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Biogeography-Based Optimization Algorithm for
Optimal Operation of Reservoir Systems

Omid Bozorg Haddad1; Seyed-Mohammad Hosseini-Moghari2; and Hugo A. Loáiciga, F.ASCE3

Abstract: The optimal operation of reservoir systems to meet water demand is a complex and nonlinear problem. This paper applies the
biogeography-based optimization (BBO) algorithm to solve reservoir operation problems. The BBO algorithm is first verified with the
minimization of three mathematical benchmark functions (Sphere, Rosenbrock, and Bukin6). In addition, the BBO algorithm was applied
to a single reservoir system and a four-reservoir system. The performance of the BBO algorithm was compared with that of the genetic
algorithm (GA) in solving the three optimization problems. The results show that the BBO algorithm minimized the benchmark functions
accurately, and outperformed the GA in this respect. In the case of the single-reservoir hydropower optimization problem the BBO
reached a near-optimal solution. The values of the objective function averaged 1.228 and 1.746 with the BBO and GA, respectively.
The global solution of this problem with the nonlinear programming method equals 1.213. In the four-reservoir system application the
BBO converged to 99.94% of the optimal solution in its best-performing history, whereas the GA converged to 97.46% of the optimal
solution. The results from the three test problems demonstrated the superior capacity of the BBO to optimize general mathematical
problems and the operation of reservoir systems. DOI: 10.1061/(ASCE)WR.1943-5452.0000558. © 2015 American Society of Civil
Engineers.

Author keywords: Biogeography-based optimization; Genetic algorithm; Optimization; Reservoirs; Nonlinear programming.

Introduction

The scarcity of precipitation, whether by climatic variability or
climatic change, exerts enormous stress on water resources systems
(Bou-Zeid and El-Fadel 2002). That stress is compounded by
population growth and the need for enlarged food production.
Within this context, it is a high priority to develop effective meth-
ods to optimally allocate scarce water resources. Reservoir opera-
tion for water and energy production is one such category of
methods. Reservoir operation methodology can be categorized into
two main groups. The first group consists of classical methods,
which include linear programming (LP), dynamic programming
(DP), stochastic dynamic programming (SDP), and nonlinear
programming (NLP). The second group consists of evolutionary
algorithms (EAs), among which the genetic algorithm (GA) is
one of the most popular.

An early paper by Revelle et al. (1969) employed LP to derive
monthly operation rules from a single reservoir system using
linear rules of operation for each month. Mousavi et al. (2005) de-
rived fuzzy operation rules with DP and based on fuzzy logic for

the Karun and Dez reservoirs in Iran. Their results showed
that the calculated operation rules modeled reservoir uncertainty
properly. Karamouz and Houck (1987) compared DP and SDP
models used for optimal reservoir operation. They applied DP
and SDP to the Gunpowder, Osage, and Blacksmith River reser-
voirs. Their results showed that DP performed well for reservoirs
with medium and large capacity, while SDP proved superior for the
operation of small reservoirs. Zhao et al. (2014) applied the im-
proved DP to optimal operation of a hydropower reservoir in China.

Recently, many optimization techniques have been developed
and applied in several fields of water resources systems analysis
such as reservoir operation (Bozorg Haddad et al. 2011a; Fallah-
Mehdipour et al. 2011b, 2012a, 2013a; Taghian et al. 2013; Galelli
et al. 2014; Schardong and Simonovic 2015; Mendes et al. 2015),
hydrology (Orouji et al. 2013; Cho and Olivera 2012), project man-
agement (Bozorg Haddad et al. 2010b; Fallah-Mehdipour et al.
2012b), cultivation rules (Bozorg Haddad et al. 2009; Noory et al.
2012; Fallah-Mehdipour et al. 2013b), pumping scheduling
(Bozorg Haddad et al. 2011b), hydraulic structures (Bozorg
Haddad et al. 2010a), water distribution networks (Bozorg Haddad
et al. 2008a; Fallah-Mehdipour et al. 2011a; Seifollahi-Aghmiuni
et al. 2011, 2013; Mala-Jetmarova et al. 2015; Odan et al. 2015),
operation of aquifer systems (McPhee and Yeh 2004; Bozorg
Haddad and Mariño 2011; Farmer et al. 2015), site selection of
infrastructures (Karimi-Hosseini et al. 2011), and algorithmic de-
velopments (Shokri et al. 2013). Only a few of these works dealt
with the application of the biogeography-based optimization
(BBO) algorithm in water resources systems and especially for
optimizing the operation of reservoir systems.

EAs have been widely used in reservoir operation. Kumar and
Reddy (2006) compared the performance of ant colony optimiza-
tion (ACO) with GA in the operation of the Hirakud reservoir in
India with agricultural, hydropower, and flood control functions.
Their results revealed that ACO performance was better than that
of GA in terms of accuracy and computational speed. Jothiprakash
and Shanthi (2006) derived optimal operation policies using GA
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for the Pechiparai reservoir in India considering different reliabil-
ities. They performed a sensitivity analysis of the GA parameters.
The results showed that the amount of crossover is a key factor in
improving GA performance. Afshar et al. (2007) employed honey-
bee mating optimization (HBMO) in optimal operation of the Dez
reservoir. They asserted that HBMO approximated the global op-
timal solution with high accuracy.

Bozorg Haddad et al. (2008b) applied HBMO for operation
and design of one reservoir and a multiple reservoir system with
the aim of minimizing the costs of operation. They used the NLP
method along with HBMO to solve the problem. Their results
demonstrated that the NLP method could not solve the problem
of multiple reservoir system operation, whereas HBMO converged
to the optimal solution. Chang and Chang (2009) conducted a
study of the multiobjective operation of the Feitsui and Shihmen
two-reservoir system in China using the nondominated sorting ge-
netic algorithm II (NSGA-II). The results showed that the multi-
objective operation of these reservoirs reduced water shortages
by 10%. Zahraie and Hosseini (2009) implemented optimal oper-
ation of the Zayandeh-Rud River reservoir in Iran using GA. After
determining optimal outputs, classic and fuzzy regressions were
utilized for derivation of operation rules. They used symmetric
and asymmetric membership functions in the fuzzy regressions.
Their results indicated that the fuzzy model with asymmetric
membership function achieved better performance than the two
other models. Fallah-Mehdipour et al. (2012a) used genetic pro-
gramming (GP) and GA in developing real-time operational
rules for the Karaj Dam in Iran. They concluded that operational
rules achieved with GP improved the objective function value
by 12.39% compared to GA. Zhang et al. (2012) used the elite-
guide particle swarm optimization (EGPSO) algorithm for optimal
operation of a hydropower system of the Yangtze River, China.
Bozorg-Haddad et al. (2014a) demonstrated the superiority of
EAs, such as the bat algorithm (BA), relative to GA in the optimal
operation of reservoirs.

Based on the no free lunch theorem it is impossible for one EA
to optimally solve all optimizing problems, and an EA can be con-
sidered as the most appropriate approach to solve an optimizing
problem only when it is developed particularly for that problem
(Wolpert and Macready 1997). Hence, new EAs have been intro-
duced to deal with specific optimization engineering problems.
BBO is a relatively new algorithm whose high performance has
been reported in several fields, e.g., power systems (Jamuna and
Swarup 2011), optimization of benchmark functions (Simon
et al. 2011), and heat exchanger optimization design (Hadidi
and Nazari 2013).

Reservoirs are one of the principal resources for water supply in
many basins. Optimal operation of reservoir systems can consid-
erably improve regional water management. Reservoir operation
is a difficult optimization problem that typically involves nonlinear
multiobjective functions and multiple constraints. Water resources
analysts are continuously searching for suitable reservoir-operation
optimization techniques. EAs are popular algorithms for reservoir
operation optimization given their proven computational speed and
convergence properties. There have not been previous applications
of BBO in water resources management. Due to the fact that power-
ful EAs have performed successfully in various fields of water re-
sources management, an application of BBO seems appropriate and
timely. In so doing, the first detailed results of the aforementioned
algorithm are presented to water resources scientists to encourage
future novel applications. In addition, this paper compares BBO’s
and GA’s performances in the solution of reservoir operation
problems.

Methodology

Biogeography-Based Optimization: Theoretical
Principles

Biogeography is the study of the geographical distribution of living
organisms. Mathematical biogeographic models attempt to explain
how species migrate between habitats, their appearance, adaptation,
evolution, and extinction. The habitats that are more suitable places
for species settlement have a relatively high habitat suitability index
(HSI). The HSI depends on factors such as vegetative cover, pre-
cipitation, area, temperature, etc. Variables that determine the qual-
ity of habitat are known as suitability index variables (SIV). SIVs
are independent variables and HSI is variable dependent on SIVs.
Habitats with large values of HSI accommodate more species, and,
conversely, a low-HSI habitat supports fewer species. As the num-
ber of species in a habitat increases there is a stronger tendency for
species to emigrate from the habitat to find new ones with better
life-supporting conditions and lower population density than the
crowded habitats. Habitats with low population density may attract
immigration provided that the habitat has adequate life-supporting
characteristics. Fig. 1 illustrates the effect that the number of spe-
cies has on the immigration rate (λ) and emigration rate (μ).

According to Fig. 1, the maximum rate of immigration to the
habitat occurs when there are not species in it. As the number
of species in the habitat increases, the rate of immigration de-
creases. The rate of immigration becomes nil when the number of
species in the habitat equals Smax. The rate of emigration increases
as the number of species in a habitat increases, starting with zero
emigration for an empty habitat. The maximal rates of immigration
and emigration are identified by I and E, respectively. The equi-
librium number of species occurs when the immigration rate
and emigration rate are equal to each other. S0 indicates the equi-
librium point.

Letting n ¼ Smax, the rates of emigration (μ) and immigration
(λ) are expressed in terms of the number S of species in the habitat
in the following form:

μ ¼ E
S
n

ð1Þ

λ ¼ I

�
1 − S

n

�
ð2Þ

In the particular condition (E ¼ I) then μþ λ ¼ E ¼ I.

Applied Principles

Simon (2008) introduced the BBO algorithm utilizing biogeo-
graphic concepts. It is assumed that there is a problem to be solved

I

E

Number of species (S) 

Immigration 

Emigration 

λ

μ

R
at

e 

Fig. 1. Species immigration and emigration pattern in a habitat; I and E
are maximal immigration and emigration rates, respectively
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and a number of possible solutions. Each solution can be consid-
ered as a habitat in which the decision variables are the SIVs (hab-
itats act as chromosomes and SIVs are similar to genes in GA). As
previously pointed out, the SIVs determine the HSI in a habitat: the
greater the HSI, the more suitable the habitat is. In fact, the HSI
plays the role of objective function in the BBO algorithm. If for
each solution (habitat) there is a specific graph with E ¼ I, such
as shown in Fig. 2, the number of species (S) has a direct relation-
ship with HSI, in which case can use HSI values instead of S.
In Fig. 2, S1 is a solution with low HSI, and S2 represents a
high-HSI solution. S1 represents a habitat with few species, while
S2 denotes a habitat with numerous species. The λ1 associated
with S1 is larger than the λ2 corresponding to S2. μ1 for S1 is
smaller than μ2 for S2.

With a specific probability Pmod, each solution can be improved
by another solution. If the Si solution is chosen as an improvement,
the immigration rate λ is used to modify its SIVs. After selecting
the SIVs to be modified, the emigration rate μ relevant to other
solutions is used to select the improved solution. SIVs from chosen
solutions are randomly replaced with the SIVs of the Si solution.
The appropriate values for μ can be considered arbitrary by using
an arithmetic progression between 0 and 1, with the common differ-
ence of successive members equal to 1=ðNpop − 1Þ, where Npop =
population size. After evaluation of μ, λ can be calculated
as λ ¼ 1 − μ.

In the absence of elitism all solutions are modified at all stages.
Yet, the modification amount of any solution is inversely related to
its HSI. Selecting the modifier solution is based on a probability
proportional to the emigration rate using a roulette wheel for this
purpose. Transferring SIVs from one solution to another one is an
inferior strategy because it limits the search options within the de-
cision space. Thus, it is recommendable to use the following equa-
tion for replacing SIVs:

SIVnew
i;k ¼ SIVi;k þ αðSIVj;k − SIVi;kÞ ð3Þ

where SIVnew
i;k = kth modified SIV of the ith solution; SIVi;k = kth

SIVof the ith solution (modified solution); SIVj;k = kth SIVof the
jth solution (modifier solution); and α = parameter between 0 and
1, which is specified by the user.

Serious disasters such as spreading of infectious diseases, natu-
ral hazards, and other disasters can rapidly change the HSI of a
habitat. Therefore, the condition of a habitat changes from adequate
to inadequate, in a manner similar to mutations in GA. The muta-
tion can be exerted on SIVs after migration based on a probability
distribution such as the Gaussian distribution or the uniform dis-
tribution. Fig. 3 illustrates the BBO algorithm flowchart.

Verification of BBO Algorithm with Benchmark
Mathematical Functions

Three benchmark mathematical functions are used in this section
to test the BBO’s ability to find global minima. The benchmark
functions are the Sphere, Rosenbrock, and Bukin6 functions de-
scribed respectively by Eqs. (4)–(6). In fact, functions with unique
characteristics, such as the three chosen in this paper, are required.
For instance, Sphere is a high-dimensional function, while Bukin6
is a function with many local optimums. The global minimum of
the Sphere function is located at the origin of coordinates that is
equal to zero. In this study the Sphere function was considered as
20 dimensional. The Rosenbrock and Bukin6 were set as two-
dimensional functions. The minimum of the Rosenbrock function
is equal to zero and is placed at the point (1, 1). The minimum of the
Bukin6 function is also zero, corresponding to the point (−10, 1).
Fig. 4 depicts the benchmark functions in three-dimensional space

E=I

R
at

e 

Number of species (S) 

Immigration 

Emigration 

λ

μ

S1 S2 Smax

Fig. 2. Comparison of two solutions for one problem; S1 has a low
HSI, and S2 has a high HSI

Mutation 

Reporting the best solution 
and relevant objective 

function value 

Evaluation of objective 
functions 

Are stopping criteria 
satisfied? 

End 

Improvement of the solutions 
based on emigration and 

immigration rates  

Sorting of solutions 
No 

Yes 

Start 

Allocation of emigration and 
immigration rates based on 

objective function value

Evaluation of objective function 
and sorting of solutions 

Generation of initial population 
and determining of stopping 

criteria  

Fig. 3. Flowchart of the BBO algorithm
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N ¼ 20 − 5.12 ≤ xi ≤ 5.12 Sphere fðxÞ ¼
Xn
i¼1

x2i ð4Þ

N ¼ 2 − 2.048 ≤ xi ≤ 2.048 Rosenbrock

fðxÞ ¼
Xn−1
i¼1

½100ðxiþ1 − x2i Þ2 þ ðxi−1Þ2� ð5Þ

N ¼ 2
−15 ≤ x1 ≤ −5
− 3 ≤ x2 ≤ 3

Bukin6

fðx1; x2Þ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 − 0.01x21j

q
þ 0.01jx1 þ 10j ð6Þ

The results of BBO for benchmark functions were compared to
the results of GA for the same functions. The comparison indicated
better performance of BBO than GA in converging to the global
optimal solution. The number of objective function evaluations
for all three functions and the two-optimization algorithm was ap-
proximately 9,000, and the number of starting random populations
was 10. The best parameters of BBO and GA were determined by
trial and error. Ten runs were carried out for each function in the
comparison given that these EAs require random starting popula-
tions. The 10 runs, each with a different random population, allow
the assessment and comparison of the EAs’ solution performances
statistically, as shown in the results section. Fig. 5 displays the BBO
convergence for the best and worst performance, as well as the
BBO and GA convergences at their average performances. The ver-
tical axes of Fig. 5 define the logarithm of the objective functions
for the purpose of illustrating the differences between the GA and
BBO results more clearly.

Table 1 lists the objective function values for 10 runs of BBO
and GA corresponding to the three benchmark functions. The
BBO’s performance was superior in all runs. In all cases even the
worst performance of BBO was better than the best performance
of GA. In the majority of situations, BBO reached the global opti-
mum solution with high precision. The best objective function val-
ues obtained with BBO for the Sphere, Rosenbrock, and Bukin6
functions were equal to 4.2 × 10−8, 3.6 × 10−9, and 3.3 × 10−5,
respectively. The GA converged to 4.6 × 10−2, 1.1 × 10−5, and
2.3 × 10−2 for the same functions.

Reservoir Operation Model

The operation of reservoirs is based on the continuity equation. The
continuity equation establishes the water balance in each period of
reservoir operation. Eq. (7) expresses the continuity equation for
an n-reservoir system

Sði;tþ1Þ ¼ Sði;tÞ þQði;tÞ þMði;jÞ · Rðj;tÞ þMði;jÞ · Spðj;tÞ − Lossði;tÞ

for j ¼ 1; : : : ; ni ¼ 1; : : : ; nt ¼ 1; : : : ; T ð7Þ

where t = number of given periods; i = reservoir number; Sði;tÞ
and Sði;tþ1Þ = the storages of ith reservoir, respectively, at the be-
ginning and end of period t;Qði;tÞ = inflow volume into ith reservoir
during period t;Mði;jÞ = matrix of input-output connectivity among
reservoirs; Rðj;tÞ = release volume from jth reservoir during period
t; Spðj;tÞ = overflow volume from jth reservoir during period t;
Lossði;tÞ = evaporation loss from ith reservoir surface during period;
n = number of reservoirs; and T = total number of operation
periods.

Fig. 4. Functions in three-dimensional space: (a) Sphere; (b) Rosen-
brock; (c) Bukin6
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Fig. 5. Best and worst convergence histories of BBO: (a) Sphere; (c) Rosenbrock; (e) Bukin6 function; and average convergence of BBO and GA:
(b) Sphere; (d) Rosenbrock; (f) Bukin6 function

Table 1. Values of Objective Function Calculated with BBO and GA in 10 Different Runs for Benchmark Functions

Number of run

Function name

Sphere Rosenbrock Bukin6

GA BBO GA BBO GA BBO

1 4.6 × 10−02 3.0 × 10−7 2.7 × 10−3 7.3 × 10−8 8.6 × 10−2 3.3 × 10−5
2 5.1 × 10−2 4.2 × 10−8 4.8 × 10−4 3.6 × 10−9 4.8 × 10−2 4.5 × 10−5
3 1.2 × 10−1 1.0 × 10−7 2.4 × 10−4 2.1 × 10−7 5.4 × 10−2 9.9 × 10−3
4 5.9 × 10−2 1.1 × 10−6 1.1 × 10−3 1.4 × 10−8 2.3 × 10−2 7.6 × 10−4
5 7.5 × 10−2 1.6 × 10−7 3.7 × 10−5 1.9 × 10−8 4.5 × 10−2 6.4 × 10−3
6 1.3 × 10−1 7.7 × 10−8 1.1 × 10−5 3.8 × 10−8 5.7 × 10−2 7.2 × 10−3
7 7.8 × 10−2 8.8 × 10−8 1.4 × 10−5 9.6 × 10−8 6.7 × 10−2 8.7 × 10−3
8 7.8 × 10−2 4.7 × 10−7 4.9 × 10−4 1.7 × 10−7 6.3 × 10−2 4.8 × 10−3
9 8.8 × 10−2 1.4 × 10−7 1.4 × 10−4 5.0 × 10−8 4.8 × 10−2 7.2 × 10−3
10 8.1 × 10−2 3.5 × 10−7 5.5 × 10−5 3.3 × 10−8 5.2 × 10−2 3.3 × 10−4
Best 4.6 × 10−2 4.2 × 10−8 1.1 × 10−5 3.6 × 10−9 2.3 × 10−2 3.3 × 10−5
Worst 1.3 × 10−1 1.1 × 10−6 2.7 × 10−3 2.1 × 10−7 8.6 × 10−2 9.9 × 10−3
Average 8.1 × 10−2 2.9 × 10−7 5.2 × 10−4 7.0 × 10−8 5.4 × 10−2 4.6 × 10−3
Standard deviation 2.7 × 10−2 3.3 × 10−7 8.3 × 10−4 6.8 × 10−8 1.6 × 10−2 3.9 × 10−3
Coefficient of variation 3.4 × 10−1 1.1 × 100 1.6 × 100 9.7 × 10−1 3.0 × 10−1 8.6 × 10−1

© ASCE 04015034-5 J. Water Resour. Plann. Manage.
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Eq. (8) expresses the water losses from a reservoir:

Lossði;tÞ ¼ Evði;tÞ · Āði;tÞ for i ¼ 1; : : : ; n; t ¼ 1; : : : ; T ð8Þ

Āði;tÞ ¼
Aði;tÞ þ Aði;tþ1Þ

2
for i ¼ 1; : : : ; n; t ¼ 1; : : : ;T ð9Þ

in which Evði;tÞ = net evaporation (evaporation minus precipitation)
from ith reservoir surface during period t; Āði;tÞ = average ith res-
ervoir area during period t; Aði;tÞ and Aði;tþ1Þ ¼ ith reservoir areas
at the beginning and end, respectively, of period t. The overflow
volume or spill from the reservoir is calculated by Eq. (10):

SPði;tÞ ¼
� Sði;tþ1Þ − Smaxði;tÞ if Sði;tþ1Þ > Smaxði; tÞ
0 otherwise

for i ¼ 1; : : : ; n; t ¼ 1; : : : ;T ð10Þ
where Smaxði;tÞ = maximum amount of ith reservoir during period t.
Moreover there are constraints imposed on reservoir release and
reservoir storage as follows:

Rminði;tÞ ≤ Rði;tÞ ≤ Rmaxði;tÞ for i ¼ 1; : : : ; n; t ¼ 1; : : : ;T

ð11Þ

Sminði;tÞ ≤ Sði;tÞ ≤ Smaxði;tÞ for i¼ 1; : : : ;n; t¼ 1; : : : ;T ð12Þ

Sði;1Þ ¼ Sði;Tþ1Þ for i ¼ 1; : : : ; n ð13Þ

in which Rminði;tÞ and Rmaxði;tÞ = minimum and maximum, re-
spectively, permissible release of ith reservoir during period t;
Sminði;tÞ = minimum value of ith reservoir at beginning of period
t; Sði;1Þ = storage of ith reservoir at beginning of operation period;
Sði;Tþ1Þ = storage of ith reservoir at end of operation period.
Eqs. (7)–(13) are used to simulate single-reservoir and multiple-
reservoir systems.

Case Study

Single-Reservoir System

The Karun4 reservoir in Iran was considered as the single-
reservoir case study. This reservoir was built on the Karun River
for hydropower generation. The Karun4 reservoir is located in
ChaharMahal-va Bakhtiari province, at the coordinates 31°35′ N
latitude and 50°24′ east longitude. The minimum and maximum
of reservoir storage are 1; 141 × 106 and 2; 190 × 106 m3, re-
spectively. In addition, power plant capacity (PPC) is equal to
1; 000 × 106 W. BBO was applied to optimize the operation of
the Karun4 reservoir during a 5-year period with monthly time
steps from 1996 to 1997 through 2000–2001. The equations gov-
erning the operation of the Karun4 reservoir were presented in
the previous section. Fig. 6 demonstrates the average volume of
inflow and evaporation depth from the surface of the Karun4 res-
ervoir during the 5-year period of operation.

The operation of the Karun4 reservoir was performed for hydro-
power generation. Power plant productivity was calculated by the
following equation:

PðtÞ ¼ g:e:
RpðtÞ

PF · MulðtÞ
·
½H̄ðtÞ − TwðtÞ�

1,000
for t ¼ 1; : : : ; T ð14Þ

where PðtÞ = hydropower generation in period t (106 W); g =
acceleration of gravity (m=s2); e = efficiency of power plant;

RpðtÞ = water release from hydropower plant in period t (106 m3);
PF = plant functional coefficient; MulðtÞ ¼ 106 times the number
of seconds in period t; H̄ðtÞ = average reservoir water level during
period t (m); and TwðtÞ = reservoir tailwater level during period
t (m). The following constraints and equations were also used:

RpsðtÞ ¼ RðtÞ − RpðtÞ for t ¼ 1; : : : ; T ð15Þ

H̄ðtÞ ¼
HðtÞ þHðtþ1Þ

2
for t ¼ 1; : : : ;T ð16Þ

0 ≤ PðtÞ ≤ PPC for t ¼ 1; : : : ; T ð17Þ

in which RpsðtÞ = overflow water from plant after hydropower
generation in period t; HðtÞ and Hðtþ1Þ = water levels of reservoir
at beginning and end, respectively, of period t; and PPC = power
plant capacity (106 W). The area-storage (A-S) and water level-
storage (H-S) equations in the study are defined as follows [area
(A) in km2, water level (H) in m, and storage (S) in 106 m3]:

AðtÞ ¼ a1S3ðtÞ þ a2S2ðtÞ þ a3SðtÞ þ a4 for t ¼ 1; : : : ; T ð18Þ

HðtÞ ¼ b1S3ðtÞ þ b2S2ðtÞ þ b3SðtÞ þ b4 for t ¼ 1; : : : ; T ð19Þ

where a1, a2, a3, and a4 = constant coefficients of the area-storage
equation; and b1, b2, b3, and b4 = constant coefficients of the
water level-storage equation. The following equation expresses
the objective function in a single-reservoir system that optimizes
hydropower production:

MinZ ¼
XT
t¼1

�
1 − PðtÞ

PPC

�
2

ð20Þ

where Z = total power deficit (objective function).

Four-Reservoir System

This problem was introduced and solved by Chow and Cortes-
Rivera (1974). This problem is a hypothetical example of reservoir
operation of a four-reservoir system to maximize benefits during
the operation period (12 months). Data required for modeling the
system, such as inflows and reservoir storage, are available in
Murray and Yakowitz (1979). The connectivity matrix M [Eq. (7)]
for this problem is
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Fig. 6. Monthly average of inflow volume to Karun4 reservoir and
monthly average of net evaporation depth
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M ¼

2
66664

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

3
77775 ð21Þ

This matrix describes the manner in which releases from up-
stream reservoirs accrue to downstream ones. Fig. 7 depicts the
four-reservoir system.

In the multiple-reservoir problem used in this study (which is a
benchmark problem for testing optimization schemes for reservoir
systems) the simulating of the operation of reservoirs is carried out
using Eqs. (7)–(13) with the assumption that there are no overflows
and losses. The objective function for the multiple-reservoir system
is the maximization of system benefits:

Max B ¼
Xn
i¼1

XT
t¼1

bði;tÞ · Rði;tÞ ð22Þ

where B = objective function (entire profit during operation
period); and bði;tÞ = benefit related to the ith reservoir in period t.
There are constraints imposed on release and reservoir storages that
form an optimization problem in conjunction with the objective
function [Eq. (22)]. Constraints on the volume releases are directly
entered into the optimization algorithm, while constraints on res-
ervoir storage are appended as penalty functions. The following
three penalty functions on excess reservoir storage are added in
each period:

P1ði;tÞ ¼
�
K1½Sði;Tþ1Þ − Sði;targetÞ�2 if Sði;Tþ1Þ < Sði;targetÞ
0 otherwise

for i ¼ 1; : : : ; n; t ¼ 1; : : : ;T ð23Þ

P2ði;tÞ ¼
�
K2½Sminði;tÞ − Sði;tþ1Þ�2 if Sði;tþ1Þ < Sminði;tÞ
0 otherwise

for i ¼ 1; : : : ; n; t ¼ 1; : : : ;T ð24Þ

P3ði;tÞ ¼
�
K3½Sði;tþ1Þ − Smaxði;tÞ�2 if Sði;tþ1Þ < Sminði;tÞ
0 otherwise

for i ¼ 1; : : : ; n; t ¼ 1; : : : ; T ð25Þ

in which Sði;targetÞ = target volume of ith reservoir at end of oper-
ation period [Sði;targetÞ ¼ Sði;1Þ]; P1ði;tÞ, P2ði;tÞ, and P3ði;tÞ = penalty
functions related to not meeting the target storage at the end of the
operation period, reservoir storage being less than the minimum
storage, and reservoir storage exceeding the maximum storage, re-
spectively; K1, K2, and K3 = constants of the penalty functions.
The penalty constants of K1, K2, and K3 were considered equal
to 60, 40, and 40, respectively. Therefore, the objective functions
modified with the penalty functions is

Max B ¼
Xn
i¼1

XT
t¼1

½bði;tÞ · Rði;tÞ − ½P1ði;tÞ þ P2ði;tÞ þ P3ði;tÞ� ð26Þ

Results and Discussions

The results obtained for the optimization of the single-reservoir and
multiple-reservoir systems are presented in the next two sections.

Results for Single-Reservoir System Operation

The optimal operation of Karun4 was solved for using the BBO
method, and compared with solutions calculated with GA and
NLP. BBO and GA were programmed with the MATLAB 7.11.0
software. The NLP method was implemented in Lingo 11.0. The
GA method was compared to BBO to assess the relative perfor-
mance of these two EAs. The NLP method was implemented to
test BBO’s ability to converge to the global optimum.

A trial-and-error technique and sensitivity analysis were used to
determine the parameters of BBO and GA. The selected parameters
of each algorithm are listed in Table 2. Due to the use of the random
generator in BBO and GA several solutions must be obtained with
an initial random population to test the performance of these EAs
over a number of initial populations. Then different runs were used
for BBO and for GA to assess and compare their solution perfor-
mances with the 10 runs statistically.

The objective function value of the NLP method, considered to
be the global optimum, equaled 1.213 with Lingo [obtained after
16 h of processing time with an Intel Core i7 (2.93 GHz) processor

Q1 Q2

1 2 

R2
R1

3 

R3

4 

R4

Fig. 7. Schematic of four-reservoir system

Table 2. Characteristics of BBO and GA Used in Reservoir System
Problems

Algorithm Parameter

Single
reservoir
system

Multiple
reservoir
system

BBO NFEa 70,000 500,000
Mutation rate 0.05 0.05

Mutation function Gaussian Gaussian
Selection function Roulette wheel Roulette wheel

α 1.00 0.40
GA NFE 70,000 500,000

Mutation rate 0.05 0.06
Mutation function Uniform Uniform
Selection function Roulette wheel Roulette wheel
Crossover fraction 0.60 0.70
Crossover function Two-point

crossover
Two-point
crossover

aNumber of functional evaluation.
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computer]. BBO converged to an optimal objective function value
equal to 1.223 after 70,000 evaluations of the objective function in
its best-performing run. The processing of the BBO algorithm
lasted less than two minutes in each run. The GA’s best-performing
value of the objective function among the 10 runs equaled 1.535.
Table 3 lists the results for the solution of the single-reservoir prob-
lems. According to the obtained results (Table 3), the variation re-
garding objective function values obtained with the BBO method in
10 different runs is insignificant and close to zero. The closeness of
results from BBO is testimony to the convergence accuracy and
precision of BBO. The coefficient of variation of the objective
function values obtained with BBO in 10 runs was 23.25 times
smaller than GA’s.

Fig. 8 depicts the convergence of the GA and BBO in 70,000
evaluations of the objective function. In addition to reaching better
objective function values than GA, the BBO convergence is supe-
rior to that of GA. The results depicted in Fig. 8 establish conclu-
sively that the BBO convergence history is better than that of GA
over the entire range of functional evaluations (70,000 total number
of functional evaluations). Figs. 9–11 illustrate, respectively, the
amount of release from the reservoir, generated power, and varia-
tion of reservoir storage during the operation period. The graphs of
these figures show that the output variables from BBO are very
close; in fact, they are almost identical to the NLP results. GA,
on the contrary, exhibited differences with NLP results in several
months. Fig. 10, specifically, shows substantial divergence of the

generated power calculated with GA and NLP after the 34th month
of operation.

Results for Multiple-Reservoir System Operation

Chow and Cortes-Rivera (1974) solved the four-reservoir problem
by means of LP and reported its optimal solution to be equal to
308.26. Murray and Yakowitz (1979) reported an optimal solu-
tion equal to 308.23 using the differential dynamic programming
(DDP) method. Bozorg Haddad et al. (2011a) solved this prob-
lem using HBMO, considering 220 populations in the HBMO
and using 5,000 iterations (approximately 1 billion evaluations).

Table 3. Value of Objective Function for 10 Different Runs Calculated
with BBO and GA for Karun4 Reservoir

Number of run GA BBO NLP

1 1.673 1.232 1.213
2 1.549 1.239
3 1.865 1.227
4 1.752 1.235
5 1.987 1.223
6 1.753 1.223
7 1.931 1.227
8 1.570 1.223
9 1.842 1.229
10 1.535 1.225
Best 1.535 1.223 —
Worst 1.987 1.239 —
Average 1.746 1.228 —
Standard deviation 0.162 0.005 —
Coefficient of variation 0.093 0.004 —
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Fig. 8. Average convergence histories of BBO and GA in solving the
optimization of Karun4 reservoir’s operation
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They calculated 307.50 as the average of the objective function
value in 10 runs of the HBMO algorithm. The best and the worst
reported solution during these 10 runs were 308.07 and 306.71,
respectively. Moreover, Bozorg Haddad et al. (2011a) solved this
problem using the LP method with the Lingo 8.0 software. They
reported the global optimal value of the objective function equal to
308.29 with NLP. Bozorg Haddad et al. (2014b) used the water
cycle algorithm (WCA) to optimize the operation of this reservoir
system. Their results yielded 306.920 as the optimal value of the
objective function of this problem using WCA. The optimal value
calculated with BBO in this study was 308.29.

Table 2 lists the BBO and GA parameters used in the optimi-
zation of the four-reservoir system. Ten runs were performed using
BBO and using the GA. The results revealed that BBO converged
to 99.94% of the global optimal solution in its best performance.
GA converged to 97.46% of the optimal solution in its best perfor-
mance. The average values of the objective function calculated with
BBO and GA in 10 runs were 307.69 and 299.70, respectively.
Table 4 summarizes the calculated results from the 10 runs of BBO
and GA.

The results of Table 4 show that, in addition to a suitable per-
formance of BBO in reaching the global optimal solution, the stan-
dard deviation of the objective function value in 10 different runs
of the BBO algorithm equaled 0.51. The standard deviation of the
objective function value calculated with GA was equal to 0.70,
which is 1.37 times larger than that of BBO in 10 runs. The average

and worst values of the objective function in 10 runs of BBO were
99.80 and 99.43% of the global optimal solution, respectively. The
GA’s average and worst performances in 10 runs were 97.21 and
96.81% of the global optimal solution, respectively. Fig. 12 illus-
trates the BBO’s best and worst convergence histories. Fig. 13 dis-
plays the BBO’s and GA’s average histories in 10 runs. Fig. 14
depicts the calculated total release from the four-reservoir system

Table 4. Value of Objective Function for 10 Runs Calculated with BBO
and GA for Four-Reservoir System

Number of run GA BBO Global

1 300.42 308.00 308.29
2 298.89 308.02
3 300.09 308.12
4 300.47 307.56
5 298.46 307.11
6 300.00 307.88
7 299.22 307.57
8 299.87 308.08
9 299.20 308.00
10 300.35 306.55
Best 300.47 308.12 —
Worst 298.46 306.55 —
Average 299.70 307.69 —
Standard deviation 0.7060 0.5107 —
Coefficient of variation 0.0024 0.0017 —
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using the best-performing histories of the BBO and GA algorithms.
Fig. 15 displays the variation of reservoir storage in the four-
reservoir system corresponding to the best performance histories
of the BBO and GA algorithms.

Concluding Remarks

This study evaluated the BBO algorithm’s ability to solve for the
optimal operating of single-reservoir and multiple-reservoir sys-
tems. Results from the two case studies indicate the following:
1. Closeness of the best performance to the global optimal solu-

tion: Concerning the operation of the Karun4 reservoir, the
objective function value obtained from the NLP method was
equal to 1.213. Objective function values of BBO and GA for
this problem were 1.223 and 1.535, respectively. The calcu-
lated results show the superiority of BBO compared to GA.
In the case of the four-reservoir system, BBO converged ac-
curately to the global optimal solution, reaching 99.94% of
the optimal solution in its best-performing history, while GA
reached 97.46% of the optimal solution in its best-performing
history. It is pivotal to consider that the proposed reservoir
optimization examples address short-term and small-scale pro-
blems. Clearly BBO can be applied to long-term (e.g., 50 years)
operation of a multireservoir system at a national or global
scale, with a significant gain in system performance, benefits,
and cost reduction.

2. Comparison of the average performance of BBO with GA:
In the single-reservoir system, the average values of the objec-
tive function with BBO and GA equaled 1.228 and 1.746, re-
spectively. Given the global optimum of 1.213 calculated with
NLP it is concluded that BBO exhibited the best average per-
formance and converged very close to the global optimum
solution. Based on the average-performance criterion concern-
ing the four-reservoir system BBO reached 99.80% of the
optimal solution, whereas GA reached 97.21% of the optimal
solution.

3. Variation of the objective function in different runs: Consider-
ing the operation of the Karun4 reservoir, the standard devia-
tion of BBO results was lower than that of GA in 10 runs.
The standard deviations of BBO and GA were 0.005 and
0.162, respectively. Similar to the Karun4 reservoir case, for
the operation of four-reservoir systems the standard deviations
of solutions from 10 runs equaled 0.51 and 0.70 for the BBO
algorithm and GA, respectively.

Based on three performance criteria outlined in this section
BBO exhibited all-around better performance than GA in the prob-
lems considered. In addition, BBO has another advantage over GA;
namely, it is easier to set parameters: Although BBO and GA em-
ploy approximately a similar number of parameters, the mechanism
of parameter-tuning for BBO is easier and faster. Owing to the fact
that BBO is not sensitive to minor changes in parameters, the pro-
cess of trial and error becomes simpler.

Overall superiority of BBO over GA stems from relying on a
simpler algorithmic structure because of the former’s easier mecha-
nism for setting its parameters, making BBO an efficient, relatively
user-friendly optimization method, with high potential for solving
reservoir operation problems.
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