
UC Irvine
ICS Technical Reports

Title
Microelectronics and computer science

Permalink
https://escholarship.org/uc/item/4qz7p8j7

Authors
Arvind
Gostelow, Kim P.

Publication Date
1977
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qz7p8j7
https://escholarship.org
http://www.cdlib.org/


Jlicroelectronics and
Computer Science^

by

^rvind^
'"Kim P. Gostelow

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Technical Report #106

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

*This work was supported by NSF grant MCS 76-12460.
UCI Dataflow Architecture Project.



Microe1ectrqnics and Computer Science*+o

,

Arvind

and

Kim P. Gostelow

Department of Information and Computer Science
University of Caliornia, Irvine

Irvine, California 92717

ABSTRACT

Technology has a profound influence on computer
science. In the past, technology has always been a
constraint and has required computer designers to organize
computers around what was feasible rather than what was
desired. Whenever new technology arrived (e.g., transistors
in place of tubes) tne line of feasibility simply moved.
However, microelectronics has brought far more severe
changes and tne line of feasibility has not only moved
drastically, even moving beyond what computer scientists
were prepared for, but is now requiring us to reconsider the
basic conceptual precepts upon which (almost) all computers
have rested. Tnat is, computer scientists have been
confined totally to tne so-called von Neumann class of
computers and tneir tnree basic attributes: low-level
machine language, centralized sequential control, and linear
memory organization. Machines based upon these
characteristics have worked fairly v^ell in the past (the
last 3u years), but recent developments in LSI technology
nave changed these attributes themselves into inappropriate
constraints. example, LSI favors distributed and
asynchronous computer operation — a principle incompatible
v;ith von Neumann machines. Also, since basic components are
far more complex, and thorough testing is economically
unfeasable, achieving reliability must be a primary design
cons ideration.

*This work was supported by NSF grant HCS76-12460
+This paper was presented at the 2nd IEEE(G-PHP)/ISHM
University/Industry/Governraent Microelectronic Symposium at
the University of New Mexico, Albuqueraue, New Mexico,
January 3-5, 1977.
^Revised with minor editorial changes: 15 August 1977.



Page 2

1• Introduction

Many people in the computer science field speak with

great fascination about the possibility of placing a

computer system such as an IBM 370 into a small box within

tne next few years. Such a system would certainly be a

cnange from tne equipment currently required. However, the

statement also indicates that the designers of

microprocessors and microelectronic devices essentially work

witn the same concepts of computer architecture that were

the basis of almost all previous computers. The net result

of tnis trend is that while computers themselves have become

substantially less expensive, the cost of using computers

has, if anything, increased. The techniques for producing

applications software (which constitutes the major part of

the cost) have not improved sufficiently to meet the rising

expectations and demands.

Undoubtedly the impact of miniaturization of computers

is tar-reaching. Miniaturization'has permitted the use of

computers in space vehicles, thereby significantly

increasing tne scope of on-board experiments. Reduction in

both size and cost of computers has potentially opened such

a large area for the applications of computers that far

reaching social implications will necessarily follow.

However, in spite of a wide range of applications.



Page 3

microelectronics has not increased our ability to solve

computational problems.

A precise (and common) measure o£ the complexity of a

problem is the time and space consumed by a machine

executing a programmed solution to the problem. Many

problems in astrophysics, weather prediction, and game

playing are examples of very complex problems. Problems

such as these cannot be effectively sped-up simply by

reducing gate delays on a chip, even by a factor of 10 or

100 (if such were physically possible). Rather, increases

in machine performance must come from new and very different

internal logical orgnizations for computers. However, past

efforts in developing new computer architectures, as

exemplified by ILLIAC IV, have had only modest success.

Computer organizations such as ILLIAC IV unfortunately

require much greater programming effort and necessarily make

software related problems even more difficult to solve.

Solutions such as ILLIAC IV are not appropriate, and we hope

to snow why this is so.

There is another kind of complexity that relates more

to the structure of computation itself. Consider the

problem of designing an operating system. It is very

difficult to view an operating system as a single sequence

of instructions. A more natural, and less complex view, is

that of several independent resource manager programs

occasionally interacting with one another. When the basic



Page 4

structure ot a problem solution exhibits this non—sequential

behavior, it becomes very difficult to program the solution

on a computer that is based on a single sequence of

instructions. Many problems in modelling, especially in

economics, also fall into this category. Simple

miniaturization or reduction of the hardware cost of

computers will have little effect on solving this type of

complex problem.

Ihe rernainaer of this paper shows why microelectronic

researchers and developers on the one hand, and computer

scientists on tlie other, must begin to exchange ideas in

order to solve complex problems in computing. Computer

scientists must develop new principles for organizing

computation V7hich have not existed previously and which are

reasonable in the eyes of microelectronic researchers.

Conversely, microelectronics developers must realize the

fundamental limitations of current computer architectures

and understand what new principles are to be applied in

order to produce machines which will be useful.

Ihis paper is organized as follows; Section 2 shows

how technology has influenced computer science in the oast

and why the impact of LSI on computer science is at a very

fundamental level. Section 3 discusses three major problems

related to the utilization of microelectronics, and Section

4 briefly outlines one approach to computer design which

advocates new principles to effectively utilize



Page 5

microelectronics to solve complex problems. Our conclusions

appear in Section 5.

2. 'ine Influence of Technology on Computer Science

The feasibility of many ideas in computer science

depends upon the technology available at the time the ideas

are conceived. Many ideas are discarded outright because

they cannot be realized economically, as for example a large

associative memory. The effects of technology on computer

science can be more subtle when designers see the technology

placing firm constraints on them. Consider memory systems:

designers have always worked under the assumption that fast

memory is expensive. Consequently all machines have

hierarchically organized memory systems.

The effect of such constraints on computer science has

been to devise techniques and computer organizations to

overcome and reduce the limitations imposed by technology.

Virtual memory, pipelining, overlapped I/O and central

processor operations, and microprogramming are all examples

of successful solutions to technological constraints. These

particular solutions have, in turn, increased our

understanding., of the basic principles of machine

organization. However many other technological constraints

have caused effort, to be expended in problems of dubious

value, often in the area of efficiency studies and

optimization.



Page 6

The influence of technological constraints can even

live beyond the technology that brought them. The LSI

version of the PDP-11 is an example of such constraints.

What previously was an entire processor is how available as

a component. The constraint being applied (unconsciously)

is that, the PDP-11 is the end product, when in fact, we wish

to be able to use it as just one processor within an

ensemble of many processors. As evidence, consider a box

full of PDP-lls. We expect intuitively that under some

proper bussing structure adding more processors to that box

shoula give us greater computing "power", but so far it has

not. in fact, we conclude that it cannot because the PDP-11

is not a module, and there is no suitable interconnection to

make it so. None of the microprocessors available today can

be effectively interconnected in order to form a more

powerful computer. The main source of difficulty is the

programmability of such configurations rather than the

hardware interconnection problems.

finally, if we take an historical view, we can see that

previous changes in technology have been readily absorbed by

computer designers. Tubes were replaced by transistors,

hardwired controls by microprograms, etc. without traumatic

effects on the users. The advent of microelectronics has

posed far more severe changes, the effects of which actually

reach the very foundations of computer science.

^nation o^ f^sumann-type computers



Page 7

Von Neumann-type computers are characterized by the

following three precepts:

1. Low-level machine language (commands are elemental
operations on elemental operands) .

2. Sequential centralized control of the computational
process (control is a single sequence of commands,
each executing one operation and passing control to
the next command, as determined by a simple cell
called tne instruction counter).

3. Linear organization of storage consisting of
identical sequentially-numbered cells.

It is important to recognize that these principles were

developed before 1950 directly as a result of the

technological constraints of that time, and even though new

technology has now removed many of those constraints, the

principles are still with us. In fact, it is fair to say

that the views of mainstream computer scientists regarding

computer system organization are not just biased by, but are

almost totally confined to, von Neumann-type architecture.

difficulty in utilizing microelectronics

Von Neumann's principles worked well in the past and

nave witnstood considerable, change in technology. But now

these principles are hindering the effective utilization of

new technology [1]. In fact, this should come as no

surprise since microelectronics is basically disposed

towards systems that are distributed and comprise large

numbers of similar components. But computers (or modules)



Page 8

constructed on von Neumann's principles simply cannot

cooperate ettectively with one another towards a common

goal. A single sequential instruction stream and the low

level of operations mitigate against any such mutual

cooperation.

Von Neumann himself recognized that a very complex

organization cannot function effectively with a centralized

sequential control [2] -- the second principle above. He

suggested alternative organizations of automata, and one

such organization was based on a large number of identical

and asynchronously cooperating cells (processing elements).

(In fact, tne first computer, ENIAC, designed by Mauchley

anu Eckert, possessed no central control and did operate

with asynchronous processing units.) These cells were not

controlled by a central sequential command scheme, but based

their operation on a small program internal to each cell and

observation of the state of their immediate neighbor cells.

It was tnis scheme which von Neumann used to devise his

ss1f—reproducing machine (a decidedly theoretical

investigation). Holland [3], actually proposed a machine

based on these ideas in 1959. The most significant fact

about Holland's machine was that the technology was

inadequate to warrant further consideration. Not only could

such cells be economically produced in large numbers now,

but far more sophisticated building blocks could be devised

to serve as the basis of distributed and asynchronous

machines.



Page 9

3.2 The high cost of software

Software now accounts for the majority of costs in a

computer system. Microelectronics will only make this fact

more pronounced by reducing hardware costs further. The
1

observation that machine architecture contributes to the

high cost of software is not appreciated by many. This view

stems primarily from the fact that virtually all computers

ana languages have the same old central sequential control

structure as their fundamental basis of operation (including

ILLIAC IV and APL). Only when programming with sequential

control becomes absurd are other control structures

considered. B'or example, special programming tools are

designed to provide systems programmers with an asynchronous

or non-sequential control facility to program operating

systems. Since asynchrony is not a fundamental mode of

operation of von-Neumann type machines, the execution

effeciency of these tools is low. Also, available tools are

simplistic in nature and are totally inadequate to provide a

viable asynchronous programming base. Furthermore, the

influence of an ever-present sequential machine on a

programmer's tninking and on the systems that result must be'

considered. These costs are difficult to assess, but we

believe tnat a computer with asynchronous operation at the

machine language level . will contribute significantly to

reducing the cost of software. This is particularly

important when we recognize that the hardware and software

systems currently being produced are rainiscule relative to



Page 10

those which will be produced in the future. Lastly, it is

important to note that such a machine cannot be obtained by

simply adding asynchrony" to a von Neumann computer.

The above statements have concentrated on von Nueinann's

second principle (asynchrony) because we consider it the

most important and least understood of the three. The

remaining two principles (low-level machine language, and

linearly organized memory) are also liable to reexamination,

and it can be argued, only contribute to software costs.

^^ Peliability

Since the cost of manufacturing LSI components is

already less than the cost of testing those components, one

must accept machines built from parts which are unreliable,

^i-roblems of fault tolerance, error detection, self-repair,

etc., must now be addressed directly. Computer scientists, '

as well as microelectronics researchers, will have to

consider these aspects of reliability as basic and consider

them explicitly in the design of components and computers.

Alternative Computer Organization

Ihe proceeding sections have presented arguments to

(demonstrate that very different computer architectures are

needed in order to effectively utilize microelectronics to

solve very complex problems. One new principle of machine

(Operation which may answer the need is called dataflow.



Page 11

Computers based on the dataflow concept are being developed

at the University of California, Irvine [4,5] and at the

Massachusetts Institute of Technology [7J.

The major deviation from von Neumann's principles is

that dataflow is highly asynchronous. Programming in

dataflow is done under the illusion that as many processors

as needed are available. In the following, we will give a

brief outline of what dataflow means, and we will give an

idea Of the kinds of demands a dataflow computer would place

on microelectronics for its implementation.

4.1 Dataflow

By dataflow, we mean a machine language for expressing

computation in which

1. An instruction executes when and only when all
operands needed for that instruction become
available, and

2. Instructions, at whatever level they might exist,
are purely functional and produce no side—effects.

In essence, a dataflow program is a partially ordered

pet of instructions to be carried out, with sequencing

pfesent only as needed for the production of
!partial results. Data flow languages have been developed

[6,8] V'/hich include the expressive power of conventional

languages with looping, recursion, and conditional

constructs. Reference [4], however, gives an entirely new



Page 12

mechanism lor executing dataflow programs which brings out

even more asynchrony than previously possible. This

execution mechanism, for example, can automatically

"unravel" loops during program execution to allow an

asynchronous machine composed of many processors to execute

iterations of that loop with as much parallel activity

as possible. These parallel or asynchronous activities

could include simultaneous calls on complex operations such

as subroutines, etc.. The primary resulting effect is to

allow the executing hardware to exchange blocks of

processors for slices of time, and to allow a machine to

execute a program faster as more processors are provided to

it. Some details as to how this is done are covered in [4];

we state here only that no preprocessing of programs is

required, and that the asynchrony inherent in dataflow

programs is brought out by the machine in a very simple and

mechanical way.

^ £ dataflow architecture

In this section we v/ish to give an idea of what a

particular dataflow machine [5] may require in terms of

microelectronics. The numbers given are very preliminary
!
fjnd are meant only to convey a. general impression of our

design at this time.



Page 13

A basic view of the architecture is shown in Figure 1.

Figure I

A basic view of a dataflow architecture

The processing elements (PEs) are grouped in columns, each

column being composed of 10-20 processors. The complexity

|of each PE is of the same order as an Intel 8080. During
Machine operation, a processing element assumes
i
jr esponsibil ity for accepting input operands along with a

js pec i f i cat ion of what to do with those operands. After
i

pccepting the operands, the processor will compute a result
pnd send tnat result on to some other processor. Which
I

processor will accept whicn operands is not pre-specified,
I
but is decided completely during program execution.



Page 14

A processor outputs operands for input to other

processors by constructing data packets of 40-100 bits

length per datum per destination processor. Each such

•pacKet traverses a portion of the communication system in an

attempt to find an empty processor or that processor which

is waiting to accept that packet. A view of the

communication system is shown in Figure 2.

- a O-

!—c_ 1 It

1
lTu u

1f\
J \

Figure 2

The communication system



Page 15

The communication system is essentially a set of

intersecting bidirectional buses along which operand packets

flow. Each processor column is attached to a bus. To

reduce the number of columns that a packet must search in

order to find its destination processor, the communication

system partitions itself into domains by setting domain

switches (DSs in Figure 2) at bus junctions to confine

traffic to a given domain. A domain corresponds roughly to

a subroutine in execution. These switches must be set

automatically as subroutines are called, and as subroutines

are exited tne domains must be deleted and made available

tor reallocation to (parts of) new domains.

Preliminary calculations indicate that a bus should be

capable of supporting a rate of 10-20 million bits per

second. Ihe bus must also supply the memory necessary to

hold a packet while the packet searches for a destination

processor. This suggests that shift registers be used to

implement the bus system. Also, the processor/bus junction

points must be capable of matching dynamically generated

processor names against packet destination names as the

tokens pass by each column. This matching mechanism

implements the processor search (PS in Figure 2) which each

packet must do. .

Lastly, we mention the operand memory where some of the

(generally) tree-structured data values may be kept. The

memory is not seen by the programmer, and is present only in



Page 16

order to reduce the amount of data that the communication

system would otherwise be required to carry. The memory is

distributed over the entire machine, yet each processor must

be able to access any piece of data in the memory, ' The

farther the data is located from the requesting processor,

the longer tne time to retrieve that data. A novel memory

busing system which may be useful for handling the data

referencing characteristics we expect is discussed in [9].

To summarize the system, it is asyncrhonous and without

centralized control; it is also highly modular and new

processors can be added at any point. The machine's

asynchrony thus departs from von Neumann's principle of a

centralized sequential control, and in this respect the

machine attempts to capitalize on the character of

microelectronics.

^• Conclusions

iAie have argued in this paper that in order to

effectively utilize microelectronics a radical departure

from tne principles of von Neumann~type computers is needed.

Tne design of future machines must incorporate the following

characteristics:

1. The default operation of the base machine must be
asynchronous.

2. The design must compensate for unreliable
components.



Page 17

3. The basic increase in the speed of computation must
come from the organization of the machine rather
than tne raw speed of the components.

Without the incorporation of these ideas,

miniaturization and the reduced cost of hardware is not

going to significantly increase our ability to solve complex

problems.

ACKNOV\ILEDGEMENT

Thanks to Shirley Rasmussen for typing this paper, and

to Dave Parber for reading of an early draft.

REPEREWCES

[IJ GlusnKov, V. h., M. B, Ignatyev, V. A. Myasnikov
and V. A. Torgashev, "Recursive Machines and
Computing Technology" Information Processir^ 74,
hortn-holland Publisning Comp.any7~ StockhoImT August
1974, (pp. 55-7h).

[2j von Neumann, J. Theory of Self-Reproducing Automata ed.
by A, W. Burks, University of Illinois~Press, 1965.

[3J Holland, J. C., "Iterative Circuit Computers"
Proceedings Western Joint Computer Conference, 1960,
(pp. 259-265).

[4] Arvind and K. P. Gostelow, A New Interpreter for Data
, Schemes and Its ImpTication for ComputeF

Architecture TR72, Department of Information ~and
Computer Science, University of California, Irvine,
November 1975.

[5J Arvind and K. P. Gostelow, A Computer Capable of
Exchanging Processing Elements for ~ Time, TR777
Department of Information and ComputeF Science,
University of Caliornia, Irvine, January 1976.

[6] Arvind, K. p. Gosteow, and W. Plouffe, Programming^ in
£ £12^ Language TR89, DepaFtment of
Information and Computer Science, University of
California, Irvine.



Page 18

[7] Dennis, J. B„, D. P. Misunas, "A Prel iniinary
Architecture for a Basic Data Flow ProcessorThe 2nd
Annual Symposium on Computer Architecture, Houstc^T
January 1975, ACM-SIGARCH vol 3, No. 4, Dec. 74 (pp."
126-132).

[8] weng, Kung-Song, Stream-Oriented Computation in
Recursive Data Plow Schernas M. S. " Thesis" (MAC
Technical Memorandum 68) 7 Department of Electrical
Engineering and Computer Science, MIT, October 1975.

19] Wittie, L. D. "Efficient Message Routing in
Mega-Micro-Computer Networks" Proceedings 3rd Annual
ACmSIGAkCR-ILEe Symposium on Computer ArchitectureT
19-21, January 1976, (pp. 136-140).




