−1

[
T∑
t=1

log p(snt ,o
n
t |snt−1;λ)

∣∣∣∣∣on1:T

]
.
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As the E-step is interpreted as the localization step, each robot reevaluates its own trajectory

based on the current landmark estimate λ̂k−1. In M-step, all robots collectively solves

λ̂k = arg max
λ

N∑
n=1

Qn
k(λ).

This is a distributed optimization problem, and robots can use distributed optimization

algorithms to solve this problem, EXTRA for example. For this algorithm, robots only need

to communicate with its neighbors, which preserves the distributed nature of multirobot

systems.

In the traditional framework, the transformation of maps in different robot is unknown,

and the centralized unit has to spend a lot of effort to recover this. In other words, the

traditional framework solves two problems at once: finding the transformation and combin-

ing the map. The proposed framework instead requires that robots solve the transformation

configuration first, and then solve the map fusion on the fly. The transformation configu-

ration can be solved at the beginning of the robot deployment, especially when robots are

deployed nearby. By separating these two main problems, the overall multirobot mapping

framework can be more efficient and more robust.

There are 3 advantages of this new framework.

• The traditional framework only combines the map in the end of the entire process. In

this case, the updated map cannot be utilized for robots to further explore the space.

On the contrary, in the proposed framework, the map is constructed along the process

rather than in the end. Therefore, robots can use the updated map to further explore

the unmapped territory.

• The proposed framework does not rely on a centralized unit. Therefore, the proposed

framework has better robustness compared to the original centralized framework. In

particular, the main distributed component in the proposed framework is the dis-

tributed optimization problem, while the rest of the computation remains local.
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• In the proposed framework, all robots has the updated map from the algorithm, and no

extra step is required to broadcast the updated map. On the contrary, the traditional

framework computed the entire map in a centralized unit, and has to broadcast the

map in the end.

Even though I do not directly proposed the online multirobot SLAM algorithm, the pro-

posed multirobot mapping algorithm can be easily extended. In the multirobot mapping,

each robot localizes itself on its own. We can further impose the multirobot localization

mapping algorithm in this dissertation to realize a fully multirobot SLAM algorithm, thanks

to the EM framework that separates the localization and the mapping. On the other hand,

the proposed multirobot mapping algorithm can also be extended to the online implementa-

tion. Once we recognize that multirobot mapping is still an inference problem over a hidden

Markov model, the online EM algorithm can then be applied. However, the interesting ques-

tion here is the general distributed and online EM algorithm. Once we can formalize it, this

algorithm can be applied beyond robotics, since the hidden Markov model is very common

in science and engineering.

I am very excited to see this framework to be implemented in visual-inertial systems.

More challenges and possibilities will show up if we consider heterogeneous system. For

example, a system with ground robots and aerial robots.

6.2 Sharing Information

As the manufacture of robots becomes more democratized and accessible, we are expect to

see more robots in daily lives. The challenge does not only lie in the manufacturing robots,

but also the algorithm design in this new scenario. While each robot has different sensors

and actuators, robots can cooperate to jointly achieve their own goals. The multirobot local-

ization project in this dissertation provides the framework for general information sharing,

with a focus on the inter-robot correlation. When we move on to the general cooperative
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scenario in multirobot systems, the information sharing has new challenges.

The first challenge is how one robot should use the shared information. As shown in the

localization case, massive communication is required to obtain the inter-robot correlation,

without which the obtained information is not very useful. Most of the time, robots will

combine the information from other robots, and the theory is provided in this dissertation

from a barycenter perspective. However, the information shared in the multirobot system is

not limited to this case. As for general information sharing, an easy and efficient information

usage is essential for every case.

Another challenge is that the algorithm for multirobot system should be built on its

distributed nature. While some algorithms have the centralized-equivalent performance, the

price to pay is not only the massive information requirement, but also the loss of robustness.

In terms of information usage, the information may not be considered as exact or fully

characterized in a distributed system. Therefore, different information usage schemes should

be investigated for distributed systems to ensure its robustness.

The challenge of realizing multirobot system is mostly algorithmic. If we can not design

the algorithm coordinating how robots interact, the so-called multirobot systems will be just

several single robot system without any further potential. As the number of robots keep

increasing, we would also expect something like “culture” and “social norm” that shows up

in our own society. In that case, we not only have to design the interaction between robots,

but we also have to keep an eye on the global behavior emerging from these local interactions.

6.3 Forgetting Information

When robots are deployed in realistic environment, data from sensors will keep arriving,

since we are living in a dynamic world. A robot not only has to know how to process the

data, but summarizing and discarding data is also important to avoid information overload.

The online SLAM project shows the effort to take this challenge into consideration. This
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question is related to both the algorithm and the representation of the spatial autonomy

that we mentioned in the Introduction. While robots are able to “forget” unimportant

information and keep essential information in an efficient representation, robots can operate

in the dynamic environment for a long period of time.

As robots use less communication and computation to acquire spatial autonomy, robots

have more resource for all high-level tasks, including planning, exploration, navigation, or

even interaction with human. Thus, this dissertation serves as a block to the road for a

future with abundant robots. With more understanding spatial autonomy by construction,

we might be able to decipher the mystery of the human spatial autonomy one day.

6.4 The Representation of Spatial Autonomy

While this dissertation is about obtaining spatial autonomy, the spatial autonomy is usually

not the end goal of a robot. To put this concretely, we never talk about how robots move or

how robots determine the trajectories. How does the study of spatial autonomy inform the

upper layer decision making?

There are at least two ways for decision making. If we obtain the control inputs directly,

this can be considered a planning problem. If we obtain the policy, or a mapping from

the state to the action, it should be considered a reinforcement learning problem. In both

way, the state is often considered exact while no uncertainty involved. More over, when the

state space is large or even continuous, the representation of the state is not trivial but has

to be given or learned. This problem refers back to the three-stage overview of the spatial

autonomy. However, instead of viewing from the reinforcement learning, we provide a broader

interpretation of the representation as the bridge between lower level spatial autonomy and

the upper layer decision making.

The decision making should integrate the uncertainty smoothly. The first simple scheme

is to let the robot randomly walk around the environment. Once the location and the map are
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accurate enough, the decision making based on exact information can take over. However,

a more complete scheme can be designed that take the uncertainty in the spatial autonomy

into account. This is the way the build the entire autonomy of robots from the bottom, and

with more research on this, we can expect the real autonomy in robots to be realized on day.
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